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A mean-field model of memristive circuit interaction
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Abstract – We construct an exactly solvable circuit of interacting memristors and study its
dynamics and fixed points. This simple circuit model interpolates between decoupled circuits of
isolated memristors, and memristors in series, for which exact fixed points can be obtained. We
introduce a Lyapunov functional that is found to be minimized along the non-equilibrium dynamics
and which resembles a long-range Ising Hamiltonian with non-linear self-interactions. We use the
Lyapunov functional as an Hamiltonian to calculate, in the mean field theory approximation, the
average asymptotic behavior of the circuit given a random initialization, yielding exact predictions
for the case of decay to the lower resistance state, and reasonable predictions for the case of a
decay to the higher resistance state.

Introduction. – Neuromorphic circuits are a promis-
ing technology to implement at the hardware level the
computational power of analog computation inspired by
the mammal brain. The type of computation performed
by memristors requires a general theoretical understand-
ing of the dynamics, in particular to allow controllability
and interpretability of the results. Memristors are becom-
ing the most promising technology for the analogue im-
plementation of artificial intelligence, and their dynamics
is known to display memory effects [1–4], being these very
sensible to initial conditions [5–7]. Memristive circuits are
also a new direction of study [8,9] from a statistical physics
standpoint, as these show critical behavior [10, 11] and
can be connected to the solution of optimization problems
[12–14]. In its simplest description, a memristor is a 2-
ports device behaving as a resistance which changes its
value as a function of the flowing current. In this paper
we restrict to ideal memristors with zero-crossing in the
Voltage-Current diagram [15–17], though more recently
ReRAM (Resistive RAM) devices have further general-
ized this type of behavior [18].
The analysis presented in this paper could constitute a
baseline for modelling and analyzing more complex inter-
acting memristive circuits. We introduce a simple circuit
whose asymptotic dynamics we show to be governed by
a Lyapunov functional. As we will argue, such a func-

tional can be casted into a spin-like model with long
range interactions but with non-linear self-energy. The
model we introduce interpolates in fact between a set of
non-interacting memristive circuits and a single mesh of
memristors. In a recent paper [19], it has been shown
however that the interaction strength between memristors
for generic circuits is controlled by the Hamming distance
on the dual graph of the circuit. That paper however
does consider memristors on a mesh, but between meshes.
Specifically, we consider the case in which the Hamming
distance between each pair of memristors is one, hence
representing a fully-connected model in which mean field
techniques can be used. The source of our motivation for
studying mean-field models of memristors is due to the
difficulty of analyzing and understanding the behavior of
general memristive circuits. It is the purpose of this pa-
per to show that the model we introduce can be regarded
as the analogue of the system studied in the well-known
Curie-Weißmodel for spin-spin magnetic interactions. The
key difference is that in our case the single interacting ele-
ment is not the spin of a particle but the internal memory
of a memristors, characterized by a different functional
form for the pairwise interaction and, most importantly,
by a non-Hamiltonian dynamics.
The present paper is structured as follows: in Section 1,
we revise the standard model of a simple circuit with one
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memristor, in Section 2, we define the model of interact-
ing memristors, in which many a memristor are coupled
with a central mesh characterized by a given conductance
regulating the strengh of the interaction. In Section 3, we
analytically and numerically characterize the circuit both
in the case of deterministic and random initializations. Fi-
nally, in Section 4 we discuss the results and their implica-
tions both on real implementations of memristive circuits
and on their theoretical modelling.

Mean field analog memristive circuit. – We be-
gin by introducing the memristors under study. As first
observed in [20], physical memristors slowly relax to a lim-
iting resistance even when a voltage is not applied. This
observation implies that there is a competition between a
phenomenon of decay and one of reinforcing, which is one
of the key mechanisms for the learning ability of biologi-
cal systems. We consider the simplest dynamical equation
which captures such behavior. The time evolution of a
simple Ag+ memristor (atomic switch) [21]:

d

dt
w(t) = αw(t)− Ron

γ
I = αw(t)− Ron

γ

S

R(w)
(1)

where 0 ≤ w(t) ≤ 1 is the internal memory parameter
of the memristor, R(w) = Ron(1 − w) + Roffw is the re-
sistance and I and S are the current and applied voltage
respectively. Using this parametrization, Ron and Roff
are the limiting resistances for w = 0 and w = 1 respec-
tively (Roff > Ron > 0). The constant parameters α
and γ set the timescales for the relaxation and excitation
of the memristor respectively1. The fixed points w∗ can
be obtained by setting d

dtw = 0, from which we find the
equation

R(w∗)

Ron
w∗ =

(
(1− w∗) +

Roff
Ron

w∗
)
w∗ =

S

αγ
. (2)

We immediately observe that this equation is quadratic in
w∗ and that none, one, or even two solutions can be ob-
tained depending on the values of the parameters. Physi-
cal memristors relax to the state of highest resistance Roff
at zero voltage, i.e. α > 0.

