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Abstract

Subjective assessments of spatial regularity are common in every-
day life and also in science, for example in developmental biology. It
has recently been shown that regularity is an adaptable visual dimen-
sion. It was proposed that regularity is coded via the peakedness of
the distribution of neural responses across receptive field size. Here,
we test this proposal for jittered square lattices of dots. We examine
whether discriminability correlates with a simple peakedness measure
across different presentation conditions (dot number, size, and average
spacing). Using a filter-rectify-filter model, we determined responses
across scale. Consistently, two peaks are present: a lower frequency
peak corresponding to the dot spacing of the regular pattern and a
higher frequency peak corresponding to the pattern element (dot). We
define the “peakedness” of a particular presentation condition as the
relative heights of these two peaks for a perfectly regular pattern con-
structed using the corresponding dot size, number and spacing. We
conducted two psychophysical experiments in which observers judged
relative regularity in a 2-alternative forced-choice task. In the first
experiment we used a single reference pattern of intermediate regular-
ity and, in the second, Thurstonian scaling of patterns covering the
entire range of regularity. In both experiments discriminability was
highly correlated with peakedness for a wide range of presentation
conditions. This supports the hypothesis that regularity is coded via
peakedness of the distribution of responses across scale.
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1 Introduction1

Regular spatial patterns appear in natural and artificial systems at a wide2

range of scales. Although not always defined, regularity can be regarded as3

a simple law that governs the appearance of an image. There exist distinct4

types of regularity and these may depend on the specific features of the im-5

age. For example, we frequently encounter patterns with repeating elements6

placed at equal spacings. This type of pattern is defined by the set of element7

locations (called the point pattern), and the form of the individual elements8

placed at each point (e.g., dots, as used here). Such an arrangement can be9

described by a straightforward law of periodicity according to which, neglect-10

ing edge effects, an image, I, appears identical to itself, when it is translated11

by an integer number, m, of a quantized step, ~d, in one or more directions12

(i.e., I(~x + m~d) = I(~x)). Similar invariance laws can also describe reflec-13

tion or rotational symmetries and are well studied (Miller, 1972; O’Keeffe14

& Hyde, 1996; Griffin, 2009). Vision strongly engages with regularity even15

when the underlying law is not identified or cognitively accessible as, for ex-16

ample, in Glass patterns (Glass, 1969) or in patterns with self-similarity at17

multiple scales. Specific types of symmetry have been appreciated and used18

historically in architecture and arts long before their explicit mathematical19

formulation was derived.20

Regularities may interact synergistically (Wagemans, Wichmann & Op de21

Beeck, 2005) and in a generally unpredictable fashion. For example, when22

the horizontal distance between dots in a square lattice decreases, this can23

give rise to a new percept: the appearance of notional vertical lines (Wage-24

mans, Eycken, Claessens & Kubovy, 1999). Regularity can cause pop-out25

effects and can be considered a type of Gestalt (Koffka, 1935; Ouhnana,26

Bell, Solomon & Kingdom, 2013). Attneave (1954) considered the ability of27

the visual system to detect regularity as a mechanism of the perceptual ma-28

chinery to reduce redundancy by compressing information and thus increase29

coding efficiency. In nature, perfect regularity is rare. The visual system30

most often deals with partial regularity, i.e., some amount of departure from31

perfect regularity. In textures, the degree of regularity is a cue for texture32

discrimination and segmentation (Bonneh, Reisfeld & Yeshurun, 1994; Van-33

cleef, Putzeys, Gheorghiu, Sassi, Machilsen & Wagemans, 2013). Regularity34

also interacts with other perceptual dimensions, e.g., numerosity (Whalen,35

Gallistel & Gelman, 1999) and needs to be controlled in psychophysical ex-36

periments (All̈ık & Tuulmets, 1991; Bertamini, Zito, Scott-Samuel & Hulle-37
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man, 2016; Burgess & Barlow, 1983; Cousins & Ginsburg, 1983; Ginsburg,38

1976, 1980; Ginsburg & Goldstein, 1987). Similarly, in contour-integration39

tasks, stimuli of intermediate regularity must be used to avoid density cues40

(Demeyer & Machilsen, 2012; Machilsen, Wagemans & Demeyer, 2015).41

Perception of partial regularity is useful for scientific analysis. Researchers42

very often rely on vision to assess the degree of organization in patterns en-43

countered in the study of evolving systems. Partial regularity is essential in44

natural sciences. In biological organisms, high regularity is advantageous as it45

affects efficiency (e.g., in the eye it allows for a high density of receptors at the46

fovea), while lack of regularity manifests as disease (e.g., cancer) and compro-47

mised homeostasis. In some processes, however, what is crucial is the balance48

between perfect and partial regularity. For example, during development,49

dynamic noise keeps tissue in a state of intermediate regularity, protecting50

cell proliferation by maintaining a dynamic equilibrium between newly gen-51

erated cells with division processes and cell death. In this way, biological52

functions are able to adjust to changes and so exhibit robustness across dif-53

ferent developmental conditions (Cohen, Baum & Miodownik, 2011; Cohen,54

Georgiou, Stevenson, Miodownik & Baum, 2010; Marinari, Mehonic, Curran,55

Gale, Duke & Baum, 2012). Interestingly, despite its importance, there is no56

unified framework for estimation of the degree of regularity. Rather, there57

are a variety of isolated approaches (e.g., Cliffe & Goodwin, 2013; Dunleavy,58

Wiesner & Royall, 2012; Jiao, Lau, Hatzikirou, Meyer-Hermann, Corbo &59

Torquato, 2014; Sausset & Levine, 2011; Steinhardt, Nelson & Ronchetti,60

1983; Truskett, Torquato & Debenedetti, 2000). Occasionally, researchers are61

hesitant to trust measures they use, as they report an obvious disagreement62

between the measure and what they perceive visually when examining the63

organization of a system (Cook, 2004). Humans are particularly consistent64

in their judgments of regularity even for diverse sets of stimuli (Protono-65

tarios, Baum, Johnston, Hunter & Griffin, 2014; Protonotarios, Johnston66

& Griffin, 2016), and since these judgments have an interval-scale structure67

(Stevens, 1946), they can be used as a basis for quantification. By analyzing68

the process of pattern formation in the developing Drosophila epithelium, it69

has been demonstrated that an objective surrogate of perceived regularity70

can be used for scientific analysis (Protonotarios, Baum, Johnston, Hunter71

& Griffin, 2014).72

Regularity is thus an important aspect of stimuli for the visual sys-73

tem. However, little is known about how it is encoded in the brain. Ouh-74

nana et al. (2013) showed that regularity is an adaptable visual dimen-75
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sion, and proposed that it is coded via the peakedness of the distribution76

of neural responses across receptive-field size. They used patterns consist-77

ing of luminance-defined (Gaussian blobs), and contrast-defined (difference78

of Gaussians and random binary patterns) elements arranged on a square79

grid, and they varied the degree of regularity by randomly jittering their po-80

sition. It was found that a test pattern appears less regular after adaptation81

to a pattern of similar or higher degree of regularity. The strength of this82

uni-directional aftereffect was dependent on the degree of regularity of the83

adapting pattern, with higher regularity causing a stronger effect. Based on84

the observation that the amplitude of the Fourier transformation of a regular85

pattern is also regular, they suggested that regularity information is carried86

mainly by the amplitude spectrum and not the phase. They proposed that87

regularity is coded via the pattern of response amplitudes of visual filters88

of varying receptive-field size and that adaptation alters this pattern of re-89

sponses.90

To illustrate the point, they simulated a simple filter-rectify-filter model of91

neural responses (Graham, 2011) and examined the distribution of responses92

across scale for a perfectly regular and a random-dot pattern. The sequence93

of processing stages is illustrated in Figure 1. First, a bank of bandpass filters94

of varying size is applied to the image. Here, the receptive fields are vertical95

