
39

Large-Scale Indexing, Discovery and Ranking for the
Internet of Things (IoT)

YASMIN FATHY, Institution for Communication Systems (ICS), University of Surrey, United Kingdom

PAYAM BARNAGHI, Institution for Communication Systems (ICS), University of Surrey, United Kingdom

RAHIM TAFAZOLLI, Institution for Communication Systems (ICS), University of Surrey, United Kingdom

Network-enabled sensing and actuation devices are key enablers to connect real-world objects to the cyber
world. The Internet of Things (IoT) consists of the network-enabled devices and communication technologies
that allow connectivity and integration of physical objects (Things) into the digital world (Internet). Enormous
amounts of dynamic IoT data are collected from Internet-connected devices. IoT data is usually multi-variant
streams that are heterogeneous, sporadic, multi-modal and spatio-temporal. IoT data can be disseminated
with di�erent granularities and have diverse structures, types and qualities. Dealing with the data deluge
from heterogeneous IoT resources and services imposes new challenges on indexing, discovery and ranking
mechanisms that will allow building applications that require on-line access and retrieval of ad-hoc IoT data.
However, the existing IoT data indexing and discovery approaches are complex or centralised which hinders
their scalability. The primary objective of this paper is to provide a holistic overview of the state-of-the-art on
indexing, discovery and ranking of IoT data. The paper aims to pave the way for researchers to design, develop,
implement and evaluate techniques and approaches for on-line large-scale distributed IoT applications and
services.

CCS Concepts: • General and reference→ Surveys and overviews ; • Computer systems organization

→ Distributed architectures; Sensor networks ; Sensors and actuators; • Information systems →
Data mining; • Networks → Application layer protocols;

Additional Key Words and Phrases: Internet of Things (IoT), Wireless Sensor Network (WSN), large-scale data,

indexing, discovery, ranking

ACM Reference Format:

Yasmin Fathy, Payam Barnaghi, and Rahim Tafazolli. 2010. Large-Scale Indexing, Discovery and Ranking for the
Internet of Things (IoT).ACMTrans. Web 9, 4, Article 39 (March 2010), 67 pages. https://doi.org/0000001.0000001

1 INTRODUCTION

The Internet of Things (IoT) has emerged as a paradigm that allows a large number of physical
objects and devices with identifying, sensing and network capabilities (Things) to seamlessly
communicate and interact with one another and with other resources (e.g. devices, services) in
the network (Internet). The Web of Things (WoT) is envisioned as an evolutionary paradigm of
IoT, which leverages the Web standards and technologies to fully integrate IoT objects with other
virtual objects on the Web. The core concept of IoT/WoT is not new, but it is an evolution of various

Authors’ addresses: Yasmin Fathy, Institution for Communication Systems (ICS), University of Surrey, James Clerk Maxwell
Building, Stag Hill Campus, Guildford, Surrey, GU2 7XH, United Kingdom, y.fathy@surrey.ac.uk; Payam Barnaghi, Institution
for Communication Systems (ICS), University of Surrey, United Kingdom, p.barnaghi@surrey.ac.uk; Rahim Tafazolli,
Institution for Communication Systems (ICS), University of Surrey, United Kingdom, r.tafazolli@surrey.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2009 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
1559-1131/2010/3-ART39 $15.00
https://doi.org/0000001.0000001

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 1 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:2 Y. Fathy et al.

data processing, Internet networking, and communication technologies. For example, di�erent
identi�cation schemes such as Radio Frequency IDenti�cation (RFID) tags and Internet Protocol
(IP) addresses are used to identify things on the Internet. Wired/Wireless Sensor and Actuator
Networks (WSANs) create a network of sensors that captures the state of the environment or
objects and a network of actuators that is able to perform actions, which can a�ect the state of the
environment or the objects.

The IoT resources (e.g. sensory devices) are heterogeneous and often deployed in distributed and
dynamic environments over a large (dense or sparse) geographical area. Data provided by di�erent
IoT resources is continuously generated as streaming data that is usually multi-modal (e.g. light,
temperature, sound) with di�erent forms such as textual, numerical, streaming and multimedia
data. The generated data can be represented in various formats (e.g. Comma-Separated Values
(CSV) and JavaScript Object Notation (JSON)) along with di�erent levels of granularities. The data
can be diverse (e.g. data quality varies with di�erent resources) with common locations and time
dependencies [Barnaghi et al. 2013b]. The availability of IoT resources and their attributes can also
vary over time [Barnaghi et al. 2013a].

It is expected that nearly 50 billion network-enabled devices will be connected to the Internet by
2020 [Ericsson 2011]. Ideally, published data from such devices should be available upon requests
(queries) by authorised users (human or machine users) from any location and at anytime to
respond to higher-level applications and service requests. Large-scale sensor networks can enable
the development of a wide range of powerful applications that allow autonomous communication
and exchanging of data among devices and services. For example, Intelligent Transport Systems
(ITSs) apply data mining and knowledge discovery algorithms and techniques on sensor data
collected from various resources (e.g. cameras, parking, and inertial sensors) to derive higher-level
abstractions (e.g. high tra�c, available parking spots). The IoT enables creating environmental
metering and monitoring applications. For instance, smart metering allows getting automated
readings for a better, more frequent and up-to-date understanding of energy usage [Khan et al.
2012]. Bene�ts provided by IoT technologies also empowers applications in agriculture sector
such as smart farming solutions where data collected from di�erent sensors can be analysed and
processed for smart irrigation scheduling for various crops. Furthermore, IoT makes it possible for
developing healthcare applications based on activity tracking (e.g. sleep, blood pressure, and heart
rate) and reporting anomalies to aid independent living [Atzori et al. 2010]. IoT enables solutions
that have also been applied to various smart city applications. For example, interested readers can
refer to 101 smart city scenarios described at: http://www.ict-citypulse.eu/scenarios/.

Large deployments of IoT resources will not often run for a single application and will not only
respond to a single request. To this end, the underlying IoT sensors and services require data
mining and knowledge discovery algorithms for the development of large scale multi-purpose
IoT applications. For this purpose, indexing, discovery and ranking methods and approaches for
large-scale distributed and dynamic IoT networks have a potential impact on e�cient access and
use of available IoT resources and their published data.

There are several advancements in networking and communication domains such as high-speed
networks in both wired and wireless communications, information-centric networking and others.
To this end, Internet architecture has become more adaptable and e�cient to allow �exible and
adaptable communications for growing volumes of data. However, the current information access
and retrieval solutions on the Web are far from ideal. Most of the existing solutions for the Web
indexing and discovery are designed based on text-analysis (text/keyword based) and exploitation
of links between di�erent documents/data resources on the Internet and are not suitable for large-
scale, dynamic IoT data networks [Fathy et al. 2016]. IoT data discovery requires ad-hoc and

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 2 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:3

Machine-to-Machine (M2M) search and discovery of the data (in contrast to Web search which is
mainly triggered by human supplied keywords).
Some works in IoT domain are demonstrated by Wolfram Data Drop1, Thingful2, and Google’s

recent project Brillo3 that provide information search and discovery approaches for IoT resources.
However, most of the existing solutions for IoT do not provide specialised and distributed mecha-
nisms for automated crawling, (on-line) indexing and ranking for large-scale and uncoordinated
networks of IoT heterogeneous and distributed resources and data [Perera et al. 2013; Polytarchos
et al. 2011]. Novel distributed, e�cient and scalable methods and solutions are required to provide
on-line indexing, discovery and ranking for large-scale IoT data and/or resources.
This paper explores the state-of-the-art of multi-modal and heterogeneous IoT data processing

with a focus on IoT search elements (indexing, discovery and ranking). To provide the reader
with a better understanding of essential processes that are required for designing and building IoT
applications, we �rst discuss the process chain from connecting IoT resources to a network, up to the
search and discovery of the resources and/or their published data for end-users through Web-based
applications. To facilitate our discussion of the state-of-the-art on IoT search elements, di�erent
methods and approaches of each element: indexing, ranking and discovery are discussed and
classi�ed into three distinct perspectives for IoT/WoT applications: data, resource, and higher-level
abstractions. The classi�cations are summarised in Table 1.

Table 1. Classifications of search elements for IoT/WoT applications

Perspective Explanation Example

Data refers to IoT data value (sensor mea-
surement/observation) that is pub-
lished by IoT resource (e.g. a sensor)

Retrieve device observation/
measurement

Resource refers to an IoT resource. It can be
(networked-) sensors, devices or ser-
vices

Access a device or a service by
its unique identi�er

Higher-level
Abstractions

refers to inferring information and
insights from published raw data by
several IoT resources

Detect events/activity/pattern
(e.g. cold weather, high tra�c)

To the best of our knowledge, no existing surveys have covered the work�ow of indexing, dis-
covery and ranking for the IoT and search approaches from the data, resource, and higher-level
abstractions perspectives. Overall, existing studies and surveys do not provide a concise classi�ca-
tion and overview of di�erent search techniques for IoT [Zhou et al. 2016]. For example, [Zhang et al.
2011] propose di�erent measurement dimensions that are categorised into information aggregation,
index, and query for developing an IoT search engine. However, the work does not provide a
classi�cation of the search techniques. A recent classi�cation of the search techniques for WoT
from three di�erent perspectives (basic principles, data/knowledge representation, contents being
searched) is discussed in [Zhou et al. 2016]. However, there are some overlaps between the three
perspectives. Therefore, a general classi�cation of search approaches for IoT/WoT applications is
required. It is also worth mentioning that privacy and security are required for most of the IoT
applications, but the detailed discussion on these issues are out of the scope of this survey. In
summary, the main contributions of this paper are:
• The process chain starts with gathering and collecting observation and measurement data
from di�erent IoT resources, up to the search and discovery of the resources and their data

1http://datadrop.wolframcloud.com/
2http://www.thingful.net/
3http://developers.google.com/brillo/

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 3 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:4 Y. Fathy et al.

for end-users is de�ned and explained. The essential and optional processes of this process
chain for designing and building IoT applications are described and discussed.
• A holistic and clear overview of the state-of-the-art on indexing, discovery and ranking ap-
proaches and solutions for IoT are presented from three di�erent perspectives: data, resource,
and higher-level abstractions.

Table 2 provides a list for the de�nition of some common and general terms used in the paper.

Table 2. Definition of terms

Term De�nition

Internet of Things (IoT) is a term to describe the communication and interactions of network-enabled and sen-
sory devices (i.e. Things) in the digital world (i.e. Internet) to expose their functionalities
and underlying services.

Web of Things (WoT) is a term to describe data exchanging and interactions of the Internet-enabled devices
(i.e. Things) on the Web using Web technologies to build Web applications and services
on the top of the IoT.

IoT Resource refers to any resource (e.g. service, ubiquitous device) in the WSN/Internet that can
publish and share its data and services on the network.

Context-aware/

Situation-aware Ser-

vices

are services that extract information from one or more IoT resources to capture speci�c
event, situation, place or object to describe an environment at anytime and anywhere.

Quality of Service (QoS) is the network’s ability to achieve the desired level of performance regarding a set of
performance measurements (e.g. latency, bandwidth, delay, and throughput).

Contextual Information refers to the information which is related to observation and measurement data pub-
lished by sensory devices such as battery status, device’s reliability and availability.

Wireless Sensor and Ac-

tuator Network (WSAN)

is a network of distributed sensor and actuator nodes in which sensor nodes capture
the state of environment or objects and actuator nodes can perform actions that a�ect
the state of the environment or the objects.

IoT Middleware provides a uni�ed interface to access heterogeneous IoT services and devices with
di�erent data models or application layer protocols.

Big Data is a term to describe large volumes of data that have di�erent structure, velocity, granu-
larity and qualities. The nature of big data imposes challenges in storing and managing
it in conventional Database Management Systems (DBMS) and also processing it using
conventional methods and tools.

Data Analytics is a generic term that refers to applying analysis and processing methodologies to
infer information and insights from data by extracting numeric values, patterns and/or
events.

Discovery Service is a service to �nd and discover data providers (resources) that can answer a requested
query given the key search attributes (e.g. type, location and time).

Resource Discovery is also known as a network discovery that refers to crawling, �nding, and allowing IoT
resources to be found/discovered automatically or manually.

Data Aggregation is to fuse data using di�erent techniques (e.g. average of sensor values) to a sink node
(i.e. base station).

Data Integration refers to integrating heterogeneous data from di�erent IoT resources into one system
(e.g. an existing Web application) by addressing the mismatching among various
resources that use di�erent protocols and their data models.

Data Interoperability is to use common models to describe heterogeneous IoT data resources and services
and/or allow communicating and exchanging data between di�erent resources that
might have di�erent application layer protocols without integrating them into one
system.

Data Abstraction is about obtaining low granular expressive and meaningful data (summary form;
weather is windy) from higher granular raw data.

Data Representation is to represent IoT data in a human understandable and/or machine interpretable
format.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 4 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:5

Data Publication is about publishing data from heterogeneous IoT data sources. The publication might
involve publishing the meta-data and/or annotation of the data semantically.

Data Dissemination is to allow sensor nodes to communicate with a sink node (i.e. a base station) or other
interested nodes in the network to share their collected data or to seek information
from other nodes in the network.

Indexing is about indexing and sorting IoT data/resources to allow fast access, retrieval and
search processes for the resources and their data.

Data Ranking is about prioritising IoT resources and services based on several criteria (functional
(e.g. network latency) or non-functional (e.g. data quality and trust)).

Data Query is a term that refers to retrieving information and data from resources. Query is often
composed of type, location and time to construct an expression (e.g. temperature in
London with freshness ≤ 5 seconds).

Meta-data is enriched data to describe other data and make it more expressive and meaningful.
In IoT, meta-data often describes the speci�cations and capabilities of the sensors
(resources) (e.g. accuracy, calibration, source state, battery life and deployment location)
and their measurement and observation data (e.g. time-stamp, data quality, values and
unit).

Resource Description

Framework (RDF)

is a World Wide Web Consortium (W3C) recommendation that is widely used to
describe Web resources (as a meta-data data model).

Simple Protocol and

RDF Query Language

(SPARQL)

is a query language to query (search) and retrieve data that is stored in the RDF format.

The rest of the paper is organised as follows: Section 2 states the key components and design
requirements for IoT environments and applications. Section 3 explains IoT data models and
representation. Section 4 presents how IoT data can be aggregated and abstracted. Section 5
describes IoT data publication and provisioning. The state-of-the-art for indexing and discovery for
distributed IoT resources and analysis of existing solutions are presented in Section 6 and ranking
approaches are discussed in Section 7. Section 8 provides an overall analysis and discusses the
outlook and applicability of indexing and discovery solutions to IoT frameworks. Section 9 draws
conclusions and discusses the areas for further research.

2 DESIGN REQUIREMENTS

The Internet of Things (IoT) involves a wide range of di�erent technologies including RFID tech-
nologies, communication protocols, data mining and machine learning to allow users to query
measurement and observation data. This section discusses a general model for indexing, ranking
and discovery of network-enabled devices to make their measurements and underlying services
searchable and discoverable (see Fig. 1). [Barnaghi et al. 2013a] describe the process chain from
collecting real-world observation and measurement data up to making the data accessible on the
Web. However, indexing and ranking processes are not included in the process chain. [Abu-Elkheir
et al. 2013] also explain life-cycle for IoT data starting from data production to data querying and
analysis. The life-cycle does not cover indexing and ranking. Similar to [Barnaghi et al. 2013a]
and [Abu-Elkheir et al. 2013] and based on the literature review we conducted, we propose a model
that includes indexing and ranking for IoT data/resources.
Fig. 1 depicts the process chain of gathering and collecting observation and measurement data

from di�erent IoT devices and services. The solid lines represent the essential processes for building
IoT applications that allow searching for IoT data (e.g. temperature data in a speci�c location).
The dashed lines represent the optional processes; however, the overall work�ow depends on the
IoT applications. For example, road tra�c monitoring applications require the aggregation of data
from di�erent types of sources to get vehicle tra�c �ows, bicyclists, and pedestrian counts. The

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 5 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

Page 6 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:7

data point can be signi�cant. Whereas, data should be aggregated in tra�c applications to
summarise the data (e.g. high tra�c, low tra�c) and reduce the computational, storage and
communication overhead within the network.

(6) Indexing: indexing large volumes of heterogeneous and dynamic IoT data/sources requires
distributed, e�cient and scalable mechanisms that can provide a fast access and retrieval to
data in order to respond to user queries. A decision on how often these indexes should be
updated and re-arranged while data streams are continuously published is crucial to enable
on-line indexing. With on-line indexing, building indexing structures is incremental with the
goal to update the indexes continuously with the new connected resources and the data that
becomes available on the network, without re-building the entire indexing structure.

(7) Discovery: data discovery is about accessing speci�c sources to get the requested data and
analyse it. On-line data discovery brings another dimension to play; access and analysis of on-
line data from di�erent sources, while other data is continuously published, is a challenging
task. The accessing process is based on requested queries to �nd (search) data sources, patterns
or events. Collaborative services are used on the obtained data from di�erent sources to
make analysis and provide intelligent decisions. Data can also be stored in repositories for
temporary (short-term) or archived for long-term use. Data discovery could be limited by a
time interval (time between two consecutive data points) in the processing of data for disaster
monitoring.

(8) Ranking: ranking IoT resources requires the prioritisation of several criteria (e.g. data quality,
devices availability, e�cient energy and network bandwidth and latency), especially if there
is the same type of services (e.g. temperature) at the same location. The ranking is a multi-
objective decision-making process in which di�erent criteria should be considered depending
on the requirements and the network/device status. For instance, healthcare applications
require trust and high-quality data. Emergency cases require transmitting and processing
data with low latency to provide on-line command and control mechanisms.

(9) Query: end-users (i.e. machines or human users) in IoT applications may discover and query
a certain data type at a particular location and at a speci�c time (e.g. current temperature
in Guildford). A query can be composed of type, location, and time attributes (i.e. “exact
query”). For instance, a query can be expressed as getting the temperature value (i.e. type)
in Guildford (i.e. location) now (e.g. freshness ≤ 5 seconds). Other possible types of queries
are proximity, range and composite queries [Barnaghi et al. 2013b]. Accessing location data
to �nd a source of a particular type (e.g. temperature) needs to be handled by a discovery
mechanism.

It is worth mentioning that deciding which data should be collected/crawled, how the data
is represented and published and how users can interact with di�erent applications are often
application dependent. Indexing could be for a resource (i.e. sensory devices) or data (data published
by resources). Indexing the resources allows on-line access to the resources and their published
data at anytime.
Similar to the architecture for publishing and storing sensor data that has been discussed

in [Barnaghi et al. 2013b], a re�ned model for indexing, discovery and ranking of distributed IoT
data is shown in Fig. 2. We de�ne Discovery Services (DSs) as services that allow on-line accessing,
searching and analysing the on-line IoT data or the historical data that is stored and archived in
information repositories. The main responsibility of Gateways (GWs) is to provide e�ective and
e�cient communications between upper layers and sensory devices. At gateway level, a resource
discovery service is required which is a service that allows network-enabled devices sharing their
data and services, to attach/detach to a network seamlessly with minimal e�ort [Guinard et al.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 7 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

Page 8 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Page 9 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:10 Y. Fathy et al.

2016]. Weather sensors often produce readings at low rates (e.g. one reading per hour) for
weather monitoring. However, some sensors such as Tekscan sensors have scan rate up
to 1 million elements per second5. Dealing with the data that arrives at di�erent rates is a
challenging task [Qin et al. 2016].
• Variety (Heterogeneity): refers to the variety of data (e.g. text, numeric, audio) captured
by IoT resources. Data is generated in a wide range of formats and with various modalities
by di�erent devices. The data could be structured (e.g. tables, records), semi-structured (e.g.
eXtensible Markup Language (XML)) or unstructured (text expressed in human language
such as audio/video) [Chen et al. 2014]. The devices are built by di�erent manufacturers
and communicate via various protocols for di�erent purposes. The aggregation of services
produced by IoT resources has led to having diversity, multi-modality and heterogeneity in
the data [Qin et al. 2016].
• Veracity: refers to the quality of IoT data and resources (e.g. accuracy, uncertainty and
resource availability). The availability of a resource might change over time due to battery
life, mobility or other issues. Distributed IoT resources can produce duplicated, missing or
incomplete sensor readings due to network outages. For example, in tra�c management
applications, every vehicle can be identi�ed by a unique RFID tag and vehicle’s location can
be captured by GPS. In this case, the data is redundant if multiple RFID readers read the same
tag, and the data is uncertain when RFID readers report non-existing IDs or fail to read the
tags.
• Value: refers to the usefulness of the data collected from sensory devices. IoT consumers
are usually interested in leveraging information and insights from massive observations
of raw data to �nd, extract and capture higher-level abstractions (e.g. events and patterns).
For example, detecting “door closed” or “door open” events in smart home applications and
detecting abrupt change in temperature in �re alarm systems.
• Spatio-temporality: refers to the spatial and temporal features of IoT data and resources.
IoT devices often capture data with their current location and the time the data was taken.
For example, in real-time railway applications6, GPS unit is attached to every train to enable
�nding the departures or arrivals from any station and at anytime. The applications need to
track the location and time of trains to provide users with reliable and accurate real-time
information.
• Dynamicity: refers to the changes of IoT data and/or resources over time. IoT data is
continuously updated. For example, in real-time tracking and monitoring applications (e.g.
real-time tra�c), the locations of the objects can change continuously over time, and as
a result, their observations change to re�ect the real-world. Overall, in Wireless Sensor
and Actuator Networks (WSANs), many resources are connected and communicated on
the network; however, the connection between resources and the network can be sporadic.
Therefore, IoT data is often generated in dynamic and volatile environments.

3.2 �eries

As stated earlier, IoT data has particular characteristics such as spatio-temporality, heterogeneity
to name but a few, and the data can be generated in highly distributed and dynamic environments.
These characteristics a�ect how the data can be used and queried from di�erent sources. To this
end, distributed and scalable indexing, discovery, and ranking are key enablers to allow e�cient
distributed queries [Barnaghi et al. 2013a]. The query is often composed of a set of data attributes

5http://www.tekscan.com/support/faqs/what-are-sensors-sampling-rates
6http://www.realtimetrains.co.uk/

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 10 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:11

such as type, location, time and other meta-data attributes (e.g. data quality) that describe the
observation and measurement data. Di�erent types of queries are summarised in [Barnaghi et al.
2013b]. For example, an approximate query is to provide an estimated answer to the query (e.g.
temperature in London with data quality > 70%). A range query is another type of queries, where
a range of values of an attribute (e.g. location range) is requested (e.g. get the temperature at a
given latitude (50 – 51) and longitude (0.10 – 0.12) within the last 5 seconds). These queries rely
on data published from resources. However, IoT consumers can also query a resource (e.g. by
its identi�er) or higher-level abstractions (e.g. tra�c in Oxford street) where data from di�erent
sources is integrated and processed. To better allow querying of IoT data and resources, di�erent
query languages and methods exist based on the way the data is represented. For instance, RDF
Query Language (SPARQL) [Prud’Hommeaux et al. 2008] is used to query IoT resources whose data
and other meta-data attributes are structured in Resource Description Framework (RDF) [Klyne
and Carroll 2006] format. The mechanism of querying IoT data (e.g. query languages) is a�ected
by its representation (e.g. numerical/symbolic and discrete/continuous) and formats (e.g. JSON,
XML). Detailed discussion about di�erent data representation models in the IoT is included in the
next section. Although there is work on standardising query languages for querying IoT data, the
existing IoT data indexing and discovery approaches de�ne their own mechanism of querying IoT
data (Section 6 includes more details).

3.3 Data Representation in the IoT

IoT data can have di�erent representations and can be stored in various formats. Data representation
in IoT is driven by the characteristics of the data collected from various IoT resources. Furthermore,
IoT data might have di�erent types that can be broadly categorised into three groups: numerical vs.
symbolic, discrete vs. continuous and static vs. streaming. These categories and their explanations
are summarised in Table 3. It is worth noting that IoT data can be a mix of several categories. For
example, GPS data for tracking public transport or package tracking is continuous numerical data.
The following discusses data representation concerning the characteristics and various formats of
IoT data.

Table 3. Data classification

Data Category Explanation

Numerical vs. Symbolic • Numerical refers to data that has numerical values (e.g. 10◦C for temperature, 50 db
(decibels) for sound).
• Symbolic refers to data that has string/text values (i.e. a set of characters). For
example, events observed by sensors are symbolic, such as “Cold Temperature”
where numeric readings of sensor data should be within a particular range (e.g.
(0 − 5)◦C). Some sensor data attributes are also symbolic such as sensor type and
description.

Discrete vs. Continuous • Discrete refers to data with a �nite or a limited set of values. Discrete data can be
numeric. For instance, relative humidity sensor has a single value between (0−100)%.
Discrete data can also be symbolic (categorical). For example, presence detector has
a single value from a set of possible values (presence or absence of humans) for
monitoring light (turning lights on/o�) in a room.
• Continuous refers to data with an in�nite set of values such as continuous obser-
vation and measurement from sensory devices (e.g. data provided by a dynamic
accelerometer for continuous monitoring of acceleration of movable objects).

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 11 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:12 Y. Fathy et al.

Static vs. Streaming • Static refers to data that does not change. For example, the location of a static sensor.
• Streaming refers to data that changes over time such as real-time data. For example,
the data collected from mobile sensors is data streams which have di�erent sensor
readings over time due to varying sensor’s location.

3.3.1 Data Classification.

There are di�erent categories of IoT data; discrete or continuous (i.e. sensor readings are a series of
values over a continuum) values [Cooper and James 2009] or generated (synthesis) data based on
predictive models such as [Jones and Thornton 2000] and [Schuol and Abbaspour 2007]. IoT data
is sometimes a mix of discrete/continuous and symbolic attributes/variables (e.g. sensor location,
sensor type) [Harada 2002]. IoT data can be represented as a series of numerical measurements, or
the data could also be text from micro-blogging and social media. Understanding di�erent IoT data
models and structures is bene�cial for designing and developing IoT applications and environments.
Real-world data from sensory devices is commonly time-series data which is represented as

streaming data [Lin et al. 2003]. Data stream is a term to de�ne an in�nite sequence of temporal
data that is generated at di�erent rates over time (as stated in explanation of velocity characteristic
of IoT data in Section 3.1). The data streams can be subject to concept drift. Data drift happens
when unbounded data streams do not have the same distribution over time [Yang and Fong 2013].
Time-series data is a sequence of data points in which each point p is represented by p = (v, t),
where v is a real-value and t is the time on which v is obtained [Zoumpatianos et al. 2014]. It
is worth noting that data streams could be either constant or variable in terms of time between
consecutive data streams [Kranen and Seidl 2009]. When a data stream item arrives, it can be
processed and analysed on-line and often stored for short-term or long-term in repositories based
on the application requirements. More concretely, there are two possible approaches for processing
data streams; either processing allM streams with length L that have arrived so far, or a subsequence
(sampling) of the current arrived streams (e.g. last m streams with length l , where m ∈ M and
l << L) [Guha et al. 2003; Keogh and Lin 2005]. The latter is called “sliding window” data streams.

The inherent features and characteristics of big data in IoT (as stated earlier in Section 3.1)
preclude loading, managing and storing it in a traditional Database Management System (DBMS)
which is feasible for static more than sporadic and dynamic data [Babcock et al. 2002]. The de-
pendency between data streams imposes a challenge in analysing them on-line with minimal
processing and communication overhead as well as storage. Higher-level representation of high
granular raw data is often used as an alternative for processing continuous data streams. The
higher-level representation requires reducing raw data space and possibly classifying it. Similarly,
this is typically necessarily for any Web search engine that deals with large-scale documents and
Web pages, in which each document should be represented by a �xed-length vector and usually
unsupervised techniques are applied to classify them.

Overall IoT data could be simple (e.g. air pollution and humidity) or more complex (e.g. patterns
and events). IoT data itself is small because it is often numeric values. However, meta-data (e.g.
data quality, source state, location and battery life) is usually larger than the data [Barnaghi et al.
2013b]. For example, a temperature sensor captures 15◦C as a temperature of a room. The numeric
value represents the data. However, meta-data could be a description of the speci�cation, identity,
location, manufacturer and battery life of the sensor, data unit (Fahrenheit ◦F or Celsius ◦C) and
data owner. However, meta-data could be smaller than the data itself if the data is conventional
multimedia data (e.g. video and audio). Meta-data typically makes IoT data more expressive and

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 12 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:13

meaningful.

