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Abstract—When dealing with a large number of devices, the existing indexing solutions for the discovery of IoT sources often fall short
to provide an adequate scalability. This is due to the high computational complexity and communication overhead that is required to
create and maintain the indices of the IoT sources particularly when their attributes are dynamic. This paper presents a novel approach
for indexing distributed IoT sources and paves the way to design a data discovery service to search and gain access to their data. The
proposed method creates concise references to IoT sources by using Gaussian Mixture Models (GMM). Furthermore, a summary update
mechanism is introduced to tackle the change of sources availability and mitigate the overhead of updating the indices frequently. The
proposed approach is benchmarked against a standard centralized indexing and discovery solution. The results show that the proposed
solution reduces the communication overhead required for indexing by three orders of magnitude while depending on IoT network
architecture it may slightly increase the discovery time.
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1 INTRODUCTION

HOW to find a thing in the Internet of Things (IoT)
haystack? This is a critical question that IoT users

and developers are facing and will face in the future [1].
The existing solution to the source discovery in IoT is very
similar to the web search engines, where the attributes of
each item (web pages in web domain) are crawled to fill the
index repository (ies). User queries that are received from
a search engine interface are evaluated against the indices
and sources associated with the closest index matches are
fetched for data ( the standard architecture for IoT source
discovery is elaborated in section 1.1). Examples of such
search platforms for IoT includes GSN [2], LSM [3], and
Microsoft SensorMap [4].

As elaborated in [5] the index (address) provided for IoT
resource should at least cover (the) location and function-
ality (type) of the device. Using this information, a variety
of approaches such as IPv6 [5], hashing methods [6], Object
Name Service ONS [7] are adapted to make a unique index,
for each IoT item.

Indexing method has a significant impact on the per-
formance of the search engine. In recent years, a variety
of approaches for indexing the IoT resources have been
introduced with various objectives such as reducing the
complexity of the search mechanism, e.g. ”Hexastore” [8],
addressing a variety of query types e.g. [9], and enabling
to consider user priorities e.g. [10]. However, only a small
number of existing solutions have taken the impact of the
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indexing process on the scalability of the search mechanism
into their design considerations.

Such solutions are beneficial when indexed attributes are
static. Otherwise, when for example billions of IoT devices
are moving around, i.e. changing one of their indexed
attributes, new indices are to be continuously generated,
imposing a significant load to the address generator nodes
and the rest of the network only to maintain the vital indices.
Experts in IoT domain has recently identified this issue as
a significant threat to the applicability of the existing IoT
source discovery methods [6], [11] and [12]. Reports on the
performance of real-world platforms such as [3] have also
emphasized on the congestion and bottleneck problems as a
result of index update issues. Recent advances in providing
more effective indexing by clustering the indexed attributes
e.g. [13] and [14] have been able to reduce the size of indices
significantly. However, such approaches either make strong
assumptions about the distribution of the indexed attributes
or impose excessive computation burden to retrain the
clusters when frequent updates are required.

In this paper, we take an initial step towards mitigating
the communication overhead of maintaining the indices and
introduce a Distributed Scalable Indexing System A.K.A
DSIS. In short, we make the following contributions.

We propose to replace the conventional indices with a set
of new indices that are based on the mathematical represen-
tation of the distribution of the attributes of the IoT sources.
We discuss that such approach significantly reduces the
communication overhead for maintaining the indices while
providing enough information to accomplish the search
process. We further elaborate on how such indices can be
generated using Gaussian Mixture Models. Required steps
for constructing and maintaining the indexing parameters
from the ”location” and ”type” attributes of resources are
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detailed and further information for extending the approach
to indexing multiple attributes are provided.

To mitigate the computation cost for the update of the
new index parameters, we introduce a novel approach for
incremental updating of the constructed indexing param-
eters namely, Variation Compensation Vectors. A detailed
description of the update mechanism algorithm is provided.

The proposed indexing and the update mechanisms are
evaluated through extensive simulations, and the results
are presented. Also, the impact of the indices overlaps on
the performance of the search process is investigated and
discussed.

Finally, we provide an example of the implementation of
the proposed solution in the distributed networks. A novel
source lookup mechanism enhanced with our indexing
method is deployed in a hierarchical IoT network. Accuracy,
indexing efficiency and search complexity of the proposed
solution are investigated through several simulations and
benchmarked against a conventional centralized approach.
Results are presented and discussed.

The remainder of this paper is structured as follows. Sec-
tion 2 provides a summary of the related works and the state
of the art solutions. Section 3 introduces the fundamental
concepts behind the proposed approach including attribute
summarization for indexing and updating mechanisms.
Section 4 details the underlying mathematical formulation.
Simulations setup is presented in section 5 and the initial
evaluation results are reported in Section 6 where accuracy
and sensitivity of the proposed solution (are) investigated.
Section 7 provides an example for the implementation of
DSIS in a hierarchical network and introduces a hierarchical
search mechanism. Finally, concluding remarks and future
works are provided in Section 8.

1.1 IoT source discovery

The architecture of the IoT systems and Machine-to-
Machine (M2M) networks are discussed in several ex-
isting works including the European Telecommunications
Standards Institute (ETSI) M2M architecture [15]. We have
adopted the network architecture of the ETSI M2M in our
design. Fig. 1 shows a general architecture for IoT source
lookup indexing and the key entities that are typically
sensing and collection, source lookup indexing, and query.
In sensing and collection process, the published data and
services from IoT sources (e.g. device and sensors) are
collected. Each source is connected to a gateway (GTW) or
an Information Repository (IR). The indexing of the data
attributes of IoT sources is then constructed and stored at
Discovery Servers (DSs), while the actual data are stored
at GTWs. Source lookup indexing is built on top of DSs
where each DS is responsible for selecting the most ap-
propriate gateways that have answers for user/application
queries. Queries are composed of type, location and other
attributes [16].

For the sake of simplification of the presentation, we
limit our discussions to exact queries. For example, Get
temperature (i.e. type) in (-25.382708 and -49.265506) (i.e.
location). In this example, the lookup mechanism identifies
the GTW in which the queried Thermometer is registered
and publishes its measurements.
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Fig. 1. Simulation results for the network.

2 RELATED WORKS

While the indices must provide sufficient information for
DSs to address the queries, they should be generated in a
way that allows for a dynamic update with a minimum
computation overhead despite the number of IoT sources.
Furthermore, the traffic load associated with the communi-
cation of indices between gateways and DSs and even be-
tween DSs should not scale with the number of sources. The
existing indexing mechanisms typically fail to suffice these
requirements. In what follows we review some examples of
the indexing solutions for IoT source discovery.

Evdokimov in [17] assumes that IoT sources are repre-
sented by a numerical identification i.e. Object ID (OID).
Information about the sources is stored in distributed Infor-
mation Services (ISs) which are similar to the IR shown in
Fig. 1. Discovery servers (DSs) process user queries for a
specific source (i.e. OID) and provides a link to the Infor-
mation Service (IS) which is expected to have the requested
information. A centralized architecture is utilized for DSs.
Other works have adopted the same concept for publishing
the indices to the DSs, but instead of a centralized DS they
use distributed networks of DSs to have a more scalable
query processing. For example, The Bridge project utilizes
Lightweight Directory Access Protocol (LDAP) [18] and the
studies in [19] and [20] considers a peer to peer (P2P)
architecture.

The main shortcoming of these solutions lies in the fact
that the computation burden of generating the indices and
the communication load for propagating the indices from
DSs to ISs scales with the number of sources attributes that
are to be indexed, making them prone to overflow, when a
large number of indices are generated at the same time.

A recent study in [21] has proposed a new distributed
service discovery mechanism for IoT sources which expands
the preceding architectures by introducing a mechanism to
support a flexible identification scheme using multidimen-
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sional attributes and range queries. The multidimensional
attributes are first mapped into a one-dimensional domain,
and then they are indexed based on a Prefix Hash Table
(PHT) structure [22]. However, still, data and the generated
indices are associated in a one-to-one fashion which, as
discussed earlier, may limit the scalability of the system.
Also, by mapping the data attributes of sources to one
dimension, the search mechanism has to look for data within
a wider range of unique item, making the attribute matching
required for the query processing more challenging.

Linked Stream Middleware (LSM) [3] focuses on search
and discovery of the sensors and actuators. LSM provides
a framework for providing a semantic description (i.e. RDF
descriptions) for the sensors and actuators data and allows
for SPARQL-like queries across both resources and the
harvested data. The sensory data in LSM is annotated and
transformed into RDF triples. The triples are then stored
in a repository which is capable of executing SPARQL
queries. The main shortcoming of the LSM framework is
the lack of scalability due to the centralized architecture. The
query execution time is shown to increase drastically with
the increase in the number of provided triples. Moreover,
triple storages are not suitable for intensive applications and
insertion of many new data into the triple storage creates a
bottleneck for the system.

Another approach is to store sources information in an
Extensible Markup Language (XML) file and select a specific
XML field to construct indices [23]. However, the time for
building indices is affected by the increasing number of
connected devices which makes this approach not scalable.

Among few studies that have taken the initial steps for
reducing the impact of indexing process on the scalability
of the search mechanism, [13] presents an approximation
technique for query processing in WSNs. It is a tree-based
structure in which a Gaussian model of sensor’s data is
stored at each child node, and an aggregated Gaussian
model of children nodes is stored at their parents to facilitate
traversing the tree to find an approximated answer for
user queries. However, the work assumes that the sensor’s
data has a Gaussian distribution which is not the case in
all IoT environments and applications and models are to
be retrained for updating the models. The later imposes
excessive computation burden when frequent updates are
required.

