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Abstract—In this paper, we propose closed-form precoding
schemes with optimal performance for constructive interference
(CI) exploitation in the multiuser multiple-input single-output
(MU-MISO) downlink, where the cases of both strict and non-
strict phase rotation are considered. For optimization with strict
phase rotation, we mathematically derive the optimal precoding
structure with Lagrangian and Karush-Kuhn-Tucker (KKT)
conditions. By formulating its dual problem, the optimization
problem is further shown to be equivalent to a quadratic
programming (QP) over a simplex, which can be solved more
efficiently. We then extend our analysis to the case of non-
strict phase rotation, where it is mathematically shown that
a K-dimensional optimization for non-strict phase rotation is
equivalent to a 2K-dimensional optimization for strict phase
rotation in terms of the problem formulation. The connection
with the conventional zero-forcing (ZF) precoding is also dis-
cussed. Based on the above analysis, we further propose an
iterative closed-form scheme to obtain the optimal precoding
matrix, where within each iteration a closed-form solution can
be obtained. Numerical results validate our analysis and the
optimality of the proposed iterative closed-form algorithm, and
further show that the proposed iterative closed-form scheme
offers a flexible performance-complexity tradeoff by limiting the
maximum number of iterations, which motivates the use of CI
precoding in practical wireless systems.

Index Terms—MIMO, precoding, constructive interference,
optimization, Lagrangian, closed-form solutions.

I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) systems have
been widely acknowledged as a promising technology

in the field of wireless communications, due to the significant
gains over single-antenna systems [1]. When the channel
knowledge is known at the base station (BS), the capacity-
achieving dirty-paper coding (DPC) scheme is proposed in
[2] by pre-subtracting the interference prior to transmission.
However, DPC is difficult to implement in practical systems
due to the impractical assumption of infinite alphabet and its
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high computational cost. To achieve a compromise between
performance and complexity, its non-linear counterparts in the
form of Tomlinson-Harashima precoding (THP) [3] and vector
perturbation (VP) [4] have been proposed, which however
are still too complicated for practice due to the inclusion
of the sophisticated sphere-search algorithms. Therefore, low-
complexity linear precoding schemes based on zero-forcing
(ZF) have received increasing research attention [5], and a
regularized ZF (RZF) scheme is proposed in [6] to further
improve the performance of ZF. On the other hand, downlink
precoding schemes based on optimization have also been a
popular research topic [7]-[13]. Among the optimization-based
schemes, one form of the optimization known as signal-to-
interference-plus-noise ratio (SINR) balancing is to maximize
the minimum SINR subject to a total power constraint [7], [8]
or a per-antenna power constraint [9]. An alternative downlink
precoding strategy targets at minimizing the total transmit
power at the BS subject to a minimum SINR requirement
[10]-[12]. It has been shown that the power minimization
problems can be formulated either as a virtual uplink problem
with power control or as a semi-definite programming (SDP)
and solved via semi-definite relaxation (SDR) [11]. As for
the SINR balancing problem, it is proven to be an inverse
problem to the power minimization optimization, based on
which schemes via bisection search [7] and iterative algorithms
[10] have been proposed.

Nevertheless, both the closed-form and optimization-based
precoding designs mentioned above have ignored the fact
that interference can be beneficial and further exploited on
on a symbol level [14], [15]. The concept of constructive
interference (CI) was firstly introduced in [16], where it is
shown that the instantaneous interference can be categorized
into constructive and destructive. A modified ZF precoding
scheme is then proposed in [17], where the constructive
interference is exploited while the destructive interference
is cancelled. A correlation rotation scheme has been further
proposed in [18], where it is shown that the destructive
interference can be manipulated and rotated such that all the
interference becomes constructive. Subsequently, symbol-level
precoding schemes based on convex optimization for CI has
been proposed in [19], [20], where the concept of constructive
region is introduced to relax the strict phase rotation con-
straint in [18] and achieve an improved performance. Further
studies on the optimization-based CI precoding methods can
be found in [20]-[23]. Due to the performance benefits over
conventional schemes, the concept of CI has been extended
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to many wireless application scenarios, including cognitive
radio [24]-[26], relay [27], vector perturbation [28], radar
and cellular coexistence [29], wireless information and power
transfer [30], mutual coupling exploitation [31], non-linear
channel [32] and directional modulation [33]-[35]. Moreover,
for massive MIMO regime which has become a hot research
topic recently, while the ZF precoding is shown to be optimal
for ideal fully-digital massive MIMO systems, the CI-based
formulation is still useful for practical hardware-constrained
massive MIMO systems, for example the constant envelope
precoding in [36] and the 1-bit massive MIMO in [37], [38].
The above studies show that MIMO systems can benefit from
the CI with a symbol-level precoding. Nevertheless, while the
performance of CI-based precoding approaches is superior,
they need to solve a convex optimization problem, which can
be computationally inefficient, especially when executed on a
symbol-by-symbol basis.

In this paper, we design low-complexity optimal and sub-
optimal solutions for CI precoding, culminating in closed-
form iterative precoders. We focus on CI exploitation for
PSK modulations, as PSK modulations lead to a generic CI
constraint formulation, which will be shown in the following.
We consider an optimization problem where we maximize
the distance between the constructive region and the detection
thresholds such that the effect of CI is maximized. We firstly
consider the optimization for strict phase rotation, where the
phases of the interfering signals are rotated such that they are
strictly aligned to the symbol of interest. By analyzing the for-
mulated second-order cone programming (SOCP) optimization
with Lagrangian and KKT conditions, we derive the structure
of the optimal precoding matrix, which leads to an equivalent
optimization and further simplifies the precoding design. By
formulating the dual problem of the equivalent optimization
problem, it is mathematically shown that the optimization for
CI precoding is equivalent to a quadratic programming (QP)
optimization over a simplex, which finally leads to a closed-
form expression. We extend our analysis to the case of non-
strict phase rotation, where the phases of the interfering signals
are rotated such that the resulting interfered signal is located
within the constructive region. By following a similar approach
for the case of strict phase rotation, we analytically show
that the optimal precoding matrix for theses two scenarios
shares a similar closed-form expression, and a K-dimensional
optimization for non-strict phase rotation is equivalent to a
2K-dimensional optimization for strict phase rotation in terms
of the problem formulation. Our above analysis also provides
some insights on the connection between the CI precoding and
the generic ZF precoding.

Moreover, our efforts to facilitate the symbol-level CI
precoding in practice culminate in an iterative closed-form
scheme to efficiently obtain the optimal precoding matrix,
where a closed-form solution is obtained within each iteration.
Numerical results validate our above analysis and the opti-
mality of the proposed iterative closed-form method for both
strict and non-strict phase rotation. Moreover, it is numerically
shown that with only in a few iterations, the iterative closed-
form algorithm obtains optimal performance. By constrain-
ing the maximum number of iterations, we further obtain

a flexible performance-complexity tradeoff for the proposed
iterative method, based on its connection with conventional
ZF precoding. Both of the above motivate the use of CI-based
precoding in practical wireless systems.

For reasons of clarity, we summarize the contributions of
this paper as:

1) We formulate the optimization problem for CI-based
precoding, where we maximize the distance between
the constructive region and the detection thresholds. We
derive the optimal precoding matrix for strict phase ro-
tation and further formulate an equivalent and simplified
optimization problem.