3.3.2 Data Formats.

IoT data can be represented and stored in di�erent formats. The data can be stored in a text format
as Comma-Separated Values (CSV) (tabular) �les [Huang et al. 2014], JavaScript syntax: JavaScript
Object Notation (JSON) format or in a hierarchical structure using eXtensible Markup Language
(XML) format such as SensorML [Botts and Robin 2007]. However, models such as SensorML are
too complex and have a high overhead to provide representations for large-scale IoT data [Barnaghi
et al. 2013b]. CSV and XML formats are often used to integrate di�erent IoT data sources into Web
applications, and JSON is used in Representational State Transfer (REST)-based applications [Piyare
and Lee 2013]. However, these various formats do not have “explanation” added to the data (e.g.
meta-data) or a formal query language. RDF is one of the most widely used frameworks to describe
Web resources by adding semantic meaning to their data model (meta-data data model), and it
is a building block for standard Semantic Web. RDF represents semantic data as triples (subject,
property, object); the subject has a property that links it to a value or another object. RDF provides a
single semantic model for data that can be represented in various formats, known as serializations;
RDF/XML [Beckett and McBride 2004], RDF/JSON [Davis et al. 2013]. The Simple Protocol and RDF
Query Language (SPARQL) allows querying data that is stored in the RDF format. Other alternative
RDF serialisations include N-Triples [Beckett and Barstow 2001], Notation-3 (N3) [Berners-Lee and
Connolly 2011] and Turtle [Beckett et al. 2011]. They represent data as triples, but they are di�erent
in their level of expressivity and are designed for Web applications [Su et al. 2015]. Recently,
e�cient XML Interchange (EXI) is recommended for IoT applications [Schneider et al. 2011] due
to its optimisation in converting XML messages into binary form to allow transmission with low
bandwidth.
Linked Data [Bizer et al. 2009] allows data items to be linked to concepts that are de�ned in

commonly used ontologies or vocabularies [Barnaghi et al. 2013b]. Linked Data also allows links
between sources based on their meta-data and related attributes and provides links between di�erent
RDF data. The SSN ontology has been proposed by the W3C’s7 Semantic Sensor Network Incubator
group (SSN-XG) to provide a formal description of sensor capabilities and its measurement and
observation data [Compton et al. 2012]. The Web Ontology Language (OWL)8 is a semantic Web
language that allows publishing ontologies on the Web. Ontology Web Language for Services
(OWL-S)9 is a semantic language for describing Web services. OWL-S provides a set of standard
vocabulary that can be used with OWL to create semantic service description. Sensor Markup
Language (SENML) [Jennings et al. 2015] is also designed speci�cally for resource-constrained
devices; it de�nes a data model for transmitting simple sensor measurements into application layer
protocols requests such as HTTP or Constrained Application Protocol (CoAP) [Bormann et al.
2012].
The data can be represented and processed as individual items or streams. However, some

applications may use aggregation and abstraction to store higher-level representations such as
patterns and/or events. In this case, the discovery can also be performed based on the higher-level
abstractions.

7World Wide Web Consortium (W3C)
8http://www.w3.org/OWL/
9http://www.w3.org/Submission/OWL-S/

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 13 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:14 Y. Fathy et al.

4 DATA AGGREGATION AND ABSTRACTION

This section describes IoT data preparation including data pre-processing to �lter unwanted data
and dimensionality reduction to reduce the size of the original data. It then explains how the
prepared data can be summarised using data aggregation, integration and abstraction techniques.

4.1 Data Preparation

Collected raw data from various sensory devices could be noisy, redundant or come at sporadic rates
and with di�erent distributions; data pre-processing is often a key requirement. Pre-processing
techniques can be either mathematical function (minimum, maximum, range) in the time-domain,
wavelets and Fourier transformation in the frequency domain or Discrete Wavelet Transform
(DWT) and others in the discrete domain. Interested readers can refer to the survey of [Figo et al.
2010] for a detailed discussion about di�erent pre-processing techniques. After pre-processing of
the raw data, dimensionality reduction techniques can be applied to obtain low granularity data
that retains the most relevant information of the original form [Ganz et al. 2015].

4.2 Dimensionality Reduction

To handle large amounts of data collected from various IoT resources, di�erent dimensionality
reduction techniques can be applied to obtain a lower dimensional representation of the original data
such as Singular Value Decomposition (SVD) [Golub and Reinsch 1970], Piecewise approximation
approaches [Keogh et al. 2001b; Yi and Faloutsos 2000], symbolic models [Lin et al. 2003] and
several other solutions. Interested readers can refer to Appendix B for more details about di�erent
dimensionality reduction techniques.
After the pre-processing and dimensionality reduction of raw IoT data that is collected from

various sources and sensory devices, the data can be aggregated into information that allows fast
search and query for higher-level abstraction of events and patterns, to the compression of data
for transmission over the network. Data summarisation is a transformation of higher granular
data into a compact description with a goal of retaining enough information about the raw data.
The data can be summarised by applying aggregation, integration and/or abstraction processes to
extract knowledge and create meaningful insights.

4.3 Data Aggregation

Data aggregation is part of “data fusion” [Rajagopalan and Varshney 2006]. Data fusion is a
general term that refers to integration and combination of data from distributed sources while data
aggregation gathers measurement and observation values frommultiple heterogeneous data sources
by removing redundant data and/or eliminating multiple transmissions to provide fused information
with reduced energy and communication overhead [Krishnamachari et al. 2002; Rajagopalan and
Varshney 2006]. For example, temperature measurements frommultiple data sources are aggregated
together (e.g. averaging temperature values of di�erent sources in the same location). However,
aggregation could also be between di�erent types of sources. For instance, creating a comprehensive
city tra�c application is based on getting vehicle tra�c �ows, bicyclists and pedestrian counts
using di�erent IoT data resources.
Aggregation techniques can be applied in-network wherein an aggregation node receives a

packet (data) from di�erent sources and aggregates or merges the data into one outgoing packet.
In-network aggregation can be combined with data reduction when the aggregation node receives
data (packets) from sensory devices that have the same type (e.g. it receives packets from di�erent
temperature sensors, and it aggregates them into one outgoing packet that contains their average).
The aggregation can also be without reduction by merging received data from sensory devices

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 14 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:15

that have di�erent types (e.g. air pollution and humidity) into one packet (instead of forwarding
two packets) without any processing (e.g. average, maximum, minimum) of the data [Fasolo et al.
2007]. In-network aggregation can be quite complex if it requires co-ordination between the various
distributed nodes in the network.

[Krishnamachari et al. 2002] propose a data-centric routing mechanism for aggregating sensor
data in a network. The mechanism applies simple operations (e.g. min, max) on sensor data. The
experiments were conducted on 100 sensors, and the number of sinks is varied from 1 to 15. However,
there is high tra�c in the centralised approach if a large number of sensors produce data at high
rate and scalability becomes an issue. [Rooshenas et al. 2010] present a distributed aggregation
mechanism on intermediate nodes based on Principal Component Analysis (PCA) to optimise packet
transmission to a base station. The intermediate nodes are selected with a constraint that at most
two hops are required to connect a node to a base station. Other di�erent aggregation approaches
also exist. For example, aggregating nodes with their neighbours or aggregating correlated nodes
before transmission. Neighbouring nodes are often highly correlated, so transmitting the di�erence
between their measurements is often enough to represent the data. In typical WSN, gateways
are responsible for aggregating data received from nodes (i.e. sources). [Troubleyn et al. 2014]
propose to broadcast in-network aggregation that reduces energy consumption by roughly 27% in
full mesh (i.e. multipoint-to-multipoint) WSN. In their approach, a set of packets is transmitted at
once if a certain high degree of aggregation reaches. However, if the number of connected nodes
is increasing, there will be an increase in tra�c, consequently, scalability and latency become an
issue.

4.4 Data Integration

Integrating data from di�erent sensory devices is di�erent from aggregating them. Data integration
is to connect and combine heterogeneous data sources in a system/an application (e.g. an existing
Web application) [Barnaghi et al. 2012b], while data aggregation includes data from di�erent sources
in a summarised form. Integration of heterogeneous data sources requires interoperability among
them. Interoperability allows di�erent IoT and Web data sources to convey the unambiguous
meaning of data between them. Interoperability enables loose coupling between the various sources
while integration enables tight coupling [Kotis and Katasonov 2012] in which mismatching between
di�erent sources protocols have to be addressed to allow communication between di�erent devices.
To this end, the Open Geospatial Consortium (OGC) proposes Sensor Web Enablement (SWE)
standard to allow exchanging and accessing data from heterogeneous sensors through Web service
interfaces and communication protocols. Also, to provide integration and interoperability between
the sensor data, OGC provides Sensor Model Language (SensorML) as a common standard model to
describe their sensor observation and measurement data [Botts et al. 2008]. Semantic Sensor Web
framework is proposed by [Sheth et al. 2008] to enable interoperability by annotating heterogeneous
sensor data semantically. [Barnaghi et al. 2013b] also propose a model to describe annotated data
streams semantically. The data is annotated using a pre-de�ned template, and this facilitates the
interoperability between di�erent data models. The sensor data is then clustered (by k−means)
to be distributed among repositories for answering di�erent types of SPARQL queries. It is worth
noting that the way the data is aggregated and/or integrated from various sources has an e�ect on
how the data is abstracted for conceptualising the real-world.

4.5 Data Abstraction

Data abstraction is a transformation of lower-level raw data (e.g. 2◦C) into a higher-level information
that describes patterns or events (e.g. cold weather). [Sigg et al. 2012] de�ne abstraction as the
amount of processing that can be applied to the data with an intention to raise the abstraction

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 15 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:16 Y. Fathy et al.

level. [Ganz et al. 2015] explain the abstraction as the derivation from raw sensor data into valuable
information (e.g. high tra�c, windy weather, light is on). It is worth noting that attaining high
descriptive data by selecting a set of the most relevant/informative features (i.e. feature vectors)
to describe the original data is called “feature extraction”. The data could also be classi�ed and
grouped based on a set of features, events, or patterns using clustering algorithms (e.g. k−means).

[Chen and Kotz 2002] propose an abstraction approach to aggregate raw data into an abstract
graph to support developing context-aware applications. [Sigg et al. 2012] apply di�erent levels of
context abstraction on raw sensor data to study the e�ect of the quality of abstraction levels, raw
input data as well as the order of context operations (acquisition, interpretation and prediction)
on the accuracy of context prediction. [Ganz et al. 2015] apply a two-level abstraction: lower-
level on raw data and higher-level (semantic abstraction) to obtain meaningful abstractions by
applying machine-learning techniques and reasoning mechanisms on the lower-level abstracted
data. Inferring higher-level abstraction and representation from raw sensor data allows searching
for events and patterns. Overall aggregation and abstraction approaches are based on various
applications scenarios (e.g. e-health, smart home, disaster and environment monitoring).

It is worth mentioning that aggregation, abstraction and full interoperability between all di�erent
types of heterogeneous IoT resources (e.g. sensory devices, Web services) are still far from ideal to
subsume their heterogeneity in di�erent data models and various protocols [Barnaghi et al. 2012b;
Desai et al. 2015; Miorandi et al. 2012; Zeng et al. 2011]. IoT data is generated by di�erent devices
and resources in physical and cyber domains. The way that the data is published and provisioned
has an impact on crawling, accessing and indexing of the data. The following discusses publication
and provisioning of IoT data.

5 PUBLICATION AND PROVISIONING

This section introduces how IoT data can be published. It then compares a range of available IoT
protocols and discusses their features that drive them to be considered desirable for a broad range
of IoT applications. The section also includes the essential comparison criteria on which protocol(s)
should be selected for a certain application or a use case. The advantages, disadvantages of these
protocols and example of applications where these protocols are used, are summarised at the end
of the section.
IoT data is collected and published with di�erent streaming qualities and various granularities.

Data providers have di�erent ways of publishing the data to make it available, understandable and
accessible to the public. The collected data is stored in a central data repository or the Cloud. The data
can be accessed directly from the data source (sensory device) or via an Application Programming
Interface (API)/Web service. The way the data source is connected to the Internet to publish its data
is based on the application requirements (e.g. real-time communication, interoperability, Quality
of Service (QoS), client/server or publish/subscribe, message queuing or data-centric). The data
could be published as raw data or with meta-data to facilitate annotating the data semantically and
enable interoperability with other data sources. Due to di�erent data models from heterogeneous
IoT resources, it is still a challenging task to have (dynamic) automated semantic interoperability
of IoT data [Barnaghi et al. 2013a]. Heterogeneity in the IoT can be handled at di�erent levels.
Heterogeneity can be at the data level such that data is generated in a wide range of formats and
with various modalities by di�erent devices. The data can be structured (e.g. tables, records) or
semi-structured (e.g. XML) (as stated earlier in Sections 3.1 and 4.4). Heterogeneity can also be at
the communication level such that IoT resources (e.g. sensors) communicate via various protocols
for di�erent purposes.
Publishing IoT data and services on the Web is only one component to build IoT applications.

Another dominant factor is that building IoT environments and applications requires a reference

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 16 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:17

architecture that considers a network model to allow heterogeneous IoT resources to connect
directly or through a gateway to the Internet forming Machine-to-Machine (M2M) networks for
publishing, managing, and processing the IoT data and actuation commands. Regardless of the
way the IoT resources are connected to the Internet, their collected data is stored/archived into
a central repository or in a distributed Cloud [Karagiannis et al. 2015]. The data could also be
processed and analysed close to where it is collected (at the edge of networks - fog computing) such
as in Smart and Connected Vehicle (SCV) applications [Bonomi et al. 2012]. There is no standard
or uni�ed architecture that can be deemed as a blueprint for all concrete IoT development and
deployment. To this end, several standards organisations are involved in developing and promoting
uni�ed and consolidated standards to o�er connectivity for IoT devices. For example, the Institute
of Electrical and Electronics Engineers (IEEE) provides standardisations for the physical, Media
Access Control (MAC) and application layers such as IEEE 802.15.4 over Low-power, Wireless
Personal Area Network (LoWPAN) to meet the new requirements thrown up by IoT (e.g. low power
and low data-rate). A detailed discussion about standardisation of the ISO/OSI and TCP/IP stacks
for the IoT is outside the scope of this article, and the reader is referred to [Al-Fuqaha et al. 2015;
Bartoli et al. 2011; Hui and Culler 2008; Palattella et al. 2013].

The Internet Engineering Task Force (IETF)10 has three main working groups that allow native
connectivity between network-enabled devices and the network (e.g. Internet); 6LoWPAN, Routing
Over Low Power and Lossy Networks (ROLL) and Constrained Restful Environments (CoRE)
working groups. The 6LoWPAN working group provides an adaptation layer to provide an e�cient
IPv6 networking through incorporating IEEE 802.15.4 over LoWPAN into (6LoWPAN) [Vasseur and
Dunkels 2008] that is suitable for resource-constrained devices and sensor networks. ROLL provides
IPv6 routing solutions for Low Power and Lossy Networks (LLNs). Moreover, CoRE provides a
standard framework to integrate IP-based constrained devices into the Internet. Constrained
Application Protocol (CoAP) [Bormann et al. 2012]- an IoT application layer protocol has been
developed as a part of the framework to support Web-based applications. For a detailed discussion
on IETF standardisations in the IoT, the reader is referred to [Ishaq et al. 2013; Sheng et al. 2013].
Moreover, ulPv6 [Durvy et al. 2008] is a smaller IPv6 stack which is a further step to enable
communication interoperability between IPV6-enabled sensor devices and other IPv6-enabled
devices on the Internet.
The Internet Protocol for Smart Objects (IPSO) Alliance11 also promotes the use of Internet

Protocol (IP) for the networking of embedded sensor and actuator (smart) devices to transmit their
observation and measurement data in the IoT domain. IPSO also complements the e�ort of other
standards organisations such as IETF, IEEE, the Industrial Internet Consortium (IIC)12, the Open
Connectivity Foundation (OCF)13(formerly Open Interconnect Consortium (OIC)), World Wide
Web Consortium (W3C)14 and others by documenting and running interoperability tests of di�erent
IP-based standards released by these standards organisations [Ko et al. 2011]. Interoperability
between di�erent implementations of CoAP on various platforms has been performed by the
European Telecommunications Standards Institute (ETSI) [Ishaq et al. 2013].

6LoWPAN and the smaller IPv6 stack (ulPv6) allow communications at lower layers, but di�erent
application layer protocols still hinder the seamless interconnection and data exchange between sen-
sory devices. Some application layer protocols are designed to be suitable for resource-constrained
IoT devices with a limited power, memory and processing capabilities such as CoAP, Message

10http://www.ietf.org/
11http://www.ipso-alliance.org/
12http://www.iiconsortium.org/
13http://openconnectivity.org/
14http://www.w3.org/WoT/IG/

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 17 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:18 Y. Fathy et al.

Queueing Telemetry Transport (MQTT) [Hunkeler et al. 2008; Locke 2010], Advanced Message
Queuing Protocol (AMQP) [Vinoski 2006], IETF’s eXtensible Messaging and Presence Protocol
(XMPP) [Saint-Andre 2011] and Data Distribution Service (DDS) for real-time systems [OMG
2006]. We emphasise that the interoperability between application layer protocols is required,
but the interoperability support for other lower protocol layers of the TCP/IP protocol stack is
indispensable [Zeng et al. 2011]. However, it is still hard to have one design for the interoperability
between all protocol layers that can �t for all various Internet-connected devices. We summarise
the di�erences between the protocols mentioned above in Table 4. Our comparison criteria are:
transport layer protocol (e.g. TCP, UDP), interoperability between other protocols, QoS for message
delivery (delivery noti�cation) and messaging exchange pattern (e.g. request/response).

Table 4. Characteristics of di�erent application layer protocols

Protocol Transport Allow Interoperability Delivery Noti�cation Messaging Pattern

CoAP UDP Yes [Palattella et al. 2013;
Shelby et al. 2014]

• Con�rmable
• Non-con�rmable
• Acknowledgement
• Reset
[Shelby et al. 2014]

• Synchronisation
(REST-based)
request/response

• Asynchronisation
responses (with
observer option)

MQTT TCP Yes (MQTT-SN [Stanford-
Clark and Truong 2013])

• Exactly once
• At least once
• At most once
[Locke 2010]

Publish/subscribe

XMPP TCP Yes [Saint-Andre 2011] No delivery [Karagiannis
et al. 2015]

• Asynchronous
publish/subscribe

• Request/response

AMQP TCP Yes [Vinoski 2006]
• Exactly once
• At least once
• At most once

[AMQP Working Group
and others 2012]

Asynchronous
publish/subscribe

DDS • TCP
• UDP

Yes (DDSI) [Corsaro and
Schmidt 2012]

It has nearly 23 QoS
(e.g. topic, history,
durability) [Al-Fuqaha
et al. 2015; Corsaro and
Schmidt 2012]

Publish/subscribe
(multicast)

The REpresentational State Transfer (REST)-based services usually work over HyperText Transfer
Protocol (HTTP). HTTP is an application layer protocol that is built on top of TCP. REST is an
architecture design that allows developing Web services (RESTful) that communicate and access
resources (elements) over HTTP by their Uniform Resource Identi�er (URIs). CoAP supports a
subset of HTTP functions; it uses HTTP commands (GET, POST, PUT, and DELETE) for interacting
with resources. It is easily integrated into the Web; proxies are used to map HTTP into CoAP, and
it can also create and support some semantic descriptions [Palattella et al. 2013]. However, there is
a complexity for mapping the protocols [Kirsche and Klauck 2012]. CoAP supports a synchronous
request/response approach. However, topic publication/subscription scheme is more suitable for
IoT devices and applications [Kirsche and Klauck 2012]. CoAP is based on REST-style architecture
and uses User Datagram Protocol (UDP) as an alternative transport layer protocol for TCP in HTTP.
CoAP is a lightweight protocol with lower overhead (smaller packets than HTTP) that is accordant
to IoT constrained devices with UDP communication and networks with limited resources. It
supports asynchronous responses with a resource observation option; wherein clients request to
observe sources and keep being informed by their changes [Bormann et al. 2012].

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 18 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:19

MQTT is a publish/subscribe messaging protocol which is developed by Organization for the
Advancement of Structured Information Standards (OASIS)15. Unlike CoAP, which is based on UDP
and supports request/response scheme, MQTT is TCP-based and provides de-coupling between
publisher as data producer and subscriber as data consumer by supporting a message bus (one-
to-many messaging distribution exchange over TCP/IP). It is also a client-server based, wherein
a central broker (server/gateway) receives subscriptions from clients for certain sources/events
(topics). MQTT targets machine-to-machine (M2M) communications. MQTT is also a simple and
light-weight protocol with low data overhead that can be used in constrained networks. For example,
MQTT’s header is only 2 bytes which in comparison to AMQP which has header size 8 bytes and
CoAP which has header 4 bytes, is much lower [Al-Fuqaha et al. 2015]. Unlike HTTP, which has no
Quality of Service (QoS) for message delivery, MQTT supports three di�erent kinds of QoS [Locke
2010]. The message can be delivered exactly once (message is sent only once, and duplicated
messages are neglected), at least once (message is being sent until an acknowledgement is received)
and at most once (message is sent once, and no response/acknowledgement is expected). The main
drawback of MQTT is that MQTT clients must support TCP to connect to MQTTP broker. MQTT
clients should also have an open connection to broker all the time, and MQTT broker also becomes
a single point of failure. When a network has limited resources (e.g. Wireless Sensor Networks) or
packet loss rate is high (high communication is required), the open connection becomes a bottleneck.
MQTT does not directly support non-TCP/IP sensors and embedded devices. However, an extension
of the MQTT which is called MQTT for Sensor Networks (MQTT-SN)16 supports non-TCP/IP
devices. MQTT-SN also allows interoperability between di�erent devices [Stanford-Clark and
Truong 2013].

XMPP is an open instant messaging (near real-time) and streaming eXtensible Markup Language
(XML) protocol that has been proposed by IETF. It was developed essentially to allow communication
between people through messages. It is TCP-based similar to MQTT; it supports asynchronous
publish/subscribe approach that is suitable for the IoT and also supports request/response approach
similar to CoAP. However, it has no QoS message delivery; it only depends on TCP’s reliability that
impedes it to support M2M communications. Decentralisation is the key advantage of XMPP [Saint-
Andre 2011]; there is no central XMPP server, but individuals can deploy their XMPP servers and
have control over it. Di�erent clients with various server architectures can also communicate with
each other [Mascetti et al. 2011]. For example, di�erent servers in the Jappix17 project, which is a
social networking system, are connected and communicate through XMPP. Google has stopped
supporting XMPP that was used in Google Talk and Hangout (which has replaced Google Talk).
Intuitively, XMPP supports client-server and server-server communications. However, it is a text-
based message exchange (XML format) which might have an overhead to interpret and parse
XML [Karagiannis et al. 2015].

AMQP is a messaging queue-based protocol which is developed by OASIS. It is MQTT-like;
it is based on asynchronous publish/subscribe approach. It has a message/exchange mechanism
between queues to support one-to-one and one-to-many communications. Also, it relies on TCP
and also has three di�erent kinds of QoS similar to MQTT: at least once, at most once and exactly
once for delivering the messages. AMQP supports routing producer-consumer, wherein consumer
creates a message bu�er (queue), and producer pushes the messages into the bu�er.

DDS is a data-centric publish/subscribe standard that allows distributed, dynamic, scalable and
real-time systems [Corsaro and Schmidt 2012]. It allows exchanging messages between publisher

15http://www.oasis-open.org/
16http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
17http://jappix.org/

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 19 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:20 Y. Fathy et al.

and subscribers. It allows detecting dynamic changes in meta-events; it provides content-based
subscriptions. DDS is used in ProRail (a large-scale rail network management system with a reliable,
real-time and fault-tolerance) and Volkswagen smart cars and other systems18. However, DSS does
not support interoperability between di�erent vendors/implementations. To allow interoperability,
Data Distribution Service Interoperability (DDSI) Wire Protocol is developed [Management 2009].
It is argued in [Baldoni et al. 2011] that DDS should be deployed with strict settings to enable its
powerful QoS and also the detection of real-time events from multiple heterogeneous sources. The
high overhead of DDS’s IP multicast is another drawback for deploying DDS on mobile nodes and
wide-scale wireless networks [David et al. 2013; Esposito 2011].

Table 5. Advantage and disadvantage of di�erent application layer protocols

Protocol Advantage Disadvantage Application

CoAP

• Easily integrated with the Web [Palat-
tella et al. 2013]

• Stateless HTTP (easily HTTP map-
ping) [Shelby et al. 2014]

• Light weight
• Lower overhead [Shelby et al. 2014]
• Multi-cast support [Shelby et al. 2014]

• Lack of topic publication/subscription
approach [Kirsche and Klauck 2012]

• Complexity for mapping protocols (ap-
plication protocol) [Kirsche and Klauck
2012]

Integrated with HTTP
and RESTful applica-
tions [Bormann et al.
2012]

MQTT

• Extremely Light weight [Hunkeler et al.
2008]

• Subscription scheme by topic
name [Locke 2010]

• Can be used in low-
bandwidth/unreliable network [Locke
2010]

• Centralised broker can be a point of fail-
ure (client connections with the broker
are open all the time) [Hunkeler et al.
2008]

• Clients have to support TCP/IP [Hun-
keler et al. 2008]

For example: used in Face-
book Messenger [Zhang
2011]

XMPP

• Persistent connection [Saint-Andre
2011]

• Decentralisation (No central XMPP
server) [Saint-Andre 2011]

• Allow servers with di�erent archi-
tectures to communicate [Saint-Andre
2011]

• No QoS [Karagiannis et al. 2015]
• Streaming XML has overhead [Kara-

giannis et al. 2015]

For example: used in

• Jappix project
• Google Talk19

AMQP
• Store-and-forward capabilities [AMQP

Working Group and others 2012]
• Low success rate with low band-

width [Johnsen et al. 2013]
For example: used in JP-
Morgan [O’Hara 2007]

DDS

• Suitable for real-time IoT [Corsaro
and Schmidt 2012]

• Has powerful QoS [Corsaro and
Schmidt 2012]

• Scalable, extensible and e�cient
standard [Corsaro and Schmidt
2012]

• Support IP multicast [David et al.
2013; Esposito 2011]

• QoS polices are only applied in
strict DDS environment [Baldoni
et al. 2011]

• Events are originated per source in a
real-time not multiple sources [Bal-
doni et al. 2011]

For example: used in

• ProRail
• Volkswagen smart cars

The protocolsmentioned above have di�erent purposes. For example, while AMQP is amiddleware-
based protocol to build application andWeb services, XMPP is used to access and communicate with
applications that could be built using AMQP. MQTT and CoAP are used to collect data (resource
discovery) from IoT devices or from services that are formed based on AMQP. More than one
protocol could be utilised in one framework based on use cases and scenarios. However, many other
protocols and technologies can be utilised in IoT. The key issue is to select the primary protocols
that have best-�t in the target application or scenario. It is a challenge to determine the prominent
protocols that are perfectly suitable for IoT domain. [Desai et al. 2015] propose Semantic Gateway

18http://portals.omg.org/dds/who-is-using-dds-2/
19Google has stopped supporting XMPP and Google Talk is replaced by Google hangout

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 20 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:21

as Service (SGS) to solve interoperability issue between di�erent IoT devices that support di�erent
protocols. SGS supports multi-protocol proxy architecture and W3C’s SSN ontology [Compton
et al. 2012] to create interoperability and semantic reasoning between messages that are sent by
di�erent messaging protocols such as XMPP, CoAP and MQTT. The problem of creating bridging
concept between protocols is discussed by [Waher 2015]. For example, if a device A supports CoAP
and another device B supports XMPP: interoperability between di�erent protocols is an issue. To
resolve this, a pair of mappings (translation) between request/response of CoAP and XMPP can
allow communication between these devices. However, protocol semantics add another dimension
to play; MQTT supports only publish/subscribe semantics while CoAP supports observer and
request/response patterns similar to XMPP.
Table 5 shows a comparison between the aforementioned protocols and their suitability for

di�erent application(s). When an IoT system/environment is deployed, di�erent protocols can
be used based on the target applications and scenarios. The communication and computational
capabilities of the devices connected to the network should be taken into consideration while
selecting the IoT protocols. To conclude, both of CoAP and MQTT are designed to be light-weight
protocols and are suitable for networks of low-power and constrained devices. However, CoAP
o�ers more control to give commands for a device. For example, CoAP can be used in IoT smart
home applications to allow users to control their home appliances (e.g. air conditioning) via their
smartphones. On the other hand, MQTT is suitable for battery-powered devices. It is also adequate
for applications where interaction between devices might be required (readings from one device
can control another device). For example, switching on/o� air conditioning in a room is based on
the temperature of the room obtained from a thermometer. MQTT is also suitable for applications
that allow users to subscribe to a particular topic (e.g. a thermometer sensor publishes temperature
data to a topic called “temp” and consumers subscribe to “temp” to receive updates about any
changes in the temperature). AMQP has a store and forward feature which guarantees reliability to
deliver messages over the network. For example, National Science Foundation (NSF)20 uses sensor
nets with AMQP support to collect readings from ocean platforms and allow dissemination of the
readings over the network through publish-subscribe. XMPP is mainly used for wide range of chat
applications. DDS enables real-time sharing and discovery of publishers and subscribers in scalable
networks. For example, DDS can be used in distributed power management systems for smart
energy where real-time sharing of data is required with low latency.
IoT resources can publish their data into a repository or store it temporarily on a gateway.