Chu [14] propose a multi-indexing approach for services
provided by IoT sources in which functionality description,
spatial and temporal attributes are used to answer user
range queries. The work initially starts by clustering a group
of similar services into the same cluster based on their func-
tional similarities for their descriptions. The main drawback
of this approach is that the computation time to cluster
services provided by IoT sources scales with their number.
It also does not provide any effective updating mechanism
when either a new service connects or an existing one
disconnects. As a result, the clusters are to be rebuilt every
time that the attributes of the available services changes.

In this work, we propose a novel approach for the Dis-
tributed Source Indexing, namely DSIS. DSIS replaces the
standard indices that were generated in one-to-one associa-
tion with the sources with a new set of indices that form the
one-to-many association, hence improving on the state of

the art approaches for reducing communication overhead,
while allowing for accurate1 processing of queries. Different
from [13] and [14] our solution benefits from a novel in-
dex update mechanism that mitigates the computation and
communication overhead for maintaining the indices. Also,
unlike [13], DSI does not require any prior assumption on
the attributes.

3 METHODOLOGY

DSIS is comprised of two mechanisms: first is a probabilistic
indexing that exploits conditional probabilities to reduce the
size of indices and second is an updating process to keep the
indices up-to-date with minimum overhead. In what follows
we explain our rationale for developing these mechanisms.

3.1 Probabilistic Indexing
As was mentioned earlier, DSs process the queries to find
the GTW in which the queried data resides. We assume that
there is an IoT network comprises of a set of DSs (see Fig. 1)
such that ND refers to the number of DSs in that network.

Let’s assume that A is the ensemble of all possible
data attributes fields where A={a1,...an}. Each element of
A represents an attribute field which can take any value
from its value set ai={ai1,...ain}. An

D is a member of an
ensemble of attribute fields that are available at the nth

DS (DSn) in the network. IoT source is represented by a
finite number of values for different attribute fields e.g.
s={a11,...,an− 1n−1,ann}.

Query processing at a given DS e.g. DSn involves an
index matching process where each attribute value in the
query is compared with the possible counterparts at An

D .
Matching each attribute reduces the search space for the

remaining attributes to a subset of values that have been
associated with the matched attribute value. The average
complexity of processing a query at nth DS can be estimated
by the joint entropy of the attribute values of that query in
An

D . The average number of binary search processes that are
required to resolve a query based on our example source
index s can be calculated as follows.

H(s) = −
∑
k

p(a1k)log(p(a1k))...

−
∑
j

p(anj |a11..an− 13)log(p(anj |a11..an− 13))
(1)

H is the entropy and represents the average number of
binary matches that are required to resolve the query. p(aik)
is the likelihood of aik over all the entries for attribute ai at
An

D . The summations in (1) are reminiscent of the reduction
of the searching space when the queried attributes indices
are sequentially matched with their counterparts at An

D.
Equation 1 implies that conditional probabilities are the

key parameters in resolving the query. Inspired by this
observation, we propose a new approach to replace direct
index matching process by indirect evaluation of query at-
tributes on mathematical models of conditional probabilities

1. We refer to the accuracy in the handling of queries as the correct-
ness of identified gateway/data repository for queried items given the
constructed GMM models
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that are trained over the data attribute space. By doing so,
the number of indices that are to be retained across the IoT
network is reduced to a few model parameters.

According to (1), if all possible combinations of the
conditional probabilities are in hand the optimal order in
which the attributes of the query are to be matched to
achieve the fastest convergence can be calculated. How-
ever, calculating probabilities for all possible combinations
is computationally costly. To mitigate that, we (order) the
attributes and then sequentially calculate the conditional
probabilities between each pair of these attributes. This
process is hereby referred to as attribute summarization.

The order in which the attributes are modeled has a
direct impact on the efficiency of the summary process.
Ideally, attributes should be selected in a way that the
number of model parameters on the overall attribute values
is minimized. In section 4, we introduce a heuristic approach
to find an appropriate order of attributes.

Replacing matching process with estimations from prob-
ability functions may cause false positive errors. For exam-
ple, the probability distribution function may not exactly
fit the actual distribution of the data attributes and does
not fall to zero at the missing attribute values. In fact, the
accuracy of the query processing depends on the closeness
of fit of the models to the real probability distribution of
the data attributes. We circumvent this problem by using
Gaussian Mixture Models (GMM) and assigning a threshold
for minimum acceptable probability values.

GMM is a parametric probability density function which
is represented as the weighted sum of Gaussian component
densities. Herein, we assume that readers are familiar with
the basics of GMM, an introduction to GMM readers is
provided in [24]. As a generative learning algorithm, GMM
assumes a probabilistic pattern, dependent on certain pa-
rameters, between data and classes and through the learning
process specifies a joint distribution over data and recog-
nized classes.

Reasons for selecting GMM for probability density es-
timations are two folds; the first reason is that GMM can
approximate any probability distribution with a reasonable
accuracy provided that the number of Gaussian components
is sufficiently large, and the parameters of the model are
chosen correctly [25]. The second reason is that the GMM
can be implemented as a complete unsupervised technique
which is crucial for autonomous processing and discovery
of large-scale distributed IoT data. It should be noted that
GMM is just an example of various parametric probability
density estimation models that can be used in our proposed
approach for probabilistic index lookup and any other
models that satisfy the above mentioned criteria can be
implemented and used in the same manner as we describe
for GMM. Comparison of the performance of different prob-
ability density estimation models remain for future works.

The model parameters are trained at GTWs, a GTW may
train multiple GMM for different data attributes. GMM pa-
rameters are then forwarded to DSs across the network. DSs
maintain an account for each of the registered GTW and its
associated GMMs. Also, model parameters that are received
from various GTWs at a DS can be aggregated to create a
generic probabilistic model that represents the distribution
of overall indices at that DS. Such generic models can be

shared with other DSs in a distributed overlay network.
When a DS receives a query, the GMMs are employed
to attain a probabilistic estimation of the presence of the
queried data at each GTW. DS may opt to forward the
query to GTW/s for which the GMM model/s have given
the highest probability value or pass it to other DSs. False
positive errors are controlled by defining a threshold for
minimum allowable probability values. Indeed routing the
queries between DSs is dependent on the architecture of the
overlay network. In Section 7, we provide an example of
implementation of our technique in a hierarchical network
of DSs.

Locating the GTW of a queried source by following the
highest probability estimation is only possible when the
models are not overlapped. Meaning that the estimated
probability from the GMM that is provided by the correct
GTW is always higher than estimations from other GMMs
of other GTWs. However, depending on the distribution of
the attributes of the sources, the models may often be found
to be overlapping in real-world scenarios. In section 6 we
investigate the impact of the overlaps on an accuracy of
identifying the GTWs and DSs and in section, 7.2 we show
how a search mechanism can cope with this problem.

3.2 Index Update Method
Due to the dynamicity of the attributes of the IoT resources,
the model parameters are to be updated from time to time.
Indeed repeating the learning process is computationally
expensive and may delay the query processing. In this
regard, we have envisioned two types of update methods
with different computation costs and frequencies. The first
is a lightweight process that is triggered in relatively short
intervals depending on the dynamicity of the attributes of
the data. In this process, the available model parameters that
describe the distribution of the conditional probabilities are
considered to be more or less a valid representation of the
overall data and will be only adapted to the new variations
that have happened since the last interval. In section 4,
we will introduce Variation Compensation Vectors (VCVs)
which convey the required information for adaptation of
the models from GTWs to DSs. The second type of update
process is triggered at longer intervals; when the proportion
of the changed attributes is comparable with the primary
attributes that were used to construct the initial model.
Therefore, the existing model parameters are no longer
sufficient for representing the data. In this case, a new
distribution model is obtained.

Fig. 1 summarizes the proposed data flow layers across
the network. Each arrow shows a particular type of data
flow between network nodes. GTWs construct the GMM
models and propagate the model parameters to the DSs
overlay network. Updates to the models are provided from
the GTWs in the form of VCVs. The upper layer shows the
exchange of the queries and model parameters between DSs.
User queries are received at DSs and forwarded from DSs to
the selected GTWs.

4 APPROACH

This section elaborates our approach for the formulation
of the probabilistic indexing approach and the updating
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mechanism.

4.1 Attribute Summarization

The primary objective of the attribute summarization is to
minimize the number of model parameters that are required
to represent the presence and dependency of data attributes.
In what follows we present a heuristic approach for estimat-
ing an appropriate order of the attributes.

Attribute summarization is an iterative process. Through
each iteration, initially, two attributes are selected as pri-
mary and secondary attributes. Then the distribution of
a subset of values of the primary attribute which are as-
sociated with the first value of the secondary attribute is
estimated using GMM. If the size of the subset is not enough
for distribution estimation, the exact attribute values are
used instead. The process continues to cover all the values
within the secondary attributes. The next iteration starts
with replacing the secondary attribute with the primary
attribute and adding a new attribute that has not been ana-
lyzed before as the secondary attribute. The summarization
process terminates when all the data attributes are covered.