2) The optimization for strict phase rotation is transformed
and further shown to be equivalent to a QP problem over
a simplex, which can be more efficiently solved than the
originally formulated problem.

3) We extend our analysis to the case of non-strict phase
rotation, where the expression of the optimal precoding
structure is similar to the case of strict phase rotation. It is
further shown that a K-dimensional optimization for non-
strict phase rotation is equivalent to a 2K-dimensional
optimization for strict phase rotation in terms of the
problem formulation.

4) We analytically study the connection between the CI-
based and the generic ZF precoding, where it is shown
that ZF precoding can be regarded as a special case of
CI-based precoding with all the dual variables being zero.

5) We further propose an iterative closed-form algorithm
to obtain the optimal precoding matrix for both the
strict and non-strict phase rotation cases, where within
each iteration a closed-form solution can be derived. We
show that the closed-form precoder obtains the optimal
performance in only a few iterations.

The remainder of this paper is organized as follows. Section
II introduces the system model and briefly reviews CI. Sec-
tion III includes the analysis for the optimization problems
with both strict and non-strict phase rotation constraints.
The connection between the CI precoding and conventional
ZF precoding is discussed in Section IV, and the proposed
iterative closed-form scheme is introduced in Section V. The
computational costs of the optimization-based approach and
the iterative algorithm are both discussed in Section VI. The
numerical results are shown in Section VII, and Section VIII
concludes the paper.

Notations: a, a, and A denote scalar, vector and matrix,
respectively. (·)∗, (·)T , (·)H and tr {·} denote conjugate,
transposition, conjugate transposition and trace of a matrix,
respectively. j denotes the imaginary unit, and vec (·) denotes
the vectorization operation. A (k, i) denotes the entry in the
k-row and i-th column of A. |·| denotes the absolute value
of a real number or the modulus of a complex number, and
‖·‖2 denotes the l2-norm. Cn×n represents an n×n matrix in
the complex set, and I denotes the identity matrix. <(·) and
=(·) denote the real and imaginary part of a complex number,
respectively. card (·) denotes the cardinality of a set.
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II. SYSTEM MODEL AND CONSTRUCTIVE INTERFERENCE

In this section, the system model that we consider is
firstly introduced, followed by a brief review of CI and the
constructive region.

A. System Model

We consider a multiuser MISO system in the downlink,
where the BS structure with a symbol-level precoding is
depicted in Fig. 1. The iterative closed-form algorithm will be
introduced in Section V. The BS with Nt transmit antennas is
simultaneously communicating with K single-antenna users in
the same time-frequency resource, where K ≤ Nt. We focus
on the downlink precoding designs and perfect CSI is assumed
throughout the paper. The data symbol vector is assumed to be
from a normalized PSK modulation constellation [19], denoted
as s ∈ CK×1. Then, the received signal at the k-th user can
be expressed as

rk = hkWs + nk, (1)

where hk ∈ C1×Nt denotes the flat-fading Rayleigh channel
vector from user k to the BS, and each entry in hk follows a
standard complex Gaussian distribution. W ∈ CNt×K is the
precoding matrix and nk is the additive Gaussian noise with
zero mean and variance σ2 at the receiver.

B. Constructive Interference

CI is defined as the interference that pushes the received
signals away from the detection thresholds [14]-[18]. CI for
strict phase rotation refers to the cases where the phases of the
interfering signals are controlled and rotated, such that they
are strictly aligned to those of the data symbols of interest
[18]. The constructive region has been further introduced in
[19], where it is shown that the phases of the interfering
signals may not be necessarily strictly aligned to that of
the data symbols of interest, known as the non-strict phase
rotation. It is demonstrated that, as long as the resulting
interfered signals are located in the constructive region, this
increases the distance to the detection thresholds and returns
an improved performance. To show this intuitively, in Fig. 2
and Fig. 3 we depict the case for strict phase rotation and
non-strict phase rotation respectively, where the constellation
point

(
1√
2

+ 1√
2
· j
)

from a normalized QPSK constellation
is employed as the example to illustrate these two cases.
We can observe that for both strict phase rotation and non-
strict phase rotation, the distance of the received signals to
the detection thresholds is increased, which will improve the
detection performance.

III. CONSTRUCTIVE INTERFERENCE PRECODING

In this section, we firstly focus on the CI precoding for strict
phase rotation, and we further extend our analysis to the case
of non-strict phase rotation.

A. Strict Phase Rotation

Before formulating the optimization problem, based on the
geometry of the modulation constellation we firstly construct
the conditions that the precoder should satisfy to achieve the
strict phase rotation. In Fig. 2, without loss of generality we
denote ~OA = t·sk and t = | ~OA| is the object to be maximized.
We further assume that the node ‘B’ denotes the noiseless
received signal for user k that is co-linear to ~OA for strict
phase rotation, which leads to

~OB = hkWs. (2)

Then, by introducing a real-valued scaling factor λk, we
further express ~OB as

~OB = hkWs = λksk, (3)

where based on the geometry we can obtain that λk is a real
number, and the condition on λk to achieve CI for strict phase
rotation is given by

λk ≥ t, ∀k ∈ K, (4)

where K = {1, 2, · · · ,K}. With the above formulation, we
can construct the optimization problem for strict phase rotation
as

P1 : max
W, t

t

s.t. hkWs = λksk, ∀k ∈ K
λk ≥ t, ∀k ∈ K
‖Ws‖22 ≤ p0

(5)

where p0 denotes the total available transmit power. A symbol-
level power constraint is employed, as the exploitation of CI is
related to the transmit symbol vector, which will also be shown
mathematically in the following. P1 belongs to the SOCP and
can be solved with convex optimization tools such as CVX
[19]. We decompose the precoding matrix into vectors

W = [w1,w2, · · · ,wK ] , (6)

and based on the virtual multicast formulation in [19] we
obtain that each wisi is identical. Accordingly, we obtain

‖Ws‖22 = K2 · ‖wisi‖22 and
K∑
i=1

s∗iw
H
i wisi = K · ‖wisi‖22,

which leads to the equivalent transformation of the power
constraint, given by

‖Ws‖22 ≤ p0 ⇒
K∑
i=1

s∗iw
H
i wisi ≤

p0
K
. (7)

We further transform P1 in (5) into a standard minimization
problem, expressed as

P2 : min
wi, t

− t

s.t. hk

K∑
i=1

wisi − λksk = 0, ∀k ∈ K

t− λk ≤ 0, ∀k ∈ K
K∑
i=1

s∗iw
H
i wisi −

p0
K
≤ 0

(8)
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Fig. 1: A block diagram for the proposed symbol-level precoding based on CI

Fig. 2: Constructive interference, QPSK, strict phase rotation

In the following we analyze P2 with Lagrangian and KKT
conditions. The Lagrangian of P2 is expressed as [39]

L (wi, t, δk, µk, µ0) = −t+
K∑
k=1

δk

(
hk

K∑
i=1

wisi − λksk

)

+

K∑
k=1

µk (t− λk) + µ0

(
K∑
i=1

s∗iw
H
i wisi −

p0
K

)
,

(9)