Indexing mechanisms can then index the resources or the attributes of their published data. For
example, a search query for tra�c data in a certain street can return the number of cars and their
velocity, or it can return link to resources that can provide this information (similar to most of
the search engines on the Web that acts as information locators). Here we mainly discuss the
indexing and discovery mechanisms based on IoT resources, the attributes of their published data,
and higher-level abstractions. The gateway solutions and discovery at the resource/device level are
discussed in Appendix C.

6 INDEXING AND DISCOVERY

It is impractical to scan all the data of all data resources to respond to user queries in a distributed
system. Similar to Web search engines where Web pages are indexed to allow fast data retrieval,
IoT resources and their measurement and observation data can be indexed. Indexing IoT data and
resources can not be separated from data discovery. While indexing organises IoT resources and
data to enable e�cient search, discovery uses indexing to support query and search processes to

20http://oceanobservatories.org/

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 21 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:22 Y. Fathy et al.

provide higher-level access to the resources and their data. Queries can be answered using either
exact or approximate search; wherein it returns an exact result similar to full scan for all the data
of all data resources in the former and relative similarity (closest match) of the requested query in
the latter [Keogh and Ratanamahatana 2005]. As stated earlier in Section 3.2, there are three main
types of queries: data, resource and higher-level abstractions. The following discusses indexing and
discovery approaches based on these types of queries.

6.1 Data

We refer to data indexing as an approach to organise IoT data to enable fast search and retrieval of
the data without identifying the data source. Data indexing can be categorised into spatial, thematic
(e.g. XML) and time-series data indexing.

6.1.1 Spatial Data.

Spatial approaches enable indexing data based on its spatial features. The spatial (also called geo-
graphic) feature is often described by latitude, longitude and altitude coordinates. Some approaches
have been proposed to map spatial data with two or more dimensions into a one-dimensional string
(key) using space-�lling curves (e.g. Z-order, Hilbert, Peano) and allow querying the data based on
the constructed keys. Interested readers can refer to a detailed discussion about various space �lling
curves in [Lawder and King 2000; Mokbel et al. 2002]. [Zhou et al. 2014] propose a framework
that supports spatial indexing for geographical values of collected observation and measurement
data from sensory devices. The work is based on encoding the locations of measurement and
observation data using geo-hash (Z-order curve). Geo-hash is a geocoding algorithm that is based
on interleaving bits to convert spatial coordinates (longitude and latitude) into a single string.
The framework has a Web-based query interface with spatial feature matching mechanism to
match between requested user queries and indexed data. Users can search for data within a speci�c
area (location) or within a certain distance from a given location. Geospatial Cyberinfrastructure
for Environmental Sensing (GeoCENS) is another example for building indexing structure based
on space �lling approach [Liang and Huang 2013]. GeoCENS converts geographical attributes
(longitude and latitude) of sensor data into a one-dimensional string (called quad-key) using Peano
space-�lling curve. GeoCENS provides an exact query search mechanism for data published from
sensors based on its quad-keys. However, the approach does not support e�cient processing of
queries if a large number of sensors publish data at high rates. Spatial data can be indexed using
tree-based methods such as R-tree, B-tree and kd-tree. Interested readers can refer to the survey
of [Diallo et al. 2012; Gani et al. 2016] for detailed discussion about data indexing using di�erent
tree structures.
Other spatial solutions allow indexing data based on not only the spatial features but also the

temporal ones. For example, [Zhong et al. 2013] propose a distributed spatio-temporal indexing
called “VegaIndexer” for large volumes of sensor data to allow exact query search. The basic idea
depends on having a global index for locating a block of information and a local index to select
a speci�c feature object within the selected block. [Barnaghi et al. 2013b] annotate sensor data
semantically to allow creating spatio-temporal indexing. The spatial characteristic of the data is
described using geo-hash, while the temporal feature and the type of the data are encoded using
MD5 digest algorithm. Singular Value Decomposition (SVD) is applied to geo-hash vectors to
reduce dimensionality before applying k−means clustering algorithm to distribute data among
repositories and allow data querying. Each data item is represented as a long string; the geo-hash
tag of a location and the MD5 digest of time and type values. Answering approximate queries is
based on a predictive method that is used to select the repository that might have the requested
hash string. Then, a string similarity method is used to �nd the best match for a requested query

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 22 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:23

in the selected repository. However, the indexing approach lacks an update mechanism, and the
scalability is an issue because SVD is computationally intensive and is not tailored for large-scale
data that can not �t in memory (disk-resident) [Ding et al. 2008].

6.1.2 Thematic Data.

Thematic indexing (based on speci�c terms, �elds or patterns) has been proposed for indexing data
given its terms or particular attributes. For example, a framework has been proposed in [Lunardi
et al. 2015] to allow a set of various devices to register to a middleware. The framework provides
an indexing method based on selected XML �elds from the meta-data description of di�erent con-
nected devices in the network. The approach o�ers an updating method that uses subscribe/notify
communication pattern between connected devices and the network. The framework also receives
noti�cation updates with new values of XML data �elds. The data indexing can be updated within
the proposed framework and the indexing mechanism allows querying speci�c XML �elds. How-
ever, the indexing is not scalable because it is centralised and the time for answering queries
increases with the increase in the number of connected devices. Similarly, [Aberer et al. 2007]
propose Global Sensor Network (GSN) to allow registering sensors with their meta-data in an XML
structure. Although the query is exact text-based search, this approach tends to have ambiguous
descriptions of sensors because users add description terms for sensors manually.

[Ledlie et al. 2005] construct a distributed indexing structure for sensor data based on the
descriptions of meta-data attributes in XML format. The approach constructs a single indexing
structure for each attribute to respond to exact user queries. However, using simple XML attributes
to index sensor data and having separate indexing structure for each attribute are not su�cient. This
is because sensor data often does not have the same attributes and the indexing structure can not
answer multi-attribute queries. [Harth and Decker 2005] present another indexing approach using
RDF to describe sensor data. Each data element is stored persistently using RDF. RDF represents
data as triples (subject, property, object) (RDF triple has been explained earlier in Section 3.3.2).
The authors extend the triples into quads in which context information is added to the triples to
represent the source of the data (e.g. URI), where RDF quads are indexed using B+ tree [Comer
1979]. The nodes in the tree are represented by (key, value) pairs. The key is a concatenated string
of subject, property, object and context and the value refers to where the data resides on disk. The
approach supports exact fast search (using concatenated keys). However, it assumes that the stored
data is not updated. Also, the constructed index structure can only answer simple exact queries
and does not support answering complex queries [Aggarwal et al. 2013].

[Wang et al. 2014] propose a Continuous Range Index (CR-index) tree-based method for indexing
observation data based on their type attribute (e.g. temperature and oxygen saturation) and value
ranges. The method constructs a compact indexing scheme in which a collection of observation and
measurement data items are grouped into boundary blocks based on their value ranges [min,max]
(i.e. interval blocks). The constructed indexes enable answering value-range queries, however, this
method can index only data with a single dimension [Wang et al. 2016]

6.1.3 Time-series Data.

As mentioned earlier in Section 3.3, IoT data can be represented as time-series data. [Agrawal et al.
1993] propose a Discrete Fourier Transform (DFT)-based feature indexing approach (called F-index)
by �rst selecting fc which is a cut-o� frequency. It is a set of the �rst f features of every time-series
sequence (i.e. f number of DFT coe�cients) to represent data sequences from high-dimensional
time domain to lower-dimensional frequency space. The resultant data sequences representation
are subsequently indexed by R∗-tree [Beckmann et al. 1990] to answer similarity queries over
time sequences. However, DFT lacks spatial aspect that is often essential attribute for IoT data as
mentioned earlier. Determining fc value is also not an easy task. Although, the paper argues that

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 23 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:24 Y. Fathy et al.

the proposed approach guarantees the same Euclidean distance between data sequences in both
frequency and time domains, fc should have a value only between (1 and 3) to ensure representing
data sequences with no false dismissal to answer queries.
Time-series data can be represented in symbolic forms using symbolic-based methods such as

SAX (Appendix B provides more details about SAX). [Shieh and Keogh 2008] propose an updated
version of SAX, called iSAX (indexable Symbolic Aggregation approXimation) to construct an
indexing scheme that supports both fast exact search and fast approximate search of one terabyte
time-series data. iSAX has an advantage over SAX; it allows representing SAX symbols with di�erent
cardinalities (i.e. number of bits) within the same word [Shieh and Keogh 2008]. iSAX utilises
Windows NTFS �le system for disk access and builds a hierarchical tree-based index structure. In
the tree structure, each node can be root, internal, or a leaf. The node represents an iSAX word
with at most two child nodes (iSAX words) except the leaf nodes. Furthermore, iSAX represents
time-series data by depicting the data using a higher granularity at �rst level of the tree, where the
new arrival data is then represented by a lower granularity in lower levels of the tree based on their
representations. However, similar to SAX, determining iSAX parameters relies heavily on the data.
Moreover, once the root’s and the child nodes’ representations are constructed, it is not possible
to update them [Camerra et al. 2014], which is a constraint; especially if we consider using iSAX
in indexing on-line time-series data which requires the indexing mechanism to be continuously
updated with no prior knowledge of the data size. Intuitively, iSAX does not allow the child nodes
to be represented by a higher cardinality once they are created. Terminal (leaf) nodes initially have
a single child that maps to a �le whose location on disk is hashed. Once the number of time-series
data elements that can be represented by the same iSAX word increases more than a threshold th in
that �le, another child node (�le) is created to avoid over�ow at the same level of the tree structure.
An adaptive iSAX- and tree-based indexing mechanism to answer approximate queries has

been proposed by [Zoumpatianos et al. 2014]. It is claimed that this approach outperforms other
approaches such as iSAX 2.0 [Camerra et al. 2010]; the cost of index construction is shifted from
initialisation time to query time. This shift is performed by creating and re�ning indexes while
responding to queries. There are also some other existing works to extend iSAX (Appendix D
provides more details about di�erent extensions of SAX-based approaches). However, iSAX exten-
sions are still ine�cient in providing on-line indexing. Similar to SAX, iSAX strongly assumes that
raw data has a Gaussian distribution and uses a z-normalisation in which the magnitude of the
data is lost. However, IoT data does not necessarily follow Gaussian distribution; data distribution
might change over time due to the nature of the observed phenomenon and/or concept drifts.
iSAX also does not allow the structured tree’s root to be modi�ed by a higher cardinality once it is
created. However, IoT data is dynamic and it may require changes in the constructed tree structure
(Section 3.1 provides more details about IoT special characteristics).

Discovery techniques for time-series data can be exact without false dismissal (the ability to
retrieve all quali�ed sequences that match requested query) or approximate (false dismissal might
occur) [Keogh et al. 2001b]. Selecting the similarity measure and the time-series complexity are the
main complications of similarity search [Keogh 1997]. Euclidean distance is a similarity measure
between two time-series sequences. Euclidean distance assumes that two sequences (S1, S2) are
similar if each point in S1 is mapped to its counterpart point in S2. However, if both sequences
are identical, and one of them is slightly shifted, Euclidean distance fails to detect their identical
nature [Salvador and Chan 2007]. Therefore, Euclidean distance has been shown to be a volatile
distance measure for this type of applications because it is easily a�ected by any small shifts along
time-axis [Keogh and Pazzani 2000].

Dynamic Time Warping (DTW) [Berndt and Cli�ord 1994] is an alternative similarity measure. It
is a dynamic programming technique that has been used to warp time-series sequence by shifting

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 24 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:25

points in the sequence to align two sequences in time domain. The shifting approach allows
better distance calculation to �nd their similarities. There is no di�erence between using DTW or
Euclidean distance as a similarity measure in large datasets. Large datasets do not often require
aligning time-series sequences to compute their similarities because similarities can often be in
their nearest neighbours [Shieh and Keogh 2008]. Moreover, DTW outperforms Euclidean distance
in small datasets [Ding et al. 2008]. However, the principal issue that con�nes using DTW as a
similarity measure is its complexity [Keogh and Kasetty 2003]. There are some other similarity
measures, however, DTW has been shown to be the most appropriate similarity measure between
time-series data [Ding et al. 2008]. [Rakthanmanon et al. 2013] show that Euclidean distance is a
one-to-one comparison (i.e. point-to-point), in which two sequences are identical if and only if both
have the same length. The complexity of Euclidean distance is O (n), where n is the length of the
sequence. On the other hand, DTW compares one-to-many (i.e. one point from one sequence could
map to many points in the other one). However, it does not necessarily mean that DTW compares
sequences with di�erent length [Ratanamahatana and Keogh 2005; Salvador and Chan 2007]. Its
complexity is O (nm), in which n andm are the lengths of two sequences. Wrapping window is a
value to constrain points from both sequences to be mapped to a speci�c width window; other
constraints are also discussed in [Berndt and Cli�ord 1994; Ding et al. 2008]. Euclidean distance is
a special case of DTW in which it has a zero warping window size [Ratanamahatana and Keogh
2005].
DTW can be further speeded up to mitigate its complexity by using smaller warping win-

dows [Ratanamahatana and Keogh 2005]. For example, [Salvador and Chan 2007] propose an
enhanced DTW called “FastDTW” that has linear complexity and spaceO (n) comparing to standard
DTW which has O (nm) complexity. The basic idea is to speed-up DTW calculations by reduc-
ing the number of data points that should be visited to �nd warp path and carrying out DTW
on an abstracted representation of the data recursively. [Keogh and Pazzani 2000] also propose
Piecewise Dynamic Time Warping (PDTW) by applying DTW on reduced time-series data that
is approximated by Piecewise Aggregate Approximation (PAA) to speed-up and overcome the
complexity of DTW. Similarity measure comparison has been discussed in details in [Ding et al.
2008]. Moreover, [Rakthanmanon et al. 2013] use DTW to provide exact search for arbitrary length
queries. They present a search suite (UCR) that comprises optimising the normalisation step of
time-series data and provides a better approach for obtaining lower bounds to mine enormous
volumes of time-series sequences.

Other time-series algorithms are proposed to allow analysing data that is available continu-
ously based on classi�cation methods and tree structures to construct hierarchical indexing. For
example, [Grass and Zilberstein 1996] propose an algorithm to provide answers at anytime, given
interruptions. The accuracy of the output improves with processing time. However, the approach
does not provide an incremental learning to keep the learning process updated by any new arrival
data stream. [Seidl et al. 2009] present Bayes tree indexing based on aggregating hierarchical
Gaussian mixture in the form of a tree to represent the entire dataset. The approach supports both
incremental learning and anytime classi�cation of new arrival data streams. The latter allows fast
access and search for data with a good level of accuracy. The approach also allows approximate
query based on density estimation and relies on a supervised classi�er; wherein data is labelled.
However, Gaussian mixture models are not suitable for multi-feature indexing (a separate index
structure is constructed for each feature). The number of mixture components also need to be
known in advance before constructing the models which make the models less �exible.
Overall, IoT indexing and discovery require distributed, e�cient and scalable methods and

solutions that can support discovery and indexing of dynamic and real-time multi-feature data that
is continuously published by di�erent resources.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 25 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:26 Y. Fathy et al.

6.2 Resource

We refer to resource indexing as an approach to organise IoT resources to facilitate querying or
�nding a speci�c resource or a resource that can answer user queries. IoT resources often o�er
service descriptions while publishing their data. However, resource descriptions can be enriched
by applying machine learning techniques to represent the resources in latent semantic space. To
this end, indexing can be constructed based on their latent factors. Indexing by Latent Dirichlet
Allocation (LDI) is introduced in [Wang et al. 2015b]. Latent Dirichlet Allocation (LDA) [Blei et al.
2003] is a probabilistic topic modelling to analyse and classify a collection of documents into latent
topics where topics have certain probabilities to generate particular words. LDI relies on LDA to
represent a document in a latent topic space. LDI then indexes documents related to the requested
queries based on the similarity between the queries and the documents in the topic space. This
classi�cation of documents does not require labelled training data.

Semantic indexing based on the description of IoT resources has been proposed by [Cassar et al.
2010]. The authors describe IoT resources and services semantically using Ontology Web Language
for Services (i.e. OWL-S) and then use LDA to index IoT resources based on their semantic service
descriptions to answer approximate user queries based on a semantic search. The latent approaches
are mainly tailored for indexing textual data. [Wang et al. 2015a] propose geo-spatial indexing to
locate a gateway that might have a connected resource that has an approximate answer for a given
query. The spatial attributes of IoT resources are described using geo-hashing. The approach can
answer semantic queries using SPARQL query language. The index structure supports updating
operations (i.e. connecting or disconnecting a resource) within each gateway without updating the
entire indexing structure. However, the approach supports only static locations for connected IoT
resources. Some other approaches such as Linked Sensor Middleware (LSM) [Le-Phuoc et al. 2011]
o�er limited functionalities [Perera et al. 2013] for search based on logical queries. For example,
LSM indexes and links data sources based on their semantic description, however, querying the
resources relies on selecting an approximate area on a map or based on a sensor type. LSM also
assumes that data from resources is static and is not susceptible to frequent changes.

Spatial indexing of IoT resources which is based on their geographical locations has been proposed
by [Hoseinitabatabaei et al. 2014]. The proposed approach is a distributed hierarchical indexing for
IoT resources. Each resource is connected to a gateway, and consequently, each gateway constructs
a GMMmodel to represent its connected resources. The model is updated by a short-term process by
calculating the variations based on Variation Compensation Vectors (VCV) or a long-term one if the
current model is no longer su�cient and need to be substituted to represent the current data. The
model �nds a resource that has an answer for a given query. However, the indexing approach has
two main shortcomings; it assumes that constructed GMM models are initially trained on labelled
data, and if there were many types of services (e.g. air pollution, humidity, temperature), each data
type requires an individual constructed GMM model at each gateway. The hierarchical architecture
of this approach might have Single Point Of Failure (SPOF), in which if a top node fails the entire
service halts. Although the approach has a query processing mechanism, it only allows exact search
(e.g. temperature in a speci�c location (e.g. longitude: -101.70593, latitude: 57.45899)); it does not
support approximate search or searching for patterns. In addition, all gateways are assumed to be
homogeneous (have the same type of services) which is not the case in most of IoT environments.
Another distributed spatial mechanism for indexing IoT resources has been proposed in [Fathy
et al. 2016]. The indexing structure is built by clustering di�erent resources based on their spatial
features. A tree-like structure is then constructed per cluster in which each branch represents a type
of resource (e.g. temperature, humidity sensors). The indexing mechanism supports an adaptive
process for updating indexing with minimal cost. However, the approach is limited to a prede�ned

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 26 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:27

set of resource types and it only supports exact search queries of multi-dimension attributes (i.e.
exact locations and types).

[Meliou et al. 2009] propose multi-dimensional tree approach to index sensor nodes using a prob-
abilistic model to answer approximate queries. The indexing method creates a tree-structure where
each node has a constructed GMM model. The models of child nodes are aggregated at their parent
node. However, the way the indexes are constructed does not support spatial queries [Mohamed
et al. 2011] and the query statements are received to all sensors, and this has a high overhead for
large-scale distributed IoT networks.

Another approach is searching for IoT resources according to their unique identi�ers. There are
di�erent Object Identi�er (OID) schemes that can be used as a unique identi�er for IoT resources. For
example, Electronic Product Code (EPC) is used as a unique identi�er for physical objects. EPCs can
be encoded on RFID tags, while Ubiquitous Code (ucode) is another approach for identifying physical
objects based on Ubiquitous ID (UID) architecture [Abowd and Mynatt 2000]. EPCglobal [Traub
et al. 2005]21 is a consortium that has provided EPC as a universal identi�er for physical objects.
EPCglobal has three main components; EPC, EPC Discovery Service (EPCDS) and EPC Information
Service (EPCIS). EPCIS enables access to EPC-related data and events. EPCDS links between user
queries and EPCIS; EPCDS receives user queries to obtain information about an exact EPC object or
events associated with speci�c objects. EPCDS provides URLs (links) to EPCIS servers using Object
Naming Service (ONS) to access objects related to the query. The static identi�er for querying
objects and centralised query processing are the main limitations of EPCGlobal.
Distributed Hash Table (DHT)-based overlay networks for discovery services of IoT resources

have been discussed in [Paganelli and Parlanti 2012]. An overlay network is a network of connected
nodes; wherein each node has a particular view of other nodes in the network. DHT is a distributed
data structure which allows nodes in an overlay network to be de�ned by a (key, value) pair,
where DHT provides a lookup for value by object’s unique identi�er (key). DHT o�ers two main
operations: put (key, value) and value = get (key) to store and retrieve the data object associated
with a given key. DHT allows publishing data from di�erent nodes in the network and can employ
e�cient routing requests to �nd the owner (node) of a given key. DHT supports only exact match
for a given key and can not handle complex queries [Paganelli and Parlanti 2012].

A distributed discovery server architecture of EPCglobal based onDHT is proposed in [Manzanares-
Lopez et al. 2011]. However, this approach supports exact query for only EPC code as an object
identi�er and lacks support for complex queries [Paganelli and Parlanti 2012]. [Paganelli and Par-
lanti 2012] propose a distributed data discovery service approach and an indexing mechanism on top
of a DHT framework. Unlike EPCglobal that supports single attribute (object identi�er) query, this
method supports exact query for speci�c objects, multi-attribute and range queries (approximate
queries) as well as a �exible identi�cation scheme. The approach maps multi-dimensional data
space into a single one, and Pre�x Hash Tree (PHT) [Ramabhadran et al. 2004] on top of DHT
is subsequently used to construct the indexing structure. PHT is a binary tree in which a pre�x
identi�es each node of the tree, and the data is stored at the leaf nodes. Answering queries requires
sequential traversal of the tree structure down to leaves whose pre�xes overlap with the queries.
When the number of connected devices in IoT environment grows, data generated by the devices
might frequently be changed, and the rates of data update and query access become an issue [Sekine
and Sezaki 2008]. Interested readers can refer to detailed discussions in [Evdokimov et al. 2010;
Paganelli and Parlanti 2012] on distributed EPCGlobal and DHT-based discovery for IoT resources.
Most of the existing discovery services in the IoT are centralised [Polytarchos et al. 2011] or

have limited functionalities. IoT data and environments require distributed, dynamic and scalable

21http://www.gs1.org/epcglobal

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 27 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:28 Y. Fathy et al.

methods to discover di�erent IoT resources and enable on-line access to di�erent types of queries
of the resources and their published data.

6.3 Higher-level Abstractions

Indexing resources and/or their published data allows searching and detecting higher-level ab-
stractions such as events, activities or patterns. As stated earlier in Section 3.3, IoT data can be
represented in a symbolic form. [Bhattacharya et al. 2007] derive high-level semantic events (e.g.
�nding weather pattern HCHC, H (Hot) and C (Cold)) from low-level sensor data. The work is
based on transforming raw sensor readings into symbolic states (e.g. C for temperatures ≤ 25◦C
and H for temperatures > 25◦C). Model-based Index STructure (MIST) indexing is then proposed
to support searching for events. MIST is an in-network, hierarchical and distributed tree-based
indexing structure that builds local Hidden Markov Model (HMM) for each node to capture the
hidden states and derive the semantic meaning of sensor data. Child models are then aggregated
into their parent based on spatial correlations between the models. The model allows answering
di�erent approximate semantic queries: range query (e.g. return all sensors that observe speci�c
pattern with probability > threshold), top-q query (e.g. get the sensor that has most likelihood
to observe a given pattern) and others. Although a bottom-up aggregation of child models into
their parent is used to preserve the correctness of indexing, domain knowledge is required to infer
correspondence between states. Therefore, this approach is not suitable to provide on-line indexing
for IoT where data and its distribution might be changing over time, and new states need to be
inferred from the data.
A SAX-based approach for sensor data (SensorSAX) to �nd exact patterns has been proposed

by [Ganz et al. 2013]. The work is an enhancement of SAX approach to change adaptively the
window size based on the spread of data values (i.e. using standard deviation criterion). The
proposed approach converts raw sensor data into symbolic representation and infers higher-level
abstractions (e.g. dark room or warm temperature).
Geographic Hash Table (GHT) is proposed by [Ratnasamy et al. 2002]. GHT uses a hashing

function where the key is an event name (e.g. high temperature), and its value is the location of a
node that has that key. GHT only supports exact queries. Overall, GHT has two main drawbacks:
it only supports binary events (i.e. event occurs or does not occur), and it groups nodes with the
same event type (i.e. key) together even if they are far away. Distributed Index for Features in
Sensor networks (DIFS) is an extension of GHT [Greenstein et al. 2003]. DIFS builds the indexes in
a tree-based structure where each node in the tree stores a range of values in a certain geographical
area to detect higher-level events (e.g. hot regions). The tree structure allows answering a range of
queries. DIFS indexes are constructed based on one attribute (one type of service). DIFS assumes
that the distribution of values in each node is uniform. However, IoT data distribution could change
over time, therefore constructing and updating DIFS are costly. This is because DIFS is based on
GHT in which every node in the tree should be aware of the boundary of the entire geographical
area [Wu and Li 2009], and each node in DIFS tree structure can have one or more parents even if
the parents might be located far away [Demirbas and Lu 2007].

[Li et al. 2003] propose Distributed Index for Multi-dimensional data (DIM), which is a tree-based
indexing approach. DIM is based on dividing the network �eld into di�erent geographical zones
where each zone corresponds to a node in the tree, and each node represents a range of values
such that the tree root represents the entire range. DIM allows answering multi-dimensional range
queries. However, the routing algorithm to answer user queries is computationally expensive which
hinders its scalability within large-scale networks [Bharambe et al. 2004].
It is expected that many users can request several queries simultaneously while new data is

continuously created; however, updating the indexes and answering queries need to be completed

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 28 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:29

in parallel. Although the adaptive indexing approach gradually builds parts of the index, it lacks
scalability. While data scales and more data and queries are received, the updates for the indexing
happen more often. As a result, more queries have to be processed against more data. In other
word, while data scales, the overall cost of query processing increases.

6.4 Summary

Di�erent index and discovery approaches are discussed above based on the types of queries. Some
indexing approaches such as thematic (e.g. XML �elds), time-based (e.g. time-series) and others are
based on data indexing without identifying the data source. Other indexing methods rely on the
semantic description or geographical (spatial) locations of resources for constructing the indexes for
di�erent resources. Indexing for higher-level abstractions is used to discover and infer information
from IoT resources and their data. Some solutions �nd a symbolic pattern such as SAX-based
approaches, and others discover events using the spatial feature of resources/data. Given the three
most important types of queries, taxonomy of indexing approaches is summarised in Fig. 4 and
Table 6 shows a classi�cation of discovery methods.