To find the ideal order, at the first step the ratio be-
tween the average number of values from primary attribute,
which are associated with a distinct value for the secondary
attribute is to be calculated. This measure provides an
estimation of the number of GMMs that are to be created
for each combination of primary and secondary attributes.
This ratio can be calculated for of all the possible com-
binations of primary and secondary attributes and based
on that the order of attributes which minimizes the total
number of GMMs can be identified. However, to reduce the
computation cost, and yet estimate an appropriate order
of attributes, once the ratios are calculated, the attribute
combinations are sorted by the highest ratio to the lowest
one. We ensure that the attributes with a greater number
of distinct values are modeled at early iterations resulting
in significant improvements of the of model parameter to
data attributes. The estimated distributions (along with the
remaining attribute values) are linked to each other to form
a consistent representation of the attribute space. It should
be noted that our approach, may not converge in an optimal
order. The optimal order can be estimated using Viterbi
algorithm or Exhaustive search which tend to add more
computation burden.

The number of distinct values for categorical attributes
are typically limited. Therefore, our approach tends to push
them towards the upper layers of the attribute summa-
rization process and represents them with discrete values
instead of GMM.Through the evaluation of the DSIS that is
presented in Section 6 and 7, we have represented each re-
source by type and location attributes. Type attributes have
less diversity in comparison with the location attributes
and are to be placed on top of the hierarchy for attribute
selection. In this manner, each GTW maintains some GMM
models each of which is trained over the location attributes
of a particular type of resource. In our simulations, a GTW
can take up to 20 different types of sensors resulting in up
to 20 different GMM models.

The next step is to develop the GMM models. We have
summarized the parameters that are used for the equations

TABLE 1
Summary of Parameters

Parameter Description
ϕ mixing proportion of the GMM components
E the expected value of the attributes
σ the covariance matrix of attributes
C the total number of mixture components
axl the vector of attribute values for the lth data entry
wlk a posterior probability of kth in a Gaussian mixture

component (Mc) given axl
ϕk a mixing proportion of the kth Gaussian mixture com-

ponent (Mc)
Ek the estimated mean of the kth Gaussian mixture compo-

nent (Mc)
σk the estimated covariance of the kth component
ϕ̀j
k the new mixing proportion of the kth Gaussian compo-

nent of the jth GMM model
Lj the total number of samples that are used for construct-

ing the jth GMM model
Ẽ the expected value of the attributes
Ẽ2 the sum of the squared attribute values that will be used

to estimate the corrected covariance matrix of attributes
L̃ the number of modified data points

in this section in Table 1. GMM estimations are defined
by three parameters: ϕ is the mixing proportion of the
components, E is the expected value of the attributes and
σ is the covariance matrix of attributes. Given that the
number of required components is estimated by one of
the aforementioned techniques e.g. [24], the GMM calcu-
lates the model parameters through an Expectation Maxi-
mization process. It can be shown that the EM algorithm
monotonically improves the likelihood of the model for
describing the data distribution. In our problem, we aim to
estimate p(ax|ϕ,E, σ, ayp) which describes the distribution
of a data attribute field i.e. ax given certain values of
another attribute i.e. ayp and GMM parameters. By adopting
the conventional EM algorithm (i.e. [24]) GMM parameters
are trained over data. Detailed formulation of the training
phases of GMMs is provided in Appendix A.

Following the above attribute selection process, GMM
models are trained over the attributes of data items at the
gateways. Next, the parameters of the models alongside
with the number of total data samples that are calculated
during the training phase (i.e. σ, E, ϕ, L) are forwarded
to the DS that is assigned to each gateway. A DS may
receive several GMM models from different gateways. The
models are aggregated in the DS to form more generic
GMM models, representing the entire data items that are
referenced at that DS.

The aggregated model comprises the Gaussian compo-
nents of the initial models, provided by gateways, but with
different mixing proportions. The new mixture ratios are
calculated as follows.

ϕ̀j
k =

Ljϕ
j
k∑

h Lh
(2)

Where ϕ̀j
k is the new mixing proportion of the kth Gaussian

component of the jth GMM model and Lj is the total
number of samples that are used for constructing the jth

GMM model. Before commencing the aggregation process,
DSs should ensure that the models are homogeneous. This
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is achieved by preserving the order of the selected attributes
in learning the conditional probabilities.

The order in which attributes are used during the learn-
ing process is not maintained across GTWs. In the case of
the model discrepancy, DSs can utilize the GTWs’ model
parameters to re-sample the data and train new models
before aggregating them. Re-sampling should be performed
in a way that preserves the statistical properties of the
original model. In essence error margins defined by central
limit theorem can be used to assess the accuracy of re-
sampling.

These models can be shared between DSs in the network.
Depending on the network architecture models may be
aggregated several times to construct a global model for
the distribution of the data. Through the query processing,
the estimated probability of the queried data based on the
aggregated models would be the key parameter to find
the DS which is associated with the gateway that hosts
the queried data. An example of the data discovery in
distributed networks is presented in section 7.

Another remaining challenge is that the model parame-
ters may quickly become obsolete due to the variation of the
data attributes, e.g. when the resources (i.e. sensor nodes)
are highly mobile, and their location attributes changes fre-
quently or the scenarios that several resources join and leave
the network at a rapid pace. Thereby, there is a need for
an efficient mechanism that updates the parameters across
the network and meanwhile imposes a minimum compu-
tation and communication overhead. The update process is
detailed in the following section.

It is worth noting that variables that are not directly
presented in a metric space such as textual variables will go
through a pre-processing step to attain a metric represen-
tation, before training GMMs. Pre-processing is a standard
process in text mining, particularly when textual data have
to be clustered with distance-based clustering algorithms.
We refer the interested readers to the survey in [26] that
describes some conventional algorithms which are used for
distance-based clustering of text documents.

4.2 Index Updating Mechanism
Variations of the attributes over time are updated in the
probabilistic references through the summary updating pro-
cess. At the GTWs, the summary updating mechanism peri-
odically produces new models over the newly modified data
and sends the calculated parameters to DSs. Subsequently,
DSs update their models with these new parameters. We
refer to this type of update process as ”Complete-Update”
and its period is represented by T . Due to the volume
of the data, complete-update may impose a considerable
computation cost and cannot be frequently executed. On
the other hand, performing updating process in long in-
tervals is also not desired as it degrades the performance
of the query processing due to the variations that take
place within the update intervals. To resolve this problem
and to achieve more accurate references during the update
intervals Temporary-Updates are introduced. We represent
the update period of the temporary updates with t and
assume that t < T . Temporary updates take advantage
of a novel parameter adaptation mechanism namely, the
Variation Compensation.

Different from the complete ones, temporary updates are
not iterative and are only performed over the portion of
the data that is modified. In this regard, temporary-update
imposes a less computational burden. Throughout the
temporary-update, the numbers of Gaussian components
are assumed to be fixed, and the existing model parameters
are still a close approximation of the correct model. Based
on these assumptions, the model parameters are adapted
to the recent changes of the data attributes. The adaptation
process is based on combining the parameters of the recently
obsoleted models with compensating parameters that are
calculated from the data items that are changed after the last
update (complete-update or temporary-update). These pa-
rameters are referred to as Variation Compensation Vectors
or VCVs. The modified model after each temporary-update
is used as a base for the next updates. The temporary-update
can start after a complete update and be repeated several
times until the next complete update. The existing model is
then made obsolete, and a new model is provided by the
complete-update.

The process for calculating the VCVs depends on how
the stored data items have changed. Scenarios for the al-
ternation of the attributes may include: addition of new
resources in WSNs, removal of resources, and variation of
the attribute values of the existing resources e.g. change of
the location attributes due to the movement of the device.
In what follows, we elaborate our approach for calculating
the VCVs.

Our solution for adapting the model parameters is per-
formed in two steps. The first step is to calculate VCVs as
sufficient statistics of the variations. This step is similar to
the E-step of GMM training. We denote the parameters that
are calculated at this step with ”∼”. This step is always per-
formed at the GTWs. The second step combines the VCVs
that were derived from the first step with the parameters of
the original model to create an adapted model. We denote
the parameters that are calculated at this step with ”∧”. The
second step is taken at the DSs.

The main difference between DSIS and the well known
Maximum A Posteriori (MAP) [27] method lies in the second
step. MAP tends to combine the parameters of the original
model and the one from the training set with an emphasis on
the characteristics of the new training data items. Whereas,
DSIS strives to utilize the original and new parameters (that
are derived at the first step) to generate an estimation of
a GMM as if it was trained on the entire updated dataset.
It should be noted that the original model parameters (i.e.
σ, E, ϕ are now providing suboptimal results due to the
modified portion of the data.

In the scenario of adding new resources, the formulation
of the first step would be as follows:

ω̃l
k = Pr(Mc = k|axl;ϕ,E, σ) (3)

ϕ̃k =
1

L̃
(

L̃∑
i=1

ω̃i
k) (4)

Ẽk =

∑L̃
l=1 ω̃

l
kaxl

L̃ϕk

(5)

Ẽ2
k =

∑L̃
l=1 ω̃

l
kaxlaxl

t

L̃ϕk

(6)
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For the modified portion of the data, ω̃ is a posterior
probability of Gaussian mixture components (Mc) for a
given attribute vector axl. ϕ̃ is the mixing proportion of
the components, Ẽ is the expected value of the attributes
and Ẽ2 is the sum of the squared attribute values that will
be used to estimate the new covariance matrix of attributes.
Finally, L̃ is the number of modified data points.

Once the VCVs are calculated, gateways update these
parameters at DSs. The adopted parameters are then cal-
culated by combining the previous model parameters and
updated VCVs as follows.