Fig. 3: Constructive region, QPSK, non-strict phase rotation

where δk, µk and µ0 are the dual variables, and we have µ0 ≥
0 and µk ≥ 0, ∀k ∈ K. Each δk may be complex as it is the
dual variable with respect to the equality constraint. Based on
the Lagrangian in (9), the KKT conditions for optimality can
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be obtained as

∂L
∂t

= −1 +
K∑
k=1

µk = 0 (10a)

∂L
∂wi

=

(
K∑
k=1

δk · hk

)
si + µ0 · sis∗iwH

i = 0, ∀i ∈ K (10b)

hk

K∑
i=1

wisi − λksk = 0, ∀k ∈ K (10c)

µk (t− λk) = 0, ∀k ∈ K (10d)

µ0

(
K∑
i=1

s∗iw
H
i wisi −

p0
K

)
= 0 (10e)

Based on (10b), it is firstly obtained that µ0 6= 0, and with the
fact that µ0 ≥ 0 we can further obtain µ0 > 0. Then, wH

i in
(10b) can be expressed as

wH
i = −

(
K∑
k=1

δk
µ0
· hk

)
· 1

s∗i
, ∀i ∈ K. (11)

By introducing

υk = −δ
H
k

µ0
, ∀k ∈ K, (12)

the expression of wi is obtained as

wi =

(
K∑
k=1

υk · hHk

)
· 1

si
, ∀k ∈ K. (13)

Based on (13), we further obtain that

wisi =

(
K∑
k=1

υk · hHk

)
,∀i ∈ K, (14)

which is a constant for any i. This mathematically verifies that
the precoding vector for one symbol is a phase-rotated version
of the precoding vector for another symbol. Then, with each
wi obtained, the precoding matrix W can be obtained and
further expressed in a matrix form as

W = [w1,w2, · · · ,wK ]

=

(
K∑
k=1

υk · hHk

)
·
[

1

s1
,

1

s2
, · · · , 1

sK

]
=
[
hH1 ,h

H
2 , · · · ,hHK

]
[υ1, υ2, · · · , υK ]

T

[
1

s1
,

1

s2
, · · · , 1

sK

]
= HHΥŝ.

(15)
where we have introduced a column vector Υ =
[υ1, υ2, · · · , υK ]

T and a row vector ŝ =
[

1
s1
, 1
s2
, · · · , 1

sK

]
.

Subsequently, we further express (3) in a compact form as

HWs = diag (Λ) s, (16)

where H =
[
hT1 ,h

T
2 , · · · ,hTK

]T
is the channel matrix and

Λ = [λ1, λ2, · · · , λK ]
T . By substituting (15) into (16) and

noting that ŝs = K, we can further obtain

HHHΥŝs = diag (Λ) s

⇒Υ =
1

K
·
(
HHH

)−1
diag (Λ) s.

(17)

With (17), we can obtain the structure of the optimal precoding
matrix as a function of scaling vector Λ as

W =
1

K
·HH

(
HHH

)−1
diag (Λ) sŝ. (18)

It is easy to observe from (18) that the CI precoding is a
symbol-level precoding scheme since the precoding matrix
includes the expression of the symbol vector s. Moreover, with
(18) the original optimization problem on W is transformed
into an optimization on the real-valued scaling vector Λ. With
the fact that µ0 > 0, based on (10e) we can obtain that the
power constraint is strictly active, which leads to

‖Ws‖22 = p0

⇒ tr
{
WssHWH

}
= p0

⇒ sHWHWs = p0

⇒ 1

K2
· sH ŝHsHdiag (Λ)

(
HHH

)−1
diag (Λ) sŝs = p0

⇒ sHdiag (Λ)
(
HHH

)−1
diag (Λ) s = p0

⇒ΛT diag
(
sH
) (

HHH
)−1

diag (s) Λ = p0

⇒ΛTTΛ = p0,
(19)

where we note that λHk = λk as each λk is real, and T is
defined as

T = diag
(
sH
) (

HHH
)−1

diag (s) . (20)

It is easy to obtain that T is Hermitian and positive semi-
definite, which further leads to

ΛTTΛ = ΛT< (T) Λ = ΛTVΛ = p0, (21)

where V = < (T) is a symmetric and positive semi-definite
matrix. With (21) obtained, we can formulate a new convex
optimization problem on Λ that is equivalent to the original
optimization P1, expressed as

P3 : min
Λ, t

− t

s.t. ΛTVΛ− p0 = 0

t− λk ≤ 0, ∀k ∈ K

(22)

The optimal precoding matrix for the original problem P1

in (5) can be obtained with (18) based on the obtained Λ
by solving P3. In the following, we analyze the convex
optimization P3 with the Lagrangian approach, where the
Lagrangian of P3 is formulated as

L (Λ, t, α0, µk) = −t+ α0

(
ΛTVΛ− p0

)
+

K∑
k=1

µk (t− λk)

=
(
1Tu− 1

)
t+ α0 ·ΛTVΛ− uTΛ− α0p0,

(23)
where α0 and µk are the dual variables and µk ≥ 0, ∀k ∈ K.
u = [µ1, µ2, · · · , µK ]

T is a column vector that consists of the
dual variables and the vector 1 = [1, 1, · · · , 1]

T . Based on
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(23), the KKT conditions of P3 for optimality are expressed
as

∂L
∂t

= 1Tu− 1 = 0 (24a)

∂L
∂Λ

= α0

(
V + VT

)
Λ− u = 0 (24b)

ΛTVΛ− p0 = 0 (24c)
µk (t− λk) = 0, ∀k ∈ K (24d)

Based on (24b), firstly we have α0 6= 0, and we can further
obtain the expression of Λ, given by

Λ =
1

2α0
V−1u, (25)

where we note that V is symmetric. By substituting the
expression of Λ in (25) into (24c), we can express α0 as a
function of the dual vector u, given by(

1

2α0
V−1u

)T
V

(
1

2α0
V−1u

)
= p0

⇒ 1

4α2
0

uTV−1VV−1u = p0

⇒ α0 =

√
uTV−1u

4p0
.

(26)

For the convex optimization P3 in (22), it is easy to verify
that the Slater’s condition is satisfied [39], which means that
the dual gap is zero. Therefore, we can solve P3 by solving
its corresponding dual problem, which is given by

U = max
u,α0

min
Λ, t
L (Λ, t, α0,u) . (27)

For the dual problem U , the inner minimization is achieved
with (24a) and the obtained Λ in (25), and therefore the dual
problem can be further transformed into

U = max
u,α0

α0

(
1

2α0
V−1u

)T
V

(
1

2α0
V−1u

)
− uT

(
1

2α0
V−1u

)
− α0p0

= max
u,α0

1

4α0
uTV−1VV−1u− 1

2α0
uTV−1u− α0p0

= max
u,α0

− 1

4α0
uTV−1u− α0p0

= max
u
− uTV−1u

4
√

uT V−1u
4p0

−

√
uTV−1u

4p0
· p0

= max
u
−
√
p0 · uTV−1u.

(28)
Due to the fact that y =

√
x is a monotonic function, therefore

the dual problem U is equivalent to the following optimization
problem

P4 : min
u

uTV−1u

s.t. 1Tu = 1

µk ≥ 0, ∀k ∈ K

(29)

where the first constraint comes from (24a).