Table 6. Discovery classification approaches

Search/ Discovery Data Resource Higher-level Abstrac-
tions

Exact
[Aberer et al. 2007; Harth
and Decker 2005; Ledlie
et al. 2005; Liang and Huang
2013; Lunardi et al. 2015;
Rakthanmanon et al. 2013;
Zhong et al. 2013]

[Fathy et al. 2016; Ho-
seinitabatabaei et al. 2014;
Manzanares-Lopez et al.
2011; Paganelli and Parlanti
2012; Traub et al. 2005]

[Ganz et al. 2013; Rat-
nasamy et al. 2002; Traub
et al. 2005]

Approximate [Agrawal et al. 1993; Bar-
naghi et al. 2013b; Berndt
and Cli�ord 1994; Salvador
and Chan 2007; Seidl et al.
2009; Shieh and Keogh 2008;
Wang et al. 2014; Zhou et al.
2014]

[Cassar et al. 2010; Le-
Phuoc et al. 2011; Meliou
et al. 2009; Paganelli and
Parlanti 2012; Wang et al.
2015a]

[Bhattacharya et al.
2007; Greenstein et al.
2003; Li et al. 2003]

Overall, the existing approaches for indexing and discovery of IoT data/resources are either
centralised or do not provide e�cient update mechanisms to allow on-line indexing and discovery.
IoT environment is dynamic, in which many resources join the network and others become
unavailable for various reasons (e.g. mobility, source state, battery life). The time it takes to create
and update indexes, as well as processing and responding to users’ queries should be minimal.
IoT requires on-line, distributed, scalable and e�cient indexing, discovery and query of resources
and their data. The nature of IoT data (spatio-temporal and high dimensionality and often high
diversity) imposes challenges in data classi�cation and analysis that are o�ered by conventional
machine learning algorithms (Appendix E provides an experiment on high diverse real-world
IoT data). IoT methods and solutions should allow machines and human users to interact with
discovery services and �nd the requested data automatically. It is expected that large dynamic data
is needed to be processed and analysed even before users �nish typing their queries [Ostermaier
et al. 2010]. Discovery should be on-line without prior knowledge of the full sequence of data with
consideration of integration of newly available data into the training model. Indexing and ranking
mechanisms are key enablers for e�cient data discovery.

7 RANKING

The prime goal of ranking is to prioritise and order resources and services by selecting the most
suitable ones among them based on user queries and requirements. On the Web, Google uses

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 29 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:30 Y. Fathy et al.

Indexing

Data

Thematic

e.g. [Aberer et al. 2007; Harth and
Decker 2005; Ledlie et al. 2005; Lu-
nardi et al. 2015; Wang et al. 2014]

Time-
series

e.g. [Rakthanmanon et al. 2013;
Salvador and Chan 2007; Seidl
et al. 2009; Shieh and Keogh

2008; Zoumpatianos et al. 2014]

Spatial
e.g. [Barnaghi et al. 2013b;

Liang and Huang 2013; Zhong
et al. 2013; Zhou et al. 2014]

Resource

Multi-
dimension

e.g. [Fathy et al. 2016;
Meliou et al. 2009; Pa-

ganelli and Parlanti 2012]

Spatial
e.g. [Fathy et al. 2016;
Hoseinitabatabaei et al.
2014; Wang et al. 2015a]

Semantic e.g. [Cassar et al. 2010; Le-Phuoc
et al. 2011; Wang et al. 2015a]

Higher-level
Abstractions

Spatial
e.g. [Bhattacharya et al. 2007;

Greenstein et al. 2003; Li et al. 2003]

Hashing

e.g. [Barnaghi et al. 2013b;
Greenstein et al. 2003; Paganelli
and Parlanti 2012; Ratnasamy
et al. 2002; Zhou et al. 2014]

Symbolic-
based

e.g. [Bhattacharya et al. 2007;
Ganz et al. 2013; Traub et al. 2005]

Fig. 4. Taxonomy of indexing approaches

PageRank [Brin and Page 2012] to rank the results of search queries (i.e. Web pages). The work is
based on links between di�erent Web pages. Hypertext Induced Topic Selection (HITS) is another
ranking approach [Kleinberg 1999]. HITS ranks search results based on the linking between Web
pages that can provide more information for requested queries. Both of the approaches are based
on connections and links between di�erent sources and are mainly tailored for textual data. In
IoT, resources can be related to each other based on their type of spatial features. However, each
resource can have many features, as well as, di�erent observation and measurement data. In this
case, IoT ranking should be a multi-objective decision-making process in which various criteria
should be considered depending on the application domain.

[Thirumuruganathan et al. 2013] present an algorithm called “RANK-est” to provide top k

queries from Web databases (e.g. Amazon) through a search interface. Overall searching on Web
databases provides the top k information related to a given query. The authors assume that every
database record is represented as a tuple (a tuple contains multi-attributes and their values). The
authors also focus on using a static ranking function. However, there are two types of ranking
function; static (i.e. query-independent) and dynamic (i.e. query-dependent). The static ranking
function assigns a static score for each item in the database. The static ranking function could be

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 30 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:31

observable which can be queried or unobservable (i.e. proprietary) which cannot be queried. In
the former, users request a query with a set of desired attributes. For instance, searching for an
application on Apple store with a set of speci�ed criteria (e.g. category and price). Another example
is to �nd books on Amazon, within a price range (the price for every book is displayed in the query
result). In proprietary ranking, users could also search for books, sorted by best-sellers, but they
do not know the actual revenue for each seller. On the other hand, query-dependent is a ranking
function in which various query models are used for di�erent queries. In particular, query results
are ranked based on the closeness of the match between the attributes of a query and every tuple
in the database. [Thirumuruganathan et al. 2013] conducted their experiments on Amazon DVD
and book items using a static ranking function which can not be extended to other application
scenarios.

[Guinard et al. 2010] propose a ranking service for sorting IoT services based on their types (e.g.
temperature, health), their multi-dimensional attributes (e.g. service’s location) and/or the Quality
of Service (QoS) (e.g. latency). The ranking service also performs a set of chained ranking strategies
for multi-criteria evaluation of various parameters with di�erent weights that are determined in a
given query (e.g. 50% for location, 40% for service type and 10% for network latency). However, the
ranking approach depends on simple terms for describing the services which are typically suitable
only for IoT simple scenarios and applications [Guinard 2011; He and Da Xu 2014].

[Yuen and Wang 2014] rank sensor services based on two categories of QoS in WSN: network-
based (latency, bandwidth, delay, reliability and throughput) and sensor-based (accuracy, trust and
cost). The ranking relies on an objective function that is a weighted sum of di�erent QoS parameters
assigned by the user. However, weighting these parameters is not dependent on joint comparisons,
but instead it relies on pairwise comparisons. [Yau and Yin 2011] present QoS-based service ranking
approach that takes one step further by selecting and ranking available services based on users’ QoS
requirements instead of QoS of the services themselves. Users have to determine the importance of
a set of QoS requirements such as reliability, delay and others before searching for a service. The
ranking approach is not only based on the importance of the QoS requirements, but also on users’
con�dence for assigning values to each QoS’s attributes.

[Niu et al. 2014] also propose a ranking approach for WSN services using QoS with an incorpo-
ration of user feedback/rating (i.e. Quality of Experience (QoE)) for di�erent services within a time
interval (time threshold). However, the proposed approach assumes that the information of user
assessment for various services and QoS are available at the services/sensors level which is not a
valid assumption in dynamic WSN where there is no control on when users can access and rate
the services. Also, the approach does not consider heterogeneity between services where di�erent
services have di�erent characteristics [Wang et al. 2015c]. The work presented in [Xu et al. 2007]
combines both QoS information published by service providers and the reputation scores (users’
feedback) regarding the services’ performance for selection and ranking the services that match
user requirements. The approach also relies on storing reputation scores for all services which
might lead to a storage problem [Paradesi et al. 2009].

[Elahi et al. 2009] propose a sensor ranking mechanism that is based on predictive models to
estimate the probabilities of content-based sensors that match requested queries. The approach
can only rank results of simple queries about some higher-level states (e.g. occupancy; free or
occupied) of an object (e.g. room). Another method based on semantic prediction models is proposed
in [Mietz et al. 2013] for ranking IoT resources. The models are constructed using RDF to describe
states that sensors can measure (e.g. warm temperature) and states can be queried using SPARQL
query language. The query result is a ranked list of resources based on their probabilities to infer
a requested state. The approach assumes that a set of states is de�ned in advance which hinders
updating the models with new sensors that might have new states.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 31 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:32 Y. Fathy et al.

CASSARAM (context-aware sensor search, selection and ranking model) for IoT domain is
proposed in [Perera et al. 2013] to rank sensors based on contextual information. CASSARAM
allows users to query (search) sensor data based on their priorities such as reliability, availability,
battery life and query results are subsequently ranked according to these parameters. CASSARAM
relies on Comparative Priority-based Heuristic Filtering (CPHF) algorithm to provide an e�cient
and fast ranking mechanism. Data model in CASSARAM is extended for describing sensors using
SSN ontology to allow semantic queries in [Perera et al. 2014]. However, answering queries is only
e�cient with a few number of sensors.
The latent factors approach using LDA is incorporated from topic modelling domain to rank

sensor services. For example, [Cassar et al. 2014] utilise OntologyWeb Language for Services (OWL-
S) to describe sensor services semantically and apply LDA (a generative probabilistic unsupervised
machine-learning technique) to map service descriptions into latent factors (topics). A ranking
process is performed on latent factors based on their similarities with user queries. Recently, a
ranking approach based on collecting contextual information from sensors services and the semantic
description of the services to minimise the cost for their accesses to answer user queries is proposed
in [Wang et al. 2015c]. The authors discuss four main requirements for ranking mechanism; ranking
should be on-line, distributed, simple, e�cient and have independent complexity from WSN and
minimal energy consumption. However, the e�ciency of the proposed approach is based on the
assumption that the WSN has a limited number of sensors.
Quality of Information (QoI) is identi�ed by some quality attributes such as accuracy and

completeness. QoI has been used to characterise and rank data and information collected from
sensor networks. For example, [Klein and Lehner 2009] propose a data quality model for sensor
data streams to control QoI during data query process. The model considers data quality attributes
such as accuracy, con�dence, completeness, and timeliness. To guarantee e�cient QoI over data
streams, the model uses jumping data quality windows approach that considers splitting streaming
data into consecutive non-overlapping �xed-length time windows. The QoI attributes are measured
for each window. The main shortcoming of this model is that the accuracy measurement for each
window is mainly based on sensors’ precision provided by their manufacturer. In this case, a sensor
might be considered producing accurate values even if it has some faults or failures (e.g. calibration
error or freezing) [Asmare and McCann 2014].

[Bisdikian et al. 2013] combines QoI and Value of Information (VoI). VoI represents the utility
of information gathered from sensor data in the application-speci�c context such as trust level of
sensor devices and usefulness of the data collected from sensor devices. The work uses analytic
hierarchy multi-criteria process based on the application-speci�c requirements to drive di�erent
weights for attributes for ranking collected data and information. On the other hand, [Lin et al.
2014] present a Max-Signi�cance-Min-Redundancy metric approach to identify the QoI for each
source. The metric is based on two main quality attributes: source signi�cance (i.e. to what extent a
source contributes to a classi�cation task) and source redundancy (i.e. information overlap between
sources) for incremental selection and ranking of di�erent information sources. The ranking has
an objective to maximise the signi�cance of information gathered from selected sources. However,
selecting sources that can maximise the signi�cance of information might cause redundancy in
which information gathered from new sources might be relevant to some previously selected
sources. To this end, the approach decreases the redundancy of information sources while selecting
the information sources that maximise the signi�cance. However, the main shortcoming of this
approach is that ranking proceeds by selecting one source at a time which is not suitable for a large
number of connected sources in large-scale IoT networks. Furthermore, it is worth mentioning
that utilising QoI for ranking IoT data is highly dependent on the properties of the collected data

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 32 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:33

Ranking

Data

Multi-
dimensional

e.g. [Guinard et al. 2010;
Thirumuruganathan et al. 2013]

QoI
e.g. [Bisdikian et al. 2013; Klein
and Lehner 2009; Lin et al. 2014]

Resource

QoS-based
e.g. [Guinard et al. 2010;
Niu et al. 2014; Xu et al.

2007; Yuen and Wang 2014]

Semantic
e.g. [Cassar et al. 2014; Mi-
etz et al. 2013; Perera et al.
2014; Wang et al. 2015c]

Higher-level
Abstraction

Contextual
Information

e.g. [Elahi et al. 2009; Perera
et al. 2013; Wang et al. 2015c]

User
Feedback

e.g. [Niu et al. 2014; Xu et al.
2007; Yau and Yin 2011]

Fig. 5. Taxonomy of ranking approaches

and how these properties can comply with the application requirements [Bisdikian et al. 2009].
Taxonomy of ranking approaches is summarised in Fig. 5

Overall ranking the available resources and their published data and services is often dependent
on user needs. The ranking also depends on characteristics of a network of devices such as battery
levels, network delay, latency, and bandwidth. Dependability, availability, reliability and the quality
of information are also among the factors that can determine the ranking score of IoT resources
and their data.

8 ANALYSIS AND DISCUSSION

This section analyses indexing, discovery and ranking approaches for the IoT and discusses the
areas for further research. Indexing and ranking of heterogeneous IoT resources are key enablers for
data discovery and search to provide fast access to resources, on-line retrieval and analysis of their
published data. Di�erent indexing methods and solutions are discussed to enable resource, data
and higher-level abstractions queries. Resource indexing methods could be based on the semantic
description of the services provided by the resources (e.g. [Cassar et al. 2010]), their deployment
locations (spatial feature) (e.g. [Fathy et al. 2016; Hoseinitabatabaei et al. 2014]) or other features.
Indexing to enable query of the data published by IoT resources could be thematic (e.g. [Lunardi
et al. 2015]) where indexing can be constructed based on terms such as XML �eld given that
the data is stored in XML format. The indexing could also be built according to the spatial and
temporal features of the data (e.g. [Zhong et al. 2013]). Furthermore, indexing can be constructed
for querying higher-level abstractions to �nd patterns such as “dark room” using methods such
as SAX (e.g. [Ganz et al. 2013]). The indexing could also rely on a hashing function to �nd events
such as “high temperature” (e.g. [Paganelli and Parlanti 2012]).
Extensions of SAX for indexing time-series data are discussed in various work. For exam-

ple, [Shieh and Keogh 2008] index 100M time series of length 256 (random walk) and [Camerra

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 33 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:34 Y. Fathy et al.

et al. 2010] index 1000M (one billion) time-series of length 256 (Random Walk). However, SAX
is originally designed for representing only uni-variant data (data with the same type), and this
hinders representing service type, time, and location. To represent di�erent kinds of services, SAX
could be extended to describe service types with a speci�c pre�x character within the SAX symbols.
For example, TXXX represents temperature and HXXX represents humidity, where XXX represents
the standard SAX symbols. However, this requires that a set of pre�x letters to be known in advance
and excluded from the alphabet set that is used in SAX representation. Using a speci�c set of letters
hinders extending the type of services if a new type of resource/data is added. Time might be
concatenated with SAX symbols. However, there is a high complexity to build such structure. It is
noteworthy that two IoT data streams with various value ranges could have the same representation
due to normalisation step in the construction of SAX structure. One solution to this problem is to
associate coe�cient for each SAX representation to allow comparison between di�erent streams.
However, a modi�ed pattern creation method such as SAX is still not suitable for IoT applications
that receive data on-line from di�erent resources due to its normalisation for input time series and
lack of support for temporal and spatial features of IoT data and resources.

Relying on a textual description of the services o�ered by di�erent resources is also impractical
for two reasons. The �rst reason is that if the descriptive text is added manually by individuals (e.g.
device owners) as in [Aberer et al. 2007], text tends to be inaccurate or ambiguous which a�ects
the accuracy. A possible solution to this problem is to provide a resource description template to
individuals while registering their resources. However, this brings into view the second problem;
the queries are text-based and not suitable for large volumes of numerical data. Moreover, in
most of the cases, the indexing is centralised as in [Lunardi et al. 2015]. Distributed approaches
for indexing resources have been discussed such as [Hoseinitabatabaei et al. 2014; Paganelli and
Parlanti 2012]. However, the approaches have limited functionalities (e.g. support simple queries) or
have unrealistic assumptions (e.g. resources should have the same type of service (e.g. temperature)
to connect to a gateway. Also, most of these approaches construct an individual model per service
type and/or do not support dynamic indexing in which indexing should be refreshed and updated
as many IoT resources become available, and others become unavailable due to source state or
battery life.

It is worth-noting that indexing approaches for resources (e.g. devices, sensors, services) are more
static in terms of the type of services they o�er (e.g. temperature, air pollution). However, underlying
IoT resources might have dynamic spatial attributes (e.g. location, quality) while publishing their
data. On the other hand, data indexing approaches are more dynamic in which data has potentially
frequent updates. Moreover, indexing based on higher-level abstractions (e.g. events, patterns) can
be static or dynamic. In such cases, indexing approaches are static when they assume a prede�ned
set of patterns to construct indexes based on grouping nodes with the same type of events. The
indexing methods can be adaptive when the indexes tend to be constructed based on inferring new
contextual information from data published by various resources.

Overall, dynamicity, scalability, and distribution are the common problems of conventional index-
ing mechanisms for IoT data and resources. IoT resources are deployed in distributed environments
over a wide geographical area. To this end, IoT data is generated in highly distributed and dynamic
environments. The data/resource indexing should be constructed in a way that allows dynamic
and on-line updates with minimal computation overhead despite the number of connected IoT
resources.
While indexing allows a fast and e�cient access to IoT resources and their published data,

discovery methods use indexing to support query and search processes by providing higher-level
and actionable information extracted from IoT data and resources that can be provided to higher-
level applications and services. Various search and discovery approaches are presented and discussed.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 34 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:35

The approaches provide either an exact search to match user queries as in [Rakthanmanon et al.
2013] or an approximate search as in [Cassar et al. 2010; Le-Phuoc et al. 2011] to get the best
match for user queries. Overall, data discovery has a trade-o� between time, modality, and quality
as shown in Fig. 6. Intuitively, the more quality of data is required; the more time is needed to
�nd the suitable resources. End-users (i.e. human or machine users) should be able to execute
on-line queries on IoT data. The query is often constituted of a set of attributes such as type (e.g.
temperature, humidity), location (e.g. London, Guildford), time (e.g. freshness ≤ 5 seconds) and
other attributes. Di�erent types of queries have been discussed in [Barnaghi et al. 2013b]. Response
to user queries should be presented in a human-readable and/or machine interpretable format.

There is a variety of criteria to rank IoT resources such as latency, trust, availability, and reliability.
However, selecting the criteria is also based on the application domain. IoT domain lacks having
applications that allow users to choose the criteria based on their needs. Most of the current
ranking approaches are focused on the network level (e.g. latency, energy e�ciency), and there is
limited research on the ranking and user requirements in the IoT domain. It also worth noting that
collecting and monitoring data for ranking can create an additional overhead in IoT networks.

The major di�erences between indexing, discovery and ranking solutions on the Web and their
counterparts in IoT applications is evident. The Web solutions are often tailored to deal with
a collection of documents that are relatively static data and the Web methods exploit the links
between the documents. Web search query consists of a word or a set of words. Answering the
query is to locate documents containing the query word(s), and query results are ranked based on
their relevance to the requested query and user preferences. Unlike the Web, IoT data is generated
in dynamic and high-velocity distributed environments. IoT data has intrinsic characteristics as
discussed earlier. In particular, IoT data is more dynamic, multi-modal and spatio-temporal. Indexing
IoT data and resources can not be separated from data search and discovery. IoT requires designing
e�cient solutions for distributed indexing and discovery to enable selection, access and use of
the suitable resources at the right time to answer user queries. The approaches should be tailored
to the needs of highly dynamic and distributed IoT environments. We still also lack automated
annotation for publishing IoT sensor data that can help to query them. The number of devices
(Things) that are connected to the Web is increasing rapidly, and also the rate of querying the
IoT data. Optimised query processing mechanisms are required to allow continuous queries. It is
noteworthy that tackling these challenging tasks can help building distributed frameworks and
search engines for the IoT.

As stated earlier, IoT data can be represented as streaming data. Some work has been proposed
on the topic of enabling continuous query processing over data streams. In particular, Data Stream
Management Systems (DSMSs) adapt the traditional relational model from databases to model
relational data streams and enable creating streaming applications [Golab and Özsu 2003]. Several
existing solutions exploit the relations between di�erent attributes. Relational streaming systems
and engines examples include TelegraphCQ [Chandrasekaran et al. 2003], Aurora [Abadi et al. 2003;
Carney et al. 2002], Borealis [Abadi et al. 2005], STanford stREam datA Manager (STREAM) [Arasu
et al. 2004], NiagaraCQ [Chen et al. 2000] and Nile [Hammad et al. 2004]. Complex Event Pro-
cessing (CEP) is a special case of stream processing systems to detect and infer events/patterns
from di�erent data sources. Prominent examples of CEP systems include Cayuga [Demers et al.
2007]. TelegraphCQ, Borealis, STREAM and Nile do not handle spatio-temporal feature of data
streams [Mokbel et al. 2005]. It is worth mentioning that Aurora, Borealis, and STREAM systems
are no longer active [Gorawski et al. 2014]. We have provided more details about each one of
these systems in the Appendix F. Interested readers can refer to [Babcock et al. 2002; Cugola and
Margara 2012; Gorawski et al. 2014] for more discussion about data stream processing systems and

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 35 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:36 Y. Fathy et al.

!"#$%"&'()*'+,-,'

+%./)0&12

3)$45&6

3,1%&-2

+&0%/&6

7)41/&

8)9,$%-2

:)/,-%)"6

;1&,

Fig. 6. Trade-o� triangle of on-line IoT data discovery

streaming query languages and to [Golab and Özsu 2003; Stonebraker et al. 2005] for a summary of
the major requirements for data streaming management and processing systems.

Overall, the streaming management systems and engines are designed to deal with data streams
with high-volume to enable creating stream processing and monitoring applications. The sys-
tems/engines are mainly to provide continuous queries over streams in which users request queries
and receive updated results of the queries continuously without having to request the same queries.
Some stream processing systems/engines are commercialised such as Aurora/Borealis and Tele-
graphCQ or have not been comprehensively evaluated to meet the requirements of IoT data
(heterogeneity, spatio-temporality characteristics) [Golab and Özsu 2003]. In particular, the existing
solutions and systems are mainly tailored to retrieve values or attributes of data streams without
having a distributed, scalable and e�cient indexing, ranking and/or analysis for the data streams
to gain insights and extract information.

Some other commercialised streaming systems have been developed for processing data streams,
however, there is no much attention in the literature to them such as TIBCO StreamBase22, IBM
InfoSphere Streams [Biem et al. 2010], Microsoft StreamInsight [Ali 2010] and others. Some other
open source streaming systems have also been developed such as Apache Storm23, Apache Samza24,
Esper25 and others.We have providedmore details about each one of these systems in theAppendix F.
Interested reader can refer to the work of [Cugola and Margara 2012; Zámečníková and Kreslíková
2015] for a detailed discussion about di�erent streaming systems. Overall, most of these approaches
have an indexing structure that is based on one-dimensional feature and do not o�er answers to
the queries that might need aggregation or join for large portions of published data [Dehne et al.
2013]. Although some of these systems support data gathered from real-world with a high rate, the
solutions are not suitable for working with the �uctuation of data rates in real-time [Kumbhare et al.
2013]. Most of those systems have a deprivation of spatial features of the resources in which the
spatial features are considered as symbolic data [Dao et al. 2014]. However, the spatial feature of IoT
data is essential characteristic. Therefore, such systems are not suitable for answering range and

22http://www.tibco.com/products/event-processing/
23http://storm.apache.org/
24http://samza.incubator.apache.org
25http://www.espertech.com/

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 36 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:37

approximate spatial queries. The systems also do not support automated query rewriting [Schultz-
Møller et al. 2009]. Interested readers can refer to [Fülöp et al. 2010] with regards to other issues
and open research questions in streaming systems.
However, there are some initial works that provide a search engine for the IoT. As examples,

we summarise the characteristics of existing IoT search engines in Table 7 and their advantages,
disadvantages, and example of their queries in Table 8. Other examples of some of the existing
industrial IoT applications and platforms are summarised in Table 9. However, we provide more
details about each one of these platforms in Appendix G. Other search engines are discussed
in [Römer et al. 2010] and other IoT platforms are presented in [Mineraud et al. 2015]. Some
other IoT Cloud platforms are discussed in [Al-Fuqaha et al. 2015]. It is worth mentioning that
Cloud Computing provides an e�ective solution for IoT service management such that it makes it
easy to implement applications that use the data produced by various resources (e.g. devices and
services) [Lee et al. 2010]. The Cloud-based solutions can also o�er fast con�guration models for
IoT sensors and devices [Botta et al. 2016]. Interested reader can refer to the work of [Botta et al.
2016] for a detailed discussion about the integration of Cloud computing into IoT applications from
the communication, storage, and computation perspectives. The work also highlights the main
technical and business-related issues that remain unsolved for allowing full integration of Cloud
computing into IoT.
In Tables 7 and 9, a query type is the data type of a query (e.g. text, numeric). Query terms

constitute a query expression (e.g. keywords, location). The query result is either based on exact or
approximate search in which the former is to �nd a response that exactly matches a given query
while the latter is to �nd the best similarity to a requested query. Indexing, data discovery, and
ranking have been de�ned before in Sections 6 and 7. Crawling focuses on how resources can be
detected and their features can be integrated into the indexes. Manual discovery in the tables means
that the engine/platform does not support (auto-) discovery for resources and IoT resources have to
connect to the network manually (e.g. a device should be registered by its owner). On-line means
that the search engine/platform can be updated by any changes that might happen in data/resource.

Overall the main problems with the current IoT search engines are distribution, on-line queries
and/or scalability as shown in Tables 7 and 8 and none of the existing solutions provides e�cient
discovery for their sensory data. The data is searchable/queryable; however, there is no deep
analysis and mining for the sensory devices in complex queries for IoT applications. Furthermore,
industrial IoT applications and platforms are either lack scalability/distribution or do not provide
(on-line) discovery and/or details about their architecture that allows integration of more Web
resources and services.

Table 7. Characteristics of di�erent IoT search engines

Search
Engine

Crawling
(resource
discovery)

Indexing Data Discov-
ery

Ranking On-line Query

Manual/Auto-
discovery

Centralised/
Distributed

Centralised/
Distributed

Type Terms Result

Dyser [Elahi
et al. 2009; Os-
termaier et al.
2010]

Manual
discovery
(no auto-
discovery
functionality
is supported)

Centralised
indexing func-
tionality is
supported
(i.e. central
local data-
base) [Elahi
et al. 2009]

No support
for data
discovery

Supported Resource
change no-
ti�cation is
supported

Text
(De-
vices
state)

Key-
words

Exact

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 37 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:38 Y. Fathy et al.

