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Abstract 
Motivation: As the time and cost of sequencing decrease, the number of available genomes and 

transcriptomes rapidly increases. Yet the quality of the assemblies and the gene annotations varies 

considerably and often remains poor, affecting downstream analyses. This is particularly true when 

fragments of the same gene are annotated as distinct genes, which may cause them to be mistaken 

as paralogs. 

Results: In this study, we introduce two novel phylogenetic tests to infer non-overlapping or partially 

overlapping genes that are in fact parts of the same gene. One approach collapses branches with low 

bootstrap support and the other computes a likelihood ratio test. We extensively validated these 

methods by 1) introducing and recovering fragmentation on the bread wheat, Triticum aestivum cv. 

Chinese Spring, chromosome 3B; 2) by applying the methods to the low-quality 3B assembly and 

validating predictions against the high-quality 3B assembly; and 3) by comparing the performance of 

the proposed methods to the performance of existing methods, namely Ensembl Compara and 

ESPRIT. Application of this combination to a draft shotgun assembly of the entire bread wheat ge-

nome revealed 1221 pairs of genes that are highly likely to be fragments of the same gene. Our ap-

proach demonstrates the power of fine-grained evolutionary inferences across multiple species to 

improving genome assemblies and annotations. 

Availability: An open source software tool is available at https://github.com/DessimozLab/esprit2. 

Contact: c.dessimoz@ucl.ac.uk 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

 Introduction  1.

Thanks to rapid developments in sequencing technology (reviewed in 

Goodwin et al., 2016), individual laboratories now routinely sequence 

and assemble entire genomes and transcriptomes. The most well-

established short-read sequencing protocols are cost effective and widely 

applied. However, without reads that are long enough to span repetitive 

regions, the assembly step remains a challenge with negative conse-

quences on downstream analyses (Lee and Tang, 2012; Jiao and 

Schneeberger, 2017). 

The challenge of genome assembly is particularly acute in plants, 

which tend to have large and heavily redundant genomes (Claros et al., 

2012; Jiao and Schneeberger, 2017). Data from such genomes frequently 

results in fragmentary assemblies with overestimated gene counts (Den-

ton et al., 2014) and limited utility for downstream purposes such as 
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creation of physical maps used in marker assisted breeding. Fragmentary 

genes not only lack sequence information—they have been shown to 

cause problems in downstream analyses, such as in tree inference (Say-

yari et al., 2017) and orthology inference (Dalquen et al., 2013; Train et 

al., 2017). 

One problem in low-quality genome assemblies is that fragments of 

the same gene can be annotated as distinct entries in genome databases; 

thus such fragments may be wrongly taken to be paralogs. However, it is 

possible to use homologous proteins conserved in other genomes to 

detect fragments that are likely to be part of the same gene. To our 

knowledge, four such approaches have been proposed. First, the Ensembl 

Compara pipeline (Vilella et al., 2009; Herrero et al., 2016) infers pairs 

of apparent paralogs as a “gene_split” if they lie within one megabase on 

the same strand of the same region of the assembly and do not overlap in 

the multiple sequence alignment of the family. Restricting these predic-

tions to genes belonging to the same contig greatly reduces the risk of 

false positive split gene calling, but particularly for fragmented assem-

blies with many short contigs, this approach detects only a fraction of all 

splits. Second, ESPRIT (Dessimoz et al., 2011) uses pairwise compari-

sons to identify non-overlapping pairs of paralogs that have a similar 

evolutionary distance to homologous sequences in other genomes. The 

third approach, SWiPS (Li and Copley, 2013) is conceptually similar in 

that it also works based on pairwise alignments—by identifying sets of 

non-overlapping candidate sequences that have a maximal sum of score 

with homologous sequences in other genomes. The fourth approach is 

the computationally efficient PEP_scaffolder (Zhu et al., 2016), which 

relies on high-identity matches of reference proteins to multiple contigs. 

Thus, like ESPRIT and SWiPS, the approach relies on pairwise align-

ments. It also has the strength of considering a maximum intron length to 

avoid combining gene fragments that are unrealistically far apart.  

Yet for all of these methods, the correct identification of split genes 

heavily depends on their ability to distinguish fragments of the same 

gene from fragments of paralogous ones. Ensembl Compara and 

PEP_scaffolder make no attempt to distinguish between the two. As for 

ESPRIT and SWiPS, although they attempt to identify fragments that 

match reference proteins consistently—either by requiring consistent 

evolutionary distances to the reference for all fragments or by requiring 

consistent best matches for all fragments—these comparisons are inher-

ently limited to pairwise comparison, which loses out on phylogenetic 

information available in a multiple-sequence and tree setting. 