Gabors:96

F (x, y) = exp

(
−x

2 + y2

2σ2

)
cos(2πfx), (1)

with the standard deviation of the Gaussian envelope, σ, varying to cover a97

range of spatial scales. σ covaried with spatial frequency, f , according to:98

σ =
1

πf

√
ln2

2

2b + 1

2b − 1
(2)

to maintain a constant full-width, half-height spatial frequency bandwidth, b99

(in octaves). The Gabor filter is normalized by a factor of σ2 to keep energy100

sensitivity constant across scale. The responses of the first-stage filter are101

then rectified by squaring and a second-stage low-pass filter sums the output102

over a large region and takes the square root. Figure 1 illustrates the output103

of the filter-rectify-filter cascade across scale for a regular and an irregular dot104

pattern. In the spectrum of the regular pattern two predominant peaks can105

be seen. The first appears at lower spatial frequency and coincides with the106

lattice spacing, while a second broader peak at higher frequency corresponds107
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to the pattern element (dot) size. The first peak is absent in the irregular108

pattern. Although this analysis is applied to patterns of luminance-defined109

elements, it can be easily generalized to contrast-defined elements by the110

introduction of an additional intermediate stage of bandpass filters and non-111

linearity (Ouhnana et al., 2013). Ouhnana and colleagues (2013) suggested112

that regularity is coded via some measure of peakedness of this distribution.113

Figure 1: Demonstration of the filter-rectify-filter process for two dot pat-
terns. The top row demonstrates the process for a perfectly regular pattern
and the bottom row for a Poisson pattern. The dot pattern was convolved
with a series of Gabor filters of varying spatial scale. The outputs were
squared and pooled across a fixed circular area and then a final square root
nonlinearity was applied. Comparing the two spectra, one can see the narrow
peak that corresponds to the lattice spacing in the upper-right graph; this
peak is absent for the Poisson pattern.

We can use data from previous work to verify that this is a reasonable114

assumption. We examined the perception of regularity for dot patterns that115

were based on a square lattice (Protonotarios et al., 2016). Regularity was116

varied using positional jitter. We used patterns that covered the whole range117

of regularity, from a perfect lattice to total randomness (a Poisson pattern).118

Figure 2 shows five example patterns. We used the more general term order119

to describe the degree of organization of the dot patterns. However, for120

this simple class of stimuli based on a reference pattern (a square grid),121

with deviation from regularity controlled by a single variable, we consider122

the terms order and regularity to be synonymous. We used Thurstonian123

scaling (Thurstone, 1927) on judgments of relative regularity between pairs of124

patterns and showed that humans can distinguish up to 16.5 just-noticeable-125

difference (JND) levels between total randomness and perfect regularity.126
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Using the derived perceptual regularity values from the scaling procedure127

we can test whether these are in agreement with the height of the peak128

that corresponds to the lattice spacing in the spectrum of responses across129

scale. Figure 3 shows that peak height correlates exceptionally well with130

fitted regularity value (Pearson correlation coefficient ρ = 0.99). Although131

this appears to be a very strong validation of the hypothesis that regularity132

is coded via this simple measure of peakedness, an examination of alternative133

quantifications gave comparable correlation values. For example, geometrical134

measures based on the coordinates of the centers of the dots such as, for135

example, the square root of the variance of the nearest-neighbor distances,136

also correlates well with the fitted regularity values (ρ = −0.98). Even a137

simplistic measure — the single shortest pairwise distance between any points138

in the pattern — correlates highly (ρ = 0.96), even though it is clear that139

this measure cannot possibly estimate overall regularity in general. Since a140

variety of quantifications based on point coordinates or Gabor filter responses141

all correlate comparably well with perceived regularity for such a simple class142

of stimuli, it is important to examine a broader class of stimuli.143

Figure 2: Dot patterns exhibiting different levels of regularity. All patterns
were based on the same square lattice of points and regularity was controlled
by the amount of positional jitter.

Here, rather than using a more diverse stimulus set, which could introduce144

additional complexity, we consider an alternative approach for testing the145

hypothesis about regularity coding suggested by Ouhnana and colleagues146

(2013). The idea is illustrated in Figure 4. Although point patterns are147

abstract mathematical entities, concrete choices have to be made about how148

they are displayed for human observers. A finite number of points have to149

be depicted in a limited area with the use of small visual elements that carry150

little information over and above their location. We chose to use dots for the151

depiction of point patterns as these are the simplest elements with circular152

symmetry and dot patterns are commonly used for analysis in a variety153
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Figure 3: Discrimination scale values from Thurstonian scaling vs. height
of the peak at the spatial frequency corresponding to the lattice periodicity
in the distribution of responses across scale. Data from Protonotarios and
colleagues (2016).

of scientific fields where subjective assessments of regularity are employed.154

However, even for a dot pattern based on the same set of xy coordinates,155

distinct presentation conditions can be chosen by varying dot size and average156

dot spacing. These give rise to unequal distributions of responses across scale.157

Figure 4 shows response distributions for a perfect lattice and a random158

Poisson dot arrangement for two presentation conditions differing in dot size.159

The curves have been scaled so that the broad peak at high spatial frequency160

that corresponds to the dot has a y-value of 1. Considering the distribution161

of responses of the perfect lattice, we define the peakedness associated with a162

presentation condition as the height on this rescaled spectrum of the narrow163

peak that corresponds to the spacing of the regular grid. If we assume a single164

neural read-out mechanism for the peak value common for all conditions,165

and consider the fact that the peak is absent for the random arrangement166

of dots and maximum for the regular grid, we predict that the conditions167

associated with higher peakedness values will result in better discrimination168

performance. Because we use relative responses for this measure, this implies169

that performance should be independent of contrast (as long as the signal-to-170

noise ratio is sufficiently high) and dot number. The latter prediction assumes171

that the second stage of the filter process pools over a sufficiently large area,172

so that dot number should not affect discrimination performance. We predict173

that a condition with larger peakedness (by which we mean the range from174

fully random to fully regular) will result in better discrimination performance175
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between different amounts of jitter and a larger number of JNDs across the176

full range of regularity. We test these predictions in the two experiments177

reported below.178

Figure 4: Definition of peakedness and comparison of corresponding values
for patterns that differ in dot size. For the same average dot spacing, the
peakedness value that corresponds to the pattern with a larger dot size is
higher.