Snoogle [Wang
et al. 2010]

Manual
discovery
(no auto-
discovery
functionality
is supported)

Distributed
indexing func-
tionality is
supported
(aggregated
based on ge-
ographical
area)

No support
for data
discovery

Supported Resource
change no-
ti�cation is
supported

Text Key-
words

Approxi-
mate (Find
sensors that
might have
queried
keywords)

MAX [Yap et al.
2005]

Manual
discovery
(no auto-
discovery
functionality
is supported)

No indexing
functionality is
supported

No support
for data
discovery

Supported No re-
source
change no-
ti�cation is
supported

Text Key-
words

Approxi-
mate (�nd
objects in
a relative
location)

DiscoIoT [Mayer
and Guinard
2011]

Manual
discovery
(no auto-
discovery
functionality
is supported)

No indexing
functionality is
supported

Centralised
data dis-
covery is
supported
(semantic
discovery)

Not sup-
ported

Resource
change no-
ti�cation is
supported

Text URL Exact

SenseWeb/
SenseMap [Kansal
et al. 2007]

Manual
discovery
(no auto-
discovery
functionality
is supported)

Centralised
indexing func-
tionality is
supported
(SenseDB)

No support
for data
discovery

Not sup-
ported

Resource
change no-
ti�cation is
supported

Text Key-
words
and
location

Exact

Thingful† Manual
discovery
(no auto-
discovery
functionality
is supported)

No available in-
formation

No support
for data
discovery

Supported
(i.e. Thin-
gRank
Algo-
rithm)

No re-
source
change no-
ti�cation is
supported

Text Service
type (e.g.
temper-
ature)
and/or
location
(e.g.
London)

Exact and
approxi-
mate (near
me option)

† http://www.thingful.net/

Table 8. Comparison of di�erent IoT search engines

Search Engine Advantage Disadvantage Query Example

Dyser [Elahi et al.
2009; Ostermaier et al.
2010] • Search for devices states

• Ranking is based on predic-
tive model

• Crawling HTML pages for sen-
sors (not applicable for all sen-
sory devices)

• Users have to know the state
names for all physical objects to
query them (e.g. occupy: empty)

• Not scalable (centralised index)

Find bicycle rental
stations which have
currently available
bikes

Snoogle [Wang et al.
2010]

• Ranking objects based on
query

• Distributed query processing
• Aggregating objects indexes

• Index is based on IPs
• Not scalable (change in meta-

data requires update KeyIPs)
• Using Bloom �lter requires

recreating the �lter afresh
when new sensors are con-
nected

• False positive result (IPs that
can not provide an answer)

Search for a textual
description of a
speci�c object (e.g.
book) with/without
a speci�c location

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 38 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:39

MAX [Yap et al. 2005]

• It assumes that each device
has a passive RFID (no power
supply is required)

• It needs con�guration based on
physical space

• It does not support indexing or
ranking approaches

• Not scalable (overhead of broad-
casting for all base-stations and
tags)

Search for a textual
description of a
speci�c object (e.g.
Book, Harry Potter,
Rowlling)

DiscoIoT [Mayer and
Guinard 2011]

• Semantically description for
Web resources at run-time
• Describe Web resources in

di�erent formats (e.g. RDFa,
Microformats and JSON)

• It is based on RESTful inter-
face

• Centralised discovery unit
• Not scalable to integrate

with existing services on the
Web [Cirani et al. 2014]

Search for a speci�c
sensor by its URL

SenseWeb/
SenseMap [Kansal
et al. 2007] • Dynamic access to sensors

and their readings
• Allows aggregation for sen-

sor data
• Combine requests for access

same data
• Caching most recent data

• Search only for static meta-
data [Römer et al. 2010]

• Central point of access to all ap-
plications (via coordinator)

• Not scalable (central repository
for all meta-data [Römer et al.
2010])

Get all sensor
readings from re-
gion (Longitude =
-123.00;and latitude
= 47.00)26

Thingful

• It has geographical index
• Ranking connected devices
• Allow users to verify their

ownership for their con-
nected devices

• Query could be by location
and/or service type

• It does not provide real-time
query

• It lacks of data-refreshness
• There is no available details

about technical architecture

What: (e.g. tempera-
ture) and/or Where:
(e.g. London)

Table 9. Characteristics of di�erent IoT platforms/applications

Platform/
Application

Crawling/
Resource
Discovery

Indexing Data Discovery Ranking On-line Query

Manual/Auto-
discovery

Centralised/
Distributed

Centralised/
Distributed

Type Terms Result

Wolfram
Data Drop⊕

Manual discov-
ery (no auto-
discovery func-
tionality is sup-
ported)

No available in-
formation

Centralised data
discovery is sup-
ported

Not sup-
ported

Resource
change no-
ti�cation is
supported
(every 30
seconds)

Text Databin Exact

Ericsson IoT
Framework∓

Manual discov-
ery (no auto-
discovery func-
tionality is sup-
ported)

No available in-
formation

Distributed data
discovery is sup-
ported (i.e. sim-
ple aggregation)

No avail-
able
informa-
tion

No re-
source
change no-
ti�cation is
supported

Text Service
type (e.g.
temper-
ature)
and/or lo-
cation (e.g.
London)

Exact

Open.Sen.se‡
Manual discov-
ery (no auto-
discovery func-
tionality is sup-
ported)

No indexing
functionality is
supported

Centralised data
discovery is
supported (sim-
ple semantic
discovery)

Not sup-
ported

Resource
change no-
ti�cation is
supported

Text URL Exact

26http://research.microsoft.com/en-US/projects/senseweb/default.aspx/

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 39 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:40 Y. Fathy et al.

ThingS-
peak†

Manual discov-
ery (no auto-
discovery func-
tionality is sup-
ported)

No available in-
formation

No support for
data discovery

Not sup-
ported

Resource
change no-
ti�cation is
supported

Text Fields and
location

Exact and
approxi-
mate

Xively⋆ Manual discov-
ery (no auto-
discovery func-
tionality is sup-
ported)

Distributed
indexing func-
tionality is
supported

No support for
data discovery

Not sup-
ported

Resource
change no-
ti�cation is
supported

Text Di�erent
attributes
(location,
name, type
of data and
others

Exact

⊕ http://datadrop.wolframcloud.com/
∓ http://github.com/EricssonResearch/iot-framework-engine
‡ http://open.sen.se/
† http://www.thingspeak.com/
⋆ http://xively.com/

9 CONCLUSIONS

With the prevalence of mobile devices, low-cost sensors and network-enabled (Internet-connected)
devices, the concept referred to as the Internet of Things (IoT) has gained momentum in recent years
to push the boundaries between physical and digital worlds. The massive amounts of heterogeneous
and multi-modal real-world data play a key role in developing situation-aware applications that
are capable of inferring knowledge from real-world data. However, the conventional indexing
and discovery methods and ranking solutions on the Web are not suitable for multi-model and
dynamic IoT data which is usually numerical observation and measurement data. The IoT data can
be an individual observation, or it can be streaming data represented as time-series. IoT data can
also include quality and other descriptive meta-data. IoT data resources are distributed and often
provide ad-hoc and dynamic data. However, the Web search engines often work e�ciently with
textual data, and they usually use archived data on the Web servers.

In the IoT, data can be published in the network on gateways, or it could be stored in repositories.
The indexing and discovery methods, however, can also be based on resources that can provide the
data. The dynamic and multi-model nature of IoT data/resources, links that need to be processed
to �nd and access the data and di�erent levels of abstractions to represent the data make IoT
data di�erent from most of the existing Web data for which the current Web search engines are
optimised to index and search.
In this paper, we discuss the process chain of IoT data starting from publication and resource

discovery up to making the resources and their data searchable and discoverable. We show that
machines and human users can interact with IoT applications in di�erent scenarios; searching for a
resource, an abstraction or the observation and measurement data. We discuss a framework for
on-line IoT data indexing and discovery.

While there are many attempts to leverage the ubiquity of the IoT, it requires further investigation
for e�cient, scalable and distributed indexing, ranking and discovery solutions. Developing e�cient
and scalable indexing and discovery solutions for the IoT will play a similar role that the Web
search engines played in making the Web data more accessible and widely available for di�erent
users. A searchable IoT will change the way the applications are used and developed in various
domains.
Some of the future research directions in this area include the deployment of dynamic and

adaptable indexing and discovery mechanisms for distributed and pervasive networks and providing
machine-to-machine search and discovery support in automated application scenarios and in
dynamic and distributed IoT networks. The future of IoT discovery and search systems will also
depend on creating large-scale ecosystems of IoT systems that can work and collaborate with each

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 40 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:41

other to share and exchange data and services. While scalability analysis linked to quality and
granularity of the data and access policies are key components of designing future IoT systems,
security, provisioning, reliability, and trust will also be crucial components of any design in future
IoT data/service access and discovery systems. To conclude, this paper summarises the current
state-of-the-art, provides an analysis of the advantages and disadvantages of the existing solutions
and proposes some ideas for further research in this domain.

APPENDICES

A COMMON CONSTRAINED OPERATING SYSTEMS FOR IOT

Various operating systems are developed for sensor nodes or “motes”. The purpose of an operating
system is to hide the complexity of low-level hardware speci�cations by providing a set of Applica-
tion Program Interfaces (APIs) to deal with abstracted functionalities of hardware. For example,
TinyOS [Levis and Culler 2002; Levis et al. 2005] is one of the most widely used Operating Systems
(OS) on sensor nodes. Maté [Levis and Culler 2002] is a virtual machine (VM) of TinyOS. TinyOS
is an event-driven concurrency operating system model for WSN. It includes a set of software
components that have been built in the nesC environment [Gay et al. 2003] which is a dialect of
C language for sensor networks. Powerful applications can be constructed on the top of TinyOS.
However, only some devices use it such as Tinynode27 and Mica228. The main advantage of TinyOS
is that it represents complex programs with minimum code size to adhere the challenges of resource
constraints in WSN; power, communications and memory consumptions. However, developing
applications might be di�cult on top of TinyOS; a complex task should be split into a set of small
processes (TinyOS only supports non-preemptive and non-blocking processes).

Contiki is another event-driven and a light-weight operating system for sensor nodes that allows
dynamically load/unload of processes at run-time and supports multi-threading. The kernel is
event-driven, but each process can be performed in a pre-emptive multi-threading manner at the
application level [Phani et al. 2007]. The main di�erence between TinyOS and Contiki is that the
programs are expressed in a state machine fashion in the former, whereas they are written in
a sequential manner in the latter. Linking between applications is another di�erence, wherein
components are linked statically in TinyOS [Gay et al. 2003] and this prevents sending out the
updated codes between components once the linking between them is established. However, the
components are linked dynamically in Contiki [Dunkels et al. 2004].
Sensor Operating System (SOS) is another dynamic event-driven operating system [Han et al.

2005]. It allows dynamic linking similar to Contiki. Unlike TinyOS in which updating modules
requires to re-compile and load the full system image on the node [Han et al. 2005; Phani et al. 2007],
SOS o�ers dynamically-loaded modules which make it easy to update only necessary modules.
Therefore, SOS is more e�cient than TinyOS in dynamic environments, wherein updating code
might be frequent. MANTIS Operating System (MOS) [Abrach et al. 2003] is a multi-threaded
module-based operating system. MOS is similar to TinyOS considering that updating codes require
rewriting the full system image to the mote. MOS has a power-e�cient scheduler to send the
micro-controller thread to sleep in idle time until a task is available to be executed [Phani et al.
2007]. MOS also supports cross-platform through a set of APIs and allows remote management,
dynamic programming and debugging for network sensors [Bhatti et al. 2005]. Table 10 summarises
di�erent constrained operating systems for the IoT. In Table 10, component-based OS provides a
way to select a set of components (services) at compile-time (no support for the dynamic selection
of the components). Module-based OS has a set of modules (similar to individual functions) that

27http://www.tinynode.com/?q=catalog/10
28http://tinyos.stanford.edu/tinyos-wiki/index.php/MICA2

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 41 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:42 Y. Fathy et al.

collaborate with each other. Multi-threading refers to the ability of OS to execute multiple tasks
concurrently. Event-driven OS can execute processes as a reaction to an event.

Table 10. Taxonomy of common constrained operating systems for IoT

Programming Model Architecture Design
OS Event-driven Multi-threading Langauge Component-based Module-based

TingOS
√

× nesC
√

×
Contiki

√ √
C ×

√

SOS
√

× C ×
√

MANTIS ×
√

C ×
√

B DIMENSIONALITY REDUCTION

The prime goal of dimensionality reduction is to downsize data with size N to data with sizem,
wherem < N orm << N . Singular Value Decomposition (SVD) [Golub and Reinsch 1970], Multi-
Dimensional Scaling (MDS) [Kruskal and Wish 1978], Principal Component Analysis (PCA) [Moore
1981] and Latent Discriminants Allocation (LDA) [Blei et al. 2003] are standard linear techniques
for dimensionality reduction. PCA and SVD typically transform a high-dimensional data into lower
dimensional data with some loss of information by linear projection. PCA �nds top k projections (i.e.
principal components) that maximise variance and minimises least square error. The transformation
is performed by selecting the largest eigenvalues of eigenvectors in covariance matrix with minimal
least square error [Wall et al. 2003]. SVD is not adequate when data size increases (error is increased
while data starts to scale) [Korn et al. 1997]. MDS �nds embedded features that preserve distances
between data points. If the distance is Euclidean, it is expected that both MDS and PCA give
similar results [Tenenbaum et al. 2000]. [Barnaghi et al. 2013b] use SVD to reduce dimensions of
annotated sensor data in an o�-line mode. This has a signi�cant e�ect on decreasing the required
time for distributing data into various repositories (i.e. clusters). However, SVD is computationally
intensive and is not tailored to large-scale datasets that can not �t in memory (disk-resident) [Ding
et al. 2008]. [Guha et al. 2003] present an incremental streaming SVD approach by getting a linear
correlation (similarity) between data streams. The experiments have been conducted on a small
dataset, and it is expected to have a high complexity to re-compute SVD periodically for new
arrival data streams. However, these linear techniques can not capture non-linear structure of data
streams [Tenenbaum et al. 2000].

LDA is a generative probabilistic model that automatically discovers and extracts a set of latent
topics that best describe a large collection of documents (i.e. corpus), wherein topics are distributed
over words independent of the word order. LDA reduces the high-dimensional data vector into a
lower-dimensional representation in a latent space. The model is based on two main assumptions;
the order of documents in corpus does not a�ect the model. The model is also based on “bag of
words”, in which order of words within a document is ignored. LDA uses variational methods to
estimate the posterior probability to tackle the inference problem (learning topic distribution in
documents). On-line LDA is introduced by [Ho�man et al. 2010] to provide an on-line variational
step using a stochastic optimisation approach to approximate posterior probability to analyse large
set of streaming documents.
Other non-linear techniques for dimensionality reduction include: Local Linear Embedding

(LLE) [Roweis and Saul 2000] and ISOMAP [Tenenbaum et al. 2000]. LLE maps high-dimensional
data into lower-dimensional data by preserving local con�gurations in the nearest neighbours. LLE
is sensitive to outliers, and neighbourhood selection does not guarantee the quality of the resultant
less granular data. On the other hand, ISOMAP is a global geometric framework for non-linear
dimensionality reduction. It is similar to LLE, but it preserves neighbourhood based on geodesic

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 42 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:43

shortest distances and it is e�cient (induces less computation overhead) and converges to global
optimality.

To copewith high computations and complexities of dimensionality reduction techniques, [Mitliagkas
et al. 2013] propose a PCA method with limited memory settings. [Law et al. 2004] propose in-
cremental ISOMAP, but the model is not entirely on-line. While much work has focused on high
computations and e�ciency for dimensionality reduction, the techniques stated above mainly are
not suitable for time-series on-line data (i.e. IoT data). Either the reduction process is not entirely
performed on-line (i.e. applied in an o�-line), and/or a high computational complexity is imposed
when myriad of on-line data streams arrive which hinders their scalability.

Many techniques have been successfully used to reduce the dimensionality of time-series data. For
example, Discrete Fourier Transform (DFT) [Cooley and Tukey 1965], Discrete Wavelet Transform
(DWT) [Chan and Fu 1999], Piecewise Aggregate Approximation (PAA) [Keogh et al. 2001a;
Keogh and Pazzani 2000; Yi and Faloutsos 2000], Adaptive Piecewise Constant Approximation
(APCA) [Keogh et al. 2001b] and Symbolic Aggregate approXimation (SAX) [Lin et al. 2003]. DFT
is the �rst proposed technique to reduce time-series data dimension. It transforms any complex
signal from a time domain to a frequency domain by extracting f features (i.e. the �rst/best f DFT
coe�cient) [Faloutsos et al. 1994]. The major drawback of DFT is that the signal is discretised into
a frequency domain. Thus, it has a deprivation of a temporal aspect. It lacks capturing a speci�c
on-line event and at a particular time which both situations are often essential in IoT applications.
Also, DFT cannot deal with streams that have a di�erent length. DWT transforms the signal into a
set of basic functions (i.e. wavelets) which are based on a recursive function [Wu et al. 2000]. DWT
is more e�cient than DFT in preserving time and frequency dimensions. It allows capturing event
location at a certain time. However, it works e�ciently if the input length is an integral power of
2 [Keogh et al. 2001a].

PAA is another approach that divides time-series data into k equal segments, wherein an average
value of each segment is calculated and stored. It is worth mentioning that if the time-series data is
split into k equal chunks of power 2 (i.e. 2n where n = 1, 2, 3, 4, etc.), DWT and PAA will have the
same representation of the signal [Cai and Ng 2004]. Moreover, if k = N , where k is as de�ned before
and N is the number of points in the time-series sequence, the original and transformed signals are
identical [Keogh and Pazzani 2000] and if k = 1 it means that the transformed signal is the average
of the original one [Keogh et al. 2001a]. PAA is simple, easy to understand and implement and faster
to compute. Moreover, it supports weighted Euclidean distance [Keogh et al. 2001a], whereas DFT
and DWT cannot support it. APCA is another approach for reducing dimensionality. It outperforms
standard PAA regarding query response time; it approximates the original signal better than PAA.
Unlike PAA that splits the sequence into equal parts (segments with equal length), APCA allows
arbitrary length for each segment. This allows creating more segments in regions and less in other
regions based on the activity level. Furthermore, APCA surpasses other timer-series dimensionality
reduction techniques because it induces less minimal error [Keogh et al. 2001b]. [Keogh et al. 2001b]
show that APCA outperforms the techniques discussed above in CPU and Input/output (I/O) costs.
However, similar to PAA, APCA does not preserve the shape of time-series data within segments
(i.e. two segments can have same mean value. However, they have di�erent shape) [Bettaiah and
Ranganath 2014].

The techniques mentioned above are limited to represent real-valued time-series data. Di�erent
representations of time-series data are summarised in [Lin et al. 2003]. However, representing the
data by strings might be bene�cial; symbolic representation allows applying text retrieval and
mining techniques [Lin et al. 2007b]. SAX is the �rst symbolic approach that allows dimensionality
reduction (i.e. reducing data dimensionality by selecting smaller data representation). Time-series
streaming data is transformed into a discrete symbolic representation (i.e. words) in a linear time,

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 43 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:44 Y. Fathy et al.

wherein a word, for instance, “abacab” is a vector of symbols V = {a,b,a, c,a,b} [Lin et al. 2007b;
Pham et al. 2010]. Symbolic representations are obtained by �rst normalising data (Z ∼ N (0, 1))
and dividing the distribution into equiprobable regions (i.e. by specifying breakpoints). PAA is then
applied as an intermediate step to capitalise its advantages in reducing data dimensions and having
lower measure distance bound on symbolic data that is less than the actual distance in raw data [Lin
et al. 2003; Shieh and Keogh 2008]. PAA coe�cients (i.e. segments) are subsequently symbolised
(i.e. are discretised into symbols). In this case, the symbolic representation requires less space for
representing the data; symbols need fewer bits than numbers comparing to DFT and DWT. Overall,
SAX depends on intrinsic bene�ts of PAA and it does not require to access all of the time-series
data in advance before creating its symbolic representation. The latter makes SAX a powerful
symbolic representation approach comparing to other existing approaches for time-series [Lin et al.
2003]. However, SAX representations depend on the word length which controls PAA segments
and cardinality (i.e. alphabet size). The latter is sometimes called “resolution” [Castro and Azevedo
2010]. Resolution controls the granularity for each segment [Lin et al. 2003]. It also depends on the
sliding window size that captures the dynamicity of time-series within a speci�c sliding window.

It is worth noting that determining the values of the number of PAA segments and alphabet size
parameters rely heavily on data. In addition, the major drawback of SAX is that time-series data in
SAX is assumed to have a Gaussian distribution. [Pham et al. 2010] extend SAX to adaptive SAX
(aSAX) by adaptively improving breakpoints over time usingk−means clustering to address the issue
of Gaussian distribution assumption in classic SAX. It is claimed that aSAX outperforms classical
SAX, especially when SAX’s assumption about data distribution (i.e. uniformly distribution) does not
hold. aSAX initially utilises Gaussian distribution to boost classical SAX symbols as an initialisation
step. Then, an adaptive improvement of breakpoints vector is performed. This improvement is
obtained by specifying k cardinality (i.e. alphabet size) and clustering the breakpoints (i.e. segments)
based on this pre-de�ned parameter k using k-means clustering algorithm. The clustering step is
considered as a pre-processing phase on PAA coe�cients before they are discretised into symbols
(SAX symbols). However, aSAX is only performed on a dataset with 100K time-series (experiments
need to be conducted on a larger dataset to have robust conclusions and a fair comparison with
SAX).
[Sun et al. 2012] argue that aSAX is not adaptive in the frequency and time domains due to

having �xed time windows. Therefore, a variance-wise dynamic segmentation method is proposed.
[Sun et al. 2012] change the sliding window size dynamically. The basic idea is that the window
size varies based on a threshold value that is proportional to the standard deviation of the dataset.
However, the experiments are conducted on an arti�cially modi�ed ECG and the method is not
entirely adaptive; it considers the changes only in the frequency domain. Similarly, [Ganz et al.
2013] propose SensorSAX which is an enhancement of SAX to adaptively modify the window size
value based on the spread of values in a distribution (standard deviation) to reduce transmission
overhead. The experiments are conducted on a real dataset (UK Channel Coastal Observatory
resources); the abstracted data has 13% less size than the raw data. [Lkhagva et al. 2006] underline
the importance of detecting extreme points from PAA segments, especially in �nancial domain.
Therefore, Extended SAX (ESAX) is proposed wherein each PAA segment is fully represented not
only by mean but also by minimum and maximum points without losing the simplicity of symbolic
representation. The preliminary results in [Lkhagva et al. 2006] show high accuracy in capturing
useful patterns compared to the classic SAX in �nancial applications. However, experiments were
not conducted on the same representation size for both SAX and ESAX; ESAX representation is
three times longer than SAX representation.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 44 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:45

Another drawback of SAX that might a�ect some applications is that two di�erent time-series
data could be symbolised into the same representation due to its normalisation step. Therefore, [Es-
mael et al. 2012] extend the plain SAX approach by adding symbols (U, D, S) for up, down and
straight, receptively to de�ne the direction of time-series data. Overall representing data using
SAX shows better result than using the raw data due to dimensionality reduction approach [Lin
et al. 2003]. However, SAX strongly assumes that raw data has inherently Gaussian distribution
and applies z-normalisation, in which magnitude is lost. However, [Keogh and Kasetty 2003] argue
that normalisation is an essential step for measuring the similarity between time-series data, [Lin
et al. 2003] also shows that time-series data tends to be highly Gaussian distributed and [Rak-
thanmanon et al. 2013] normalise time-series data to cluster them correctly. SAX patterns have
been used in various existing works in the IoT domain. For example, [Barnaghi et al. 2012a] apply
SAX to reduce sensor data dimensionality and �nd patterns in semantically annotated sensor data.
Then, Parsimonious Covering Theory (PCT) [Reggia and Peng 1987] is used to derive abstractions
from SAX patterns to analyse sensor data. [Zoumboulakis and Roussos 2007] detect patterns to
describe complex events with reasonable accuracy by reducing dimensionality through converting
time-series sensor data into SAX representations.

In IoT, the Gaussian assumption does not hold all the time, and it is mainly application dependent.
IoT data is spatio-temporal, wherein data changes over time and sometimes is produced at a
di�erent pace and with diverse granularities. Various types of dimensionality reduction techniques
are discussed. However, some are performed in batch/o�-line; others have a high complexity and/or
have strong assumptions about the data. Selecting dimensionality reduction technique is highly
dependent on the application, processing capabilities, accuracy and representation requirements.

C GATEWAY MODEL AND RESOURCE DISCOVERY

The primary goal of resource discovery service is to crawl, �nd and allow IoT resources (e.g. sensor
nodes, devices and services) that can publish their data and services to be discovered automatically
or by manual registration. The resources should make the network spontaneously noti�ed of the
changes in their data and services. Resource discovery is also known as network discovery [Edwards
2006] that could either be active or passive [Guinard et al. 2010]. Active (i.e. automatic) is when
devices initiate a communication channel to share their information and services on a network.
When devices are registered in a network manually (e.g. by their URI), it is called passive.

IoT lacks a uni�ed standardisation to allow communication and integration between hetero-
geneous sensory devices, WSN and other mobile communication networks [Zhu et al. 2010].
Integration of ubiquitous things (sensory devices and actuation services) into the Web can be direct
where the objects must be IP-enabled or indirect in which a proxy (i.e. smart gateway) is used to
provide uniform access to the Web [Zeng et al. 2011].

Gateway or middleware plays a vital role in providing a �exible bridge between network-enabled
devices in a local mesh network and the global network (Internet). Gateway/middleware hides
the complexity and heterogeneity of underlying networks by providing common interfaces and
protocol compatibility that allow network-enabled devices to share and publish their data and
services seamlessly on a global network.
Middleware is de�ned as a distributed service (abstract layer) that lies in-between operating

system and applications that could be distributed to di�erent network components (as shown in
Fig. 7). It facilitates application development and deployment on di�erent platforms. There is often
a trade-o� between the generality of middleware and domain-speci�c applications that can be
built on top of them [Yu et al. 2004]. However, a separation between the generic functionality of
middleware and unique features of each application is required.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 45 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

Page 46 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:47

user query. The data is then �ltered and aggregated. TinyDB relies on a network routing spanning
tree structure to answer user queries by specifying a start-point (root) as the query’s location.
When a new node is connected, an updating mechanism is propagated through the network (up
to the root of the tree) to update tree structure. TinyDB allows users to write SQL-like queries to
query data and also specify data intervals (i.e. data re-freshness rate) as a parameter while querying
the data (i.e. sample period). These make TinyDB di�erent from other conventional middleware
solution.

SenseWrap [Evensen and Meling 2009] is a service-oriented middleware. It represents di�erent
physical sensors as virtual ones, allows users to discover and interact with them e�ortlessly (i.e.
zero-con�guration). The middleware allows extracting the common functionalities of sensors from
application development step and allows wrapper implementation for di�erent sensor models to
interact with them. It supports publish/subscribe communication style. It also allows a user to
query data through declarative queries in a SQL-like form. The main advantage of SenseWrap is
self-con�guration, in which sensors are registered automatically to the network.
Agilla31 [Fok et al. 2005b] is a mobile agent-based middleware for WSN that is based on Maté

which is a virtual machine for TinyOS. Each Agilla agent is a virtual machine with a set of
instructions and has a local tuple space that allows decoupling between sending and receiving
agents. Each node has four agents; this allows each node to support di�erent applications. Maté
supports only one application per node. Upon agent execution, its instructions are executed allowing
interaction between di�erent agents and the environment. When an agent completes its task, it is
terminated. However, its tuple space could be retrieved by other agents. Coordination between
agents is performed through Linda-like tuple spaces [Fok et al. 2005b]. The main advantage
of Agilla is �exibility (new agents can be injected into the network) and adaptability to any
changes in environment or user needs; it has a context-aware discovery mechanism (e.g. a �re
tracking application in [Fok et al. 2005a]). Another advantage is its high mobility; when agents are
moving/cloning from a location to another, they carry their codes and states so that they can resume
executing at the new location. However, in SensorWare [Boulis et al. 2003], only the node state is
transferred while cloning or moving and the nodes have to start execution from the beginning in
their new location. On the other hand, Agilla does not consider that there might be nodes with less
power and communication capabilities during the running of complex applications/tasks. Due to
its low level of abstraction, it is hard to maintain applications based on Agilla [Kwon et al. 2006].

BiSNET (Biologically-inspired architecture for Sensor NETworks) [Boonma and Suzuki 2007] is
an agent-based middleware that is inspired by bee colony and is built on top of TinyOS. A BiSNET
agent senses surrounding environment and emits di�erent types of pheromone based on local
conditions (sensor measurement types such as temperature) in the environment. Each sensor node
has many BiSNET agents. Only data with high pheromone concentration (signi�cant changes) is
communicated to a base station. BiSNET agents could replicate data similar to Agilla. In the former,
the replication/migration occurs based on pheromone concentration. BiSNET adaptively adjusts
the sleep period parameter value (idle time) for sensor nodes based on sensor data reading in the
environment without human intervention. It also hides the complexity of lower-level computing,
networking, communication and agent behaviours by providing a set of services to access sensor
measurement and observation data.
Middleware Linking Applications and Networks (MiLAN) [Murphy and Heinzelman 2002]

is a solution that is designed speci�cally for Quality of Service (QoS) regarding reliability and
lifetime of applications for personal health monitoring (heart monitoring), surveillance and security
applications. MiLAN is based on a graph-based approach to allow users specify their application

31http://mobilab.wustl.edu/projects/agilla/

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 47 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:48 Y. Fathy et al.

and performance requirements in advance, and it tries to meet these requirements. However, there
is always a trade-o� between performance and network cost on one side and system complexity
and its lifetime on the other side. The main advantage of MiLAN is that it extends the network
protocols to provide service discovery by providing an API as an abstraction to communicate the
commands over a particular network protocol (e.g. Bluetooth, IEEE 802.11b) through network plug-
ins. However, MiLAN is still not fully adaptive to dynamic environments due to the interoperability
issues between various protocols and services. Other IoT platforms and middlewares are discussed
in [Perera et al. 2013] such as Linked Sensor Middleware (LSM) [Le-Phuoc et al. 2011], Global
Sensor Network (GSN) [Aberer et al. 2007], Microsoft SensorMap [Nath et al. 2007] and COSM32.
However, these approaches have limited search functionalities [Perera et al. 2013].