Here, to address this problem, we present two complementary phylo-

genetic methods to identify non-overlapping or partially overlapping 

fragments of the same gene that exploit evolutionary relationships across 

gene families. The first one exploits bootstrap support and the second 

relies on likelihood ratio tests. We evaluate their performance on an 

artificially fragmented version of the reference sequence assembly of the 

hexaploid bread wheat chromosome 3B (Choulet et al., 2014). We also 

compare the two methods, and a meta-approach combining the two 

methods with ESPRIT (Dessimoz et al., 2011), with the Ensembl Com-

para pipeline and ESPRIT. Finally, we apply new phylogeny-based 

methods to the early, highly fragmented, draft release of the entire hexa-

ploid wheat genome (International Wheat Genome Sequencing Consor-

tium (IWGSC), 2014) and identify 1221 high-confidence pairs of split 

genes. 

 

 Algorithm 2.

We first introduce our phylogenetic tests of split genes, then proceed to 

describe the datasets analysed and the evaluation methods. Note that we 

provide the fine implementations details in the Supplementary Materials. 

2.1 Phylogenetic tests of split genes 

Given a genome assembly with a large number of annotated contigs, the 

task we face is to figure out which annotated genes actually belong to the 

same gene, due to annotation mistakes or where the assembler failed to 

concatenate collinear contigs. Consider therefore two non-overlapping 

fragments of the same gene sequence. If we perform a multiple sequence 

alignment of the two fragments together with full-length homologs from 

other species, and infer a tree based on the alignment, we can expect that 

the two fragments: i) align to different regions of the multiple sequence 

alignment (since they are non-overlapping), and ii) have a similar evolu-

tionary distance to homologous sequences in other genomes.  

However, perhaps surprisingly at first sight, although these fragments 

will generally be close to one another on the tree, they will almost never 

be inferred as sister leaves. The reason for this is that since they have no 

character in common, they cannot be directly compared with each other, 

only with the other genes in the tree. Thus, there is no phylogenetic 

information available to infer the relationship between them. The loca-

tion of the split between the two sequences is therefore undetermined. 

Furthermore, recall that evolution is modelled as a stochastic process on 

a tree, with each column in the alignment being a realisation of the pro-

cess. Due to this stochastic nature, the two fragments will almost never 

attach to the exact same place on the tree.  

Under the correct model of evolution, however, if the two fragments 

originate from the same sequence, the difference in the place these are 

attached to the tree should not be significant.  

Here we introduce two tests to infer whether two non-overlapping or 

partially overlapping sequences from the same genome are fragments of 

the same gene: collapsing branches with low bootstrap support (Efron et 

al., 1996) and a likelihood ratio test (Wilks, 1938). 

2.2 Test #1: Collapsing “insignificant” branches 

Tree branch support measures are commonly used to gauge the reliability 

of a branch. Since fragments of the same genes can be expected to be 

separated by insignificant internal branches on the tree, collapsing 

branches with low support should result in fragments becoming sister 

leaves. Thus, for a given threshold, the test collapses all branches below 

that threshold and infers all candidates that are sister leaves as fragments 

of the same gene.  

2.3 Test #2: Likelihood ratio test  

The second test to infer fragments of the same gene is a likelihood ratio 

test (LRT). Our null hypothesis (labelled “s” for split) is that fragments 

come from the same gene, and thus can be concatenated into one se-

quence. The alternative hypothesis (called “p” for paralogs) is that the 

two fragments belong to paralogous genes.  

 

Hs: n-1 genes (split gene) 

Hp: n genes (paralogous genes) 

 

The test statistic is defined as T � 2ln
���	


����

	, where L() denotes the max-

imum estimator under each hypothesis (Figure 1).  
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Figure 1: Conceptual overview of the likelihood ratio test. The null hypothesis is that the 

two fragments come from the same gene (Hs) while the alternative hypothesis is that the 

two fragments come from different paralogous copies (Hp). α refers to the significance 

level, which is to the area under the curve above the rejection threshold. This setup is 

motivated by the fact that the split gene hypothesis has fewer parameters. However, it is 

unusual in that failure to reject the test leads to a prediction, and not the other way round. 

Furthermore, because the two models are not nested, we estimate the null distribution 

empirically. 