We present two experiments that test the hypothesis that regularity is179

coded via the peakedness of the distribution of responses across scale. We180

examine whether peakedness predicts discrimination performance across a181

range of stimulus parameters (dot number, size, and average spacing). In182

the first experiment, observers judged relative regularity for seven presen-183

tation conditions in a 2-alternative, forced-choice (2AFC) task with a ref-184

erence pattern of intermediate regularity. In this experiment we quantified185

discriminability using the SD of a cumulative Gaussian function fit to the186

discrimination data (a low value of SD corresponds to high discriminability).187

In the second experiment, a Thurstonian scaling approach was used on pat-188

terns covering the entire range of regularity. We quantified discriminability189

as the number of JNDs from the most to the least regular pattern.190

2 Experiment 1191

2.1 Methods192

2.1.1 Observers193

Four observers (age: 27–43; three females) participated in the experiment.194

Observers had normal or corrected-to-normal visual acuity. All volunteered195
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and were not compensated for their participation. One observer is the first196

author, while the other three were researchers in the Department of Psychol-197

ogy at New York University and näıve to the purpose of the research. The198

study was approved by the New York University Committee on Activities199

Involving Human Subjects. Participants gave informed consent prior to the200

experiment. All procedures were carried out in accordance with the Code of201

Ethics of the World Medical Association (Declaration of Helsinki).202

2.1.2 Apparatus203

Stimuli were presented on a 17.6-inch SONY CPD-G400 monitor in a dark-204

ened room. The resolution was 1280×1024 and the refresh rate was 85 Hz.205

Observers could adjust the position and height of their seat and rested their206

head on fixed chin and forehead rests, which provided a constant viewing207

distance of 58 cm to the center of the display. At this distance one pixel208

(0.27 mm) corresponded to a visual angle of 0.027 deg. The luminance of209

mean gray was 57.6 cd/m2. The presentation of the stimuli and the collection210

of responses were controlled by an iMac desktop computer running MATLAB211

with the Psychophysics Toolbox package (Brainard, 1997).212

2.1.3 Stimuli213

Stimuli were point patterns using solid black dots as the elements, displayed214

on a mean gray background within a circular aperture. Dot size and spacing215

varied across conditions. Pattern radius varied accordingly to achieve an ap-216

proximately constant number of dots (on average 150) for all patterns in a217

condition and across conditions. The centers of the dots on the display were218

defined by a set of xy-coordinates; these corresponded to a square lattice219

of points. Dots were drawn with anti-aliasing to allow for precise placing.220

Different levels of regularity were achieved by displacing each point indepen-221

dently in both the vertical and horizontal directions. The displacements were222

randomly sampled from a Gaussian distribution with zero mean and stan-223

dard deviation expressed as a fraction of the lattice constant (the shortest224

distance between points of the square lattice). The SD of the Gaussian noise225

controlled the amount of jitter of the points and thus the perceived regular-226

ity, which could vary from perfect (SD = 0, no jitter, i.e., a square lattice)227

to total randomness (SD = ∞, i.e., a Poisson pattern). In practice, patterns228

of extreme irregularity can be generated by sampling the coordinates of the229
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points from a uniform distribution. To prevent dots of different patterns230

appearing around the same notional locations within the aperture, a random231

overall positional shift was applied before the selection of the circular area.232

Perceived regularity was controlled monotonically by the amount of jitter233

(Protonotarios et al., 2016), but non-linearly. We employed the a-scale algo-234

rithm we developed in previous work (Protonotarios et al., 2014) to estimate235

perceived regularity for our stimuli before the collection of data. Although236

the scale was designed and tested on a diverse set of point patterns to study237

interactions of multiple forms of regularity (which we term order), it has238

been shown that it provides a good estimate of perceived regularity for this239

simpler set of stimuli (Protonotarios et al., 2016). The algorithm assesses240

the variability of the spaces between points based on a Delaunay triangula-241

tion (Delaunay, 1934) of their locations. The a-scale values are a monotonic242

function of the sum of the entropies of the smoothed distributions of the243

Delaunay triangles’ area and shape. A triangle’s shape is defined as the nor-244

malized lengths of the shortest and median edges,
(

Lshortest edge

Llongest edge
,
Lmedian edge

Llongest edge

)
.245

A Delaunay triangulation is the partitioning of the plane in triangles in such246

a way that no circumcircle of any triangle contains a point of the pattern.247

By design, the algorithm’s maximum value, 10, is mapped to the perfect248

lattice, and value zero is mapped on average to the totally random Poisson249

point pattern. For our stimuli a unit on this scale varies depending on the250

presentation condition, but roughly corresponds to 1.6 JNDs (Protonotarios251

et al., 2016).252

Figure 5, shows the output of the algorithm for patterns of 180 points253

and a range of jitter levels (100 patterns per jitter level). Two observations254

are worth mentioning. First, the relationship between predicted perceived255

regularity and jitter is not linear. Considering the perfect lattice as starting256

point, a small amount of jitter does not cause considerable deviation from257

perfect regularity initially, but as jitter increases the slope becomes steeper,258

i.e., small changes in jitter cause larger changes in perceived regularity. This259

agrees qualitatively with the results of a previous study (Morgan, Mareschal,260

Chubb & Solomon, 2012): discrimination judgments of regularity near the261

regular end of the scale are facilitated by a pedestal amount of jitter. Be-262

yond a jitter level of 0.3, the slope gradually flattens. Therefore, we can263

roughly identify three regimes for the dependence of perceived regularity on264

jitter. The second observation is that as jitter increases, the variability of the265

estimated perceived regularity increases as well. This means that patterns266
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generated with the same jitter may differ in how regular they appear, and267

this affects irregular patterns to a greater extent.268

The above considerations have been taken into account in the pattern-269

selection process. Since we are interested in discrimination performance and270

a large amount of data per observer is required, we had to restrict our analysis271

to a narrow range of the regularity spectrum. We thus decided to use a single272

reference pattern. The corresponding jitter level was selected as 0.1 as this273

value lies on the linear section of the curve (Figure 5). Moreover, the slope274

has its maximum value allowing us to use a small range of jitter values to275

estimate discrimination performance. This reference pattern is closer to the276

regular end of the scale, which results in reduced pattern variability. The277

linearity and the narrow range in jitter allow us to fit a cumulative Gaussian278

psychometric function to the data. Additionally, judgments between more279

regular patterns are easier for observers.280

In pilot studies, even at this low level of jitter, pattern variability was281

considerable. We decided to further reduce this variability by pre-selecting282

patterns. We pregenerated 1,000 patterns for each jitter level (spacing of 5×283

10−4). Since it appears in all trials, for the reference pattern we generated a284

larger number (10,000). We selected patterns from these sets that differ from285

the mean of the group by less than 0.1 units on the a-scale. If this selection286

using the a-scale biases perceived regularity, it should do so similarly for all287

conditions at a given jitter level, and hence comparisons across conditions288

should remain valid.289

As jitter increases, a larger number of dots will be displaced out of the290

selected subregion of the pattern, but a larger number of dots will be dis-291

placed into the subregion as well. Given the finite size of our patterns, we292

examined whether this stochastic fluctuation resulted in a significant bias of293

dot number across jitter levels. We found that there was a slight increase294

of average dot number as jitter increased. The average numbers of dots and295

corresponding 95% confidence intervals were 150±4 for the reference pattern296

and 148±3 and 151±4 for the two extreme jitter values of the test patterns297

(0.05 and 0.15), respectively. These variations are quite small, thus we do298

not expect that regularity judgments are confounded with variations in the299

number of dots, particularly given that the most relevant data for the com-300

putation of sensitivity were located much closer to the reference pattern than301

the two extremes. Additionally, as mentioned above, a common urn of xy-302

coordinates was employed to depict (appropriately scaled) patterns across303

conditions. Thus, judgments cannot be biased due to pattern specifics across304
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conditions. Note also that the estimation of peakedness of a condition is305

based on the range of our measure from a perfect lattice to a Poisson pat-306

tern, neither of which was included in the stimulus set. The estimation of307

peakedness is robust both with respect to the pattern dot number and the308

size of the second-stage summation filter. This is because the response curves309

are rescaled to match at the peak that corresponds to the individual dots.310
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Figure 5: Boxplot of a-scale estimates of perceived regularity for point pat-
terns of 180 points as a function of jitter level. Jitter level is expressed in
units of SD of the Gaussian jitter as a fraction of dot spacing.