ϕ̂k =
L ∗ ϕk + L̃ ∗ ϕ̃k

L+ L̃
(7)

Êk =
L ∗ ϕk ∗ Ek + L̃ ∗ ϕ̃k ∗ Ẽk

L ∗ ϕk + L̃ ∗ ϕ̃k

(8)

σ̂k =
(σk ∗ σt

k + Ek ∗ Et
k) ∗ L ∗ ϕk + Ẽ2

k ∗ L̃ ∗ ϕ̃k

L ∗ ϕk + L̃ ∗ ϕ̃k

− Êk ∗ Êt
k

(9)
A closer look at Equations 7 - 9 indicates that the esti-

mated parameters are reminiscent of Maximization step of
the GMM training. Here instead of original dataset (with L
data items), the updated dataset (i.e. L+L̃ data elements)
is used. The M-step of the EM algorithm maximizes the
likelihood of the posterior probabilities. Given that the
posterior probability is provided from the original model
the second step of the update process calculates the model
parameters in a way that maximizes the likelihood function
of the model.

It should be noted that the original model parameters
that were calculated in a similar manner ( see Appendix A
for Equations 15 - 17) are now providing suboptimal results
due to the modified portion of the data.

Fig.2 provides an illustrative example of the update
process. Fig.2.a resembles the initial model that is trained
in a GTW. The model has two Gaussian mixing compo-
nents. Fig.2.b shows the situation where some new data are
added, and the model is updated based on the temporal
update mechanism. As described in Section 4, the number
of components is preserved in temporary updates. Fig.2.c
demonstrates the model after a complete update which
is a new model trained on the entire dataset. Different
from the original model, the new model takes advantage
of five Gaussian components to estimate the probability
distribution of the data. As is demonstrated in Fig.2, the
likelihood of the models improves after each step of the
updating process. In case of removal (i.e. when the resources
leave and their data become unavailable), after calculating
the sufficient statistic form (3-6) the updated parameters are
calculated as follows.

ϕ̂c =
(L ∗ ϕk − L̃ ∗ ϕ̃k)

L− L̃
(10)

Êc =
L ∗ ϕk ∗ Ek − L̃ ∗ ϕ̃k ∗ Ẽk

L ∗ ϕk − L̃ ∗ ϕ̃k

(11)

σ̂c =
(σk ∗ σt

k + Ek ∗ Et
k) ∗ L ∗ ϕk + Ẽ2

k ∗ L̃ ∗ ϕ̃k

L ∗ ϕk − L̃ ∗ ϕ̃k

− Êk ∗ Êt
k

(12)

Where ϕ̂, Ê and σ̂ are the updated components mixing pro-
portion, expected value and covariance matrix. In the case
of the variation of the attribute values of existing resources,
first the old attributes are removed according to (3-6) and
(10-12) and then the new attributes are added based on (3-
9). Pseudo codes of both attribute summarization and index
updating mechanisms are provided in Appendix E.

4.3 Complexity of Attribute Summarization and Index
Updating Mechanisms

Appendix A details the formulation of Expectation-
Maximization (EM) process required for training GMMs as
summary of the attributes and elaborates on GMM training
complexity.

As for the DSIS attribute summarization, the total time
complexity of training GMMs on the given set of attributes
O(A ∗ (I ∗K∗L∗D2 + I ∗K ∗D3)), where A is the number
of attributes, K is the number of mixture components, L is
the number of data points,D is the dimension of attributes
and I is the number of iterations of EM algorithm. In-
dex updating mechanism described in 4.2 is not iterative,
therefore the computation complexity, including calculating
VCVs and adaptation of models with VCVs, is in the order
of O(A*(K*L̃ *D2+K*D3)). L̃ is the number of modified
data points.

4.4 Privacy and Security Remarks

DSIS relies on the veracity of the information that is ex-
changed between IoT devices, GTWS and DSs and at the
same time interoperability of these nodes in the network.
Solid security measures should be considered to protect the
data communications from various security threats in real-
world applications. Below we describe some of the security
issues.

The communications among the nodes are in clear text
and therefore are not secure. No embedded mechanism is
defined for nodes (incl. GTWs, IRs and DSs) to authen-
ticate each other before accepting/rejecting any messages
from upper/lower/same tier nodes. It is not yet consid-
ered how a malicious node which impersonates a valid
one can be detected and compartmentalized. Edge of the
network needs to consider protective mechanisms against
DoS/DDoS (Distributed Denial-of-service attack) whereby
an attacker manages to target the DSs with an abundant
number of fake or valid queries in an attempt to disrupt the
whole system through resource overloading. Using NIDS
(Intrusion Detection Systems) e.g. [28] in the key points
of the architecture (i.e. gateways and the DSs) can help to
resolve this issue.

DSIS indices are created based on IoT resource attributes.
Attributes that contain private information should be ex-
cluded or sufficiently encrypted and anonymized before be
sent to the GTWs.

In [29] and [30], an overview of the existing works on
securing IoT networks and the issue of trust in exploiting
IoT resources is discussed. In-depth analysis of DSIS secu-
rity and privacy implications remains for future works. Ap-
pendix D provides a set of recommendations on resolving
node failure problem.
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Fig. 2. Demonstration of the summary updating mechanism, in this figure number of data points (M), is 1000. (a) Original model with two Gaussian
Mixture components, µo, σo and ϕo are GMM components of the original model data attributes. Once the original is trained, data points are
randomly displaced therefore the original model does not give an accurate representation of the new data distribution; (b) The original model is
adopted according to the proposed compensation mechanism (temporary update), µt, σt and ϕt are GMM components of the model after the
temporary update; (c) a new GMM is trained over the modified data (complete update); the new model comprises five components, µc, σc and ϕc

are GMM components of the model after the complete update.

5 SIMULATION SETUP

Two sets of simulations are performed to evaluate the per-
formance of the DSIS solution. The first round of simulations
are presented in section 6 and aim to study the impact of the
GMMs overlap. Model overlap is expected to be the primary
reason for false positive errors. Herein, we investigate how
the overlap between the models influence both the accuracy
of locating the queried data points based on the probability
estimations from GMMs, and the effectiveness of the update
process. The impact of the other critical parameters includ-
ing the network architecture and scalability characteristics
are studied in Section 7.

Similar to the recommendation for essential attributes of
IOT data in [5], ”type” and ”location” are utilized as the pri-
mary source attributes to construct the GMM models in our
simulations. However, the presented analysis applies to any
other type of attributes. Queries are presumed to include
the type and location attributes of the requested source.
Through this work, we assume queries are pre-processed
and mapped into a set of valid data attributes using the
state of the art techniques such as [31]. User queries are
received at DSs across the network.Upon reception of a user
query, DSs uses DSIS indices to find the GTW/IR where the
specified source stores its measurements.

The evaluations are performed on a simulated network
of DSs, GTWs, and WSNs. Connections between these nodes
are formed based on the structure presented in Fig. 1. The
network configuration in section 6 is agnostic to the network
architecture and could be part of a large scale hierarchical
structure or a peer-to-peer distributed network of DSs. In
Section 7 we elaborate on the extension of this network to a
large-scale hierarchical network.

6 EVALUATION OF OVERLAP IMPACT

In this set of simulations, we have three DSs each are
connected to three gateways each of which receiving data
from three WSNs. Each WSN is populated with 1000 sensors
randomly chosen from 20 different types (i.e. overall 18000

sensors). DSs are connected in a peer-to-peer fashion. One
of the DSs serves as a mediator (i.e. DSm), which receives
the queries (e.g. from the rest of the network) and passes it
to the two other DSs.

Through each Monte-Carlo run, sensors are randomly
generated within a given radius (i.e. rG = 25 nmi) of the
associated gateway. Location and type of the sensors are
registered at the gateways and are later used to generate the
GMMs. Gateways are randomly positioned within a given
radius (i.e. rD) of the DSs. The relative distance of DSs varies
through the simulations and is represented by d Each DS
stores the GMMs that are received from its allocated GTWs.
Afterward, the DSs aggregate the models according to the
procedure that was explained in Section 4.1 and pass the
resulted models to the DSm, where these models are used
to distribute the user queries between the DSs.

To study the impact of GMMs’ overlap on the perfor-
mance of the proposed solution, we have changed the val-
ues for rD and d while rG was fixed. It is worth mentioning
here that our simulation study utilizes the geographical area
as a metric to assess the overlap (for the location data.
Similarly, if GMMs were trained on a different attribute, the
relevant metric of the space that is used for training GMMs
should be considered to assess the level of overlap used.

6.1 DS and GTW Resolution Using DSIS

In this set of simulations, we strive to locate the queried data
points using DSIS indices. Herein, each sensor is queried
from the DSm. As mentioned earlier queries are forwarded
from DSm to the other DSs and subsequently to gateways
based on the likelihood of retaining the queried data. Sim-
ulations are repeated ten times for each pair of rD and d
values and the results are averaged.

Fig. 3 demonstrates the success rate of DS recognition
process with respect to different rD and d values and the
results when the errors from DS and GTW identification
steps are combined. The difference between corresponding
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Fig. 3. DS and GTW recognition accuracy versus different rD and d
values

bars on the left and right parts of the figure represents the
GTW identification error.