Based on our analysis and transformations above, we have
transformed and simplified the original problem, and shown
that the original optimization can be solved by solving P4. To
be more specific, through (26), (25) and (18), we arrive at a
final closed-form expression of the optimal precoding matrix
as a function of u, given by

W =
1

K
HH

(
HHH

)−1
diag

{√
p0

uTV−1u
V−1u

}
sŝ.

(30)
Moreover, it is observed that P4 is a typical QP optimization

problem over a simplex, and it has already been shown in the
existing literature that this optimization can be more efficiently
solved than SOCP with a similar problem size using the
simplex or interior-point methods [40]-[42]. This validates that
the complexity of CI-based precoding will be reduced with our
derivations by transforming the original SOCP optimization
into a QP optimization with an equal or smaller variable size,
where we note that the size of the variable wi in the original
optimization is Nt × 1, while the variable size in our QP
formulation is u ∈ RK×1, with K ≤ Nt.

B. Non-Strict Phase Rotation
We extend our analysis to the case of non-strict phase rota-

tion. Similarly, before formulating the optimization problem,
we firstly construct the condition that the precoding designs
should satisfy such that the received signals are located in the
constructive region. Based on Fig. 3, for consistency we denote
~OA = t · sk and t = | ~OA| is the objective to be maximized.

Following (2), we denote the received signal for user k as ~OB,
which is expressed as

~OB = hkWs = λksk. (31)

In the case of non-strict phase rotation, each λk can be a
complex value, which mathematically represents that a phase
rotation is included for the received signal ~OB compared to
the data symbol sk, as shown in Fig. 3. This is different from
the case of strict phase rotation where each λk is strictly real.
Then, based on the fact that ~OC and ~CB are perpendicular,
we can obtain the expression of ~OC and ~CB, given by

~OC = < (λk) sk = λ<k sk, ~CB = j · = (λk) sk = j · λ=k sk,
(32)

where based on Fig. 3 the imaginary unit ‘j’ denotes a phase
rotation of 90o geometrically. For simplicity of denotation, we
denote λ<k = < (λk) and λ=k = = (λk), respectively. Due to
the fact that the nodes ‘O’, ‘A’ and ‘C’ are co-linear, we can
further obtain the expression of ~AC as

~AC =
(
λ<k − t

)
sk. (33)

In Fig. 3, we can observe that to have the received signal ~OB
located in the constructive region is equivalent to the following
condition:

θAB ≤ θt
⇒ tan θAB ≤ tan θt

⇒|
~CB|
| ~AC|

=

∣∣λ=k sk∣∣∣∣(λ<k − t) sk∣∣ ≤ tan θt

⇒
(
λ<k − t

)
tan θt ≥

∣∣λ=k ∣∣ .
(34)
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In the case of λ=k = 0, ∀k ∈ K, (34) is identical to (4), and the
non-strict phase rotation reduces to the strict phase rotation.
For M-PSK modulation, it is observed from the modulation
constellation that the threshold angle θt can be expressed as

θt =
π

M
. (35)

With the above formulation, we can construct the optimization
problem of CI for non-strict phase rotation as

P5 : max
W, t

t

s.t. hkWs = λksk, ∀k ∈ K(
λ<k − t

)
tan θt ≥

∣∣λ=k ∣∣ , ∀k ∈ K
‖Ws‖22 ≤ p0

(36)

To further analyze the optimization problem for non-strict
phase rotation, we first transform P5 in (36) into a standard
minimization form, given by

P6 : min
W, t

− t

s.t. hkWs− λksk = 0, ∀k ∈ K∣∣λ=k ∣∣− (λ<k − t) tan θt ≤ 0, ∀k ∈ K
K∑
i=1

s∗iw
H
i wisi −

p0
K
≤ 0

(37)

Then, by following a similar step in (9)-(17) with the La-
grangian approach, we can obtain that the optimal precoding
structure for non-strict phase rotation is the same as that for
strict phase rotation, which is given in (18). With the power
constraint strictly active, we can further obtain that

‖Ws‖22 = p0

⇒ sHWHWs = p0

⇒ sHdiag
(
ΛH
) (

HHH
)−1

diag (Λ) s = p0

⇒ΛHdiag
(
sH
) (

HHH
)−1

diag (s) Λ = p0

⇒ΛHTΛ = p0,

(38)

where T is given by (20). However, we note that, different
from the case of strict phase rotation, for the case of non-
strict phase rotation (38) is not in a quadratic form since each
λk can be complex. By decomposing

Λ̂ =
[
<
(
ΛT
)
,=
(
ΛT
)]T

, T̂ =

[
< (T) −= (T)
= (T) < (T)

]
,

(39)
we can expand (38) with its real and imaginary components
and further transform the power constraint into a quadratic
form, given by

‖Ws‖22 = p0

⇒ Λ̂T T̂Λ̂− p0 = 0.
(40)

Similar to the optimization P3 in (22) for strict phase rotation,
we can formulate an optimization problem on Λ̂ for non-strict

phase rotation, expressed as

P7 : min
Λ̂, t

− t

s.t. Λ̂T T̂Λ̂− p0 = 0

λ=k
tan θt

+ t− λ<k ≤ 0, ∀k ∈ K

− λ=k
tan θt

+ t− λ<k ≤ 0, ∀k ∈ K

(41)

where we have transformed the CI constraint with the absolute
value on λ=k into two separate constraints. We then analyze P7

with Lagrangian and KKT conditions, where the Lagrangian
of P7 is constructed as

L
(
Λ̂, t, α̂0, µ̂k, ν̂k

)
= −t+ α̂0

(
Λ̂T T̂Λ̂− p0

)
+

K∑
k=1

µ̂k

(
λ=k

tan θt
+ t− λ<k

)
+

K∑
k=1

ν̂k

(
− λ=k

tan θt
+ t− λ<k

)

=

[
K∑
k=1

(µ̂k + ν̂k)− 1

]
t+ α̂0Λ̂

T T̂Λ̂− α̂0p0

−
K∑
k=1

(µ̂k + ν̂k)λ<k +
K∑
k=1

(µ̂k − ν̂k)
λ=k

tan θt
,

(42)
where α̂0, µ̂k and ν̂k are the dual variables, and µ̂k ≥ 0,
ν̂k ≥ 0, ∀k. By introducing

û = [µ̂1, µ̂2, · · · , µ̂K , ν̂1, ν̂2, · · · , ν̂K ]
T
,

S =

[
I − 1

tan θt
· I

I 1
tan θt

· I

]
,

(43)

where û ∈ C2K×1 and S ∈ C2K×2K , the Lagrangian for P7

can be further simplified into

L
(
Λ̂, t, α̂0, û

)
=
(
1T û− 1

)
t+ α̂0Λ̂

T T̂Λ̂− ûTSΛ̂− α̂0p0.