Condition 1 2 3 4 5 6 7

Dot size d d d 2d 2d 4d 4d
Dot size (mm) 0.54 0.54 0.54 1.08 1.08 2.16 2.16
Dot spacing D 23/4D 2D D 2D 23/4D 2D
Dot spacing (mm) 5.4 9.1 10.8 5.4 10.8 9.1 10.8
Pattern radius R 23/4R 2R R 2R 23/4R 2R
Peakedness 0.70 0.44 0.38 1.04 0.56 1.10 0.94

Table 1: Conditions for experiment 1 (d = 3.24 arcmin, D = 32.4 arcmin,
R = 3.77 deg)
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2.1.4 Conditions311

There were 7 conditions in the experiment, corresponding to different values312

of dot size and spacing (Table 1). Dot size values were multiples of d =313

3.24 arcmin (2 pixels) and dot spacing values were multiples of D = 32.4 ar-314

cmin (20 pixels). Pattern radius was proportional to dot spacing (where315

R = 3.77 deg) to maintain a constant number of dots. With these limita-316

tions we generated a number of conditions and selected ones that spanned317

the range of peakedness. The last row in Table 1 shows the peakedness value318

computed as described in the Introduction. In our analysis we varied spa-319

tial frequency f over a broad range, setting the bandwidth b of the filter320

to one octave, consistent with values found in the literature (Blakemore &321

Campbell, 1969; Stromeyer & Klein, 1974; De Valois, Albrecht & Thorell,322

1982; Foster, Gaska, Nagler & Pollen, 1985). One octave is narrow enough323

to allow the identification of clear peaks in the spectrum of responses across324

scale for our stimuli. However, our results are robust with respect to the325

bandwidth setting.326

2.1.5 Procedure327

Observers were presented with two dot patterns, centered 8.6 deg to the328

left and right of the display center (Figure 6). One was a reference pattern329

(jitter = 0.1) and one was a comparison pattern. They selected by keypress330

the pattern that appeared to be more regular (2AFC). A small black fixation331

cross was presented before each trial at the center of the screen, and test and332

reference patterns were randomly positioned to the left or right. To avoid333

learning of the patterns, images were displayed rotated by 0, 90, 180 or 270334

deg, chosen randomly. The duration of presentation was 1500 ms. Observers335

had unlimited time to register a response after the end of the presentation.336

Auditory feedback was provided after each trial. The next trial was initiated337

500 ms after the response.338

The jitter level of the comparison stimulus was controlled by four in-339

terleaved staircases (Levitt, 1971). Two were 1-up/2-down (converging on340

71%) and two were 2-up/1-down (converging on 29%). The initial step was341

16 times the smallest step size (5 × 10−4). Step size was halved at every342

reversal of each staircase until it reached the minimum. The starting values343

of jitter for the staircases were 0.05 for the 2-up-1-down and 0.15 for the344

1-up-2-down staircases. During each session, 5 easy trials with extreme val-345
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ues (0.05 and 0.15) were included on randomly chosen trials to remind the346

observer of the nature of the task and also to stabilize estimates of the lapse347

rate to avoid biased estimates of the slope of the fitted psychometric curve348

(Prins, 2012).349

Each session consisted of 7 blocks of trials (one per condition), run in350

random order. Each block consisted of 150 trials (35 trials per staircase351

plus 5 easy trials each at the low and high ends of the tested jitter range).352

Observers 1, 2, and 4 completed six sessions, while observer 3 completed four.353

Figure 6: Experiment 1: Sample stimulus display.

2.2 Results354

Cumulative Gaussian psychometric functions were fit by maximum likelihood355

to the probability of selecting the reference stimulus as a function of the com-356

parison stimulus’ jitter value. We included a lapse parameter to minimize357

estimation bias (Wichmann & Hill, 2001a; Prins, 2012). Each individual and358

condition was fit separately. Figure 7 shows examples of fitted psychometric359

curves for conditions 3 and 6, which have the lowest and highest peakedness360

values, respectively. Data are binned for ease of plotting. The SD (σ) value361

of the cumulative Gaussian function is an estimate of discrimination perfor-362

mance; lower values of σ correspond to higher sensitivity. Figure 8 shows363

σ as a function of the peakedness measure for individual observers. Error364

bars were computed using a parametric bootstrap (1,000 repetitions) (Efron,365

1979; Wichmann & Hill, 2001b). The number of simulated trials at each366

jitter level was identical to the number run by the observer at that level.367

Figure 9 summarizes linear regression fits to the individual data (slopes and368

correlation coefficients), confirming the observation that sensitivity increases369

with peakedness. Confidence intervals of the slopes and correlation coef-370
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ficients were computed based on 100,000 bootstrapped estimates from the371

previously bootstrapped values of σ.372

Figure 7: Experiment 1 results. Psychometric curves and data for observers
3 and 4 in conditions 3 (top) and 6 (bottom). The condition with higher
peakedness (condition 6) also has steeper slope (i.e., higher sensitivity). Dot
area is proportional to the number of trials per datapoint. Error bars: ±1
standard error.

Considering the data jointly across observers, we performed a linear-373

mixed effects analysis of the relationship between discriminability and peaked-374

ness. We used the lme4 package (Bates, Mächler, Bolker & Walker, 2015) in375

the R environment (R Core Team, 2015). We treated peakedness as a fixed376

effect and intercepts and slopes by observer as random effects. We included377

the maximal random-effects structure as, in general, this approach is more378

conservative and results in lower Type I error rate than fixed slopes (Barr,379

Levy, Scheepers & Tily, 2013). The estimated slope is (−58±10)×10−4. The380

p-value obtained by a likelihood ratio test of the full model with the peaked-381
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ness effect included and a null model without the effect is p = 0.002. The382