 

This setup is unusual in two respects. First, considering that we aim to 

predict split genes, it may come as a little suspect that we use Hs as null 

model. Our motivation for this is however that the model with split genes 

is more constrained (the two fragments sit at the same place in the tree) 

and thus has fewer free parameters. It is the “simpler” model. For this 

reason, in absence of evidence to the contrary, we deem it reasonable to 

favor Hs. Second, in a typical setting of the likelihood ratio test, the null 

model is a special case of the alternative model. The models are said to 

be “nested”, and theory tells us that the test statistic—twice the differ-

ence in log likelihood—is chi-square distributed. Since our models are 

not nested, the distribution of the test statistic given under the assump-

tion that Hs is true is unknown. We can bypass this problem by estimat-

ing the empirical distribution under the null using bootstrapping (Efron 

and Tibshirani 1993; Goldman 1993). Hence, for a particular sample, 

we: 

1. Compute the value of the test statistic; let’s denote it by T0 

2. Since we have no prior knowledge on the distribution of the test 

statistic under the null hypothesis, we estimate the distribution us-

ing non-parametric bootstrapping. First, from the multiple se-

quence alignment used under the Hs we generate n artificial 

alignments of the same length, i.e., n bootstrap samples by sam-

pling columns with replacement. Second, we create alignments to 

be used under the Hp by splitting a target full-length gene (i.e. the 

one made up of two candidate fragments) at the same position as 

in the original alignment. Finally, we compute the test statistic for 

each of the n samples; let’s denote them by T1*, T2*, …, Tn*. 

If the sampling is correct, the distribution of Ti*, i = 1, 2,…, n will 

converge to the true distribution of the test statistic when n → ∞. 

Hence, if repeated many times, the distribution of the bootstrap 

sample test statistic values will approximate the distribution of the 

unknown test statistic. Throughout this project we set n to 100 un-

less otherwise stated. 

3. Compute bootstrap p-value as the proportion of samples with 

likelihood equal or above that of the input data: �� �
�#	��	��∗		�	���

�
.	

 Implementation 3.

As input candidate pairs, we identify, among all the protein sequences of 

a target genome, those that belong to the same gene family—either es-

tablished by Ensembl Compara or defined as deepest hierarchical orthol-

ogous groups as inferred by OMA (Altenhoff et al., 2013). We further 

require that fragments be non-overlapping, or overlapping with less than 

10% residues of both fragment being aligned in the same alignment 

column, using Mafft v7.164b (Katoh and Standley, 2013). In other 

words, we require that a12 < 0.1·l1 AND a12 < 0.1·l2, where l1 and l2 are 

the number of residues in the two fragments, and a12 is the number of 

these residues that are aligned. Thus, for each gene family, we align the 

sequences, enumerate all possible pairs of sequences belonging to the 

target genome, and retain as candidate pairs those that satisfy the afore-

mentioned overlap requirement.  

The LRT requires computing maximum likelihood estimates, i.e. find-

ing an optimal tree under both Hs and Hp. Under the Hs hypothesis, frag-

ments are part of the same gene. Hence, in order to find a maximum-

likelihood tree under the Hs, we concatenate the candidate fragments into 

a single sequence. To correct for some cases when a tree-building meth-

od gives a suboptimal tree, which may result in the estimated T0 < 0, we 

performed two tree searches under the Hp model; a tree search without 

providing an input topology, and a tree search with an input topology 

starting with the best tree under Hs with the two hypothetical fragments 

as sister leaves), and proceeded with the tree with higher likelihood.  

Some genes might be involved in multiple predictions, i.e., in more 

than one pair of fragments coming from a split gene. If all these multiple 

predictions span different parts of the sequences, we conclude that the 

gene is split in more than two pieces and consider these predictions as 

non-ambiguous. If by contrast more than one prediction spans over a 

common part of the sequence (which might be the case if the fragments 

come from very closely related paralogs, or if alternative splicing vari-

ants of the same gene are erroneously annotated as separate genes), we 

report the overlapping predictions as ambiguous.  

3.1 Datasets and evaluation methodology 

As a test case for evaluation and application of the methods, we used the 

proteome of bread wheat, i.e., Triticum aestivum cv. Chinese Spring. The 

bread wheat genome is notoriously large (~17 Gbp) and redundant: it is a 

hexaploid genome which arose from two recent allopolyploidisation 

events—with the three subgenomes referred to as A, B and D. Because 

of this large size and redundancy, the wheat genome is proving very 

difficult to assemble and annotate. In 2014, the International Wheat 

Genome Sequencing Consortium (IWGSC) published a highly fragment-

ed chromosome-by-chromosome survey sequence of the bread wheat 

genome (International Wheat Genome Sequencing Consortium 

(IWGSC), 2014). The same year, Choulet et al. (2014) published a high-

quality reference sequence of bread wheat chromosome 3B (third chro-

mosome of subgenome B). The two provide a good basis to evaluate our 

methodology on a challenging dataset. 