Increasing rD reduces the chance of overlap between
GTWs GMMs within the same DS. On the other hand,
Increasing d reduces the chance of overlap between DSs GM
models, which should improve the rate of correct DS iden-
tification. Results presented in Fig.3 are aligned with these
expectations. However, the magnitude of improvement is
dependent on the separation distance of the DSs.

The DS identification process shows a sudden jump
at the initial values of the rD and fluctuates around the
same level for the rest of the values. In case of the DS
identification, the lowest accuracy has been 83.2% which
was obtained when rD = 5nmi and d = 5nmi and the
highest value has been 95.3% at rD = 150nmi and d =
150nmi. When GTW recognition error is added, results show
a clear sensitivity to the variation of the rD and improves
almost monolithically with higher values of rD . Herein, the
identification accuracy starts with 68% and when rD = 5nmi
and d = 7.5nmi and reaches to at 91.2% when rD = 150nmi
and d = 225nmi.

The results indicate that using the aggregated models
at DSm, the correct DSs can be resolved accurately. Particu-
larly, when the distance between DSs is equal or greater than
GTWs radius. In the case of GTWs, correct identification
of the GTWs hinges on the density of the DSs and higher
success rates can be achieved at lower densities of GTWs
within DSs.

The overlap between the model has a clear impact on
the accuracy of the DS and GTWs identification. Excessive
model overlap of the GMM models at rD= 5nmi when com-
pared with moderate overlap situation at rD= 50nmishows
over 10% reduction in the accuracy of the DSs and GTWs
recognition.

Comparing the results at DS and GTW level implies that
at DS level resolutions has been performed with a higher
accuracy and has been less prone to the overlapping im-
pact. Query processing methods could benefit from such an
improvement in accuracy of the identification process that
occurs when aggregated GMMs are employed. In section 7,
we introduce an example of such query processing methods.

Through the evaluations, we observed that increasing

the size of the area for which the GMMs are trained reduces
the sensitivity of the models to individual data points. This
in return, results in confusion of the identification process.
When rD increases the aggregated GMM at DSs must cover
a broader area which results in slight degradation of the DS
identification success rates at the highest value of rD (rD =
150 nmi ). As an example solution to moderate this effect,
in Section 7 we propose a method that replaces the data
point query with a range query of appropriate size before
the estimation of the likelihood values. To summarize, the
proposed solution has been shown to be capable of recog-
nizing the correct DSs and GTWs accurately, provided that
the overlaps between generated models are controlled.

6.2 Update Mechanism

The update process is evaluated as follows. First, some
sensors with random types and locations are added to each
WSNs. The newly added sensors are then queried from DSm
at the following phases: a) before any update, b) after the
temporary-update and c) after the complete-update. Similar
to the previous subsection simulations are repeated ten
times for each pair of rD and d values, and the results are av-
eraged. Herein, we present the results when 250 sensors are
added which is equivalent to 25% of the WSNs population.
Evaluation of other proportions including 10% and 50% of
the WSNs population have shown similar trends, and their
results are not presented for redundancy reasons. Overall
4400 sensors are added to the network at each round of
simulations. The corresponding results are shown in Fig.4.

It is worth reminding the reader that after phase (c)
new GMMs are trained over the entire data set therefore
the results of this phase show the maximum achievable
performance using the proposed solution. In this manner,
we utilize the results after phase (c), to benchmark the query
processing performance after phase (a) and (b).

Compared to the results after phase (c), using the obso-
leted models i.e. phase (a) increases the average error of DS
recognition by 5%, which is equivalent to ∼ 205 extra miss
detections. GTW recognition has on average added 150 extra
misses.

A comparison between the results of query processing
after phase (a) and (c) indicates that the proposed indexing
solution is intrinsically resilient to the sensors variation
effects. That is down to the fact that GMM parameters
represent the statistical properties of the whole sensors and
their variation with respect to a relatively small number of
updated attributes data are not significant. The degradation
in the performance of the query processing of phase (a)
becomes more evident when the rD and d are close to
their highest values and the distribution of the nodes within
the network is sparse. Such situations have been effectively
recovered when the temporary-update process is applied.

A cross comparison of the results from all phases con-
firms the usefulness of the update methods in improving
the success rate. Results after phase (b) shows a notice-
able reduction in miss detection error. Where the average
increase in DS recognition error reduces to 1.1%, which is
equivalent to only 46 extra miss detections and when GTW
recognition is added the average additional miss detections
reaches to 102 sensors. The latter observation implies that



IEEE INTERNET OF THINGS JOURNAL, VOL. , NO. , JANUARY 2018 10

Phase (a) Phase (b) Phase (c)

A
ve

ra
ge

 s
uc

ce
ss

 ra
te

 o
f 

D
S 

re
co

gn
iti

on
A

ve
ra

ge
 s

uc
ce

ss
 ra

te
 o

f 
G

TW
 re

co
gn

iti
on

d = rD d = 1.5× rD d = 2×rD

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

5 25 50 75 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1rD (nmi)

Fig. 4. Update mechanism evaluation when 4400 sensors are added to the network.Phase(a): before updating the references.Phase(b): when
references are updated by the temporary-update method. Phase(c): when references are updated by complete-update method.

the temporary-update method has been more efficient in
improving the recognition of DSs rather than GTWs.

Another interesting phenomenon is that the temporary-
update effect is dependent on the rD values. Fig.4 shows
that the highest improvement is obtained where rd 25
nmi and is almost equal to success rate that is achievable
after the complete-update.However, different values of d
do not have a significant impact on the improvement of
the GTW and DS identification accuracy after temporary-
updates. Complimentary evaluations on update process are
provided in Section 7.

The proposed method was shown to cope with varia-
tions of data attributes, but the level of resiliency depends
on rD and d. The degradation in query processing success
rate as a result of using old models has been effectively com-
pensated after applying the temporary-update mechanism.
Our evaluations confirm that the temporary-update could
be an adequate substitute for the complete-update when a
small margin of error is acceptable.

7 DISTRIBUTED DATA DISCOVERY

In this section, we aim to evaluate the scalability character-
istics of our technique. In doing so, first, we elaborate on
the integration of our method in a hierarchical network as
an example of distributed networks. We introduce a query
processing method that is accustomed to the characteristics
of DSIS. Scalability properties are studied based on the
impact of node densities at different layers of the network
on the query processing performance and the number of
parameters that are required to maintain the indices across
the network. Later on, we evaluate the performance of
the enhanced hierarchical data discovery and benchmark
it against a centralized approach from the state of the art
techniques. It should be noted that our proof of concept

implementation, does not cover the detailed network man-
agement procedures.

7.1 Distributed Network

Our example of distributed network follows a hierarchical
architecture. Fig.5 represents a schematic diagram of our
proposed hierarchical structure with three layers. Never-
theless, our proposed approach is flexible regarding the
number of layers in the hierarchy.

DSIS in our hierarchical architecture is implemented as
follows. DSs are arranged in a hierarchical overlay network
with three layers as shown in Fig.5. One DS rests at the
top (i.e. DS Level 3 or DSl3) and is communicating with
a particular number of DSs at the lower level (i.e. DS
Level 2 and 1 denoted as DSl2 and DSl1). Each DS at
the 2nd layer is connected to some DSs at the 1st tier. DSs
at the first layer are connected to GTWs which receives
sensory information from WSNs. WSNs provide GTWs with
attributes of the available resources. Each GTW maintains a
SQL database which stores the attributes of WSNs sources.
GTWs create GMM models over the attribute space and
forward the resulted model parameters to their designated
DSs. DSs at each level aggregates the received models and
pass the aggregated model parameters to the next upper
layer. Queries are routed from DSs to GTWs that might
have responses for the queries according to our proposed
searching mechanism that is elaborated in the next section.
The identified GTW runs an SPARQL query to verify if the
IoT source that is specified by the query is registered at the
identified GTW or not. If the query is successful, the user is
provided with a link to the data source and if not the search
mechanism is notified to continue the search in a different
GTW.
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7.2 Search Mechanism

Our search mechanism takes advantage of the DSIS like-
lihood measures to forward the queries from DSs to the
desired GTWs. DSs utilize two types of models to route the
queries across DSs overlay network. The first model is the
DS (aggregated) GMM model. The second model is the set
of GMM models from lower layer nodes. A related point
to consider is that the second model may also include the
aggregated models of other DSs from lower layers. Queries
are forwarded from DSs overlay network to GTWs follow-
ing the most probable path (i.e. the node that shows the
highest likelihood for the requested data source). However,
identifying the most likely node is not as straightforward
as it may seem. Below, we remark on four major challenges
and explain how they are tackled in this study.

First, according to our overlay network architecture, each
DS can only estimate the presence of the queried attributes
within its underlying nodes. However, forwarding queries
requires a global understanding of the probability distri-
butions across the network. Our solution is to start the
process from the top node of the hierarchy. According to
the example architecture provided in Fig.5, this is equivalent
to starting the query processing at the 3rd layer. The black
arrows that are shown in Fig.5 illustrate an example of the
paths that the query may traverse to find a GTW that has the
highest likelihood of containing the requested data source.

Second, as more and more GMM are aggregated at
higher layers in the network, the aggregated models become
less sensitive to the probability of the individual data items.
As shown in 2 the likelihood of individual data items in the
aggregated models, continually reduces in proportion to the
number of data items that are referenced. This in return may
mislead the route identification mechanism at the higher
layers.