[Ganz et al. 2011] present a semantic context-awaremiddleware solution that is typically based on
collecting context information (e.g. battery status, signal strength) about each node in the network.
Gateways subsequently decide which nodes to communicate with based on the gathered context
information. Upon connection between gateways and nodes, a semantic pre-de�ned template
based on W3C SSN ontology is provided for interactions with higher layers. It is thus di�erent
from Shaman approach [Schramm et al. 2004], in which nodes establish an arbitrary connection
with gateways. In the work of [Ganz et al. 2011], the middleware is �exible; it cooperates with
various platforms by a plug-and-play approach. However, sending updated context information has
overhead when the number of sensors grows. A resource mobility scheme is proposed in [Ganz
et al. 2012] to tackle the mobility and availability limitations (i.e. the network is not updated about
the availability of IoT services/resources) of the middleware in their early mentioned work [Ganz
et al. 2011]. The scheme allows a service to be available for users all the time by overcoming two
main issues; handover delays and coverage loss. To address these problems, a caching approach is
developed to solve the former and a tunnelling mechanism is to overcome the latter. While a node
is moving from one gateway to another, the cache mechanism uses the last cached data to make
the service up-and-running. Tunnelling is bene�cial at the gateway level in which one gateway
can forward to another if their mutual node is disconnected from one gateway and connected
to another. This scheme is not suitable for some IoT applications wherein exact on-line data is
important such as smart health and disaster monitoring. In addition, scalability is still an issue
when the number of connected sensors to a gateway increases, and in cases that there is a high
data congestion.
[De et al. 2011] present a semantic service modelling framework that extends Ontology Web

Language for Services (OWL-S) ontology to the IoT services. In this model, a “Device-Entity-
Resource-Service” relationship is proposed to describe IoT resource capabilities; a device is attached
to an entity that constitutes “Thing” in the IoT. A service allows accessing a resource that is
associated with this entity. It also allows embedding entities into the digital world (i.e. Internet)
to provide interoperability between IoT data and existing data on the Web, as well as, between
services. In addition, the model allows association of domain knowledge, measurement units and
location speci�cation as meta-data information.
Another approach is a zero-con�guration for deployment sensor nodes automatically in WSN

which is proposed in [Schor et al. 2009]. The approach is IP-based, and it depends on 6LoWPAN
to allow integration with IPv6. A RESTful Web service API is deployed on each node to avoid
updating gateways while new devices are being connected. Nodes publish their services or request
information from other nodes by Multicast Domain Name Service (mDNS) protocol. API response is
a JSON-based data. The main drawback of this mechanism is that it assumes all nodes are IP-enabled.
However, gateways are required to enable connecting non-IP-enabled devices to WSN. [Schramm

32http://www.cosm.com

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 48 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:49

et al. 2004] present a Java-based service gateway to integrate heterogeneous sensor-actuator
modules (SAMs) into a network. It uses network proxies to unburden devices to their memories,
power and communication constraints, allows automatic sensor integration and translates user
requests into SAM commands. However, this approach is o�-line because users submit their requests
to be translated into SAM commands via proxies and the requests are queued into a request queue.
[Guinard et al. 2010] propose a framework for discovery, query and selection for the IoT. The

system is a dynamic Service Oriented Architecture (SOA) that supports REStful and Web services
(WS-*) such as Simple Object Access Protocol (SOAP) and Web services Description Language
(WSDL) to allow seamless cooperation and integration between heterogeneous devices and services
and the Web. However, such standardisation Web services are not light-weight and lack simplic-
ity [Guinard et al. 2011]. In addition, the centralised integration architecture is ine�cient regarding
the scalability.
Another type of middleware is semantic wireless sensor middleware described in [da Rocha

et al. 2009]; it is a rule- and knowledge-based middleware. It facilitates analysis and controlling of
complex tasks in monitoring applications. [Bimschas et al. 2010] provide a middleware with smart
gateways, in which applications use middleware’s APIs and tasks are executed on the gateways. It
also has an intelligent caching and discovery mechanisms; the current value is predicted based on
learning from its previous values using a Bayesian model. [Elahi et al. 2009] sort sensors based on
their probability estimation to �nd a sensor with high probability to match user queries. Table 11
summarises the middleware approaches (the taxonomy of middleware approaches is also shown in
Fig. 8).

Table 11. Middleware classification

Middleware Classi�cation Example
Virtual-machine Maté
Query-based Cougar, TinyDB
Service-oriented Shaman, SenseWrap
Agent-based Agilla, BiSNET
Quality of Service (QoS) MiLAN

Middleware Approaches

Interoperability

Semantic
Annotation

e.g. [da Rocha
et al. 2009]

Fixed
format

e.g. [Ganz
et al. 2011]

Meta-
data

e.g. [De
et al. 2011]

Adaptation

Energy
e�ciency

e.g. [Yao
and Gehrke

2002]

QoS
management

e.g. [Mur-
phy and

Heinzelman
2002]

Network
adaptation

e.g. [Bim-
schas et al.

2010]

Data Handling

Storage &
processing

e.g. [Yao
and Gehrke

2002]

Recovery &
compensation

e.g. [Ganz
et al. 2012]

Fig. 8. Taxonomy of middleware approaches

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 49 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:50 Y. Fathy et al.

D SYMBOLIC DATA INDEXING APPROACH

There is some existing work to use symbolic data representations for indexing. For example, [Pham
et al. 2010] propose an indexable adaptive SAX (iaSAX) which is an indexed aSAX approach. Similar
to iSAX, iaSAX allows representing time-series data with di�erent granularities (multi-resolution
property). However, it has no assumption about data distribution, and the breakpoints are adaptively
determined similarly to aSAX. It is argued that iaSAX outperforms iSAX. However, the experiments
are conducted on a time-series dataset with only 100K of length 256 which is not enough to have
robust conclusions.

The main hindrance for creating indexes for massive datasets is the time and complexity to build
index structure [Camerra et al. 2010]. For instance, iSAX requires more than 6 days to index 100
million (108) time-series data [Camerra et al. 2010]. However, [Camerra et al. 2014] argue that it
requires two days to build the same data size and 20 days to build 500 million (5 × 108) time-series
data. iSAX requires a long time to build indexes because two main reasons: a) Ine�cient splitting
policy b) No bulk loading scheme. To reduce the time complexity of building indexes, [Camerra
et al. 2010] propose iSAX 2.0, which is similar to iSAX, but instead of building the whole index
structure instantly, it provides building indexes for sub-trees gradually, wherein one sub-tree is
built at a time until all sub-trees are constructed. A bulk loading algorithm is used to reduce the I/O
access by bu�ering time-series data in the available memory and fetch them to the disk once the
memory limit reaches. It also provides a node splitting policy to e�ciently distribute time-series
data equally between the two child nodes in the index structure [Camerra et al. 2014]. The main
drawback of iSAX 2.0 is the scalability; while the size of time-series data grows, the number of
node splits increases rapidly. In addition, the node splitting mechanism requires access/write for all
raw time-series data and its iSAX representation from/to disk that is also a hindrance to scalability.
Also, [Zoumpatianos et al. 2014] argue that it takes more than one day to index 1 billion (109)
time-series data using iSAX 2.0 on the most advanced server machines (Intel Xeon machine with
64GB of RAM and 4x 2TB, SATA, 7.2K RPM Hard Drives in RAID0).

[Camerra et al. 2014] extends bulk loading algorithm of iSAX 2.0 by proposing iSAX 2.0 clustered
and iSAX2+ index to reduce the time to construct index structure. The former is based on clustering
raw time-series data using an approximation for its iSAX representation to reduce access time
to disk, whenever a node splits. All time-series data is subsequently fetched to disk according to
their leaf nodes. Some time-series data is not going to be split during the construction process.
However, they are still accessed to create approximation. By avoiding accessing these data, the
access time is reduced by writing the data directly to the disk. Therefore, iSAX2+ is to e�ectively
avoid reading and fetching the data that is related to nodes that should not be split later. The
avoidance is performed by “splitting once” approach. The approximation of already existing raw
time-series data is written to the disk and a pointer to its raw data is created, while newly time-series
data and its approximations are written directly to the disk in the right leaf node. Intuitively, since
each node has at most two child nodes, it is guaranteed that only one split is performed per node.
Once index structure is built, all time-series pointers are solved by removing pointers and writing
data to the disk. Overall, the SAX extensions are not suitable for on-line indexing where building
and updating indexes should be done in an on-line, e�cient manner and with minimal overhead.

E HIGH DIVERSITY REAL-WORLD DATA

IoT data is dynamic, spatio-temporal and often high dimensional and diverse. These characteristics
impose challenges in using conventional machine learning algorithms for analysing IoT data. For
example, Fig. 9 shows an estimation of the distribution of weather data streams33. We use Kernel

33http://mesonet.agron.iastate.edu/ASOS/

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 50 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:51

Density Estimation (KDE) to estimate the distribution of the weather data points (3, 000 data points)
to get the number of peaks (can be obtained by zero-crossing). The number of peaks represents
the dispersion of the data which can be used as the number of clusters (i.e. k) which is a required
parameter setting for most of the clustering algorithms. However, the number of peaks is almost
1500 (half of the number of data points) due to the high diversity of the data. Therefore, conventional
parametric clustering/machine learning algorithms are not often suitable for real-world data with
high diversity.

Fig. 9. Diversity of real-world data stream

F STREAM PROCESSING SYSTEMS AND ENGINES

There are several existing work on developing stream database systems and stream processing
engines. For example, NiagaraCQ34 is an XML-based engine that allows querying distributed
XML documents (resources) using XML Query Language (XML-QL). NiagaraCQ supports two
di�erent types of execution for continuous queries: change-based and time-based queries. Change-
based queries are executed if relevant data to the requested query becomes available, while time-
based queries are executed at certain time intervals. NiagaraCQ addresses scalability by grouping
continuous queries that have similar signatures (inputs) to share computations or execution plans.
A new query is also combined into an existing group queries that match the query signature.
NiagaraCQ is only suitable for data that is described as XML documents, and it assumes that
requests for continuous queries have some similarities or common structure which is not always
the case. Moreover, NiagaraCQ does not support approximate queries; continuous queries are
executed on XML data of the static resources [Motwani et al. 2003].
TelegraphCQ35 is an adaptive data-�ow stream processing system. It o�ers dynamic partitioning

of data streams for parallel processing. TelegraphCQ uses an adaptive query mechanism which is
based on Eddies [Avnur and Hellerstein 2000]. An Eddy is a data-�ow operator that passes tuples
through a query plan. Each tuple in Eddy is associated with a vector of “Ready bits” and “Done bits”
to mark the operators that can process the tuple and the operators that have already processed
the tuple, respectively. It is worth noting that each operator in Eddy runs in an independent
thread [Avnur and Hellerstein 2000] and might create a circular data-�ow in which operator has
one or two inputs from Eddy and returns an output tuple. Eddies are combined dynamically to

34http://www.cs.wisc.edu/niagara
35http://telegraph.cs.berkeley.edu

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 51 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:52 Y. Fathy et al.

provide an adaptive query processing mechanism. Eddies provide �exibility in re-ordering operators
(e.g. join, group, aggregate) of query execution in a query plan at runtime. The reader is referred
to [Avnur and Hellerstein 2000] for more details about Eddy. TelegraphCQ relies on Eddies to
enable continuous query optimisation. However, Eddy deals with data and can not identify objects
that generate the data. Moreover, TelegraphCQ does not support temporal relationships between
queries/events which are crucial in the IoT. Interested readers can refer to a complete discussion
about TelegraphCQ in [Krishnamurthy et al. 2003]. It is worth mentioning that TelegraphCQ is
commercialised as Truviso36 by CISCO.
Aurora37 is a stream processing engine that is mainly developed to enable continuous streams of

data for monitoring applications [Carney et al. 2002]. Similar to Eddies, Aurora architecture divides
the processing of a query into multiple threads [Abadi et al. 2003]. Aurora provides users with a
graphical interface for constructing a data �ow of a query plan. The data �ow is composed of a set
of boxes to represent operators and arrows (arcs) to connect the boxes that re�ect the �ow of the
data. Each stream s is represented as a tuple < d, t >, where d is data �elds of the stream s and t is
the time-stamp. In Aurora, a tuple can not be updated once it is placed in a stream which impedes
run-time updating of a certain attribute of a stream [Abadi et al. 2005]. Aurora is also a centralised
system which limits its scalability and reliability in large-scale IoT deployments [Abadi et al. 2005;
Gorawski et al. 2014]. A distributed version of Aurora (Aurora∗) is proposed in [Cherniack et al.
2003], where each node in a distributed network sends query results either to users or other nodes
for aggregation and further processing.
Borealis38 is a successor stream processing of Aurora to provide an e�cient distributed stream

processing engine. Unlike Aurora, Borealis supports revision tuples to update tuples to recover and
correct the query results. Borealis model supports insertion, deletion, and replacement (update) of
tuples. Borealis receives the queries and processes them simultaneously by distributing the query
processing into several nodes. Each node has an instance of Aurora query processing engine. Unlike
TelegraphCQ, which does not support temporal feature of a tuple, data model in Borealis (tuples)
has a time-stamp in the header of the tuple. However, Borealis does not support spatial queries.
Queries in Borealis are text-based. In particular, queries are written in XML format. Aurora and
Borealis have been integrated in the commercial StreamBase39 tool.
STREAM40 is a stream database management system to answer continuous queries over con-

tinuous streams. The queries are formulated using Continuous Query Language (CQL) [Arasu
et al. 2006] which is an extension of the standard SQL. In particular, CQL implements an abstract
semantics data type to express data streams and relations. A requested query is added to a query
plan. The query plan consists of three main components (operators, queues, and synopses). Unlike
Borealis, which does not convert stream tuple into a relation, STREAM transforms a stream into
relation using stream-to-relation operator. STREAM has three di�erent types of operators which
are stream-to-relation, relation-to-relation (i.e. it produces a relation given a set of relations) and
relation-to-stream (i.e. it produces a stream with a change that made by a relation). STREAM also
supports negative tuple (i.e. delete tuple) [Mokbel et al. 2005]. Queues are used to bu�er tuples
(e.g. output of an operator is bu�ered and processed later as an input to another operator(s)).
Synopses are used to summarise information about tuples to enable answering approximate queries.
STREAM is a centralised system that assumes all data streams are in a single system. However,
data is generated from distributed resources in real-world applications.

36http://www.cisco.com/c/en/us/about/corporate-strategy-o�ce/acquisitions/truviso.html
37http://cs.brown.edu/research/aurora/
38http://cs.brown.edu/research/borealis/public/
39http://www.tibco.com/products/event-processing/
40http://www-db.stanford.edu/stream

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 52 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:53

Nile41 is a query processing engine for data streams. Nile supports continuous queries based on
sliding windows. Nile extends SQL operators to support sliding window queries. In Nile, a source
of a data stream (e.g. sensor device) is modelled using a stream data type “StreamType”. [Ali et al.
2005] propose Phenomenon Detection and Tracking framework (Nile-PDT) as an extension of
Nile to enable developing monitoring applications. Nile-PDT can query a group of sensors with
similar behaviour (e.g. value, summary) over a period (time interval). Nile-PDT relies on Sensor
Network join (SN-join) operator to get the similarity between a pair of data streams produced by
di�erent sensors. Nile-PDT also uses other operators to aggregate sensor values to �nd an event
(e.g. number of sensors in a phenomenon). Nile-PDT provides a client application that allows users
to submit their queries. Nile-PDT has an incremental processing feature to track the appearance and
disappearance of resources. Pervasive Location-Aware Computing Environments (PLACE) server is
a location-aware stream server which extends Nile to enable continuous spatio-temporal queries for
moving objects [Mokbel et al. 2005]. Similar to NiagaraCQ, PLACE has a shared execution feature
to merge related queries together. Like Borealis and STREAM, PLACE handles negative tuples (i.e.
delete tuples). PLACE also supports queries with a temporal window to get objects at a certain
time-stamp and spatial window to get objects in spatial locations regardless of their time-stamps.
Moreover, PLACE has an incremental evaluation feature to update answered queries continuously.
However, it has two types of updates which are positive and negative updates. A positive update
indicates that an object is added to the query while the negative update indicates that an object is
removed from the query. PLACE takes regular snapshots of objects and queries while executing the
queries over moving objects [Lin et al. 2007a; Mokbel et al. 2005]. PLACE does not support e�cient
updating and processing for snapshots to provide e�cient query processing [Lin et al. 2007a].

Cayuga42 is a complex event processing system. Cayuga uses a publish/subscribe mechanism,
in which users can subscribe to their events of interest. Users request their queries in the Cayuga
Event Language (CEL) format. Unlike other stream database systems that support query processing
for sliding windows (such as TelegraphCQ), Cayuga does not support sliding windows [Herbst et al.
2015]. Although, Cayuga supports detection of sequential tuples for event streams [Demers et al.
2007], it can not detect successive events within a speci�c time interval [Li et al. 2011]. In Cayuga,
events are represented as a sequence of relational tuples. Cayuga relies on non-�nite automata to
allow arbitrary relations between input streams (which are represented as tuples) to match patterns
(events) with requested queries. Each automata state represents relational tuple, and the transitions
between states are based on predicates. Cayuga stores incoming tuples until a requested event is
detected, and subscribed users to that event are then noti�ed. However, Cayuga model does not
support the temporal and spatial features of data streams.
TIBCO StreamBase is a commercial CEP platform that provides processing and analysis for data

streams. The platform o�ers rapid building of di�erent applications and the analysis of historical
and real-time data. The platform also provides LiveView Datamart43 to consume massive data
streams published by various resources (e.g. IoT resources) in real-time [Wähner 2014]. End-users
can subscribe to di�erent events or aggregate data from di�erent resources. Users are continuously
noti�ed whenever changes occur to their subscribed events. StreamBase also has a component that
is called Spot�re for extracting events and patterns from the historical data. Some promising IoT
applications can be developed using the StreamBase framework such as real-time monitoring for
tra�c, weather and driver behaviours.

41http://www.cs.purdue.edu/Nile/
42http://www.cs.cornell.edu/bigreddata/cayuga/
43http://www.tibco.com/products/event-processing/complex-event-processing/streambase-liveview/

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 53 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:54 Y. Fathy et al.

Apache Storm is an open source distributed real-time processing system for data streams. The
data is encapsulated into tuples (i.e. a collection of (key, value) pairs). Although, Storm provides
low-level control for grouping streams in topology architecture. To this end, it requires higher
tools and streaming operators to access and analyse the data for naive users. Storm is based on
master-workers architectures. To avoid a single point of failure, Storm supports fault-tolerance (e.g.
auto-restart for stopped workers or re-run stopped worker processes). Storm has been integrated
within Twitter’s platform for developing Twitter analytics services such as anti-spam and content
mining and discovery [Toshniwal et al. 2014]. Overall, Storm is suitable for applications that require
real-time analysis, fault-tolerance and high response rate. However, Storm does not support stateful
operators (e.g. aggregation and join) which are essential for analysing data in some real-time
applications such as recommendation and decision support systems. Storm Trident44 has been
proposed to support stateful operators. However, Storm does not support multi-dimensional data
which is crucial for IoT applications [Dehne et al. 2013] in which the data is processed in the form
of (key,value) pairs [Bahmani et al. 2012].

IBM InfoSphere Streams [Biem et al. 2010] is a commercial stream processing platform for
continuous processing and analysis large-scale data streams. InfoSphere supports di�erent operators
(e.g. aggregate, join). InfoSphere receives data from di�erent resources in the form of tuples. It can
fuse various kinds of data and o�ers complex analysis (e.g. correlation, �ltering, summarisation)
over potentially continuous data streams. InfoSphere has some potential services to work in highly
distributed environments such as management services including scheduling, parallelism and
synchronisation [Nabi et al. 2014]. Other features and services are discussed in details in [Ballard
et al. 2010]. In benchmark study in [Nabi et al. 2014] to compare between InfoSphere and Storm
for email classi�cation for on-line spam detection, InfoSphere signi�cantly outperforms Storm.
InfoSphere is e�ective in using CPU power. There is no much literature available about InfoSphere.
Microsoft StreamInsight [Ali 2010] is a commercial stream processing platform that has been

merged with Microsoft SQL Server to allow processing of data streams. StreamInsight allows
processing data streams from di�erent resources for extracting meaningful patterns and events.
StreamInsight does not support spatial streaming applications. To this end, [Kazemitabar et al.
2010] propose GeoInsight which combines both of Microsoft SQL Server Spatial libraries and
StreamInsight. To support di�erent search approaches, [Miller et al. 2011] extend StreamInsight
by developing a set of search operators (range and K-nearest neighbour search). StreamInsight
allows data queries using .NET Language Integrated Query (LINQ), however, it does not support
dynamic queries (queries at run-time). In other words, StreamInsight does not support dynamic
event processing to handle the characteristics of continuous data streams [Gorawski et al. 2014].
Esper is an open source CEP engine that was developed by EsperTech. Esper supports both

centralised and distributed deployments [Cugola andMargara 2012]. Esper uses a SQL-like language
called Event Processing Language (EPL) with some additional operators (e.g. time windows). The
data streams are stored and processed in forms of tuples. Esper supports both of a push-based
(i.e. users subscribe to speci�c data resources or events and they are continuously noti�ed of any
changes) and pull-based (i.e. users retrieves requested query results frequently at �xed intervals)
delivery for results of requested queries. However, Esper does not support some operators such as
join (i.e. merge two or more data streams from di�erent types) and union (i.e. merge two or more
data streams from the same type) operators [Calbimonte et al. 2012] which is crucial for many
real-time applications.

44http://storm.apache.org/releases/current/Trident-API-Overview.html

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 54 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:55

G IOT/WOT SEARCH ENGINES, PLATFORMS AND APPLICATIONS

[Ostermaier et al. 2010] introduce Dyser which is a real-time search engine for real-world entities.
It assumes that each sensor has an HTML page that contains dynamic meta-data and can be crawled.
This approach is typically based on a sensor ranking approach that is presented in [Elahi et al.
2009] in which probabilistic models are used to predict which sensor/device to be contacted at the
time of the query. In Dyser, indexing is based on crawling the HTML pages and indexing them in a
centralised database. The ranking approach is based on an adjustment process in which rankings
are predicted and improved based on previous rankings. To answer user queries while sensor
observations are being changed, a predicted model is used to predict which sensor devices might
have a response to a user query. It is worth mentioning that users must know the state names
(e.g. occupy: empty) for all objects (e.g. room) to query them. Dyser is scalable in terms of using
predictive models to �nd responses to queries instead of communicating with all objects; however,
the indexing is centralised [Ostermaier et al. 2010].

Snoogle search engine [Wang et al. 2010] provides indexing and ranking for real-world objects.
The indexing approach is based on building inverted indexes for all connected objects’ IPs and
managing all IPs at a Key Index Point (KeyIP). Indexes are periodically aggregated based on their
locations. The main drawback of Snoogle is that indexes are based on IPs that might change and
every change in sensor’s meta-data require updating KeyIP, which hinders its scalability [Römer
et al. 2010]. However, it provides e�cient compression approach by using Bloom �lter to represent
the existing keys in sensor nodes. Then, a ranking approach is used by getting top k results that
match user queries based on a probabilistic model to estimate which sensor has an answer to the
requested query. The query processing approach is distributed. However, approximate query results
might include IPs that do not have the queried data (due to using Bloom �lter) [Römer et al. 2010].
Similar to Snoogle, [Yap et al. 2005] present a human-centric search calledMAX to search for

physical objects. However, MAX does not support any indexing or ranking approaches, but instead
it aggregates physical objects with relative locations into base stations. MAX assumes that the
devices have passive RFID tags. MAX base station receives queries, and it then broadcasts them to
all sub-stations and tags to �nd a physical object that can provide a response. This query mechanism
is the main hider for MAX’s scalability. The sub-stations communicate with the physical objects
based on the Received Signal Strength Indicator (RSSI), and they select the objects that have the
maximum RSSI responses to answer the requested queries.

[Mayer and Guinard 2011] propose DiscoWoT which is a semantic discovery service for Web-
enabled smart things. It uses a RESTful solution to allow integration of the things into to the
Web. DiscoWoT provides di�erent discovery strategies that can be updated at the run-time. It also
allows users to describe Web sources semantically in the run-time. DiscoWoT supports source
description in di�erent formats such as JSON and Microformats. [Kansal et al. 2007] propose an
infrastructure (SenseWeb) for shared sensing resources between multiple applications. Sensor
data is collected based on the query itself. This enables accessing sensor readings dynamically.
However, all applications can be accessed through one entry (coordinator) and the indexing is built
in a central database (SenseDB). SenseDB minimises the overhead by combining requests that need
access to the same data and caching the most frequently accessed data.
Thingful is a search engine for the IoT that connects Web-enabled objects. It includes geograph-

ical indexing and rank approaches. The ranking scheme is based on ThingRank algorithm. It allows
the veri�cation of the ownership of the registered sensory devices. However, its main drawback
is the data freshness; search results could be 3 or 4 months old. Sensor data is not re-published
with their changes/updates. It is possible to query (search) devices based on their locations and/or
type of services; query term has What (e.g. weather, transport) and/or Where (e.g. London). It also

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 55 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:56 Y. Fathy et al.

has “Near Me” option in which users should allow Thingful to know their locations to provide
them with all nearby sensory devices with their services. The indexing approach also seems to be
centralised.
Wolfram Data Drop allows users to register Internet-connected things such as sensors, devices,

Twitter, email, Arduino45, Raspberry Pi46 and others. It is based on using data discovery, visualising,
analysis and modelling from WolframAlpha computational knowledge engine47. Each registered
object has a unique “databin”. Data Drop obtains the data from registered objects every 30 seconds48.
The main issue in Data Drop is that user should know the databin for the devices they want to query.
Data Drop combines and aggregates data from di�erent databins using Wolfram Data Framework
(WDF) to summarise the combined data and convert it into ameaningful form49. However, there is no
available information about its architecture and technical details. The Ericsson IoT Framework

is available through a REST API and as an open source platform50. It collects data with time-
stamps from sensors (e.g. humidity, temperature, air pollution) that have IP connectivity. Data
is saved in a local central database that a�ects the framework’s scalability. However, it supports
publication/subscription approach that is suitable for resource-constrained devices. It also supports
simple mathematical aggregation (e.g. MAX, MIN) from sensor data and provides a prediction for
sensor values.
ThingSpeak is an open source platform51. It enables storing and retrieving numeric and alphanu-

meric data. It also supports di�erent data formats; XML, JSON and CSV and allows up to 8 data
�elds to describe a connected device. ThingSpeak allows users to search in their channel feed (exact
search) and search for public channels in a speci�c location or within a distance. Open.Sen.se is
another IoT platform. It has a tool called “Funnel” which processes data from several data sources
and aggregates them. The platform does not have an indexing approach. The platform provides a
RESTful API, and the responses are presented in JSON format52. Published data in the platform is
always private; users need authentication (i.e. private keys) to access it.Xively is also a cloud-based
Platform that allows real-time communication and storing data in a distributed framework [Mazhe-
lis and Tyrvainen 2014]. Xively provides a RESTful API for retrieving data from registered sources.
It supports di�erent formats such as CSV, JSON and XML. Users can query data based on requested
attributes (location, name, type of data and others) [Mineraud et al. 2015] that are represented as
keyword/tag meta-data.