We also tested our method on the cassava genome, i.e. manihot escu-

lenta, draft version 4.1 (Prochnik et al., 2012) retrieved from Phytozome 

v7 (Goodstein et al., 2012).  

As customary in the field, we determine the quality of the methods by 

measuring the precision and recall. Here the recall measures the propor-

tion of fragmented genes that the methods can identify. The precision 

penalises for erroneous predictions by measuring the proportion of pre-

dictions that are indeed fragmented genes. For both measures, we simu-

lated fragmentation on the wheat 3B reference sequence. In a subsequent 
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experiment, we applied the tests to the wheat 3B survey sequence and 

validated predictions using the wheat 3B reference sequence. In this case 

the total number of fragmented genes is unknown, so we could only 

count the number of correct and wrong predictions, and calculate the 

precision. 

Finally, we applied the methods to the rest of the wheat survey se-

quence to infer split genes in the bread wheat proteome. 

3.2 Random fragmentation of the wheat 3B reference as-

sembly (recall) 

To determine the recall of the methods, we simulated fragmentation on 

genes assigned to a high-quality assembly of bread wheat chromosome 

3B (3B reference sequence). All genes and their gene families were 

obtained from Ensembl Plants, release 31. We randomly chose one hun-

dred genes, each at least 100 amino-acids long, and split them at a ran-

dom position such that both fragments are at least 50 amino-acids long. 

All alignments were performed using Mafft v7.164b with default param-

eters. Gene trees were built by FastTree v2.1.8 (Price et al. 2010), also 

with a default set of parameters. 

In addition, we simulated fragmentation in a more challenging setting, 

i.e. on small gene families typically containing only evolutionarily very 

close paralogs. As a source of homologous groups, we used hierarchical 

orthologous groups (HOGs). They were computed by the GETHOGs 

algorithm with a default set of parameters on the input dataset comprised 

of thirteen plants: bread wheat and twelve flowering plants exported 

from OMA Browser (Altenhoff et al. 2014) (Suppl. table 1). 

3.3 Introducing non-overlapping paralogs in wheat 3B ref-

erence assembly (precision) 

To inspect cases where the methods incorrectly predict split genes, we 

simulated fragments from pairs of paralogs assigned to the bread wheat 

3B reference sequence using the same datasets as above. We chose one 

hundred pairs of same-species paralogs, cut them at a random position 

and took two complementary fragments (one from each initial gene) each 

being at least 50 amino-acids long. Again, MSAs were obtained by Mafft 

v7.164b (default parameters) and gene trees by FastTree v2.1.8 (default 

parameters).  

Similarly as above, we also simulated more challenging cases of 

fragmentation. We used the same set of HOGs as in the previous section.  

3.4 Validation on 3B survey assembly 

To assess predictions on the real data containing fragmented genes, we 

applied our approaches to a low-quality assembly of bread wheat chro-

mosome 3B, the 3B survey sequence (IWGSP1; 2013-11-MIPS), and 

compared the predictions with the high-quality assembly of chromosome 

3B (“3B reference sequence”) downloaded from URGI 

(https://urgi.versailles.inra.fr). As a gold standard, we mapped sequences 

between the two assemblies using BLAST+ v2.2.30 (Camacho et al. 

2009).  

For the predictions, we used the same reference species as in the simu-

lations on HOGs (see previous two sections) which we again exported 

from OMA Browser (Suppl. Table 3). We computed gene families by the 

GETHOGs algorithm with a default set of parameters. We generated 500 

bootstrap samples for each family and performed both tests on fragments 

overlapping less than 10%. Sequences were aligned with Mafft v7.164b 

(default parameters) and trees built with FastTree v2.1.8 (default pa-

rameters) as above. In addition, we also computed HOGs with a different 

set of parameters and repeated the rest of the experiment.  

For the assessment, the mapping of sequences between the survey and 

high-quality genomes was not straightforward because the two differ not 

only in the degree of fragmentation, but also in some of the sequences 

themselves due to sequencing error, contamination etc. To allow for a bit 

of tolerance while still maintaining unambiguous mapping between the 

two, we required hits to cover at least 95% of the corresponding query, 

the percentage identity in these matching regions to be at least 95%, and 

the hit to be unambiguous. As a stringent control, we also performed a 

validation where, in addition to these two requirements, we only allowed 

mismatches to occur at the ends of a query sequence.  