To resolve the issue, we expand the point queries to
range queries at higher layers. More specifically, some data
items are extrapolated from the queried data point and
added to the query, before initiating the probability esti-
mation at each node. The extrapolated items are normally
distributed around the queried data item, and their quantity
is in proportion to the number of referenced data at that
node. A natural selection for a standard deviation of the
extrapolation is the expected value of the standard deviation
of the Gaussian components that are generated at the GMM
model of each node. As the query traverses the network to-
wards the lower layers, models are becoming more sensitive
to individual data items, and in this regard, the extrapola-
tion radius should be reduced. Therefore a division factor is
introduced that is multiplied by the standard deviation of
the extrapolation and it varies with the layer number.

Our experimental evaluations resulted in selecting the
following values: the division factor is set to 1 for layer
two which makes the standard deviation of extrapolation
equal to the expected value of the standard deviation of the
models. In layer 1, the deviation factor is set to 10, and at
the GTWs, it is set to 100.

It is worth mentioning that range queries at each step
add a minor computation burden for calculating the cumu-
lative probability of the range which is in proportion to the
number of extrapolated data points.

Third, although most of the queries are expected to be
answered by following the most probable nodes, there will
be still cases in which the queried data are not found in the
first identified GTW (or first attempt). This problem arises
when the GMM models have overlaps, or the requested
data does not exist. If the initial attempt is not successful,
the DS of layer one, which has forwarded the query, tries
other underlying GTWs in the order of their probability
estimation of the queried data.

If the new attempts are not successful, the query is
processed again from the upper layer. Other DSs are queried
according to their probability estimation for the requested
source. Search for the desired resource (e.g. to find a GTW
that contains the inquired data) continues to another layer
in a similar manner and terminates by finding the source or
exceeding the maximum limit of the hops allowed. The blue
arrows in Fig.5 resemble the additional searches after the
failure of the first attempt to respond a query. The second
attempt would be to search the other GTWs associated with
the same DS. In the case of subsequent failures, the 4th
attempt will try to query the most suitable GTWs of second
most probable DS (which are again determined based on
their probability estimations).

Forth, identifying the most likely path based on evalu-
ating the next hop requires a fundamental assumption that
the likelihood values monolithically increase from higher
layers to lower layers. A more generic solution could be to
use the Viterbi algorithm to find the optimal path. Given
a sequence of probabilities in different nodes at different
layers, the Viterbi algorithm offers an iterative solution to
identify the most probable sequence of nodes with worse
case complexity of O(S2T ). Where S is the number of nodes
and T is the length of the sequence (i.e. fixed to four in
our evaluations). However, our assessment shows that our
simple approach is sufficient to identify the GTWs in our
simulation environment accurately.

7.3 Simulation Settings

A portion of the earth surface with an area of approximately
4800 km2 is taken for generating the simulated network.
DSs of level 2 and 3 are presumed to be independent of
any physical location, DSl1s are allocated with a random
location within the simulation area.GTWs are distributed
uniformly around the location of DSl1s. The maximum
allowable dispersion of the GTW’s locations varies between
50 km to 150 km. Also, the sink nodes (top nodes) in WSNs
follow a uniform random distribution in the proximity of
their designated GTW. Maximum dispersion of the sink
nodes varies between 10 km to 50 km. The distribution
of the sensors locations is also uniform centered by their
designated WSN sink nodes. The maximum dispersion that
is allowed in this case is a random value between 1 to 10
km.

Through our MATLAB simulations, at the start of each
Monte-Carlo run, random numbers of sensors, WSNs,
GTWs and DSs are generated and linked based on the
network architecture. The number of DSs and GTWs may
vary depending on the simulation scenarios. Table 2 sum-
marizes the initial state of the simulated environment. The
component capacity is the maximum number of nodes from
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Fig. 5. The proposed hierarchical overlay network structure, thick black
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TABLE 2
Specifications of initial conditions of the simulations

Component WSN GTWs DSl1 DSl2 DSl3
Capacity (initial
specifications) 1000

Sensors
1-5
WSNs

1-5
GWs

1-5
DSl1s

4.0
DSl2s

the lower layer that is connected to the specified component.

7.4 Evaluation Metrics

We use different metrics to evaluate the performance of
the proposed solution. The first metric is the Query Suc-
cess Rate (QSR) that shows the percentage of the queries
that are resolved after a given number of search attempts.
Ideally, most of the queries should be responded in the
first attempt based on following the highest probability
estimations throughout the network. It also contributes to
understanding the overhead of the query processing.

The Indexing Efficiency (IE) is another metric that is
defined as the ratio between the total number of GMM
components that are generated from all IoT source attributes
to the total number of actual sources that are referenced
at the lowest level of the network. This metric denotes the
efficiency of using our modeling approach for referencing
the IoT sources. IE should have values between zero and
one, the closer IE value to zero the better the indexing
efficiency. In conventional solutions such as [3], IE metric
is equal to one.

The Computation Efficiency (CE) metric is used to
benchmark the computation time of DSIS approach against
a standard centralized approach similar to the solution
described in [3]. To simulate this solution, we store all the
IoT sources attributes in a large centralized repository. The
processing time is calculated as the time required for per-
forming SPARQL queries on the centralized repository. The
computation efficiency is calculated based on the processing
time of the proposed approach and the baseline model (i.e.
centralized) as follows:

CE =
Tb − Ttot

Tb
(13)

where Tb and Ttot represent the median of the measured
processing time for the baseline and the proposed approach,
respectively. Ttot includes the total time required for finding
the GTWs (now, route processing time) and the time needed
to process each SPARQL query at the GTWs (now referred
as the processing at the reduced table). The route processing
time comprises the extrapolation time and the time required
for evaluating the GMM models on each IoT source attribute
at all the DSs that the query traverses. We study the trend
of the IE and CE parameters on the increase of the various
network entities to verify the scalability of the approaches
on the baseline solution.

7.5 Analysis and Results
The first category of simulations evaluates the accuracy
and scalability of the proposed DSIS against the centralized
baseline model. Each simulation scenario of this class inves-
tigates the effect of the population of a particular network
entity (i.e. WSNs and GTWs) on the performance of IoT
source indexing. The initial values for each object were
described in Table 2. Each simulation is repeated 5-10 times,
and the results are averaged.

The second category of simulations is dedicated to the
summary updating mechanism. The performance of search-
ing mechanism is compared and analyzed before and after
the updating indices processes. A simulation scenario num-
ber (SSN) is allocated to each simulation to facilitate the
comparison of the simulation scenarios.

7.5.1 WSNs Density Effect
The first set of simulations investigates the effect of the ca-
pacity of WSNs on the query processing performance of IoT
indexed sources. This includes four simulation sets each of
which specifies a different value for the maximum number
of sensors that can be generated at the WSNs starting from
1000 sensors to 4000 sensors. Table 3 represents the average
number of the network entities that were generated through
the simulations.

Table 4 shows the simulation results. It can be observed
that the majority of the queries are addressed at the first
attempt. The success rate results also indicate that GMM
models at GTWs are sufficient to represent the distribution
of attributes of IoT sources even when the number of IoT
sources increases. Success rates also indicate that the mis-
detection of the DSl1 inside DSl2 is more significant than
mis-detection of GTWs inside DSl1. This observation can
be utilized to provide more sophisticated query processing
and enhance the QSR at the first attempt.

The trend of CE and IE parameters shows an improve-
ment with the capacity of the WSNs. It can be seen that
our approach outperforms the centralized baseline model
timing when the WSNs capacity exceeds 2000 sensors.

Fig.6 demonstrates the distribution of the timings of
query processing for the baseline solution in comparison
with our proposed solution. It can be observed that in our
approach, route processing accounts for the majority of the
processing time. The blue boxes comprise the distribution of
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Fig. 6. Comparison of the computation time between the baseline model
from [3] and the proposed solution. The WSN capacity is set to 2000,
and the rest of the entities are generated based on their default value
from Table 2.

TABLE 3
Simulation environment summary

SSN WSN capacity Sensors WSN GTW DSl1 DSl2
1 1000 57709.0 201.8 38.3 12.0 4.0
2 2000 115210.0 194.8 39.8 11.8 4.0
3 3000 147330.0 141.2 31.0 11.2 4.0
4 4000 215290.0 215.0 36.0 12.3 4.0

the 25 to 75 percentile of the data, and the red dots are the
outliers that are placed above the 95 percentile or below the
5 percentile values.

The improvement of CE values is down to the fact that
by increasing the number of sensors the baseline model has
to process the queries within significantly larger data en-
tries. However, in the case of our approach query processing
at the databases is limited to the sensors that are available
at a particular GTW.

Furthermore, the variation of the IE parameter values
on the WSN capacity implies that our approach tends to be
more efficient when the WSNs capacity increases. This is
because the number of generated GMM model components
at the GTWs does not grow proportionally with the number
of IoT sources.This observation confirms that our approach
scales better with the number of sensors in compression
with the baseline model.

Fig.7 shows the relationship between the number of
queries and the number of routing processes attempts that
have been made to address them for the different capacities
of WSNs. Due to the negligible standard error of the results
error bars are not plotted. It can be observed that the
increase in capacity of the WSNs has improved the accuracy
of the route identification at initial attempts. As mentioned
earlier this could be down to the fact that GMM models
tend to provide a better fit to the distributions of the sensors
when the capacity of WSNs increases.