Pearson correlation coefficient between peakedness and σ averaged across ob-383

servers (Figure 8) is ρ = −0.95 (p = 8×10−4). These results strongly confirm384

our hypothesis that larger peakedness values result in greater sensitivity to385

regularity across a set of stimuli.386

3 Experiment 2387

While the results of Experiment 1 provide support for the hypothesis that388

regularity is coded via the peakedness of the distribution of responses across389

scale, we have only examined discrimination performance relative to a single390

reference point of regularity. To examine whether the dependence of discrim-391

inability on peakedness is not specific to this small range of regularity, we392

conducted Experiment 2 to analyze discrimination performance across the393

entire range of regularity.394

3.1 Methods395

In our previous work (Protonotarios et al., 2016), patterns consisted of 180396

dots of diameter 3.44 min, which were displayed within a circle of radius397

4.58 deg. For these presentation conditions, we showed that humans can dis-398

tinguish up to 16.5 JNDs of regularity across the entire range. Here, we are399

interested in whether this JND range increases with increasing peakedness.400

We describe scaling experiments, ten in total, for different presentation con-401

ditions, attempting to achieve reasonable variation in discriminability. All402

were based on the same 2AFC task as in Experiment 1. Only patterns with403

the same presentation parameters were compared with each other.404

3.1.1 Observers405

Ten observers (age: 19–41, four females) participated in the experiment. One406

was the first author, and the rest were undergraduate or graduate students407

at the University of London and näıve to the purpose of the experiment. Six408

completed both stages of the experiment while two reinvited participants of409

the first stage (Groups A and B) were not available and were replaced. All410

reinvited participants carried out the second part of the experiment within411

less than six days of the first. All reported normal or corrected-to-normal412
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Figure 8: Experiment 1 results. (A) σ vs. peakedness for the four observers
(O1–O4). Error bars: ±1 standard error. (B) Average σ across observers as
a function of peakedness. Solid lines: linear regression fits to the data. Error
bars: ±1 standard error of the mean across observers.
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Figure 9: Experiment 1 results. Slope and correlation coefficient, ρ, for the
four observers. Error bars: 95% confidence intervals. (∗: p < 0.05; ∗∗:
p < 0.01; ∗ ∗ ∗: p < 0.001)

vision. Ethical approval for the study was obtained from the UCL Experi-413

mental Psychology Departmental Ethics Committee (CPB/2010/003). Par-414

ticipants gave informed consent prior to the experiment. All procedures were415

carried out in accordance with the Code of Ethics of the World Medical As-416

sociation (Declaration of Helsinki).417

3.1.2 Apparatus418

Stimuli for all conditions were presented on a 40 cm diagonal LCD laptop419

screen (Lenovo ThinkPad W520) under comfortable room illumination. The420

screen resolution was 1920 × 1080 pixels and the viewing distance was ap-421

proximately 50 cm. At this distance one pixel (0.18 mm) corresponds to422

visual angle of 0.021 deg. Each pattern was rendered using solid black dots423

on a white circular disk (206.0 cd/m2). As in experiment 1, dots were drawn424

with anti-aliasing. Patterns were displayed in pairs on a grey background425

(40.4 cd/m2) with their centers at the same height separated horizontally by426

19.6 deg (Figure 10). Presentation of stimuli and recording of responses were427

controlled using the MATLAB Psychtoolbox software (Brainard, 1997).428

3.1.3 Conditions429

Conditions were organized into three groups (A, B, and C; Table 2). In430

Groups A and B (conditions 1 to 7), we varied peakedness by manipulat-431
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Figure 10: Experiment 2: Sample stimulus display.

ing dot size while keeping dot spacing fixed. In Group A dot size varied,432

while dot number remained constant (180); in Group B dot number varied433

while dot size and spacing remained constant, resulting in a fixed peakedness434

value. The very small variation in peakedness is due to border effects. After435

analyzing the derived discrimination scales for these 7 conditions, we im-436

plemented three additional conditions (Group C, conditions 8-10). We used437

dot size and number values from conditions 1 to 7, and varied dot spacing438

to control peakedness. We manipulated the dot spacing for the large dot439

sizes (0.8 and 1 mm) with high peakedness values and the smallest dot size440

(0.6 mm), which had low peakedness. Due to limited display size, for the441

larger dot spacings (conditions 8, 9) the number of dots had to be reduced442

(to 125). We used the largest dot spacing possible to generate low values of443

peakedness for the two conditions that previously were associated with high444

peakedness. The largest dot size (1.2 mm) required even larger dot spacing445

to achieve a low peakedness value so this size was not used. Conversely, for446

condition 10, we shrank the pattern for the smallest dot size (0.6 mm) to447

increase its peakedness and kept the dot number the same as the other two448

additional conditions (125). For all conditions, the radius of the pattern area449

was adjusted in accordance with the dot number. The white background was450

larger than the radius of the pattern by an amount equal to the maximum451

dot size (1.2 mm or 8.3 min) to ensure that dots were not too close to the452

border.453

Conditions 1 to 7 were run in random order. The four conditions contain-454

ing patterns of the default number of dots (180) were interleaved with the455

three conditions containing patterns with 80, 125, and 245 dots. We excluded456

orders of conditions that contained sub-sequences with monotonic change in457

either dot size or dot number to avoid a systematic effect on discrimination458
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performance due to learning or fatigue. Thus, conditions in Group A were459

not allowed to appear in dot-size order (1, 2, 3, 4, or the reverse, indepen-460

dent of intrusions by the other Group B conditions), and likewise those of461

Group B were not allowed to occur in dot-number order (5, 6, 3, 7, or the462

reverse). Conditions 8 to 10 were completed afterward, also in random order.463

Condition 1 2 3 4 5 6 7 8 9 10

group A A A, B A B B, C B C C C
dot size 0.6d 0.8d d 1.2d d d d 0.8d d 0.6d
dot size (mm) 0.6 0.8 1.0 1.2 1.0 1.0 1.0 0.8 1.0 0.6
dot spacing D D D D D D D 1.4D 1.3D 0.6D
dot spacing (mm) 9.5 9.5 9.5 9.5 9.5 9.5 9.5 13.3 12.4 5.7
pattern radius R R R R 4/6R 5/6R 7/6R 1.17R 1.09R 0.52R
dot number 180 180 180 180 80 125 245 125 125 125
peakedness 0.38 0.45 0.53 0.62 0.52 0.52 0.53 0.32 0.40 0.59

Table 2: Presentation parameters and peakedness values for conditions of
Experiment 2. d = 6.90 arcmin, D = 1.09 deg, R = 8.24 deg.

3.1.4 Stimulus Generation464

The stimuli were generated with a method similar to Expt. 1. Patterns465

were again created using a square lattice and varying amounts of Gaussian466

positional jitter. The final step of this process was a random selection of467

a circular window containing the exact specified number of points for the468

condition. In this experiment patterns of considerable jitter amount were469

included. Thus, the issue of pattern variability for a given jitter value is470

particularly important. To reduce variability of perceived regularity within471

each condition, we again used the a-scale algorithm. In this experiment, we472

generated a Thurstonian scale based on 2AFC discriminations of regularity473

among the stimuli in each condition. To do this successfully requires partial474

overlap of perceived regularity for neighboring stimuli on the scale. We gen-475

erated a large number of point patterns (1,000) for each of a large number of476

jitter levels. Each pattern was a circular patch containing exactly 245 points.477