3.5 Comparison to established methods and meta-approach 

As a point of comparison, we employed the Ensembl Compara pipeline 

and ESPRIT on the same 3B survey sequence as above. Again, the ob-

tained predictions from each method were mapped to the 3B reference 

sequence by BLAST+ v2.2.30 to inspect if predicted pairs belong to the 

same gene or not, requiring both coverage and percentage identity to be 

at least 95%. Validated predictions were compared to the results from 

Validation experiment on 3B survey sequence with the same BLAST+ 

criteria. 

To obtain a comparable set of predictions on the 3B survey sequence 

using public results available from the Ensembl Compara pipeline, we 

filtered “gene_split” pairs from their homologies file (release 21). We 

took only pairs where both genes were at least 50 amino-acids long and 

such that, when its corresponding gene family was aligned with Mafft 

v7.164b, candidate genes overlapped for less than 10%. We also includ-

ed cases where more than two genes were inferred as a part of the same 

gene given that no two genes involved overlapped for 10% or more. 

Since some of the sequences could not be found in the OMA Browser 

dataset used for validating Collapsing and LRT approach, we classified 

Ensembl predictions into two groups: those that could be found in the 

OMA Browser dataset, and hence, included in the comparison, and those 

that could not.  

Another set of predictions was obtained by running ESPRIT on the 

same 3B survey sequence data using twelve reference plants (the same 

dataset as in the Validation section, Suppl. table 3) keeping all parame-

ters default but increasing the required length of the candidate genes to 

be at least 50 amino-acids (option “MinSeqLenContig := 50”). We only 

considered a confident unambiguous set of predictions (reported in the 

hits.txt output file). 

In addition, we considered a meta-approach ESPRIT 2.0, which en-

compasses ESPRIT and the new combined approach. It takes the union 

of predictions made by ESPRIT and our joint method (collapsing 

branches with support lower than 0.95 and likelihood ratio test with 

significance of 0.01). 

3.6 Inferring split genes on the rest of the wheat survey 

assembly 

Finally, we employed the tests to infer fragmented genes in the first draft 

release of the predicted genes in whole bread wheat genome, i.e., Triti-

cum aestivum cv. Chinese Spring proteome (IWGSP1; 2013-11-MIPS). 

We considered only candidate fragments assigned to the same chromo-

some and the same chromosome arm. We used the same reference ge-

nomes as in the previous analyses with HOGs (see above). Based on 

simulations and validation on the 3B survey sequence, we determined a 

set of parameters used for predictions. In particular, we ran GETHOGs 
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with default parameters and allowed candidate fragments to mutually 

overlap less than 10% in the corresponding MSA. We used Mafft 

v7.164b to get alignments and FastTree v2.1.8 to construct trees, both 

with their default set of parameters. Finally, we chose 0.95 as a threshold 

for collapsing and set the significance threshold of the LRT to 0.01. 

 Results 4.

Recall that we aim to identify fragments of the same gene wrongly anno-

tated as separate genes in a genome of interest, leveraging genomes of 

related species. In the previous section, we introduced two phylogenetic 

methods: one based on collapsing branches with low bootstrap support 

and the other relying on a likelihood ratio test (LRT). To evaluate the 

methods and determine parameters for predictions on the bread wheat 

assembly, we took two approaches. First, we simulated fragmentation on 

the real data to calculate recall and precision. Then we applied both 

methods to the bread wheat chromosome 3B survey sequence and vali-

dated predictions with respect to the 3B reference sequence. Finally, 

based on the best parameters obtained from these analyses, we applied 

the method to infer split genes in the 20 other chromosomes of the sur-

vey wheat genome assembly. 

4.1 Artificial fragmentation of the wheat 3B reference as-

sembly  

To assess our methods, we first simulated fragmentation in 100 protein 

sequences from the high-quality wheat 3B reference assembly and tried 

to recover these pairs. Our simulations also included one hundred pairs 

of non-overlapping fragments generated from pairs of randomly selected 

paralogous genes—which can be very difficult negative cases if the 

paralogs are near-identical. 

On these challenging simulations, the collapsing test yielded high pre-

cision (0.85-0.88) and moderate recall (0.20-0.58), while the LRT per-

formed the other way round, yielding moderate precision (0.56-0.64) and 

high recall (0.81-0.99) (Fig. 2a, Suppl. File S1, Suppl. File es-

prit2_simulations.tar.gz).  

We also evaluated an approach that combines our two methods. A 

split gene was inferred if both methods were in agreement. This ap-

proach resembled the recall and precision of the collapsing approach 

(with the same threshold) but with slightly higher precision (Fig. 2a, 

Suppl. File S1). 