7.5.2 GTWs and DSs Density Effect
The detailed results of the evaluation of the node densities
at GTW and DS levels are provided in Appendix B, Here, we

TABLE 4
WSNs capacity effect on query success rate

SSN Query success rate (%) Efficiency
First attempts First DSl1 First DSl2 CE IE

1 94.0 94.2 98.3 -1.42 0.0018
2 98.0 98.1 99.4 -0.28 0.0007
3 98.6 98.7 99.5 0.24 0.0006
4 99.4 99.5 99.7 0.13 0.0001

Fig. 7. Distribution of the queries over the number of query attempts for
different WSN capacities, Capacities 1 to 4 are equal to 1000, 2000,
3000 and 4000 sensors respectively.

provide some remarks on the assessment results. Evaluation
of GTWs density revealed that the number of WSNs within
the GTWs has almost no impact on the success rates. Similar
to the WSNs density effect, the CE and IE indicators im-
prove when numbers of WSNs within the GTWs increases.
We also examined the dependency of query processing
performance on DSl1, DSl2, and DSl3 capacities. It was
observed that increase in the DSL1s capacity brings the
initial level of misdirecting errors towards the higher layers
of the network. This phenomenon may root in the effect
of overlap between GMMs of GTWs that was explained in
section 6. Changing DSl2s and DSl3s capacity didn’t have
any significant impact on the query processing performance.
Another notable observation was that, in all evaluation
scenarios, the CE parameter improved with increasing the
number of sensor nodes. This phenomenon implies that the
proposed approach has better scalability characteristics in
comparison with the benchmarking approach.

7.6 Evaluation of Summary Updating Mechanism
The last set of simulations is dedicated to the evaluation of
the updating mechanism. Through these simulations, once
the simulation environment is set-up and the models are
propagated through the network, some new sensors are
added to the network. Next, the references are updated
based on the proposed summary updating mechanisms. The
effect of updates mechanisms is then investigated depend-
ing on the number of attempts that are required to locate
the new data items. The simulation environment comprises
2 DSL2 and the rest of the network entities are generated
based on the configurations that are provided in 2. The
simulation environment is also reduced to 122 km2. Fig.8
shows the number of attempts before and after updates
when the population of the added sensors is equal to 10,
22, 26, and 34 percent of the original population.
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Fig. 8. DSL2: Distribution of the queries over the number of attempts
for different amount of added sensors, including (a) 10 percent (b) 22
percent (c) 26 percent and (34) percent of original population.

Apart from Fig.8 (a), which corresponds to the situation
when the population of the added sensors equals 10% of
the original population, the other results confirm that the
query processing accuracy improves after both temporary-
update and complete-update and the improvements are
more significant after the complete-update. The close per-
formance of the models at Fig.8(a) indicates that the original
model is sufficient for addressing the queries when the
difference between the population of the added sensors and
the original population is negligible.

8 CONCLUSIONS

This paper a novel approach for indexing distributed IoT
sources, called DSIS. DSIS employs GMMs to create con-
cise indices to search for the data. DSIS benefits from a
novel summary updating mechanisms to address the need
for a frequent update of the references. Evaluation of the
proposed solution indicates that if the overlaps between
generated models are controlled, indices provided from
DSIS are sufficient to accurately recognize the correct DS
and GTW in which the queried data are stored. Evaluation
of the update mechanisms, confirms that the temporary-
update could be an effective substitute for the complete-
update when a small margin of error is acceptable. Several
simulations were then conducted to inspect the performance
of the approach in terms of scalability of the indexing, and
accuracy and reliability of the query processing. The results
were also benchmarked against a widely used centralized
approach. The results show that the proposed solution can
locate the data within the simulated network with a high
accuracy and low communication load (over 94% accuracy
in the first attempt). In comparison with the baseline, our
distributed approach shows better scalability properties by
improving the computation efficiency, indexing efficiency
and preserving the query processing accuracy when the
population of different network entities are increased.

Overall the probabilistic indexing is an effective solution
to resolve the scalability issues of the existing indexing
mechanisms. However, such solution may not be suitable
for small-scale networks where the gain on communication

overhead for reducing the number of indices is marginal,
and the excess of delay in data discovery on the discrim-
inative solutions is noticeable. Temporary and complete
updates may also become challenging when a majority of
the indices change in a high rate, in the case of small scale
networks, performing the learning and adaptation processes
for updating models may happen to be less efficient than
maintaining the original indices.

Future work will focus on evaluations with a large
number of attributes. Privacy, security and trust are also
other key issues that are important in indexing and dis-
covery of IoT resources. In this paper, we have focused
on developing scalable solutions for indexing and discov-
ery of resources in distributed and dynamic IoT networks.
However, providing access to resources and selecting ap-
propriate devices/resources to obtain IoT data or service
will also require information about reliability and trust;
the devices/resources should also implement and deploy
adequate security and privacy protection mechanisms that
can control sharing their data/services in large-scale open
networks. These additional selection criteria will require a
suitable ranking mechanism that can extend the proposed
indexing and discovery framework.
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APPENDIX A
GMM TRAINING PROCESS

Gaussian Mixture Model (GMM) is a parametric distribu-
tion estimation model. Data distribution is estimated as a
weighted sum of a set of Gaussian components, where each
component has a mean value E, a covariance matrix σ and
mixing weight ϕ. The model parameters are estimated by
exploiting the Expectation Maximisation (EM) algorithm on
the training dataset.

By adopting the conventional EM algorithm for GMMs
training process in our problem can be formulated as fol-
lows.
E-step (expectation): Here the posterior probabilities are
calculated based on the current guess of parameters:

wl
k = Pr(Mc = k|axl;ϕ,E, σ) =

p(axl|Mc = k;E, σ) p(Mc = k;ϕ)∑C
h=1 p(axl|Mc = h;E, σ)p(Mc = h;ϕ)

(14)

In Equation 14, Mc is the set of mixture components and
C represents the total number of mixture components (i.e.
‖Mc‖), axl, represents the vector of attribute values for the
lth data entry, wl

k is a posterior probability of kth Gaussian
mixture component (Mc) given axl. M-Step (maximisation):
at this step model parameters are calculated in way that
maximizes the log-likelihood of p(ax|ϕ,E, σ).

ϕk =
1

L
(

L∑
l=1

ω1
k) (15)

Ek =

∑L
l=1 ω

1
kaxl

Lϕk
(16)

σk =

∑L
l=1 ω

1
kaxlaxl

t

Lϕk
− EkE

t
k (17)

ϕk is mixing proportion of the kth Gaussian component.
Ek is the estimation of the mean of the kth Gaussian compo-
nent. σk is the estimated covariance of the kth component.
L is the total number of data entries. The algorithm then
iterates between E and M steps until it converges (i.e. until
there are no significant changes on the likelihood function).
Further details on GMM can be found at [32]. Figure 9
represents the flowchart of GMM training process.

Computation Complexity

In the training phase, GMM algorithm runs iteratively until
the termination conditions are satisfied. The major compu-
tation burden is at Maximization step. The time complexity
of matrix manipulations (e.g. inversion, matrix determinant,
and matrix decomposition) is O(D3), where D is the di-
mensionality of the attribute data space (e.g. D = 2 for our
location attribute ). In case of posterior probabilities, the
time complexity is O(D2) for each pair of axl and Mc .
Therefore, the total time complexity of GMM training would
be O(I ∗K ∗N ∗D2 + I ∗K ∗D3), where K is the number
of mixture components, N is the number of data points and
I is the number of iterations of EM algorithm.

 ϕ, σ, E 

Initial 
parameters 

guess:

E-Step: Calculate 
posterior probabilities 

i.e. ω  from (14)

M-Step: update  ϕ, σ, E 
i.e. based on new ω 
based on (15),(16) & 

(17) 

Significant 
likelihood 

improvement 
?  

No

Yes

 ϕ, σ, E 

Fig. 9. GMM training flowchart.

APPENDIX B

Evaluation of GTW’s density revealed that the number
of WSNs within the GTWs has almost no effect over the
success rates. Similar to the WSNs density effect, the CE
and IE parameters improve when higher numbers of WSNs
increases the number of sensors at the GTWs. This includes
4 simulation sets each of which specifies a different value for
range of the capacity of the GTWs, starting from 2-7 to 3-8,
4-9 and 6-11 WSNs. Table 5 represents the average number
of the entities that were generated through the simulations.
Simulation results are presented in Table 6.

Results in Table 6 show that the GTW capacity has
almost no effect over the success rates among these simu-
lations. However, the success rates have improved in com-
parison with WSN capacity, which has similar specification
but less number of GTWs. This can be explained by the
effect of increase in the number of sensors that were ref-
erenced at the GTW which as was explained earlier tend
to improve the goodness-of-fit of the GMM components.
Similar phenomenon has been observed when the capacities
of WSNs were analysed. Analysis of the required number of
route processing attempts in Fig.10 also verifies with this ob-
servation. Improvement of the CE values can be explained
by the effect of increase in the number of sensors over the
baseline model as was described earlier. Comparison of the
IE values also suggests that the number of sensors is a more
critical parameter than the number of WSNs at GTWs for
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Fig. 10. GTW Density Effect: Distribution of the query over the number
of query attempts for different GTW capacities, Capacities 1 to 4 are
equal to 2-7, 3-8, 4-9 and 6-11 WSNs respectively.

the number of generated Gaussian components.