(44)
Based on (44), we express the KKT conditions for optimality
of P7 in the following:

∂L
∂t

= 1T û− 1 = 0 (45a)

∂L
∂Λ̂

= 2α̂0T̂Λ̂− ST û = 0 (45b)

Λ̂T T̂Λ̂− p0 = 0 (45c)

µ̂k

(
λ=k

tan θt
+ t− λ<k

)
= 0, ∀k ∈ K (45d)

ν̂k

(
− λ=k

tan θt
+ t− λ<k

)
= 0, ∀k ∈ K (45e)

Based on (45b) we can obtain α̂0 6= 0 and the expression of
Λ̂, given by

Λ̂ =
1

2α̂0
T̂−1ST û, (46)

where we note that T̂ is symmetric. Moreover, similar to the
case of strict phase rotation, by substituting the expression of
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Λ̂ in (46) into (45c), we can further obtain the expression of
α̂0, given by(

1

2α̂0
T̂ST û

)T
T̂

(
1

2α̂0
T̂ST û

)
= p0

⇒ α̂0 =

√
ûTST̂−1ST û

4p0
=

√
ûT V̂−1û

4p0
,

(47)

where for simplicity and consistency we introduce

V̂−1 = ST̂−1ST . (48)

Similar to the case for strict phase rotation, it is easy to observe
that the Slater’s condition is satisfied for P7, and therefore by
following a similar approach in (27) and (28), the dual problem
for P7 can be formulated into

Û = max
û
−
√
p0 · ûT V̂−1û, (49)

which further leads to the following equivalent optimization
for non-strict phase rotation

P8 : min
û

ûT V̂−1û

s.t. 1T û = 1

ûk ≥ 0, ∀k ∈ {1, 2, · · · , 2K}

(50)

where we denote ûk as the k-th entry in û, and we obtain
V̂−1 ∈ C2K×2K based on (48). P8 is also a QP optimization
over a simplex, which can be efficiently solved. The final
optimal precoding matrix for non-strict phase rotation can be
similarly obtained in a closed form as a function of û, given
by

W =
1

K
HH

(
HHH

)−1
diag

{√
p0

ûT V̂−1û
UT̂−1ST û

}
sŝ,

(51)
where U =

[
I j · I

]
is a transformation matrix that trans-

form the real-valued vector Λ̂ into its complex equivalence.
Based on the formulated equivalent optimization problems

P4 in (29) and P8 in (50), we note the similarity of the opti-
mization problem for strict phase rotation and non-strict phase
rotation. We observe that the objective function of P4 for strict
phase rotation and P8 for non-strict phase rotation is identical,
and both optimization problems share the same constraints. It
is further observed that the only difference between P4 and P8

is the problem size. It is then concluded that a K-dimensional
optimization problem for non-strict phase rotation and a 2K-
dimensional optimization for strict phase rotation share the
same problem formulation, and therefore they can be solved
in a similar way.

IV. CI AS A GENERALIZATION OF ZF PRECODING

In this section, we discuss the connection between the CI
precoding for strict phase rotation and the conventional ZF
precoding. For the CI precoding with non-strict phase rotation,
the connection can be obtained in a similar way. To compare
the CI precoding and the conventional ZF precoding, as a
reference we first present the precoded signal vector of ZF,
given by

xZF = WZF s =
1

f
·HH

(
HHH

)−1
s, (52)

where f is the scaling factor to meet the transmit power
constraint. For fairness of comparison, we employ a symbol-
level normalization for WZF such that ‖WZF s‖22 = p0 as for
the considered CI precoding, which leads to the expression of
f as

f =

√
‖WZF s‖22

p0
=

√
sH(HHH)

−1
s

p0
. (53)

By denoting C =
(
HHH

)−1
, the expression of f can be

further transformed into

f =

√√√√√ K∑
m=1

K∑
n=1

C (m,n) s∗msn

p0

⇒
K∑
m=1

K∑
n=1

C (m,n) s∗msn = f2p0.

(54)

Subsequently, we perform the mathematical analysis on the
optimization problem P4 on u for strict phase rotation. By ap-
plying the Lagrangian approach, we can obtain the Lagrangian
of P4, given by

L (u, q0,q) = uTV−1u + q0
(
1Tu− 1

)
−

K∑
k=1

qkµk

= uTV−1u + q0 · 1Tu− qTu− q0,

(55)

where the vector q = [q1, q2, · · · , qK ]T consists of each non-
negative dual variable qk of P4. Based on (55), we express
the KKT conditions of P4 as

∂L
∂u

= 2V−1u + q0 · 1− q = 0 (56a)

1Tu− 1 = 0 (56b)
qkµk = 0, ∀k ∈ K (56c)

Based on (56a) we can obtain the expression of u as a function
of the dual variables, given by

u =
1

2
V (q− q0 · 1) , (57)

and each µk as

µk =
1

2
(vkq− q0ak) ,∀k ∈ K, (58)

where we have decomposed V into V =
[
vT1 ,v

T
2 , · · · ,vTK

]T
.

a = [a1, a2, · · · , aK ]T denotes the column vector obtained
from the sum of V by column, with each entry given by

ak =
K∑
i=1

V (k, i). (59)
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By substituting the expression of u into (56b), we further
obtain that

1Tu− 1 = 0

⇒1

2

K∑
k=1

{[
K∑
i=1

V (k, i) qi

]
− q0ak

}
− 1 = 0

⇒1

2

K∑
i=1

[
K∑
k=1

V (k, i)

]
qi −

1

2
q0c− 1 = 0

⇒1

2

K∑
i=1

biqi −
1

2
q0c− 1 = 0

⇒q0 =
bq− 2

c
,

(60)

where b is a row vector obtained from the sum of V by row
and c denotes the sum of all the entries in V. b and c are
given by

b =
K∑
k=1

vk = aT ,

c =
K∑
k=1

K∑
i=1

V (k, i) = aT1,

(61)

where b = aT is based on the fact that V is symmetric.
By substituting the expression of q0 in (60) into (58), the
expression of each µk can be further transformed into

µk =
1

2
vkq−

ak
2

aTq− 2

c

=
1

2

(
vk −

ak
c

aT
)

q +
ak
c
,

(62)

which further leads to the expression of u as

u =
1

2
(V −Φ) q +

a

c
, (63)

where Φ = aaT

c . By substituting the expression of u into the
expression of Λ in (25), we can further obtain that

Λ =
1

2α0
V−1

[
1

2
(V −Φ) q +

a

c

]
=

1

2α0c
V−1a +

1

4α0

(
I−V−1Φ

)
q

=
1

2α0c
m +

1

4α0

(
I−V−1Φ

)
q,

(64)

where we have defined

m = V−1a. (65)

In (65), m ∈ CK×1 and m = [m1,m2, · · · ,mK ]
T . Based on

the expression of a, each mk is obtained as

mk =
K∑
n=1

V−1 (k, n) an

=
K∑
n=1

V−1 (k, n)
K∑
i=1

V (n, i)

=
K∑
n=1

V−1 (k, n) V (n, k) +
∑
i6=k

K∑
n=1

V−1 (k, n) V (n, i)

= 1 +
∑
i6=k

0

= 1,
(66)

which also means that m = V−1a = 1. With this fact, the
expression of Λ is further transformed into

Λ =
1

2α0c
1 +

1

4α0

(
I−V−1Φ

)
q, (67)

based on which we shall discuss the connection between the
CI precoding and the conventional ZF scheme. In (67), if we
set

qk = 0, ∀k ∈ K, (68)

based on (63) we can obtain that

u =
a

c
(69)

and based on (26) we further obtain that

α0 =

√
aTV−1a

4c2p0
=

√
aT1

4c2p0
=

√
c

4c2p0
=

1

2
√
cp0

. (70)

Then, the expression of Λ is simplified into

Λ =
1

2α0c
1 =

2
√
cp0

2c
=

√
p0
c
. (71)

Based on the expression of T in (20), we can obtain the
expression of T (m,n) as

T (m,n) = C (m,n) s∗msn, (72)

and with the fact that T is Hermitian, we further obtain that

c =
K∑
m=1

K∑
n=1

V (m,n) =
K∑
m=1

K∑
n=1

T (m,n)

=
K∑
m=1

K∑
n=1

C (m,n) s∗msn

= f2p0.