As a control, we performed another set of simulations using a differ-

ent set of input homologous sequences—OMA hierarchical orthologous 

groups (HOGs) containing protein sequences from thirteen plants includ-

ing wheat (Suppl. File S1, Suppl. File esprit2_simulations.tar.gz). Preci-

sion of the collapsing test was again high (0.73-0.81) while recall varied 

between 0.30 and 0.78. Precision of the LRT was moderate to high 

(0.51-0.89) and the recall was high (0.70-0.75) (Suppl. fig. 3a). As addi-

tional controls, we also repeated the analysis by changing one parameter 

of the pipeline at a time: 

a) alignment mode in Mafft that relies on local alignments, which 

could conceivably deal better with fragments (L-INS-I instead of 

FFT-NS-2) 

b) special mode in FastTree that reportedly deals better with frag-

mentary genes (option “-pseudo”) 

c) increasing the number of bootstrap replicates from 100 to 500 in 

the likelihood ratio test 

d) increasing the number of artificially introduced split genes from 

100 to 500. 

All these variants yielded qualitatively similar results (Suppl. Fig. 4). 

4.2 Artificial fragmentation of the cassava genome 

To assess whether our approach also works on a different set of species, 

we performed the same artificial fragmentation analysis on the cassava 

genome. As reference species, we used the 16 other dicot species availa-

ble in OMA version Dec 2017, of which the closest species is the West-

ern balsam poplar, which has diverged from cassava approximately 80 

MYA (Fawcett et al., 2009). 

Using the combined approach of collapsing(0.95)+LRT(0.01), we ob-

served a recall of 63% and a precision of 40%. Inspection of the false 

positives revealed that nearly all mistakes were due to fragmentation of 

close (i.e. species-specific) paralogs, which to our method are indistin-

Figure 2: Evaluation of the methods. a) Wheat genes from the high-quality wheat 3B chromosome were artificially fragmented and recovered by the collapsing, likelihood ratio test 

(LRT), and a combination of the two. Numbers indicate the threshold used for each datapoint. b) Split genes inferred on the low-quality (“survey”) wheat genome were validated using 

the high-quality wheat 3B, and comparison with three other approaches (Ensembl Compara, ESPRIT and the meta-method). Numbers indicate the threshold used for each datapoint. The 

meta-method takes union of ESPRIT’s and the predictions inferred when combining collapsing approach (threshold 0.95) and LRT (significance 0.01). c) The number of predictions on 

3B survey sequence classified as correct in the BLAST+ validation. “New approach” denotes a combination (intersection) of collapsing approach (threshold 0.95) and LRT (significance 

0.01). 
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guishable from split genes. Thus, the lower precision is explained by the 

much higher frequency of species-specific paralogs in cassava (75% of 

sampled paralogs in cassava vs. 13% in wheat). Indeed, when we repeat-

ed the analysis excluding artificial fragmentation of such species-specific 

paralogs, the precision increased to 65%, in line with the results on 

wheat (Supplementary Figure 4c). 

4.3 Validation on 3B survey assembly 

To further assess the tests and identify suitable parameters, we applied 

our methods on the chromosome 3B of the draft-quality bread wheat 

survey genome (International Wheat Genome Sequencing Consortium 

(IWGSC), 2014). We focused on this chromosome arm because it was 

one for which a much higher-quality reference assembly was available, 

obtained through painstaking piecewise sequencing and assembly using 

8452 bacterial artificial chromosomes (Choulet et al., 2014). To give an 

idea of the improvement between the two, the N50 statistic, which 

measures the assembly quality by reporting the minimum contig/scaffold 

length needed to cover 50% of the assembly, is 2.7 kb for the draft ge-

nome 3B chromosome vs. 892 kb for the high-quality 3B chromosome. 

Thus, the latter could be treated as ground truth—thus enabling us to 

gauge, in a realistic setup, how well our approaches can infer split genes 

in a highly fragmented genome with abundant potential paralogs. 

Overall, the methods achieved higher precision than when applied to 

simulated fragmentation (Fig. 2b). The analysis showed particularly high 

precision with the collapsing approach. The absolute recall rate could not 

be easily assessed on these real data; instead, we considered the number 

of correctly predicted HOG annotations as a surrogate for recall, yielding 

results highly consistent with the simulations (Fig. 2b).  