ACKNOWLEDGMENTS

This work is supported by the European Commission’s Seventh Framework Programme (EU FP7)
for the CityPulse projectnder Grant No.: 609035 (http://www.ict-citypulse.eu/) and the EU Horizon
2020 (EU H2020) for the FIESTA-IoT projectnder Grant No.: 643943 (http://�esta-iot.eu/).

REFERENCES

D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina,
et al. 2005. The Design of the Borealis Stream Processing Engine.. In CIDR, Vol. 5. 277–289.

45http://www.arduino.cc/
46http://www.raspberrypi.org/
47http://www.wolframalpha.com/
48http://blog.wolfram.com/2015/03/04/the-wolfram-data-drop-is-live/
49http://www.wolfram.com/data-framework/
50http://github.com/EricssonResearch/iot-framework-engine
51http://github.com/iobridge/ThingSpeak
52http://open.sen.se/dev/

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 56 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:57

D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. 2003.
Aurora: a new model and architecture for data stream management. The VLDB JournalâĂŤThe International Journal on
Very Large Data Bases 12, 2 (2003), 120–139.

K. Aberer, M. Hauswirth, and A. Salehi. 2007. Infrastructure for data processing in large-scale interconnected sensor
networks. In 2007 International Conference on Mobile Data Management (MDM). IEEE, 198–205.

G. D. Abowd and E. D. Mynatt. 2000. Charting past, present, and future research in ubiquitous computing. ACM Transactions
on Computer-Human Interaction (TOCHI) 7, 1 (2000), 29–58.

H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, J. Deng, and R. Han. 2003. MANTIS: System support
for multimodal networks of in-situ sensors. In Proceedings of the 2nd ACM International Conference on Wireless Sensor
Networks and Applications. ACM, 50–59.

M. Abu-Elkheir, M. Hayajneh, and N. A. Ali. 2013. Data management for the internet of things: Design primitives and
solution. Sensors 13, 11 (2013), 15582–15612.

C. C. Aggarwal, N. Ashish, and A. Sheth. 2013. The internet of things: A survey from the data-centric perspective. In
Managing and Mining Sensor Data. Springer, 383–428.

R. Agrawal, C. Faloutsos, and A. Swami. 1993. E�cient similarity search in sequence databases. In Proceedings of the 4th
International Conference on Foundations of Data Organization and Algorithms. Springer, 69–84.

A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. 2015. Internet of things: A survey on enabling
technologies, protocols, and applications. IEEE Communications Surveys & Tutorials 17, 4 (2015), 2347–2376.

M. Ali. 2010. An introduction to microsoft sql server streaminsight. In Proceedings of the 1st International Conference and
Exhibition on Computing for Geospatial Research & Application. ACM, 66.

M. H. Ali, W. G. Aref, R. Bose, A. K. Elmagarmid, A. Helal, I. Kamel, and M. F. Mokbel. 2005. NILE-PDT: A phenomenon
detection and tracking framework for data stream management systems. In Proceedings of the 31st international conference
on Very large data bases. VLDB Endowment, 1295–1298.

AMQP Working Group and others. 2012. About AMQP. A General-Purpose Middleware Standard 10 (2012). available at:
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf (last accessed: 22-12-2015).

A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava, and J. Widom. 2004. Stream: The
stanford data stream management system. Book chapter (2004).

A. Arasu, S. Babu, and J. Widom. 2006. The CQL continuous query language: semantic foundations and query execution.
The VLDB JournalâĂŤThe International Journal on Very Large Data Bases 15, 2 (2006), 121–142.

E. Asmare and J. A. McCann. 2014. Lightweight Sensing Uncertainty MetricâĂŤIncorporating Accuracy and Trust. IEEE
Sensors Journal 14, 12 (2014), 4264–4272.

L. Atzori, A. Iera, and G. Morabito. 2010. The internet of things: A survey. Computer networks 54, 15 (2010), 2787–2805.
R. Avnur and J. M. Hellerstein. 2000. Eddies: Continuously adaptive query processing. In ACM SIGMoD Record, Vol. 29.

ACM, 261–272.
B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. 2002. Models and issues in data stream systems. In Proceedings of

the twenty-�rst ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. ACM, 1–16.
B. Bahmani, A. Goel, and R. Shinde. 2012. E�cient distributed locality sensitive hashing. In Proceedings of the 21st ACM

international conference on Information and knowledge management. ACM, 2174–2178.
R. Baldoni, S. Bonomi, G. Lodi, M. Platania, and L. Querzoni. 2011. Data dissemination supporting complex event pattern

detection. International Journal of Next Generation Computing 24 (2011).
C. Ballard, D. M. Farrell, M. Lee, P. D. Stone, S. Thibault, S. Tucker, et al. 2010. IBM InfoSphere Streams Harnessing Data in

Motion. IBM Redbooks.
P. Barnaghi, F. Ganz, C. Henson, and A. Sheth. 2012a. Computing perception from sensor data. In IEEE Sensors, 2012. IEEE,

1–4.
P. Barnaghi, A. Sheth, and C. Henson. 2013a. From Data to Actionable Knowledge: Big Data Challenges in the Web of

Things [Guest Editors’ Introduction]. IEEE Intelligent Systems 28, 6 (Nov 2013), 6–11.
P. Barnaghi, W. Wang, L. Dong, and C. Wang. 2013b. A Linked-Data Model for Semantic Sensor Streams. In 2013 IEEE

International Conference on Green Computing and Communications (GreenCom) and IEEE Internet of Things(iThings) and
IEEE Cyber, Physical and Social Computing(CPSCom). IEEE, 468–475.

P. Barnaghi, W. Wang, C. Henson, and K. Taylor. 2012b. Semantics for the Internet of Things: early progress and back to the
future. International Journal on Semantic Web and Information Systems (IJSWIS) 8, 1 (2012), 1–21.

A. Bartoli, M. Dohler, J. Hernández-Serrano, A. Kountouris, and D. Barthel. 2011. Low-power low-rate goes long-range:
the case for secure and cooperative machine-to-machine communications. In NETWORKING 2011 Workshops. Springer,
219–230.

D. Beckett and A. Barstow. 2001. N-Triples-W3C RDF Core WG Internal Working Draft. (2001). available at: http:
//www.w3.org/2001/sw/RDFCore/ntriples (last accessed: 22-12-2015).

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 57 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:58 Y. Fathy et al.

D. Beckett, T. Berners-Lee, E. PrudâĂŹhommeaux, and G. Carothers. 2011. TurtleâĂŤTease RDF Triple Language, W3C
Candidate Recommendation. (2011). available at: http://www.w3.org/TeamSubmission/turtle/ (last accessed: 22-12-2015).

D. Beckett and B. McBride. 2004. RDF/XML syntax speci�cation (revised). W3C Recommendation 10 (2004). available at:
http://www.w3.org/TR/REC-rdf-syntax/ (last accessed: 22-12-2015).

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. 1990. The R*-tree: an e�cient and robust access method for points
and rectangles. In Proceedings of the 1990 ACM SIGMOD International Conference on Management of Data, Vol. 19. ACM.

D. J. Berndt and J. Cli�ord. 1994. Using Dynamic Time Warping to Find Patterns in Time Series. In Workshop on Knowledge
Knowledge Discovery in Databases (KDD), Vol. 10. Seattle, WA, AAAI Press, 359–370.

T. Berners-Lee and D. Connolly. 2011. Notation3 (N3): A readable RDF syntax. W3C Team Submission (2011). available at:
http://www.w3.org/TeamSubmission/n3/ (last accessed: 22-12-2015).

V. Bettaiah and H. S. Ranganath. 2014. An e�ective subsequence-to-subsequence time series matching approach. In Science
and Information Conference (SAI), 2014. 112–122.

A. R. Bharambe, M. Agrawal, and S. Seshan. 2004. Mercury: supporting scalable multi-attribute range queries. In ACM
SIGCOMM Computer Communication Review, Vol. 34. ACM, 353–366.

A. Bhattacharya, A. Meka, and A. K. Singh. 2007. MIST: Distributed indexing and querying in sensor networks using
statistical models. In Proceedings of the 33rd International Conference on Very Large Data Bases (VLDB). VLDB Endowment,
854–865.

S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald, A. Torgerson, and R. Han. 2005. MANTIS
OS: An embedded multithreaded operating system for wireless micro sensor platforms. Mobile Networks and Applications
10, 4 (2005), 563–579.

A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov, O. Verscheure, H. Koutsopoulos, and C. Moran. 2010. IBM
infosphere streams for scalable, real-time, intelligent transportation services. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data. ACM, 1093–1104.

D. Bimschas, H. Hellbrück, R. Mietz, D. P�sterer, K. Römer, and T. Teubler. 2010. Middleware for smart gateways connecting
sensornets to the internet. In Proceedings of the 5th International Workshop on Middleware Tools, Services and Run-Time
Support for Sensor Networks. ACM, 8–14.

C. Bisdikian, L. M. Kaplan, and M. B. Srivastava. 2013. On the quality and value of information in sensor networks. ACM
Transactions on Sensor Networks (TOSN) 9, 4 (2013), 48.

C. Bisdikian, L. M. Kaplan, M. B. Srivastava, D. J. Thornley, D. Verma, and R. I. Young. 2009. Building principles for a quality
of information speci�cation for sensor information. In Information Fusion, 2009. FUSION’09. 12th International Conference
on. IEEE, 1370–1377.

C. Bizer, T. Heath, and T. Berners-Lee. 2009. Linked data-the story so far. International Journal on Semantic Web and
Information Systems (IJSWIS) 5, 3 (2009), 1–22.

D. M. Blei, A. Y. Ng, and M. I. Jordan. 2003. Latent dirichlet allocation. the Journal of Machine Learning Research 3 (2003),
993–1022.

F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. 2012. Fog computing and its role in the internet of things. In Proceedings of the
�rst edition of the MCC workshop on Mobile cloud computing. ACM, 13–16.

P. Boonma and J. Suzuki. 2007. BiSNET: A biologically-inspired middleware architecture for self-managing wireless sensor
networks. Computer Networks 51, 16 (2007), 4599–4616.

C. Bormann, A. P. Castellani, and Z. Shelby. 2012. Coap: An application protocol for billions of tiny internet nodes. IEEE
Internet Computing 2 (2012), 62–67.

A. Botta, W. De Donato, V. Persico, and A. Pescapé. 2016. Integration of cloud computing and internet of things: a survey.
Future Generation Computer Systems 56 (2016), 684–700.

M. Botts, G. Percivall, C. Reed, and J. Davidson. 2008. OGC® sensor web enablement: Overview and high level architecture.
In GeoSensor Networks. Springer, 175–190.

M. Botts and A. Robin. 2007. OpenGIS sensor model language (SensorML) implementation speci�cation. OpenGIS
Implementation Speci�cation OGC 7, 000 (2007). available at: http://portal.opengeospatial.org/�les/?artifact_id=21273
(last accessed: 22-12-2015).

A. Boulis, C.-C. Han, and M. B. Srivastava. 2003. Design and implementation of a framework for e�cient and programmable
sensor networks. In Proceedings of the 1st International Conference on Mobile Systems, Applications and Services. ACM,
187–200.

S. Brin and L. Page. 2012. The anatomy of a large-scale hypertextual web search engine. Computer Networks 56, 18 (2012),
3825–3833.

Y. Cai and R. Ng. 2004. Indexing spatio-temporal trajectories with Chebyshev polynomials. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data. ACM, 599–610.

J.-P. Calbimonte, H. Y. Jeung, O. Corcho, and K. Aberer. 2012. Enabling query technologies for the semantic sensor web.
International Journal on Semantic Web and Information Systems 8, EPFL-ARTICLE-183971 (2012), 43–63.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 58 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:59

A. Camerra, T. Palpanas, J. Shieh, and E. Keogh. 2010. iSAX 2.0: Indexing and mining one billion time series. In 2010 IEEE
10th International Conference on Data Mining (ICDM). IEEE, 58–67.

A. Camerra, J. Shieh, T. Palpanas, T. Rakthanmanon, and E. Keogh. 2014. Beyond one billion time series: indexing and
mining very large time series collections with iSAX2+. Knowledge and Information Systems 39, 1 (2014), 123–151.

D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik. 2002.
Monitoring streams: a new class of data management applications. In Proceedings of the 28th international conference on
Very Large Data Bases. VLDB Endowment, 215–226.

G. Cassar, P. Barnaghi, and K. Moessner. 2010. Probabilistic methods for service clustering. In Proceedings of 4th International
Workshop on Semantic Web Service Matchmaking and Resource Retrieval. ISWC.

G. Cassar, P. Barnaghi, and K. Moessner. 2014. Probabilistic matchmaking methods for automated service discovery. IEEE
Transactions on Services Computing 7, 4 (2014), 654–666.

N. Castro and P. J. Azevedo. 2010. Multiresolution Motif Discovery in Time Series. In SDM. SIAM, 665–676.
K.-P. Chan and A.-C. Fu. 1999. E�cient time series matching by wavelets. In Proceedings of the 15th International Conference

on Data Engineering, 1999. IEEE, 126–133.
S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F.

Reiss, and M. A. Shah. 2003. TelegraphCQ: continuous data�ow processing. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data. ACM, 668–668.

G. Chen and D. Kotz. 2002. Context aggregation and dissemination in ubiquitous computing systems. In Proceedings of the
Fourth IEEE Workshop on Mobile Computing Systems and Applications. IEEE Computer Society, 105–114.

J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. 2000. NiagaraCQ: A scalable continuous query system for internet databases. In
ACM SIGMOD Record, Vol. 29. ACM, 379–390.

M. Chen, S. Mao, and Y. Liu. 2014. Big data: A survey. Mobile Networks and Applications 19, 2 (2014), 171–209.
M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing, and S. B. Zdonik. 2003. Scalable Distributed

Stream Processing.. In CIDR, Vol. 3. 257–268.
S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M. Picone, and L. Veltri. 2014. A scalable and self-con�guring

architecture for service discovery in the internet of things. IEEE Internet of Things Journal 1, 5 (2014), 508–521.
D. Comer. 1979. Ubiquitous B-tree. ACM Computing Surveys (CSUR) 11, 2 (1979), 121–137.
M. Compton, P. Barnaghi, L. Bermudez, R. García-Castro, O. Corcho, S. Cox, J. Graybeal, M. Hauswirth, C. Henson, A.

Herzog, et al. 2012. The SSN ontology of the W3C semantic sensor network incubator group. Web Semantics: Science,
Services and Agents on the World Wide Web 17 (2012), 25–32.

J. W. Cooley and J. W. Tukey. 1965. An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19, 90
(1965), 297–301.

J. Cooper and A. James. 2009. Challenges for database management in the internet of things. IETE Technical Review 26, 5
(2009), 320–329.

A. Corsaro and D. C. Schmidt. 2012. The Data Distribution Service-The Communication Middleware Fabric for Scalable
and Extensible Systems-of-Systems. INTECH Open Access Publisher. available at: http://www.intechopen.com/books/
system-of-systems/the-data-distribution-service-the-fabric-for-building-scalable-and-extensible-system-of-systems
(last accessed: 22-12-2015).

G. Cugola and A. Margara. 2012. Processing �ows of information: From data stream to complex event processing. ACM
Computing Surveys (CSUR) 44, 3 (2012), 15.

A. R. da Rocha, F. C. Delicato, J. N. de Souza, D. G. Gomes, and L. Pirmez. 2009. A semantic middleware for autonomic
wireless sensor networks. In Proceedings of the 2009 Workshop on Middleware for Ubiquitous and Pervasive Systems. ACM,
19–25.

M.-S. Dao, S. Pongpaichet, L. Jalali, K. Kim, R. Jain, and K. Zettsu. 2014. A real-time complex event discovery platform for
cyber-physical-social systems. In Proceedings of International Conference on Multimedia Retrieval. ACM, 201.

L. David, R. Vasconcelos, L. Alves, R. André, and M. Endler. 2013. A DDS-based middleware for scalable tracking, communi-
cation and collaboration of mobile nodes. Journal of Internet Services and Applications 4, 1 (2013), 1–15.

I. Davis, T. Steiner, and A. Hors. 2013. RDF 1.1 JSON Alternate Serialization (RDF/JSON). W3C Working Group Note (2013).
available at: http://www.w3.org/TR/2013/NOTE-rdf-json-20131107 (last accessed: 22-12-2015).

S. De, P. Barnaghi, M. Bauer, and S. Meissner. 2011. Service modelling for the Internet of Things. In 2011 Federated Conference
on Computer Science and Information Systems (FedCSIS). IEEE, 949–955.

F. Dehne, Q. Kong, A. Rau-Chaplin, H. Zaboli, and R. Zhou. 2013. A distributed tree data structure for real-time OLAP on
cloud architectures. In Big Data, 2013 IEEE International Conference on. IEEE, 499–505.

Y. Demchenko, P. Grosso, C. De Laat, and P. Membrey. 2013. Addressing big data issues in scienti�c data infrastructure. In
Collaboration Technologies and Systems (CTS), 2013 International Conference on. IEEE, 48–55.

A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, W. M. White, et al. 2007. Cayuga: A General Purpose Event
Monitoring System.. In CIDR, Vol. 7. 412–422.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 59 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:60 Y. Fathy et al.

M. Demirbas and X. Lu. 2007. Distributed quad-tree for spatial querying in wireless sensor networks. In IEEE International
Conference on Communications (ICC). IEEE, 3325–3332.

P. Desai, A. Sheth, and P. Anantharam. 2015. Semantic Gateway as a Service architecture for IoT Interoperability. In IEEE
International Conference on Mobile Services (MS), 2015. 313–319.

O. Diallo, J. J. Rodrigues, and M. Sene. 2012. Real-time data management on wireless sensor networks: a survey. Journal of
Network and Computer Applications 35, 3 (2012), 1013–1021.

H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. 2008. Querying and mining of time series data: experimental
comparison of representations and distance measures. Proceedings of the Very Large Data Bases (VLDB) Endowment 1, 2
(2008), 1542–1552.

A. Dunkels, B. Gronvall, and T. Voigt. 2004. Contiki-a lightweight and �exible operating system for tiny networked sensors.
In 29th Annual IEEE International Conference on Local Computer Networks, 2004. IEEE, 455–462.

M. Durvy, J. Abeillé, P. Wetterwald, C. O’Flynn, B. Leverett, E. Gnoske, M. Vidales, G. Mulligan, N. Tsiftes, N. Finne, et al.
2008. Making sensor networks IPv6 ready. In Proceedings of the 6th ACM conference on Embedded network sensor systems.
ACM, 421–422.

W. K. Edwards. 2006. Discovery systems in ubiquitous computing. IEEE Pervasive Computing 5, 2 (2006), 70–77.
B. M. Elahi, K. Romer, B. Ostermaier, M. Fahrmair, and W. Kellerer. 2009. Sensor ranking: A primitive for e�cient content-

based sensor search. In International Conference on Information Processing in Sensor Networks (IPSN), 2009. IEEE Computer
Society, 217–228.

L. Ericsson. 2011. More than 50 billion connected devices. White Paper (2011). available at: http://www.akos-rs.si/
�les/Telekomunikacije/Digitalna_agenda/Internetni_protokol_Ipv6/More-than-50-billion-connected-devices.pdf (last
accessed: 22-12-2015).

B. Esmael, A. Arnaout, R. K. Fruhwirth, and G. Thonhauser. 2012. Multivariate time series classi�cation by combining
trend-based and value-based approximations. In Computational Science and Its Applications–ICCSA 2012. Springer,
392–403.

C. Esposito. 2011. Data distribution service (DDS) limitations for data dissemination wrt large-scale complex critical
infrastructures (LCCI). MobiLab, Università degli Studi di Napoli Federico II, Napoli, Italy, Tech. Rep (2011). available at:
http://www.mobilab.unina.it/Reports/DataDiss.pdf (last accessed: 22-12-2015).

S. Evdokimov, B. Fabian, S. Kunz, and N. Schoenemann. 2010. Comparison of discovery service architectures for the internet
of things. In 2010 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC). IEEE,
237–244.

P. Evensen and H. Meling. 2009. SenseWrap: A service oriented middleware with sensor virtualization and self-con�guration.
In 2009 5th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE,
261–266.

C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. 1994. Fast Subsequence Matching in Time-series Databases. In
Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data (SIGMOD ’94), Vol. 23. ACM,
419–429.

E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi. 2007. In-network aggregation techniques for wireless sensor networks: a
survey. IEEE Wireless Communications 14, 2 (2007), 70–87.

Y. Fathy, P. Barnaghi, S. Enshaeifar, and R. Tafazolli. 2016. A Distributed In-network Indexing Mechanism for the Internet of
Things. In Internet of Things (WF-IoT), 2016 IEEE 3nd World Forum on. IEEE.

D. Figo, P. C. Diniz, D. R. Ferreira, and J. M. Cardoso. 2010. Preprocessing techniques for context recognition from
accelerometer data. Personal and Ubiquitous Computing 14, 7 (2010), 645–662.

C.-L. Fok, G.-C. Roman, and C. Lu. 2005a. Mobile agent middleware for sensor networks: An application case study. In
Fourth International Symposium on Information Processing in Sensor Networks (IPSN), 2005. IEEE, 382–387.

C.-L. Fok, G.-C. Roman, and C. Lu. 2005b. Rapid development and �exible deployment of adaptive wireless sensor network
applications. In Proceedings of the 25th IEEE International Conference on Distributed Computing Systems (ICDCS), 2005.
IEEE, 653–662.

L. J. Fülöp, G. Tóth, R. Rácz, J. Pánczél, T. Gergely, A. Beszédes, and L. Farkas. 2010. Survey on complex event processing
and predictive analytics. In Proceedings of the Fifth Balkan Conference in Informatics. Citeseer, 26–31.

A. Gani, A. Siddiqa, S. Shamshirband, and F. Hanum. 2016. A survey on indexing techniques for big data: taxonomy and
performance evaluation. Knowledge and Information Systems 46, 2 (2016), 241–284.

F. Ganz, P. Barnaghi, and F. Carrez. 2013. Information abstraction for heterogeneous real world internet data. Sensors
Journal, IEEE 13, 10 (2013), 3793–3805.

F. Ganz, P. Barnaghi, F. Carrez, and K. Moessner. 2011. Context-aware management for sensor networks. In Proceedings of
the 5th International Conference on Communication System Software and Middleware. ACM, 6.

F. Ganz, R. Li, P. Barnaghi, and H. Harai. 2012. A resource mobility scheme for service-continuity in the Internet of Things.
In 2012 IEEE International Conference on Green Computing and Communications (GreenCom). IEEE, 261–264.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 60 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:61

F. Ganz, D. Puschmann, P. Barnaghi, and F. Carrez. 2015. A Practical Evaluation of Information Processing and Abstraction
Techniques for the Internet of Things. IEEE Internet of Things Journal (2015).

D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler. 2003. The nesC language: A holistic approach to
networked embedded systems. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design
and Implementation, Vol. 38. ACM, 1–11.

L. Golab and M. T. Özsu. 2003. Issues in data stream management. ACM Sigmod Record 32, 2 (2003), 5–14.
G. H. Golub and C. Reinsch. 1970. Singular value decomposition and least squares solutions. Numer. Math. 14, 5 (1970),

403–420.
M. Gorawski, A. Gorawska, and K. Pasterak. 2014. A survey of data stream processing tools. In Information Sciences and

Systems 2014. Springer, 295–303.
J. Grass and S. Zilberstein. 1996. Anytime algorithm development tools. ACM SIGART Bulletin 7, 2 (1996), 20–27.
B. Greenstein, S. Ratnasamy, S. Shenker, R. Govindan, and D. Estrin. 2003. DIFS: A distributed index for features in sensor

networks. Ad Hoc Networks 1, 2 (2003), 333–349.
S. Guha, D. Gunopulos, and N. Koudas. 2003. Correlating synchronous and asynchronous data streams. In Proceedings of the

9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 529–534.
D. Guinard. 2011. A web of things application architecture-Integrating the real-world into the web. Ph.D. Dissertation. Citeseer.
D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio. 2010. Interacting with the soa-based internet of things: Discovery,

query, selection, and on-demand provisioning of web services. IEEE Transactions on Services Computing 3, 3 (2010),
223–235.

D. Guinard, V. Trifa, F. Mattern, and E. Wilde. 2011. From the internet of things to the web of things: Resource-oriented
architecture and best practices. In Architecting the Internet of Things. Springer, 97–129.

M. A. Hammad, M. F. Mokbel, M. H. Ali, W. G. Aref, A. C. Catlin, A. K. Elmagarmid, M. Eltabakh, M. G. Elfeky, T. M. Ghanem,
R. Gwadera, et al. 2004. Nile: A query processing engine for data streams. In Data Engineering, 2004. Proceedings. 20th
International Conference on. IEEE, 851.

C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava. 2005. A dynamic operating system for sensor nodes. In Proceedings
of the 3rd International Conference on Mobile systems, Applications, and Services (MobiSys). ACM, 163–176.

L. Harada. 2002. Pattern matching over multi-attribute data streams. In String Processing and Information Retrieval. Springer,
187–193.

A. Harth and S. Decker. 2005. Optimized index structures for querying rdf from the web. In Third Latin American Web
Congress (LA-WEB’2005). IEEE, 10–pp.

W. He and L. Da Xu. 2014. Integration of distributed enterprise applications: a survey. IEEE Transactions on Industrial
Informatics 10, 1 (2014), 35–42.

S. Herbst, N. Pollner, J. Tenschert, F. Lauterwald, G. Endler, and K. Meyer-Wegener. 2015. An algebra for pattern matching,
time-aware aggregates and partitions on relational data streams. In Proceedings of the 9th ACM International Conference
on Distributed Event-Based Systems. ACM, 140–149.

M. Ho�man, F. R. Bach, and D. M. Blei. 2010. Online learning for latent dirichlet allocation. In Advances in Neural Information
Processing Systems 23. Curran Associates, Inc., 856–864.

S. Hoseinitabatabaei, P. Barnaghi, R. Tafazolli, and C. Wang. 2014. Method and Apparatus for Scalable Data Discovery in
IoT Systems. (United States Patent: CNV12174, May 2014).

S. Huang, Y. Chen, X. Chen, K. Liu, X. Xu, C. Wang, K. Brown, and I. Halilovic. 2014. The next generation operational data
historian for IoT based on informix. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of
Data. ACM, 169–176.

J. W. Hui and D. E. Culler. 2008. Extending IP to low-power, wireless personal area networks. Internet Computing, IEEE 12, 4
(2008), 37–45.

U. Hunkeler, H. L. Truong, and A. Stanford-Clark. 2008. MQTT-SâĂŤA publish/subscribe protocol for Wireless Sensor
Networks. In 3rd International Conference on Communication System Software and Middleware (COMSWARE), 2008. IEEE,
791–798.

I. Ishaq, D. Carels, G. K. Teklemariam, J. Hoebeke, F. V. d. Abeele, E. D. Poorter, I. Moerman, and P. Demeester. 2013. IETF
standardization in the �eld of the internet of things (IoT): a survey. Journal of Sensor and Actuator Networks 2, 2 (2013),
235–287.

C. Jennings, J. Arkko, and Z. Shelby. 2015. Media types for Sensor Markup Language (SENML). (2015). available at:
http://datatracker.ietf.org/doc/draft-jennings-core-senml/ (last accessed: 22-12-2015).

F. T. Johnsen, T. H. Bloebaum, M. Avlesen, S. Spjelkavik, and B. Vik. 2013. Evaluation of transport protocols for web services.
In Military Communications and Information Systems Conference (MCC), 2013. IEEE, 1–6.

P. G. Jones and P. K. Thornton. 2000. MarkSim: software to generate daily weather data for Latin America and Africa.
Agronomy Journal 92, 3 (2000), 445–453.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 61 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:62 Y. Fathy et al.

A. Kamilaris, A. Pitsillides, and V. Trifa. 2011. The smart home meets the web of things. International Journal of Ad Hoc and
Ubiquitous Computing 7, 3 (2011), 145–154.