(73)

By substituting (73) into (71), we obtain

Λ =

√
p0
f2p0

=
1

f
. (74)
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In this case, with all dual variables equal to zero, each λk is
real and identical, which further leads to the expression of the
precoded signal vector for CI as

xCI = Ws =
1

K
·HH

(
HHH

)−1 1

f
sŝs

=
1

f
·HH

(
HHH

)−1
s

= xZF ,

(75)

which is identical to the precoded signal vector based on ZF,
where we denote xCI as the transmit signal vector for the CI
precoding.

The above results show that the conventional ZF precoding
can be regarded as a special case of the CI precoding with
all the dual variables being zero, as demonstrated in (68). The
performance of ZF method is therefore the lower-bound of the
CI precoding. We shall discuss under what conditions the CI
precoding is equivalent to the ZF approach in the following
section. It can be further observed that the performance of the
CI precoding will be superior to the ZF scheme if not all the
dual variables are zero, as shown in (67) where the existence
of non-zero dual variables will increase the minimum value in
Λ. We further note that when the optimality is achieved, the
minimum value in Λ is guaranteed to be not smaller than (74),
for otherwise the ZF precoding will generate a larger minimum
value in Λ, which means that ZF should be the optimal and
this causes contradiction.

V. PROPOSED ITERATIVE CLOSED-FORM SCHEME

In this section, our proposed iterative close-form scheme
is introduced. Throughout this section, we consider the case
of strict phase rotation, while the extension to the non-
strict phase rotation is trivial and briefly included, as both
optimization problems share the same problem formulation,
discussed in Section IV. To introduce the proposed scheme,
we first transform the expression of u in (63) into

u =
1

2
Gq +

a

c
, (76)

where G is defined as

G = V −Φ. (77)

Then, based on the optimality conditions in (56), as long as
we find a u and the corresponding dual vector q that satisfy
(56), the obtained u is the optimal solution for P4. This further
leads to the following optimization problem

P9 : find
q

u

s.t. u =
1

2
Gq +

a

c
1Tu− 1 = 0

µkqk = 0, µk ≥ 0, qk ≥ 0, ∀k ∈ K

(78)

For clarity of description, we define a set S as

S = {k | ak < 0, ∀k ∈ K} . (79)

In the following based on S we discuss the solution of P9 and
propose the iterative closed-form scheme.

A. S = ∅
When S = ∅, this means ak ≥ 0, ∀k ∈ K. Then, based on

the fact that 1Ta = c in (61), it is obvious that

u =
a

c
, qk = 0, ∀k ∈ K (80)

satisfies all the conditions in (78). Therefore, when S = ∅, the
optimal u∗ and q∗ can be obtained as

u∗ =
a

c
, q∗ = 0. (81)

In this case, based on our analysis in Section IV the CI pre-
coding is identical to the ZF approach, where no performance
gains can be obtained.

B. card (S) 6= ∅
When card (S) 6= ∅, this means that there is at least one

entry in a that is smaller than zero. It is then obvious that the
optimal u∗ 6= a

c due to the requirement that µk ≥ 0. In this
case, we can obtain that not all the dual variables are zero,
and we need to introduce at least one positive qi such that
each µk ≥ 0. We firstly set

u =
a

c
, q = 0. (82)

Subsequently, we sort the entries in u following an ascending
order, expressed as

d = sort (u) , (83)

where d is the sorted vector and d = [d1, d2, · · · , dK ]
T .

sort (·) denotes the sort function, and without loss of gen-
erality we denote k as the minimum value in u, which leads
to

µk = min (u) = d1. (84)

With (84) we can also obtain ak < 0 and d1 < 0. Let us firstly
introduce only one positive dual variable qk that corresponds
to µk while keeping other dual variables zero. Based on the
complementary slackness condition, when qk 6= 0, we obtain
µk = 0, and this further leads to

µk =
1

2

K∑
i=1

G (k, i)qi +
ak
c

= 0

⇒1

2
G (k, k) qk +

ak
c

= 0

⇒qk = − 2ak
G (k, k) c

.

(85)

where based on the definition of G we can verify that
G (k, k) > 0. Based on the fact that ak < 0 it is then obtained
that qk > 0. We further define a vector i

i = [k] , ∀qk 6= 0, (86)

and a set I that consists of all the entries in i, where we denote
i = [i1, i2 · · · , iM ] and card (I) = M . By updating q with
the updated qk based on (85), the updated u can be expressed
as

u =
1

2

∑
k∈I

gkqk +
a

c
, (87)
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where we have decomposed G = [g1,g2, · · · ,gK ], and (87)
satisfies µk = 0. We verify whether the minimum value in the
updated u satisfies the non-negative condition, and the updated
u is the optimal solution of P9 if min (u) is non-negative. If
this condition is not satisfied, this means that one dual variable
is not enough and we need to introduce an additional dual
variable. In this case, we first sort the updated u based on
(83) and then find the minimum value in the updated d, where
without loss of generality we denote

µl = d1, ql 6= 0, (88)

where we note that d1 in (88) is different from d1 in (84) as
u has been updated. With the existence of two non-zero dual
variables, we obtain i = [k, l] and I = {k, l}. We can then
formulate a matrix Z ∈ Ccard(S)×card(S) as

Z =

[
G (k, k) G (k, l)
G (l, k) G (l, l)

]
. (89)

By defining

q̃ = [qk, ql]
T
, ã = [ak, al]

T
, ũ = [µk, µl]

T (90)

that consists of the entries that correspond to the numbers of
non-zero dual variables, we obtain

ũ = 0, (91)

which is due to the complementary slackness condition. With
(87) and (91), we can further obtain q̃ as

ũ =
1

2

([
G (k, k)
G (l, k)

]
qk +

[
G (k, l)
G (l, l)

]
ql

)
+

ã

c
= 0

⇒ 1

2
Zq̃ +

ã

c
= 0

⇒ q̃ = −2

c
· Z−1ã.

(92)
If each entry in the obtained q̃ satisfies the non-negative
condition, we update u based on (87) with the updated I,
and further check whether the minimum value in the updated
u satisfies the non-negative condition.

Nevertheless, when card (S) > 1, it cannot be guaranteed
that each entry in the obtained q̃ in (92) satisfies the non-
negative condition. In this case, a retraction approach is
required. To be more specific, if there is one entry in the
obtained q̃ that is negative, we firstly find the corresponding
number of the negative dual variable, given by

k = find (qk < 0) , (93)

where the ‘find’ function returns the index of the negative
entry in q. We further obtain the corresponding column index
of k in i, expressed as

im = k. (94)

We then reset
i = [i1, i2, · · · , im−1] , (95)

which means that there are currently (m − 1) positive dual
variables and we set all the obtained dual variables obtained
after (m−1) to 0. With (95), we reformulate the corresponding
I and u. Then, for the m-th dual variable, instead of selecting

the number that corresponds to the minimum value in d as in
(84), we select µm that corresponds to the second minimum
value in d. Based on (83) we obtain

µm = d2, (96)

and we update i and I. With the updated I, we calculate q̃
based on (92), and we repeat the above process (83)-(96) by
increasing the number of non-zero dual variables one at a time
until all the entries in the updated u are non-negative, on the
condition that in each step the entries in the obtained q̃ are
non-negative.