After computing the corresponding a-scale values, we determined 31 jitter478
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levels that, on average, were uniformly spaced on the a-scale. The uniform479

spacing of the patterns on the discrimination scale was used to achieve max-480

imum overlap of perceptual regularity estimates on the discrimination scale.481

For the highest jitter level we generated Poisson point patterns.482

Although we are interested in comparing the scales across conditions, we483

refrained from using a common set of stimuli for all. Extensive exposure to484

them would induce learning and so judgments would not be independent.485

Therefore, we pre-selected 10 patterns that had a-scale values close to the486

mean for each level of jitter. The 10 pre-selected patterns for each jitter level487

were randomly allocated, one to each of the ten conditions. The 31 patterns488

for each condition were numbered from ‘1’ to ‘31’ in increasing jitter. We489

excluded patterns that contained points that would overlap when displayed490

as dots. To avoid a per-condition bias in this process, we applied the same491

criteria for all conditions; that is, we checked for overlap assuming the maxi-492

mum parameter value for dot size and the minimum for dot spacing. For the493

conditions that required fewer than 245 points, we placed a correspondingly494

smaller circle on the pattern in random locations until the correct number of495

points (e.g., 180) fell within the circle, and that sub-pattern was then used496

in that combination of condition and jitter level.497

We cannot predict beforehand the discrimination performance for each498

presentation condition, so we chose a large number of patterns to ensure499

sufficient perceptual overlap. Given the high number of patterns and the500

ten conditions we aimed to examine, to minimize the per-observer number of501

trials, we excluded uninformative judgments, i.e., those between pairs of large502

difference in regularity. The resulting design matrix is shown in Figure 11.503

3.1.5 Task504

Written instructions were presented on the display at the beginning of each505

block. Participants performed a small number of test trials (5-10) before they506

started the actual experiment. In each trial, two stimuli were displayed until507

the observer’s response. Observers again selected the more regular pattern508

by keypress (2AFC). A tone confirmed registration of the response and the509

next trial started automatically. In contrast to Expt. 1, feedback was not510

provided. Observers were able to return to previous trials for correction of511

keystroke errors and were free to control the pace of the experiment. Each of512

the 189 pairs was presented in random order in two blocks, resulting in 378513

comparisons per participant for each condition. For each pair the patterns514
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Figure 11: Experimental design matrix for Expt. 2. Patterns are numbered
from ‘1’ to ‘31’ in increasing a-jitter amount. Filled disks: pairs included in
the experiment (npairs = 189). Non-filled disks: excluded pairs.

were randomly allocated to the left or right in the first block, and then in515

the opposite way in the second block. As in Expt. 1, patterns were randomly516

rotated by an integer multiple of 90◦. Randomization aimed to minimize517

learning of the patterns and to reduce bias and effects of adaptation (Ouh-518

nana et al., 2013). Across participants, the duration of the two blocks of a519

given condition ranged from 7 to 21 min.520

3.1.6 Thurstonian scaling521

We used Thurstonian scaling to estimate a perceptual scale of regularity for522

the 31 patterns, separately for each condition. Thurstonian scaling provides523

a convenient way for studying discrimination across a large range of a percep-524

tual attribute. It uses the results of pairwise judgments to place the stimuli525

on an interval scale. According to this approach, each stimulus Si has a526

true value Mi on a numerical scale, and each separate perception of it at527

trial t, ψi,t, is a noisy realization of the true value (Mi + εi,t). When two528

stimuli Si, Sj are compared, the observer considers the sign of the difference529

(Mi + εi,t) − (Mj + εj,t) to report the one that contains a higher amount of530

the attribute in question. In our case, the perceptual attribute is regularity531

and the observer reports the more regular stimulus. Assuming that noise is532

identically distributed and independent, there exists a monotonic preference533

function P : < → [0, 1] that maps the signed difference between the true534

values, ∆M = Mi −Mj, to the probability that the one will be preferred535
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to the other. When the noise distributions of the pairs have sufficient over-536

lap, then the preference rates will not all be 0 or 1 and fitting this model537

to the preference rates may be used to estimate the Mi values. In the case538

of unit-variance Gaussian noise (Thurstone Case V), the preference func-539

tion has the form of a cumulative Gaussian distribution (Thurstone, 1927).540

Other cases have also been suggested, such as Gumbel-distributed noise (the541

Bradley–Terry Model), resulting in a logistic preference function (Bradley &542

Terry, 1952; David, 1988). Here, we use the Gaussian model. However, this543

method of scaling is relatively robust to distributional assumptions (Stern,544

1992).545

We fit models to data pooled across observers using a maximum-likelihood546

criterion. Similarly to the psychometric functions of Expt. 1, we rescaled the547

preference function to incorporate lapses and thus avoid estimation bias due548

to lapses (Harvey, 1986; Wichmann & Hill, 2001a). The model is parame-549

terized by the unknown true values of perceived regularity of each pattern550

and the lapse-rate parameter. Thurstonian scales are expressed in steps of551

the SD of the internal noise. Since they lie on an interval scale, they are552

invariant under linear transformation. Therefore, we can choose the unit553

distance to match one just noticeable difference (JND), which we define as554

the distance between two stimuli that results in a 75% probability of cor-555

rect ranking (Torgerson, 1958). This definition is equivalent to assuming the556

standard deviation of ε is 1.048. Only differences in fitted values, not abso-557

lute values, are used to predict preference rates. Therefore, without loss of558

generality we fix the least regular pattern (the Poisson pattern) to have a559

scale value zero.560

3.2 Results561

3.2.1 Agreement Rates562

We computed two measures of response variability, the intra- and inter -563

observer agreement rates. The intra-agreement rate expresses the probability564

that a participant will repeat the same judgment when faced twice with the565

same pair of stimuli. The inter -agreement rate expresses the probability that566

two observers’ judgments will agree for the same pair (i.e., the probability567

that a randomly chosen response from one observer for one trial of a pair568

agrees with a randomly chosen trial’s response for another observer for the569

same pair). These rates are shown in Table 3. Agreement rates differ by at570
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most 8% across conditions; they range between 71% and 79%. The intra-571

and inter - rates do not differ by more than 2%. Thus, there is little variation572

between participants over and above individual response variability.573

Condition 1 2 3 4 5 6 7 8 9 10

intra (%) 71 78 73 76 74 76 79 71 72 74
inter (%) 71 76 73 76 74 75 78 71 72 74

Table 3: Agreement rates.

3.2.2 Discrimination Scales574

For each condition, we use Thurstonian scaling to learn about the range of575

discriminability across the entire regularity range, i.e., the difference of the576

fitted scale values of the two extremes. This difference (in JND units) is our577

estimate of discrimination performance. In all experiments, pattern ‘1’ has578

a scale value of zero. Thus, the overall discriminability estimate is simply579

the highest fitted regularity value. Figure 12 shows the estimated scales for580

Groups A and B. For Group A, overall discriminability ranges from 12.9 to581

17.7 JNDs. The lowest value corresponds to the smallest dot size (0.6 mm),582

while the highest value corresponds to the largest (1.2 mm). For Group B,583

overall discriminability differs only slightly between conditions, ranging from584

16.7 to 17.8 JNDs.585

Similarly to previous data shown in Figure 3, for each condition, fitted586

regularity scale values for patterns ‘1’ to ‘31’ correlate very well with the587

height of the peak in the distribution of responses at the position associated588

with the spatial period of the pattern. For conditions 1 and 4 (the condi-589

tions with the lowest and highest discriminability over Groups A and B), the590

Pearson correlation coefficients were 0.98 and 0.97, respectively.591

Across conditions (Groups A and B), the correlation between peakedness592

and discriminability is 0.83 (p = 0.02, Figure 14). However, this value relies593

mostly on the datapoint of condition 1; discriminability for this condition594

is considerably lower than in the other conditions. To establish with higher595

confidence whether a positive correlation exists, we included the additional596

conditions of Group C.597
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Figure 13 shows the estimated scales for Group C. In comparison to the598

previous, the performance associated with 0.8 and 1 mm dot sizes is worse599

(from 16.7 JNDs to 13.8 and 14.1 JNDs respectively). Conversely, perfor-600

mance for the 0.6 mm dot size has improved (from 12.9 to 16.4 JNDs). The601

signs of these changes are consistent with the peakedness changes for the same602

dot size. Table 4 shows the average discriminability for all 10 conditions.603

Neglecting range variation, the discrimination scales look similar for all604

experimental conditions (Figures 12 and 13) and exhibit an almost linear605

increase with respect to pattern number as predicted by our a-scale. For606

this parameter range, discrimination performance is relatively stable. This607

is interesting given the two-fold change in dot size and three-fold change in608

dot number.609

Across all 10 conditions, the Pearson correlation coefficient between peaked-610

ness and discriminability is 0.85 (p = 0.002), i.e., the linear relationship de-611

scribes a substantial fraction of the variance. Figure 14 shows discrimination612

performance values against peakedness and the linear fit.613

Figure 12: Expt. 2: Discrimination scales for the conditions in Groups A
(dot spacing: 9.5 mm, dot number: 180) and B (dot spacing: 9.5 mm, dot
size: 1.0 mm).