One challenge with this setup was the fact that the draft survey se-

quence assembly contains other types of problems, such as sequencing 

errors or ~10% contamination from other chromosomes (International 

Wheat Genome Sequencing Consortium (IWGSC), 2014)). If we only 

consider fragments that can be perfectly mapped between the draft 

whole-genome assembly and the reference assembly (no mismatch in 

their central part, see Supplementary Materials), the number of predic-

tions that could be validated diminishes, but on the remaining set, our 

approaches showed even higher precision (Suppl. fig. 3c and 3d), indi-

cating that the performance reported in Fig. 2b is conservative. 

Control experiments also gave consistent results (Suppl. File S2, 

Suppl. File esprit2_validation.tar.gz). As expected, relaxing parameters 

yielded more predicted split genes, but at a cost of lower precision (Fig. 

2b vs. Suppl. fig. 3b).  

4.4 Comparison to established methods and meta-approach 

To gain further insights into the performance of the proposed approach-

es, we compared them to two existing methods, namely Ensembl Com-

para pipeline (which however cannot easily be run on custom genome 

data) and ESPRIT, as described in the Methods. Both methods were 

applied to the 3B survey sequence and then validated against the 3B 

reference sequence using BLAST+ (Suppl. File es-

prit2_comparison.tar.gz). We also considered a meta-approach, which 

we call ESPRIT 2.0, comprising ESPRIT and a combination of the col-

lapsing approach (threshold 0.95) and LRT (significance 0.01). 

In terms of the number of correct predictions, Ensembl Compara and 

ESPRIT performed equally well or better than our approaches displaying 

high precision (Fig. 2b and Suppl. table 3). Further analysis showed that 

predictions from different methods are rather complementary and 

worthwhile to take into account (Suppl. fig. 4). Hence, the meta-

approach, ESPRIT 2.0, inferred by far the biggest number of correct 

predictions with high precision (Fig. 2b and Suppl. table 4). 

4.5 Predictions on the rest of the survey assembly 

Finally, we applied our tests to infer split genes on the rest of the bread 

wheat genome, i.e., all chromosomes other than 3B. Based on the anal-

yses on simulated fragmentation and between two assemblies (see 

above), we determined parameters for the tests. For each chromosome 

arm, we obtained gene families by running OMA GETHOGs with de-

fault parameters. In the collapsing approach, we collapsed all branches 

with bootstrap support less than 0.95, and we performed the likelihood 

ratio test with the significance level of 0.01. The intersection of predic-

tions identified 1442 pairs in total: 1221 unambiguous and 221 ambigu-

ous cases. The distribution of the number of predictions per chromosome 

is shown in Fig. 3 (see also Suppl. File S3) while fragment IDs are pro-

vided in Suppl. file esprit2_predictions_wheat.tar.gz. 

 Discussion and outlook 5.

Despite technological and algorithmic advances, genome assembly and 

annotation remains a challenge, especially for large polyploid genomes 

with complex evolutionary histories. Genes often remain fragmented and 

fragments get annotated as separate genes. Our work demonstrates that 

using available assemblies of related species can provide enough infor-

mation to recognise some of those cases and obtain full-length genes. 

We developed two approaches and showcase their good performance 

on a challenging proteome of hexaploid bread wheat (Triticum aestivum 

Figure 3: High-confidence inferred gene splits on the wheat genome. A, B, and D refer 

to the three subgenomes of the hexaploid wheat genome. a) Number of unambiguous 

predictions for each chromosome arm. b) Number of ambiguous predictions (i.e. for 

which there is more than two candidate fragments for a single juncture). Pairs of frag-

ments are inferred separately for each chromosome arm of flow-sorted Triticum aes-

tivum cv. Chinese Spring, except chromosome 3B, for which the analysis was performed 

on the entire chromosome.  
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cv. Chinese Spring). In simulations and validation, both of which were 

performed on the real data taking into account all its complexities, the 

approach relying on collapsing gene tree branches showed lower recall 

and higher precision than a likelihood ratio test (Fig. 2). As a trade-off 

between precision and recall, we propose taking an intersection of their 

predictions, as we did in the quest for fragmented genes in the wheat 

survey sequence dataset. As our stringent simulation and real data as-

sessment shows, the inferred split genes are highly specific. The perfor-

mance is even better when we combine the new phylogeny-based tests to 

our earlier pairwise approach “ESPRIT”. 