TABLE 5
GTW Density Effect: Simulation environment summary

SSN GTW capacity Sensors WSN GTW DSL1 DSL2
1 2-7 90496.0 364.6 36.2 11.8 4.0
2 3-8 92355.0 464.0 35.0 10.3 4.0
3 4-9 98964.0 519.0 33.0 10.7 4.0
4 6-11 177850.0 538.2 39.2 14.4 4.0

TABLE 6
GTW Density Effect: GTW capacity effect on query success rate

SSN Query success rate (%) Efficiency
First attempts First DS1 First DS2 CE IE

1 97.0 97.2 99.0 -0.62 0.0009
2 97.6 97.8 99.1 -0.61 0.0009
3 97.2 97.4 98.9 -0.59 0.0009
4 97.3 97.5 98.9 -0.12 0.0004

APPENDIX C
DISCOVERY SERVER LEVELS DENSITY CAPACITY
EFFECT

The following simulations examine the dependency of
query processing performance to the three level overlays
of DSL1, DSL2 , and DSL3 capacity.

DS-Level 1

The following simulations examine the dependency of
query processing performance to the DSL1 capacity. This
includes 4 simulation sets each of which specifies a different
values for range of the capacity of the DSL1s, starting from
2-7 to 3-8, 4-9 and finally 6-11 GTWs. Table 7 represents
the average number of the entities that where generated
through the simulations. Simulation results are provided in
Table 8.

In Fig.11, DSL1 capacity has a clear impact on the
number of attempts that are required for addressing the
queries after the initial attempt. After the initial attempt,
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Fig. 11. DSL1: Distribution of the queries over the number of query
attempts for different DSL1s capacities, Capacities 1 to 4 are equal to
2-7, 3- 8, 4-9 and 6-11 GTWs respectively.

TABLE 7
DSL1: Simulation Environment Summary

SSN DSL1
capacity Sensors WSN GTW DSL1 DSL2

5 2-7 82670.0 336.4 53.6 11.0 4.0
6 3-8 118820.0 397.6 76.4 12.8 4.0
7 4-9 126210.0 488.6 85.0 12.2 4.0
8 6-11 158400.0 490.6 110.0 12.2 4.0

increase in DSL1s capacity lowers the number queries that
are addressed under the fist selected DS1 and at GTW level
(e.g. ≈ 5-10 attempts) and in- creases the amount of queries
that are addressed at higher layers. This phenomenon im-
plies that the increase in the DSL1 capacity has shifted
the source of misdirecting errors of the queries, towards the
higher layers of the network.

It was earlier mentioned that the query time of the
baseline model, increases with the number of IoT sources,
which in turn has improved of CE value between SSN 5
and 6 in Table 8. At SSN 7 and 8, according to Fig.11,
the queries that are not addressed by the initial attempts
require considerably more query attempts in comparison
with lower capacities. Query routing process overhead of
the queries that are not addressed at the first attempt in
turn degrades the CE parameter.

DS-Level 2

Next set of simulations analyse the impact of variation of
DSL2 capacity on the query processing performance. This
includes 4 simulation sets each of which specifies a different
value for range of the capacity of the DSL2, starting from

TABLE 8
DSL1: Gateyway Capacity Effect On Query Success Rate

SSN Query success rate (%) Efficiency
First attempts First DS1 First DS2 CE IE

5 96.9 97.0 98.7 -1.12 0.0010
6 97.6 97.8 99.0 -0.3 0.0006
7 98.0 98.1 99.0 -0.4 0.0006
8 97.2 98.2 99.0 -1.01 0.0005
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Fig. 12. DSL1: Distribution of the queries over the number of query
attempts for different DSL2s capacities, Capacities 1 to 4 are equal to
2-7, 3-8, 4-9 and 6-11 DSL1s respectively.

TABLE 9
DSL2: Simulation Environment Summary

SSN DSL2
capacity Sensors WSN GTW DSL1 DSL3

9 2-7 95316.0 323.2 63.7 20.6 4.0
10 3-8 103220.0 490.8 68.3 22.3 4.0
11 4-9 116600.0 478.7 76.4 25.3 4.0
12 6-11 137320.0 472.7 88.5 28.9 6.0

2-7 DSL1 to 3-8, 4-9 and 6-11 DSL1. Table 9 summarizes
the average number of the entities that where generated
through the simulations and simulation results are tabulated
in Table 10. Query success rate results indicates that the pro-
posed approach is agnostic to the capacity of theDS2. These
observations alongside with results of SSN 1, and which has
similar specification but less capacity forDSL2, suggest that
lower layer configuration such as WSNs density may have
a more significant impact over the performance of the query
processing.

Another interesting phenomenon is the trend of the
IE parameter. Similar to effect of DS1 capacity, with the
increase of DS2 capacity more and more GTWs and sub-
sequently sensors and GMM models are created. Therefore,
IE parameter shows the trade-off between the numbers of
model components to describe the available IoT sources and
size of the network. Improvement on CE value with the in-
crease of DSL2 capacity, complies with our previous claim
on shortcoming of the baseline model for processing queries
for higher order of sensors and emphasis on scalability of
our approach.

Fig.12 shows the number of attempts required for pro-
cessing the queries at each capacity range of DSL2. While
the ratio for the initial attempts that are typically made
under the first DS1, are similar among different traces, there
is a region between 20-40 attempts that shows a significant
divergence between traces. This divergence can be due
to the DSL2 capacity effect where increasing the more
attempts to resolve the queries that were not ad- dressed
under the first DS.

TABLE 10
DSL2: Gateyway Capacity Effect On Query Success Rate

SSN Query success rate (%) Efficiency
First attempts First DS1 First DS2 CE IE

9 94.3 94.3 99.0 -0.91 0.0008
10 94.2 94.3 99.0 -0.84 0.0008
11 94.2 94.3 99.0 -0.72 0.0007
12 94.2 94.3 99.0 -0.61 0.0007

DS-Level 3

The final set of the first category of simulations, explores
the effect of the variation of DSL3 capacity over the query
processing performance. This includes 4 simulation sets
each of which specifies a different value for the capacity
of the DSL3 including 2, 3, 5 and 6 DSL2. Table 11
summarizes the average number of the entities that where
generated through the simulations and results are shown in
Table 12. Improvement on CE value with the increase of the
number of DSL2, complies with our previous observations
on the effect of total number of sensors and emphasis on
scalability of our approach. IE value has also remained
unchanged at different capacity of DSL3 implying that the
number of created Gaussian components tends to increase
in proportion with the number of sensors in these scenarios.

Fig.13 shows the number of attempts required for pro-
cessing the queries at each capacity range of DSL3s. It can
be observed that the order of attempts after the first DSL1,
(i.e ≈>15 attempts) increases with the size of the network.

TABLE 11
DSL2: Simulation Environment Summary

SSN DSL3
capacity Sensors WSN GTW DSL1 DSL2

13 2 24187.0 87.3 16.6 6.2 2.0
14 3 41659.0 174.1 27.9 9.3 3.0
15 5 58441.0 218.0 39.8 13.4 5.0
16 6 78920.0 361.0 53.0 18.6 6.0

APPENDIX D
IMPLEMENTATION RECOMMENDATIONS

Adding a new DS

Once a new DS is added to the network, depending on
the layer of the DS, a group of GTWs/DSs at the lower
layer send their GMMs to the new DS. As a lesson learned
from our observations in section 5, these GTWs/DSs should
be selected in a way that the overlap between aggregated
models at the upper layer is minimized.

TABLE 12
DSL2: Gateyway Capacity Effect On Query Success Rate

SSN Query success rate (%) Efficiency
First attempts First DS1 First DS2 CE IE

13 92.3 92.5 98.5 -3.06 0.0018
14 93.8 94.0 98.7 -2.41 0.0016
15 95.2 95.4 98.5 -2.19 0.0018
16 94.2 94.3 98.5 -1.90 0.0018
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Fig. 13. DSL2: Distribution of the queries over the number of query at-
tempts for different DSL3s capacities, Capacities 1 to 4 are equal to 2,
3, 5 and 6 DSL2s respectively.

Node failure
In order to cope with node failure, each network node may
maintain a copy of its GMM in its neighbour. Upon failure
of that node, neighbour nodes can aggregate a part/whole
of the copied GMM model to their own model and associate
themselves with related links to the upper and lower layers.

APPENDIX E
DSIS PSEUDO CODES

The proposed index summarization method and update
mechanism are summarized in Fig.14.

   

1. Find the ideal order of attributes 
2. i = 1; 
3. Take the first pair of attributes ( primary 

and secondary) 
4. WHILE ( i < size of distinct values of the 

secondary attribute ) 
5. Train a GMM based on (14)-(17) over 

the distribution of the primary attribute 
values that are associated with the ith 
value of secondary attribute. 

6. i = i +1; 
7. END of WHILE 
8. Replace the secondary attribute with 

primary 
9. IF (any attribute remained unaddressed 

? )  
10. Yes: go to step 4  
11. No: terminate the process 
12. END of IF 

In GTW: 

1. Estimate the posteriori probabilities i.e. 
𝜔   of the modified portion of the data 
from (3) 

2. Use 𝜔  to estimate 𝜑  , 𝐸  , 𝐸 2 from  (4)-
(6) 

3. Update 𝜑  , 𝐸  , 𝐸 2  as VCVs to DS 
 
 
 
 

In DS: 

1. Use received VCVs to estimate adopted 
parameters i.e. 𝜑  , 𝐸  , 𝜎   based on 
(7),(8),(9) 

 

(a) (b)
b 

Fig. 14. Pseudo codes of the proposed solution. a) attribute summariza-
tion method. b) index updating method