In the first experiment we showed that discriminability and peakedness614

are highly correlated. However, a single reference value of regularity was615

used. To generalize our results we conducted Thurstonian scaling extend-616

ing across the entire range of regularity using perfect regularity and total617

randomness as anchor points. This allowed us to compare the scales for dif-618
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Figure 13: Expt. 2: Discrimination scales for the conditions in Group C. Dot
number for all conditions: 125.

Condition 1 2 3 4 5 6 7 8 9 10
Discriminability (jnd) 12.9 16.7 16.7 17.7 17.8 17.1 17.0 13.8 14.1 16.4
Peakedness 0.38 0.45 0.53 0.62 0.52 0.52 0.53 0.32 0.40 0.59

Table 4: Expt. 2: Discrimination performance and peakedness values.
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Figure 14: Expt. 2: Linear fit to discrimination performance as a function
of peakedness. Non-filled symbols: Conditions of Groups A and B. Filled
symbols: Group C-only conditions. Circle: Condition 1. (Symbol correspon-
dence to conditions is consistent with Figures 12 and 13.)

27



ferent conditions. The latter comparison (Figure 14), however, depends on619

the average discrimination performance across different levels of regularity620

and does not depend on how that discriminability is distributed across the621

scale. Next, we examine whether peakedness differences affect discriminabil-622

ity in a uniform way across regularity. Non-uniformity might result from623

observers using a different strategy or mechanism for judging regularity for624

patterns that are highly regular (i.e., lattice-like) as compared to those that625

are nearly random.626

To test for a non-uniform effect of the parameters on discrimination627

performance, we compared the data from the conditions exhibiting strong628

discriminability to the data for conditions with poor discriminability. To629

improve the power of this comparison, we combined the data from three630

high-discriminability conditions (conditions: 4, 5, 6) and from three low-631

discriminability conditions (conditions: 1, 8, 9). We ask whether the scale632

values for one group are proportional to those in the other group. We fit a 6th-633

order polynomial to each group of conditions by least squares (Figure 15A).634

Rescaling the low-discriminability curve results in almost perfect coincidence635

with the high-discriminability curve. This implies a uniform increase in dis-636

crimination sensitivity across the entire regularity range. A scatterplot of637

the low- vs. high-discriminability scales (one point for each of the 31 jitter638

levels) confirms this result (Figure 15B).639

Note that observers were free to control the pace of their judgments.640

To confirm that differences in discrimination performance across conditions641

were not the result of variation in trial duration, we estimated the correlation642

of trial duration with discriminability across conditions. This correlation is643

negative, but not significantly different from 0 (Pearson correlation coefficient644

ρ = −0.26, 95% CI: [−0.77, 0.47]). On average, observers did not spend more645

time on the conditions yielding strong discrimination performance, and thus,646

better disciminability cannot be attributed to longer viewing times.647

4 Discussion648

We have shown that a simple measure of peakedness of the distribution of649

neural responses across scale correlates with regularity discriminability across650

different presentation conditions. Our experiments test the peakedness model651

of regularity coding, and our results are consistent with it.652

The analysis, as in Ouhnana et al. (2013), has been based on one dimen-653
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Figure 15: Comparison of the disciminability scales for strong- and poor-
performance conditions across the entire range of regularity. (A) Combined
discrimination scales and polynomial fits for conditions of low (1, 8, 9)
and high (4, 5, 6) discriminability. A rescaled polynomial fit of the low-
discriminability conditions coincides almost perfectly with the polynomial
fit to the high-discriminability conditions. (B) Scatterplot and linear fit of
the means of the low- vs. high-discriminability scale values (error bars show
standard deviation for the three values for each pattern number).
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sion considering only vertically oriented Gabors of varying scale since the654

patterns have an obvious overall orientation and rotational symmetry of 90◦.655

We did not need to consider the responses of neurons tuned to oblique orien-656

tations, which may be taken into account by the visual system for patterns657

of high irregularity.658

The suggested measure of peakedness is a straightforward characteriza-659

tion of the distribution of responses across scale. These distributions have660

at most two peaks, so the relative peak height is a sufficient measure for this661

class of stimuli. Although convenient and simple, we are not suggesting that662

this is the actual computation that the visual system utilizes. Its inadequacy663

becomes obvious by considering more complex stimuli, e.g., textures, which664

have a greater diversity of response distributions and yet we can nonetheless665

make judgments of relative regularity for such images. In previous work we666

compared the discrimination (Thurstone, 1927) and appearance-difference667

(Maloney & Yang, 2003) scales of regularity for the same class of patterns668

examined here. We found that if a single mechanism is employed for appear-669

ance and discrimination tasks, this would require a source of internal noise670

that increases for patterns with greater irregularity (Protonotarios, Johnston671

& Griffin, 2016). This is equivalent to a nonlinear relationship between inter-672

val scales based on discrimination vs. appearance judgments. To develop a673

more general model of the perception of regularity will require consideration674

of the form of internal noise present in the encoding and read-out mechanisms675

to model discrimination performance across different levels of regularity.676

We have considered a simple class of stimuli based on a perfectly periodic677

grid and a one-dimensional manipulation of regularity (jitter). This ma-678

nipulation leaves long-distance correlations intact, retaining phase coherence679

across the entire pattern. There are many ways to distort perfect symmetry680

resulting in pattern subregions with varying statistical properties. As such, a681

successful model of regularity should take into account both local and global682

features, providing a balance between integration and segmentation. For our683

uniform patterns, the second-stage filter can encompass the entire pattern,684

yielding a more stable estimate of regularity. For non-uniform patterns, the685

degree of pooling over space and orientation will be important. Efficient686

discrimination may require a mechanism that can adjust the spatial extent687

of pooling (e.g., that takes into account the inter-element spacing), similar688

to that proposed by Dakin (1997). This idea is consistent with the good689

agreement with human performance of our geometric algorithm that relies690

on a Delaunay triangulation for a diverse set of point patterns as compared691
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to an autocorrelation model (Protonotarios et al., 2014).692