C. The Iterative Algorithm

Based on the above description, we summarize the proposed
scheme for strict phase rotation in Algorithm 1. Since the
algorithm will find the u and q that satisfy the KKT conditions
for optimality, the obtained u is therefore the optimal solution
to the optimization problem P4 for strict phase rotation,
and the optimal precoding matrix can be obtained with (29)

Algorithm 1 Proposed Iterative Closed-form Scheme for Strict
Phase Rotation

input : s, H
output : W∗

Initialize i = [ ], I = ∅, N = [1], t = 1, and n = 0;
Calculate T based on (20); Obtain V = < (T);
Calculate a based on (59) and c based on (61);
Calculate G = V − aaT

c ; Calculate u = a
c ;

Obtain S based on (79);
if card (S) = ∅ then

Obtain u∗ = u;
else

while min (u) < 0 and n < nmax do
d = sort (u);
find k such that µk = dt;
Stack N =

[
N 1

]
;

Update i and I; Formulate Z based on I and G;
Calculate q̃ based on I and Z with (92);
if min (q̃) ≥ 0 then

Update u based on (87);
t = 1;

else
find k such that qk = min (q̃);
find m such that im = k;
Set i based on (95); Update I;
Formulate Z based on I and G;
Update q̃ with (92); Update u with (86);
Reformulate N = N (1 : m);
Update N (m)← N (m) + 1;
Update t = N (m);

end if
n← n+ 1;

end while
Obtain u∗ = u;

end if
Calculate W∗ based on the obtained u∗ with (30).
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CP10
=(K + 2)

0.5
(Nt + 1)

[
2N2

t + 2Nt +K + 2
]
·

ln


(Nt +K + 1) (Nt + 2) + 4Nt + 3K + 8 +

K∑
k=1

Nt∑
i=1

∣∣∣ sisk hk (i)
∣∣∣+
√

p0
K2 + ε2

ε

 (105)

accordingly. While the algorithm is for the case of the strict
phase rotation, it is trivial to extend to the case of non-strict
phase rotation by substituting V with V̂ in (48) to obtain the
optimal û∗. Subsequently, the optimal precoding matrix for
non-strict phase rotation is obtained with (50).

We note that, while the above algorithm includes an iter-
ative design, within each iteration a closed-form solution is
indeed obtained and the algorithm only includes linear matrix
manipulations, which is computationally efficient. Moreover,
it will be shown that the number of iterations required is small,
especially when the number of users is small. We further note
that, while the KKT optimality conditions are not satisfied
before the final iteration, the solution obtained within each
iteration is indeed a feasible solution that satisfies the power
constraint for the precoding and achieves an improved perfor-
mance over ZF but a sub-optimal performance compared to the
optimal CI precoding. Indeed, the obtained precoder in each
iteration approaches the optimal precoding strategy with the
increasing iteration number. Therefore, the proposed iterative
scheme can also achieve a flexible performance-complexity
tradeoff by limiting the maximum number of iterations nmax

in Algorithm 1.

VI. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we study the computational costs of the
optimization-based CI precoding and the proposed iterative
closed-form algorithm. For the optimization-based approaches,
the computational cost is evaluated based on the arithmetic
time complexity bound [43], and the complexity of the pro-
posed algorithm is evaluated in terms of the required number
of real multiplications and additions [44].

A. Optimization-based CI Precoding

Without loss of generality, we focus on the CI precoding
for strict phase rotation for the optimization-based approaches,
while the extension to the case of non-strict phase rotation is
trivial, as they share a similar problem formulation.

For the optimization-based CI precoding in the case of strict
phase rotation, the complexity is dominated by solving the
convex optimization problem P2 via the interior-point method.
For P2, based on the fact each wisi is identical, we can
transform P2 into an optimization on wi only, and we express
it in a standard SOCP form as

P10 : min
x

cTx

s.t. cTk x ≤ 0, ∀k ∈ K

‖Ax‖2 ≤
√

p0
K2

(97)

where we introduce x =
[
wT
i , t
]T ∈ C(Nt+1)×1, c =

[0, · · · , 0,−1]
T ∈ C(Nt+1)×1, ck =

[(
−Ksisk

· hk
)T
, 1

]T
∈

C(Nt+1)×1, and A = [si · I,0] ∈ CNt×(Nt+1). Compared to
P2, we note that the constraints on λk has been included
in each ck implicitly. Subsequently, based on [43] we can
obtain the arithmetic time complexity bound of the above
optimization via the interior-point methods, given by

CP10
= (M + 1)

0.5
N
(
N2 +M + L2

)
·D (p, ε) , (98)

where ε is the target accuracy of the solution, N is the dimen-
sion of the variable x, M is the total number of constraints,
and L is the dimension of Ax in the SOC constraint. Based
on the construction of P10, we obtain

M = K + 1, N = Nt + 1, L = Nt, (99)

which further leads to the expression of CP10
as

CP10

=(K + 2)
0.5

(Nt + 1)
[
(Nt + 1)

2
+K + 1 +N2

t

]
·D (p, ε)

=(K + 2)
0.5

(Nt + 1)
[
2N2

t + 2Nt +K + 2
]
·D (p, ε) .

(100)
D (p, ε) is the number of digits of accuracy for a solution with
the target accuracy ε, and is given by

D (p, ε) = ln

(
Dim (p) + ‖p‖1 + ε2

ε

)
, (101)

where the column vector p represents a permutation vector that
contains the parameters in both the objective function and the
constraints. For the constructed problem P10, p is given as

p =

[
(K + 1) , (Nt + 1) , Nt,−1, cT1 , · · · , cTK , si1T ,

√
p0
K2

]T
.

(102)
In (101), Dim (p) denotes the dimension of the permutation
vector p, and is accordingly obtained as

Dim (p) = (M + L) (N + 1) +M +N + 3

= (Nt +K + 1) (Nt + 2) +Nt +K + 5.
(103)

Based on the expression of p, we further obtain ‖p‖1 as

‖p‖1 = 3Nt+2K+3+K
K∑
k=1

Nt∑
i=1

∣∣∣∣ siskhk (i)

∣∣∣∣+√ p0
K2

. (104)

Given the expression of Dim (p) and ‖p‖1, we arrive at the
final expression of the arithmetic complexity of P10, which is
given by (105) at the topic of this page. The analytical time
complexity bound of P4 can be similarly obtained by trans-
forming the QP formulation of P4 into a SOCP formulation,
and is omitted for brevity.
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B. Iterative Closed-Form Algorithm

For the proposed iterative closed-form algorithm in Section
V, the complexity is evaluated by the required number of real
multiplications and additions in matrix operation. Specifically,
we observe that its complexity is dominated by the matrix
calculation in (92), and the size of Z−1 and ã is dependent on
the current number of iteration ‘n’, i.e., Z−1 ∈ R(n+1)×(n+1)

and ã ∈ R(n+1)×1. Following [44], we obtain that the
calculation of Z−1ã requires (n+ 1)

2 multiplications and
n (n+ 1) additions. Accordingly, by assuming a maximum
number of iteration nmax, the complexity of the proposed
iterative closed-form algorithm is approximately obtained in
terms of the required number of real operations as

CAlg1 =

nmax∑
n=0

[
(n+ 1)

2
+ n (n+ 1)

]
=

nmax∑
n=0

[
2n2 + 3n+ 1

]
.