The two main inherent challenges of in-silico split gene inference are 

the confounding effect of close paralogs and the variation in the rate of 

evolution along the sequences. Indeed, sometimes fragments come from 

identical or nearly identical paralogs and there is not enough information 

to distinguish fragments belonging to one gene from another. Hence, we 

are more likely to make a false positive prediction (Suppl. Fig. 5). This 

was particularly salient in the artificial fragmentation analyses on the 

cassava genome. Indeed, cassava is known to have undergone a whole 

genome duplication around 35-47 MYA ago (Bredeson et al., 2016), 

which is not shared by another reference species in our analysis. As a 

result, many pairs of paralogs are specific to this species, and thus virtu-

ally indistinguishable from fragments of the same gene by our method.  

As for the second main challenge, evolutionary rate heterogeneity 

across the protein length, this can pose problem because fragments of the 

same genes can wrongly appear to be coming from distinct sequences. 

Consider for instance a protein composed of two domains—one slowly 

evolving and one fast evolving. If we consider each domain as a distinct 

sequence and look at their position in a gene tree including full-length 

homologous counterparts, the branch lengths connecting these fragments 

to the rest of the tree may have markedly different lengths. As a conse-

quence, the increase in likelihood obtained by having distinct branches 

for each fragment may be sufficiently large for our test to erroneously 

infer that the fragments come from distinct sequences (see Suppl. Table 

5 for an actual example). It may be possible to address this problem by 

more explicitly modelling variation of rate among sites.  

At a practical level, predictions heavily depend on the choice of two 

parameters: a threshold for collapsing branches and a significance level 

for the likelihood ratio test. Lower, more stringent thresholds for collaps-

ing yield more confident predictions, while higher, less conserved 

thresholds will produce more predictions but less confident. Similarly, a 

higher significance of the likelihood ratio test will result with less but 

more confident predictions. Obtaining more predictions can be achieved 

by lowering the significance of the test at the cost of their lower confi-

dence. Overall, it is important to choose thresholds depending on the 

application. For example, a higher number of predictions can be favour-

able for comparison with other data. 

Predictions also depend on the input families. Bigger gene families fa-

cilitate more predictions (Fig. 2, Suppl. fig. 3) but also result in more 

ambiguous calls, i.e., cases where a fragment is involved in multiple 

predictions (Suppl. File S2). We observed fewer false positive predic-

tions when we simulated fragmentation on bigger gene families where 

we were more likely to randomly split a pair of more distant paralogs in 

comparison to small gene families which are more likely to contain only 

very close paralogs (Fig. 2a, Suppl. fig. 3a). However, the results of 

validation indicate that the methods are still able to identify a reasonable 

number of split genes with high precision even when small gene families 

are used. 

Throughout this project, we fixed some of the parameters. First, we 

considered only genes at least 50 amino-acids long. Shorter sequences 

contain less information thus make phylogeny reconstruction more chal-

lenging; at the same time, the benefit of putting together short fragments 

is also more limited. Second, we required candidate fragments to overlap 

less than 10%. Increasing the overlap increases the number of candidate 

pairs and, consequently, the number of predictions including false posi-

tive and ambiguous predictions. Finally, we used Mafft v7.164b to align 

gene families and FastTree v2.1.8 to reconstruct gene trees, both with 

their default parameters due to their convenience and speed. Exploring 

their parameter space or using more suitable tools for the dataset of 

interest could contribute to higher precision and recall. 

As often with new approaches, the likelihood ratio test still has room 

for improvement. Currently, we compute the distribution of the test 

statistic empirically, via resampling. We computed up to five hundred 

samples per test which, given the simulations and validation, seems to be 

enough here; yet the convergence of the distribution could be explored. 

Increasing the number of samples might lead to significantly better ap-

proximation of the distribution and more accurate results. In addition, 

parameterising the distribution of the test statistic would reduce compu-

tational time and memory usage.  

Since both tests rely on evolutionary relationships, some of the mis-

takes could be avoided by implementing a more realistic evolutionary 

model. This is of particular importance for cases which are missed due to 

differences in evolutionary rates across the length of the gene. 

To further improve the performance, one could try to find optimal pa-

rameters for the dataset of interest and application in question. Different 

strategies could be used to obtain input families as well as alternative 

tools for alignments and methods with more exhaustive optimal tree 

search. For datasets with relatively close levels of divergence, tree infer-

ence based on nucleotide instead of amino-acid sequences might confer 

more statistical power to our tests. It may also be possible to exploit 

transcriptome data as additional source of information (Zhang et al., 

2016). 

But already in its present form, as the large number of detected split 

genes in the wheat genome illustrates, our approach is already proving 

highly useful. All computer code is available for reuse as a user-friendly 

package named “ESPRIT 2.0” (https://github.com/DessimozLab/esprit2) 

that we hope will help make phylogeny-based detection of split genes a 

routine step in genome assembly and annotation. 
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