Dot size and spacing affect the heights and positions of the two peaks in693

the response distribution. An increase in the average dot spacing results in a694

leftward shift and reduced amplitude of the peak of the response distribution695

that corresponds to the duty cycle of the pattern. Conversely, as dot spacing696

decreases, that peak rises and shifts rightward toward the peak corresponding697

to the individual dot size. When dot spacing and dot size are comparable,698

the two peaks merge, and the simple read-out mechanism based on peak699

heights becomes ill-defined. This problem can be ameliorated by reducing700

the bandwidth of the first-stage filters, but we have used biologically realistic701

values for first-stage bandwidth. Use of considerably larger elements would702

be required to test whether discriminability is reduced as the peaks in the703

response distribution overlap. Our model is based on relative peak height704

and so another prediction of the model that should be tested is whether705

perceived regularity is contrast-invariant.706

Ouhnana et al. (2013) found that the aftereffect of perceived regularity707

is uni-directional. That is, a test pattern always appears to be less regular708

after adaptation to a pattern of similar regularity. Based on this, it was sug-709

gested that this results from a norm-based adaptation mechanism (Webster,710

2011) where irregularity is the norm. In support of this view, their results711

show that the strength of the aftereffect depends on the regularity level of712

the adaptor. In particular, as the adaptor regularity decreases, so does the713

strength of the aftereffect. However, the decrease is linear, and does not ap-714

pear like it would reach zero for a maximally irregular adapter. They did not715

test highly irregular adapters and thus did not check whether such adapters716

change the direction of the aftereffect. We generated 1000 point patterns717

with the method of Ouhnana et al. (2013) (i.e., with element jitter that was718

drawn from a rectangular distribution) for the most irregular adapter they719

considered. The mean a-scale value was 3.62±0.02. Recall that the a-scale720

ranges from 0 (Poisson, maximally irregular) to 10 (perfect regularity). Thus,721

more irregular patterns could have been tested, leaving open the question of722

whether the aftereffect is always uni-directional. In their study, the effect of723

the adaptor at this level of regularity seemed minimal (near zero). We next724

ask whether this pattern bears some special significance. It is closer to the725

irregular end of the a-scale, which is a discrimination-based scale. However,726

there is a non-linear mapping between the appearance and discrimination727

scales (Protonotarios et al., 2016), and this pattern lies approximately in the728

middle of the perceptual appearance scale, i.e., at equal distance between729
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perfect regularity and total randomness. Thus, perhaps the norm is not730

irregularity, but rather it is at the middle of the scale of perceived regularity.731

Contrary to Ouhnana et al. (2013), Yamada et al. (2013), using dot732

patterns and the same type of positional jittering, found that the regularity733

aftereffect is bi-directional. That is, adaptation to a regular pattern can make734

a test pattern appear less regular, and adaptation to an irregular pattern can735

make a pattern of medium regularity appear more regular. The authors did736

not provide any explanation for this difference in results apart from pointing737

out that the two studies used different numbers of elements [16×16 in Yamada738

et al. (2013) vs. 7×7 in Ouhnana et al. (2013)]. However, it seems clear that739

a larger number of elements should not affect the distribution of responses740

since the patterns are uniform and the final filter stage can only pool across741

more elements for the larger pattern. We next ask whether this discrepancy742

can be attributed to the use of a more irregular adaptor by Yamada et al.743

(2013). We generated 1000 patterns with the same method as before and744

found that the most irregular adaptor used by Yamada et al. (2013) was of745

the same level of regularity (3.63±0.02 on the a-scale) as the one used by746

Ouhnana et al. (2013). This is puzzling, since in the first study this pattern747

causes test stimuli to appear more irregular, while in the second study they748

appear more regular. We next provide an explanation that is consistent with749

both studies and consider its testable predictions for future research.750

When adaptation occurs for a high-level stimulus attribute, this need not751

imply that sensitivity was reduced at a high level of the visual stream where752

that feature is encoded. Sensitivity modulation in response to adaptation753

may occur at one or several lower levels of processing (Webster, 2011). The754

site of adaptation can be tested experimentally. For example, Yamada et755

al. (2013) tested whether adaptation to a pattern rotated by 22.5◦ led to a756

regularity aftereffect, and found that it did not. They concluded that reg-757

ularity is not coded by the relative position of the pattern elements, as in758

geometric measures of regularity based on point coordinates. However, the759

absence of adaptation in response to the rotated adaptor suggests that the760

aftereffects in the two studies rely on changes in earlier orientation-selective761

stages of vision. Identifying the norm for adaptation based on a high-level762

attribute is misleading if the site of adaptation is at an earlier stage of pro-763

cessing. Ouhnana et al. (2013) suggested that the regularity aftereffect was764

a consequence of contrast normalization (Carandini & Heeger, 2011) that765

aims to equate responses across orientation and scale. Note, however, that a766

common normalization factor for the whole population of neurons would only767
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scale the responses without altering the shape of the distribution. Further,768

they assumed that the flattest response distribution corresponds to the most769

irregular pattern. Thus, they identified irregularity as the norm. This is not770

true in general: the shape of the response distribution depends on the level of771

regularity, which controls the duty-cycle peak height, but also on the relative772

sizes of the element and element spacing. This is crucial for explaining the773

discrepancy between the two studies; these parameters were different, with774

much larger element-spacing relative to element size in the study of Yamada775

et al. (2013).776

Figure 16 displays the peaks of the distribution of neural responses for777

patterns with two different element spacings and three different levels of778

regularity. Adaptation can be thought of as a homeostatic mechanism that779

pushes responses in the direction of a standard, unadapted state (Benucci,780

Saleem & Carandini, 2013). Also plotted in the figure is a putative flat781

distribution that might be used as the asymptotic distribution or “goal” of782

adaptation. For large spacing (the left-most region of spatial frequencies), all783

response-distribution peaks are below the flat distribution. Thus, for such784

a spacing, adaptation should push peaks upward, and hence lead to a uni-785

directional effect that makes all patterns appear more regular. For the small786

element spacing (middle region in the figure), all peaks lie above the flat787

distribution, and hence adaptation would push peaks downward, resulting788

in a uni-directional adaptation aftereffect making all patterns appear more789

irregular. For an intermediate spacing, this same logic would predict a bi-790

directional effect: Irregular patterns would appear more regular and vice791

versa, as reported by Yamada et al. (2013). Thus, this view reconciles792

the contradictory results reported by the two studies and makes testable793

predictions about the direction and strength of aftereffects.794

Point patterns appear in scientific research in the analysis of evolving795

systems. They are commonly visually examined for assessment of regularity.796

Our results suggest that using a larger dot size will yield higher peakedness797

values and therefore should facilitate regularity comparisons.798

5 Conclusion799

In this work we examined whether a peakedness model for regularity cod-800

ing, originally proposed by Ouhnana and colleagues (2013), is consistent801

with regularity discriminability for dot patterns across varying presentation802
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Figure 16: Neural-response peaks associated with the pattern for two element
spacings and three levels of regularity. The flat line represents the global
average response. If adaptation tries to push responses toward this global
average, it predicts opposite effects for patterns with small vs. large element
spacings.

conditions. We focused on a class of point patterns with a simple type of803

translational symmetry and varied the degree of regularity by introducing804

different levels of positional jitter. We used two different methods. The805

first used a single reference jitter level and examined discriminability near806

that reference level. The second method extended the analysis to the full807

spectrum of regularity from perfect regularity to total randomness, and em-808

ployed Thurstonian scaling. The results of both experiments were consistent809

with the model: higher peakedness, as quantified using our simple proposed810

peakedness measure, results in higher discrimination performance. This find-811

ing has a practical application: for visual assessment of regularity in dot812

patterns, the use of larger dots will enhance discrimination.813
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