(106)
Nevertheless, we note that the above two expressions for

the evaluation of complexity may not be directly comparable,
as the complexity of the optimization problem is evaluated
based on the time complexity bound, while the complexity
of the proposed algorithm is evaluated based on the required
number of real operations.

VII. NUMERICAL RESULTS

In this section, the numerical results of the proposed
schemes are presented and compared with the traditional CI
precoding based on the Monte Carlo simulations. In each plot,
we assume the total transmit power available as p0 = 1, and
the transmit SNR per antenna as ρ = 1

/
σ2. We compare

our proposed iterative schemes with the traditional closed-
form ZF-based methods, optimization-based SINR balancing
approaches [7][10], and CI precoding approaches P1 and P5

for both strict and non-strict phase rotation. Both the uncoded
and coded BER results are presented.

For clarity the following abbreviations are used throughout
this section:

1) ‘ZF’: traditional ZF scheme with symbol-level power
normalization in (52) and (53);

2) ‘RZF’: traditional RZF scheme with symbol-level power
normalization, where the precoded signal vector is given
by

xRZF = WRZF s =
1

f
·HH

(
HHH +

K

ρ
· I
)−1

s

(107)
with the symbol-level scaling factor f given by

f =
‖WRZF s‖2√

p0
; (108)

3) ‘SINR Balancing’: the SINR balancing approach based
on bisection search method [7];

4) ‘CI-opt, Strict/Non-Strict’: traditional CI precoding, P1

for strict phase rotation and P5 for non-strict phase
rotation;

5) ‘CI-CF, Strict/Non-Strict’: the proposed iterative closed-
form scheme for strict/non-strict phase rotation based on
Algorithm 1.
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In Fig. 4, we compare the bit error rate (BER) performance
of different schemes with QPSK modulation, and Nt = K =
8. As can be observed, the CI precoding approaches for both
strict phase rotation and non-strict phase rotation achieve an
improved performance over the ZF approach, and the gain
for non-strict phase rotation is more significant. For the CI
precoding for non-strict phase rotation at high SNR regime,
we observe a SNR gain of more than 10dB over ZF and
8dB SNR gain over RZF. Moreover, we observe that the
proposed iterative closed-form algorithm achieves exactly the
same performance as the optimization-based CI precoding,
which validates the effectiveness of the proposed method in
Section V. In Fig. 5, we further present the coded BER result
for the same system setup, where we employ the low-density
parity-check (LDPC) coding with the code rate 5/6. With
channel coding, all precoding methods achieve a significantly
improved performance compared to the case without channel
coding, and the performance gains of the CI-based symbol-
level precoding method persist in the presence of channel
coding.

In Fig. 6, we show the BER performance with respect to the
increasing transmit SNR when 8PSK modulation is employed,
where Nt = K = 8. Similarly, both transmit precoding
approaches based on the CI achieve an improved performance
over the ZF method, and the proposed iterative closed-form
schemes achieve the same performance as the optimization-
based schemes. At high SNR (ρ > 20dB), both CI-based
approaches outperform the ZF-based schemes. For CI with
non-strict phase rotation, we observe a SNR gain of over 7dB
compared to ZF, and a SNR gain of 5dB compared to RZF
precoding.

Fig. 7 shows the BER performance of different schemes
for QPSK with Nt = K = 12, where a similar BER trend
can be observed, where the CI-based precoding with non-
strict phase rotation achieves a significant better performance
than other precoding approaches. Particularly, comparing Fig.
4 and Fig. 7, we observe that the performance gains of the
CI-based approaches over the conventional ZF precoding are
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more significant with the increase in the number of antennas
and users.

In Fig. 8, the average number of iterations required for
the proposed iterative scheme is numerically studied with the
increasing number of users, where we include two cases of
Nt = K and Nt = 16. Generally, we observe that the average
number of iterations increases with the increase in the number
of users, as a larger number of users means a high possibility
that more entries in a can be negative. Moreover, we observe
that the number of required iterations is smaller when the
number of users is smaller than that of transmit antennas. The
non-strict phase rotation requires more iterations than the strict
phase rotation because the problem size is doubled. We also
observe that when the number of users K is small, the average
number of iterations can be smaller than 1 because the number
of iterations is zero when S = ∅.

To show the flexible performance-complexity tradeoff for
the proposed algorithm, in Fig. 9 we depict the BER per-
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formance of the proposed iterative approach with respect to
the maximum iteration number nmax, where Nt = K = 4.
As expected, we observe that the performance of the iterative
approach is identical to the conventional ZF approach when
nmax = 0. With nmax increases, the performance of the
iterative method approaches the optimal CI-based precoding,
which validates our statement in Section V-C.

In Fig. 10, we further compare the uncoded BER result
for the case of Nt > K, where we consider a total number
of K = 8 users served by a BS with Nt = 10 transmit
antennas. We observe a similar result compared to the case
of Nt = K, where both CI-based precoding methods achieve
an improved performance over the ZF precoding, while the
CI-based precoding with non-strict phase rotation achieves the
best BER result, and the performance gain is more prominent
in the high SNR regime.

As it is difficult to provide a generic framework to evaluate
the analytical complexity for both the optimization-based CI
precoding and the iterative closed-form CI precoding, in Fig.
11 we compare the execution time required for each scheme
as an indication to show the potential complexity benefits
of the proposed iterative closed-form scheme, where ‘CI-
QP, Strict/Non-Strict’ refers to the QP optimizations P4 and
P8, and ‘CI-SOCP, Strict/Non-Strict’ refers to the SOCP
optimizations P1 and P5. It is observed that the optimization
for non-strict phase rotation requires more time to obtain the
optimal solution that the strict-phase rotation because of the
larger problem size, which is also clearly demonstrated in the
literature [42]. It is also observed that solving the equivalent
QP optimization is much faster than solving the original SOCP
optimization. More importantly, our proposed iterative scheme
is more time-efficient than the QP algorithms, which motivates
the use of the symbol-level CI beamforming in practice.

VIII. CONCLUSION

In this paper, we study the symbol-level downlink precoding
schemes based on CI, where both the strict and non-strict
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Fig. 11: Execution time required for different schemes, QPSK,
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phase rotation cases are considered. By analyzing the opti-
mization problems with Lagrangian and KKT conditions, we
firstly obtain the optimal structure of the precoding matrix, and
further transform the optimization into a QP over a simplex by
formulating the dual problem. We show that the optimizations
for strict and non-strict phase rotation are equivalent in terms
of the problem formulation. We further illustrate that ZF pre-
coding is a special case and lower-bound of the CI precoding.
The proposed iterative closed-form scheme is shown to achieve
an identical performance to the optimization-based schemes
with a reduced computational cost, which enables the use of
symbol-level CI precoding in practical wireless systems. Our
future work is to consider the possibility of closed-form CI
precoding methods for QAM modulations.
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