A. Kansal, S. Nath, J. Liu, and F. Zhao. 2007. Senseweb: An infrastructure for shared sensing. IEEE MultiMedia 4 (2007), 8–13.
V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-Zarate. 2015. A Survey on Application Layer Protocols

for the Internet of Things. Transaction on IoT and Cloud Computing (TICC) 3, 1 (2015), 11–17.
S. J. Kazemitabar, U. Demiryurek, M. Ali, A. Akdogan, and C. Shahabi. 2010. Geospatial stream query processing using

Microsoft SQL Server StreamInsight. Proceedings of the VLDB Endowment 3, 1-2 (2010), 1537–1540.
E. Keogh. 1997. Fast similarity search in the presence of longitudinal scaling in time series databases. In Proceedings Ninth

IEEE International Conference on Tools with Arti�cial Intelligence, 1997. IEEE, 578–584.
E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. 2001a. Dimensionality reduction for fast similarity search in large

time series databases. Knowledge and Information Systems 3, 3 (2001), 263–286.
E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. 2001b. Locally adaptive dimensionality reduction for indexing large

time series databases. ACM SIGMOD Record 30, 2 (2001), 151–162.
E. Keogh and S. Kasetty. 2003. On the need for time series data mining benchmarks: a survey and empirical demonstration.

Data Mining and Knowledge Discovery 7, 4 (2003), 349–371.
E. Keogh and J. Lin. 2005. Clustering of time-series subsequences is meaningless: implications for previous and future

research. Knowledge and Information Systems 8, 2 (2005), 154–177.
E. Keogh and C. A. Ratanamahatana. 2005. Exact indexing of dynamic time warping. Knowledge and Information Systems 7,

3 (2005), 358–386.
E. J. Keogh and M. J. Pazzani. 2000. Scaling up dynamic time warping for datamining applications. In Proceedings of the 6th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 285–289.
R. Khan, S. U. Khan, R. Zaheer, and S. Khan. 2012. Future internet: the internet of things architecture, possible applications

and key challenges. In Frontiers of Information Technology (FIT), 2012 10th International Conference on. IEEE, 257–260.
M. Kirsche and R. Klauck. 2012. Unify to bridge gaps: Bringing XMPP into the internet of things. In 2012 IEEE International

Conference on Pervasive Computing and Communications (PERCOM) Workshops. IEEE, 455–458.
A. Klein and W. Lehner. 2009. Representing data quality in sensor data streaming environments. Journal of Data and

Information Quality (JDIQ) 1, 2 (2009), 10.
J. M. Kleinberg. 1999. Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM) 46, 5 (1999), 604–632.
G. Klyne and J. J. Carroll. 2006. Resource description framework (RDF): Concepts and abstract syntax. (2006). available at:

http://www.w3.org/TR/rdf-concepts/ (last accessed: 22-12-2015).
J. Ko, J. Eriksson, N. Tsiftes, S. Dawson-Haggerty, M. Durvy, A. Terzis, A. Dunkels, andD. Culler. 2011. Beyond interoperability:

Pushing the performance of sensornet IP stacks. In In Proceedings of the International Conference on Embedded Networked
Sensor Systems (ACM SenSys). ACM, 1–11.

F. Korn, H. V. Jagadish, and C. Faloutsos. 1997. E�ciently supporting ad hoc queries in large datasets of time sequences.
ACM SIGMOD Record 26, 2 (1997), 289–300.

K. Kotis and A. Katasonov. 2012. Semantic interoperability on the web of things: The semantic smart gateway framework.
In 2012 Sixth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS). IEEE, 630–635.

P. Kranen and T. Seidl. 2009. Using Index Structures for Anytime Stream Mining. In Very Large Data Bases (VLDB) PhD
Workshop. VLDB Endowment.

B. Krishnamachari, D. Estrin, and S. Wicker. 2002. The impact of data aggregation in wireless sensor networks. In Proceedings
22nd International Conference on Distributed Computing Systems Workshops, 2002. IEEE, 575–578.

S. Krishnamurthy, S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Madden, F.
Reiss, and M. A. Shah. 2003. TelegraphCQ: An architectural status report. IEEE Data Eng. Bull. 26, 1 (2003), 11–18.

J. B. Kruskal and M. Wish. 1978. Multidimensional scaling. Vol. 11. SAGE.
A. Kumbhare, Y. Simmhan, and V. K. Prasanna. 2013. Exploiting application dynamism and cloud elasticity for continuous

data�ows. In Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis.
ACM, 57.

Y. Kwon, S. Sundresh, K. Mechitov, and G. Agha. 2006. ActorNet: An actor platform for wireless sensor networks. In
Proceedings of the �fth International Joint Conference on Autonomous Agents and Multiagent Systems. ACM, 1297–1300.

M. H. Law, N. Zhang, and A. K. Jain. 2004. Nonlinear Manifold Learning for Data Stream. In Proceedings of SIAM International
Conference for Data Mining. SIAM, 33–44.

J. K. Lawder and P. J. King. 2000. Using space-�lling curves for multi-dimensional indexing. In British National Conference
on Databases. Springer, 20–35.

D. Le-Phuoc, H. N. M. Quoc, J. X. Parreira, and M. Hauswirth. 2011. The linked sensor middleware–connecting the real
world and the semantic web. Proceedings of the Semantic Web Challenge 152 (2011).

J. Ledlie, C. Ng, and D. A. Holland. 2005. Provenance-aware sensor data storage. In 21st International Conference on Data
Engineering Workshops (ICDEW’05). IEEE, 1189–1189.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 62 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:63

K. Lee, D. Murray, D. Hughes, and W. Joosen. 2010. Extending sensor networks into the cloud using amazon web services.
In Networked Embedded Systems for Enterprise Applications (NESEA), 2010 IEEE International Conference on. IEEE, 1–7.

P. Levis and D. Culler. 2002. Maté: A tiny virtual machine for sensor networks. In ACM SIGPLAN Notices, Vol. 37. ACM,
85–95.

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, et al. 2005. TinyOS:
An operating system for sensor networks. In Ambient Intelligence. Springer, 115–148.

X. Li, Y. J. Kim, R. Govindan, and W. Hong. 2003. Multi-dimensional range queries in sensor networks. In Proceedings of the
1st International Conference on Embedded Networked Sensor Systems (SenSys). ACM, 63–75.

X. Li, J. Liu, Q. Z. Sheng, S. Zeadally, andW. Zhong. 2011. TMS-RFID: Temporal management of large-scale RFID applications.
Information Systems Frontiers 13, 4 (2011), 481–500.

S. H. Liang and C.-Y. Huang. 2013. Geocens: A geospatial cyberinfrastructure for the world-wide sensor web. Sensors 13, 10
(2013), 13402–13424.

D. Lin, B. Cui, and D. Yang. 2007a. Optimizing moving queries over moving object data streams. In Advances in Databases:
Concepts, Systems and Applications. Springer, 563–575.

J. Lin, E. Keogh, S. Lonardi, and B. Chiu. 2003. A symbolic representation of time series, with implications for streaming
algorithms. In Proceedings of the 8th ACM SIGMOD workshop on Research issues in Data Mining and Knowledge Discovery.
ACM, 2–11.

J. Lin, E. Keogh, L. Wei, and S. Lonardi. 2007b. Experiencing SAX: a novel symbolic representation of time series. Data
Mining and Knowledge Discovery 15, 2 (2007), 107–144.

Y. Lin, X. Hu, and X. Wu. 2014. Quality of information-based source assessment and selection. Neurocomputing 133 (2014),
95–102.

B. Lkhagva, Y. Suzuki, and K. Kawagoe. 2006. New Time Series Data Representation ESAX for Financial Applications. In
Proceedings of the 22Nd International Conference on Data Engineering Workshops. IEEE Computer Society, 115.

D. Locke. 2010. Mq telemetry transport (mqtt) v3. 1 protocol speci�cation. IBM developerWorks Technical Library (2010).
available at: http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html (last accessed: 22-12-2015).

W. T. Lunardi, E. de Matos, R. Tiburski, L. A. Amaral, S. Marczak, and F. Hessel. 2015. Context-based search engine for
industrial IoT: Discovery, search, selection, and usage of devices. In 2015 IEEE 20th Conference on Emerging Technologies
& Factory Automation (ETFA). IEEE, 1–8.

S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. 2005. TinyDB: an acquisitional query processing system for
sensor networks. ACM Transactions on Database Systems (TODS) 30, 1 (2005), 122–173.

O. G. Management. 2009. The Real-Time Publish-Subscribe Wire Protocol DDS Interoperability Wire Protocol Speci�cation
(DDSI). (2009). available at: http://www.omg.org/spec/DDSI/2.1/PDF/ (last accessed: 22-12-2015).

P. Manzanares-Lopez, J. P. Muñoz-Gea, J. Malgosa-Sanahuja, and J. C. Sanchez-Aarnoutse. 2011. An e�cient distributed
discovery service for EPCglobal network in nested package scenarios. Journal of Network and Computer Applications 34,
3 (2011), 925–937.

S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajodia. 2011. Privacy in geo-social networks: proximity noti�cation with
untrusted service providers and curious buddies. The International Journal on Very Large Data Bases (VLDB) 20, 4 (2011),
541–566.

S. Mayer and D. Guinard. 2011. An extensible discovery service for smart things. In Proceedings of the Second International
Workshop on Web of Things. ACM, 7.

O. Mazhelis and P. Tyrvainen. 2014. A framework for evaluating Internet-of-Things platforms: Application provider
viewpoint. In IEEE World Forum on Internet of Things (WF-IoT). IEEE, 147–152.

A. Meliou, C. Guestrin, and J. M. Hellerstein. 2009. Approximating sensor network queries using in-network summaries. In
International Conference on Information Processing in Sensor Networks (IPSN), 2009. IEEE, 229–240.

R. Mietz, S. Groppe, K. Römer, and D. P�sterer. 2013. Semantic models for scalable search in the internet of things. Journal
of Sensor and Actuator Networks 2, 2 (2013), 172–195.

J. Miller, M. Raymond, J. Archer, S. Adem, L. Hansel, S. Konda, M. Luti, Y. Zhao, A. Teredesai, andM. Ali. 2011. An extensibility
approach for spatio-temporal stream processing using microsoft streaminsight. In International Symposium on Spatial
and Temporal Databases. Springer, 496–501.

J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma. 2015. Contemporary Internet of Things platforms. Computing Research
Repository (CoRR) (2015).

D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac. 2012. Internet of things: Vision, applications and research challenges.
Ad Hoc Networks 10, 7 (2012), 1497–1516.

I. Mitliagkas, C. Caramanis, and P. Jain. 2013. Memory limited, streaming PCA. In Advances in Neural Information Processing
Systems 26. Curran Associates, Inc., 2886–2894.

M. M. A. Mohamed, A. Khokhar, et al. 2011. Dynamic indexing system for spatio-temporal queries in wireless sensor
networks. In The12th IEEE International Conference on Mobile Data Management (MDM), Vol. 2. IEEE, 35–37.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 63 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:64 Y. Fathy et al.

M. F. Mokbel, W. G. Aref, and I. Kamel. 2002. Performance of multi-dimensional space-�lling curves. In Proceedings of the
10th ACM international symposium on Advances in geographic information systems. ACM, 149–154.

M. F. Mokbel, X. Xiong, M. A. Hammad, and W. G. Aref. 2005. Continuous query processing of spatio-temporal data streams
in place. GeoInformatica 9, 4 (2005), 343–365.

B. Moore. 1981. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE
Trans. Automat. Control 26, 1 (1981), 17–32.

R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma. 2003.
Query processing, resource management, and approximation in a data stream management system. CIDR.

A. Murphy and W. Heinzelman. 2002. Milan: Middleware linking applications and networks. University of Rochester, Tech.
Rep. TR-795 (2002), 1–16.

Z. Nabi, E. Bouillet, A. Bainbridge, and C. Thomas. 2014. Of streams and storms. IBM White Paper (2014).
S. Nath, J. Liu, and F. Zhao. 2007. SensorMap for Wide-Area Sensor Webs. Computer 40, 7 (2007), 90–93.
W. Niu, J. Lei, E. Tong, G. Li, L. Chang, Z. Shi, and S. Ci. 2014. Context-aware service ranking in wireless sensor networks.

Journal of network and systems management 22, 1 (2014), 50–74.
J. O’Hara. 2007. Toward a commodity enterprise middleware. Queue 5, 4 (2007), 48–55.
O. OMG. 2006. Data Distribution Service for Real-Time Systems. Technical Report. Technical Report OMG Available

Speci�cation formal/07-01-01, OMG. available at: http://community.rti.com/�ledepot_download/1795/16 (last accessed:
22-12-2015).

B. Ostermaier, K. RoÌĹmer, F. Mattern, M. Fahrmair, and W. Kellerer. 2010. A real-time search engine for the web of things.
In Internet of Things (IoT), 2010. IEEE, 1–8.

F. Paganelli and D. Parlanti. 2012. A DHT-based discovery service for the Internet of Things. Journal of Computer Networks
and Communications 2012 (2012).

M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco, G. Boggia, and M. Dohler. 2013. Standardized protocol
stack for the internet of (important) things. IEEE Communications Surveys & Tutorials 15, 3 (2013), 1389–1406.

S. Paradesi, P. Doshi, and S. Swaika. 2009. Integrating behavioral trust in web service compositions. InWeb Services, 2009.
ICWS 2009. IEEE International Conference on. IEEE, 453–460.

C. Perera, A. Zaslavsky, P. Christen, M. Compton, and D. Georgakopoulos. 2013. Context-aware sensor search, selection and
ranking model for internet of things middleware. In 2013 IEEE 14th International Conference on Mobile Data Management
(MDM), Vol. 1. IEEE, 314–322.

C. Perera, A. Zaslavsky, C. H. Liu, M. Compton, P. Christen, and D. Georgakopoulos. 2014. Sensor search techniques for
sensing as a service architecture for the internet of things. IEEE Sensors Journal 14, 2 (2014), 406–420.

N. D. Pham, Q. L. Le, and T. K. Dang. 2010. Two novel adaptive symbolic representations for similarity search in time series
databases. In 2010 12th International Asia-Paci�c Web Conference (APWEB). IEEE, 181–187.

A. M. R. V. A. Phani, D. J. Kumar, and G. A. Kumar. 2007. Operating systems for wireless sensor networks: A survey technical
report. (2007). available at: http://dos.iitm.ac.in/publications/LabPapers/adiWirelessOS.pdf (last accessed: 22-12-2015).

R. Piyare and S. R. Lee. 2013. Towards Internet of Things (IOTs): Integration of wireless sensor network to cloud services
for data collection and sharing. Computing Research Repository (CoRR) (2013).

E. Polytarchos, S. Eliakis, D. Bochtis, and K. Pramatari. 2011. Evaluating discovery services architectures in the context of
the internet of things. In Unique Radio Innovation for the 21st Century. Springer, 203–227.

E. Prud’Hommeaux, A. Seaborne, et al. 2008. SPARQL query language for RDF. W3C Recommendation 15 (2008). available
at: http://www.w3.org/TR/rdf-sparql-query/ (last accessed: 22-12-2015).

Y. Qin, Q. Z. Sheng, N. J. Falkner, S. Dustdar, H. Wang, and A. V. Vasilakos. 2016. When things matter: A survey on
data-centric internet of things. Journal of Network and Computer Applications 64 (2016), 137–153.

R. Rajagopalan and P. K. Varshney. 2006. Data aggregation techniques in sensor networks: A survey. IEEE Communications
Surveys Tutorials 8, 4 (2006), 48–63.

T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Zakaria, and E. Keogh. 2013. Addressing
big data time series: Mining trillions of time series subsequences under dynamic time warping. ACM Transactions on
Knowledge Discovery from Data (TKDD) 7, 3 (2013), 10.

S. Ramabhadran, S. Ratnasamy, J. M. Hellerstein, and S. Shenker. 2004. Brief announcement: pre�x hash tree. In Proceedings
of the twenty-third annual ACM symposium on Principles of distributed computing. ACM, 368–368.

C. A. Ratanamahatana and E. Keogh. 2005. Three myths about dynamic time warping data mining. In Proceedings of SIAM
International Conference on Data Mining (SDMâĂŹ05). SIAM, 506–510.

S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. 2002. GHT: a geographic hash table for
data-centric storage. In Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications.
ACM, 78–87.

J. A. Reggia and Y. Peng. 1987. Modeling diagnostic reasoning: a summary of parsimonious covering theory. Computer
Methods and Programs in Biomedicine 25, 2 (1987), 125–134.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 64 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:65

K. Römer, O. Kasten, and F. Mattern. 2002. Middleware challenges for wireless sensor networks. ACM SIGMOBILE Mobile
Computing and Communications Review 6, 4 (2002), 59–61.

K. Römer, B. Ostermaier, F. Mattern, M. Fahrmair, and W. Kellerer. 2010. Real-time search for real-world entities: A survey.
Proc. IEEE 98, 11 (2010), 1887–1902.

A. Rooshenas, H. R. Rabiee, A. Movaghar, and M. Y. Naderi. 2010. Reducing the data transmission in wireless sensor
networks using the principal component analysis. In 2010 Sixth International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP). IEEE, 133–138.

S. T. Roweis and L. K. Saul. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science 290, 5500 (2000),
2323–2326.

P. Saint-Andre. 2011. Extensible messaging and presence protocol (XMPP): Core. (2011). available at: http://tools.ietf.org/
html/rfc6120 (last accessed: 22-12-2015).

S. Salvador and P. Chan. 2007. Toward accurate dynamic time warping in linear time and space. Intelligent Data Analysis 11,
5 (2007), 561–580.

J. Schneider, T. Kamiya, D. Peintner, and R. Kyusakov. 2011. E�cient XML Interchange (EXI) format 1.0. W3C Proposed
Recommendation 20 (2011). available at: http://www.w3.org/TR/exi/ (last accessed: 22-12-2015).

L. Schor, P. Sommer, and R. Wattenhofer. 2009. Towards a zero-con�guration wireless sensor network architecture for
smart buildings. In Proceedings of the First ACM Workshop on Embedded Sensing Systems for Energy-E�ciency in Buildings.
ACM, 31–36.

P. Schramm, E. Naroska, P. Resch, J. Platte, H. Linde, G. Stromberg, and T. Sturm. 2004. A service gateway for networked
sensor systems. IEEE Pervasive Computing 3, 1 (2004), 66–74.

N. P. Schultz-Møller, M. Migliavacca, and P. Pietzuch. 2009. Distributed complex event processing with query rewriting. In
Proceedings of the Third ACM International Conference on Distributed Event-Based Systems. ACM, 4.

J. Schuol and K. Abbaspour. 2007. Using monthly weather statistics to generate daily data in a SWAT model application to
West Africa. Ecological Modelling 201, 3 (2007), 301–311.

T. Seidl, I. Assent, P. Kranen, R. Krieger, and J. Herrmann. 2009. Indexing density models for incremental learning and anytime
classi�cation on data streams. In Proceedings of the 12th International Conference on Extending Database Technology:
Advances in Database Technology. ACM, 311–322.

M. Sekine and K. Sezaki. 2008. Scalable Sensor Data Management under Frequent Content Changes in Peer-to-Peer Network.
In Applications and the Internet, 2008. SAINT 2008. International Symposium on. IEEE, 133–136.

Z. Shelby, K. Hartke, and C. Bormann. 2014. The constrained application protocol (CoAP). (2014). available at: http:
//www.rfc-editor.org/rfc/pdfrfc/rfc7252.txt.pdf (last accessed: 22-12-2015).

Z. Sheng, S. Yang, Y. Yu, A. Vasilakos, J. Mccann, and K. Leung. 2013. A survey on the ietf protocol suite for the internet of
things: Standards, challenges, and opportunities. Wireless Communications, IEEE 20, 6 (2013), 91–98.

A. Sheth, C. Henson, and S. S. Sahoo. 2008. Semantic sensor web. IEEE Internet Computing 12, 4 (2008), 78–83.
J. Shieh and E. Keogh. 2008. iSAX: indexing and mining terabyte sized time series. In Proceedings of the 14th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. ACM, 623–631.
S. Sigg, D. Gordon, G. von Zengen, M. Beigl, S. Haselo�, and K. David. 2012. Investigation of context prediction accuracy for

di�erent context abstraction levels. IEEE Transactions on Mobile Computing 11, 6 (2012), 1047–1059.
A. Stanford-Clark and H. L. Truong. 2013. MQTT For Sensor Networks (MQTT-SN) Protocol Speci�cation. (2013). available

at: http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf (last accessed: 22-12-2015).
M. Stonebraker, U. Çetintemel, and S. Zdonik. 2005. The 8 requirements of real-time stream processing. ACM SIGMOD

Record 34, 4 (2005), 42–47.
X. Su, J. Riekki, J. K. Nurminen, J. Nieminen, and M. Koskimies. 2015. Adding semantics to Internet of Things. Concurrency

and Computation: Practice and Experience 27, 8 (2015), 1844–1860.
C. Sun, D. Stirling, C. Ritz, and C. Sammut. 2012. Variance-wise segmentation for a temporal-adaptive SAX. In Proceedings

of the Tenth Australasian Data Mining Conference, Vol. 134. Australian Computer Society, Inc., 71–77.
J. B. Tenenbaum, V. De Silva, and J. C. Langford. 2000. A global geometric framework for nonlinear dimensionality reduction.

Science 290, 5500 (2000), 2319–2323.
S. Thirumuruganathan, N. Zhang, and G. Das. 2013. Rank discovery from web databases. Proceedings of the Very Large Data

Bases (VLDB) Endowment 6, 13 (2013), 1582–1593.
A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, et al. 2014.

Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD international conference on Management of data. ACM, 147–156.
K. Traub, G. Allgair, H. Barthel, L. Burstein, J. Garrett, B. Hogan, B. Rodrigues, S. Sarma, J. Schmidt, C. Schramek, et al. 2005.

The EPCglobal architecture framework. EPCglobal Rati�ed speci�cation (2005). available at: http://www.gs1.org/epcglobal
(last accessed: 22-12-2015).

E. Troubleyn, J. Hoebeke, I. Moerman, and P. Demeester. 2014. Broadcast Aggregation to Improve Quality of Service in
Wireless Sensor Networks. International Journal of Distributed Sensor Networks 2014 (2014).

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 65 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

39:66 Y. Fathy et al.

J. Vasseur and A. Dunkels. 2008. IP for smart objects. IPSO Alliance, White paper 1 (2008).
S. Vinoski. 2006. Advanced message queuing protocol. IEEE Internet Computing 6 (2006), 87–89.
P. Waher. 2015. Learning Internet of Things. Packt Publishing.
K. Wähner. 2014. Real-Time Stream Processing as Game Changer in a Big Data World with Hadoop and Data Warehouse.

InfoQ (September 10, 2014) (2014).
M. E. Wall, A. Rechtsteiner, and L. M. Rocha. 2003. Singular value decomposition and principal component analysis. In A

Practical Approach to Microarray Data Analysis. Springer, 91–109.
H. Wang, C. C. Tan, and Q. Li. 2010. Snoogle: A search engine for pervasive environments. IEEE Transactions on Parallel and

Distributed Systems 21, 8 (2010), 1188–1202.
S. Wang, D. Maier, and B. C. Ooi. 2014. Lightweight indexing of observational data in log-structured storage. Proceedings of

the VLDB Endowment 7, 7 (2014), 529–540.
S. Wang, D. Maier, and B. C. Ooi. 2016. Fast and adaptive indexing of multi-dimensional observational data. Proceedings of

the VLDB Endowment 9, 14 (2016), 1683–1694.
W. Wang, S. De, G. Cassar, and K. Moessner. 2015a. An experimental study on geospatial indexing for sensor service

discovery. Expert Systems with Applications 42, 7 (2015), 3528–3538.
W. Wang, F. Yao, S. De, K. Moessner, and Z. Sun. 2015c. A Ranking Method for Sensor Services based on Estimation of

Service Access Cost. Information Sciences 319 (2015), 1 – 17.
Y. Wang, J.-S. Lee, and I.-C. Choi. 2015b. Indexing by latent dirichlet allocation and an ensemble model. Journal of the

Association for Information Science and Technology (2015).
Y. Wu and Y. Li. 2009. Distributed indexing and data dissemination in large scale wireless sensor networks. In Computer

Communications and Networks, 2009. ICCCN 2009. Proceedings of 18th Internatonal Conference on. IEEE, 1–6.
Y.-L. Wu, D. Agrawal, and A. El Abbadi. 2000. A comparison of DFT and DWT based similarity search in time-series

databases. In Proceedings of the ninth International Conference on Information and Knowledge Management. ACM, 488–495.
Z. Xu, P. Martin, W. Powley, and F. Zulkernine. 2007. Reputation-enhanced QoS-based web services discovery. In IEEE

International Conference on Web Services (ICWS 2007). IEEE, 249–256.
H. Yang and S. Fong. 2013. Countering the concept-drift problem in Big Data using iOVFDT. In 2013 IEEE International

Congress on Big Data (BigData Congress). IEEE, 126–132.
Y. Yao and J. Gehrke. 2002. The cougar approach to in-network query processing in sensor networks. ACM SIGMOD Record

31, 3 (2002), 9–18.
K.-K. Yap, V. Srinivasan, and M. Motani. 2005. MAX: human-centric search of the physical world. In Proceedings of the 3rd

International Conference on Embedded Networked Sensor Systems. ACM, 166–179.
S. S. Yau and Y. Yin. 2011. Qos-based service ranking and selection for service-based systems. In Services Computing (SCC),

2011 IEEE International Conference on. IEEE, 56–63.
B.-K. Yi and C. Faloutsos. 2000. Fast time sequence indexing for arbitrary Lp norms. In Proceedings of the 26th International

Conference on Very Large Data Bases (VLDB). Morgan Kaufmann Publishers Inc., 385–394.
Y. Yu, B. Krishnamachari, and V. K. Prasanna. 2004. Issues in designing middleware for wireless sensor networks. IEEE

Network 18, 1 (2004), 15–21.
K. K. F. Yuen and W. Wang. 2014. Towards a ranking approach for sensor services using primitive cognitive network process.

In 2014 IEEE 4th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems
(CYBER). IEEE, 344–348.

E. Zámečníková and J. Kreslíková. 2015. Comparison of platforms for high frequency data processing. In Scienti�c Conference
on Informatics, 2015 IEEE 13th International. IEEE, 296–301.

D. Zeng, S. Guo, and Z. Cheng. 2011. The web of things: A survey. Journal of Communications 6, 6 (2011), 424–438.
D. Zhang, L. T. Yang, and H. Huang. 2011. Searching in internet of things: Vision and challenges. In Parallel and Distributed

Processing with Applications (ISPA), 2011 IEEE 9th International Symposium on. IEEE, 201–206.
L. Zhang. 2011. Building Facebook Messenger. (2011), 34. available at: http://www.facebook.com/notes/

facebook-engineering/buildingfacebook-messenger/10150259350998920 (last accessed: 22-12-2015).
Y. Zhong, J. Fang, and X. Zhao. 2013. VegaIndexer: A Distributed composite index scheme for big spatio-temporal sensor

data on cloud. In 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 1713–1716.
Y. Zhou, S. De, W. Wang, and K. Moessner. 2014. Enabling Query of Frequently Updated Data from Mobile Sensing Sources.

In Computational Science and Engineering (CSE), 2014 IEEE 17th International Conference on. IEEE, 946–952.
Y. Zhou, S. De, W. Wang, and K. Moessner. 2016. Search Techniques for the Web of Things: A Taxonomy and Survey. Sensors

16, 5 (2016), 600.
Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin. 2010. Iot gateway: Bridgingwireless sensor networks into internet of things.

In IEEE/IFIP 8th International Conference on Embedded and Ubiquitous Computing (EUC). IEEE, 347–352.
M. Zoumboulakis and G. Roussos. 2007. Escalation: Complex event detection in wireless sensor networks. In Proceedings of

the 2nd European Conference on Smart Sensing and Context. Springer, 270–285.

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 66 of 67Computing Surveys

https://mc.manuscriptcentral.com/csur

Large-Scale Indexing, Discovery and Ranking for the Internet of Things (IoT) 39:67

K. Zoumpatianos, S. Idreos, and T. Palpanas. 2014. Indexing for interactive exploration of big data series. In Proceedings of
the 2014 ACM SIGMOD International Conference on Management of Data. ACM, 1555–1566.

Received February 2007; revised March 2009; accepted June 2009

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2010.

Page 67 of 67 Computing Surveys

https://mc.manuscriptcentral.com/csur