The analysis above shows the main characteristics of
memristive circuit dynamics: multiple fixed points de-
pending on the value of the external control. With this
in mind, we now generalize the dynamical model to the
case of a circuit composed of N memristors in series to a
voltage source, as in Fig. 1: this is a simple modification
of the one studied in [22] for machine learning purposes.
It was proven in [19] that the interaction strength between
memristors decays exponentially with the Hamming dis-
tance on the graph. Thus, in order to obtain long range
interaction it is necessary to minimize the Hamming dis-
tance. The easiest way to obtain this is by arranging each
memristor on a single mesh. However, since the memristor

1In particular, meanwhile α has the dimension of an inverse time,
γ has the dimension of time and voltage.

Fig. 1: More general case with n memristors arranged on a
mesh. Since the circuit is planar, all the meshs can be chosen
with the same orientation.

internal dynamics depends on the current, when these are
arranged on a single mesh the dynamics of the circuit is
trivial. The simplest non-trivial dynamics with long range
interaction is obtained by inserting a current-divider on a
central mesh, as in Fig. 1. Hence, we introduce control re-
sistances in order to have long range interactions between
memristors which are tunable. We consider n memristors.
For the derivation of the equations for the circuit of Fig. 1,
we first apply the mesh current method [23], in which we
assign to each memristive mesh a current ik, k = 1, · · · , n,
and we define the central mesh current i0. By construc-
tion, in the central mesh there are no memristors but only
resistances. Once we have assigned an orientation to the
mesh current, the current on each resistance is clear: on
the Rref in parallel to the kth memristor, we will have a
current i0− ik, meanwhile in any Rint resistance will flow
a current i0.
On each kth memristor the current is given simply by ik.
The final step is to write the Kirchhoff voltage conserva-
tion law for each mesh. Since we have n+ 1 currents and
n + 1 meshes, we have a complete set of equations given
by:

Central mesh equation:

nRinti0(t) +

n∑
k=1

Rref (i0(t)− ik(t)) = 0, (3)

Memristive meshs:

R (wk(t)) ik +Rref (ik(t)− i0(t)) = Sk(t), (4)

Memory evolution:

αwk(t)− Ron
γ
ik(t) =

d

dt
wk, (5)

where Sk(t) are voltage sources. The system of equations
(5) completely determines the circuit dynamics and yields
the following memristors’s dynamics, and can be derived
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via the Sherman-Morrison relation [24]:

dwk
dt

= αwk −
n∑
j=1

Ron
γ

(I − 1

n
MJ )−1kj

Sj
Rref +R(wj)

, (6)

where Mij = δij
Rref

Rref+R(wi)
Rref

Rref+Rint
and J is an all-ones

matrix (see the Appendix of [25]) and I the identity ma-
trix. In addition to the Kirchhoff laws above, we need to
include the memory dynamics:

d

dt
wi = αwi − fi(~w), (7)

where, more specifically, fi(~w) =
∑
j gi(wi, wj), which

reflects the fact that the dynamics is non-linear, pair-
wise, and all-to-all. Each memristor interacts with every
other, through an interaction term gi(wi, wj) = Ron

γ (I −
1
nMJ )−1ij

Sj
Rref+R(wj)

depending both on its own state wi
at time t and on the state of memristor j. Via a direct
computation of the partial derivatives, it is easy to see
that the dynamics does not derive from a potential, as
∂wifj(~w) 6= ∂wjfi(~w). This means that we cannot strictly
interpret the behavior of memristive circuits as an Hamil-
tonian dynamics. In general, the statistical description
of such non-Hamiltonian systems cannot restrict itself to
the calculation of the equilibrium distribution. In the fol-
lowing subsection, we identify a general approximation to
map initial states into asymptotic states, depending on
the stability of the fixed points of equations (6).

Asymptotic dynamics. – In this Section we identify
the general fixed point equations of the circuit’s dynamics.
The fixed points for the general case of this circuit can be
obtained from eqns. (5) if we set d

dtwk = 0. These equa-
tions generalize the fixed-point equation obtained for the
single memristor. We derive in fact a direct relationship
between equilibrium currents and the internal memory wk:

ik =
αγ

Ron
wk (8)

i0 =
αγ

Ron

Rref
Rint +Rref

1

n

n∑
k=1

wk ≡
αγ

Ron

Rref
Rint +Rref

〈w〉

and then find a fixed point equation for the internal mem-
ory parameters, which are the solution of the following
fixed point equations:

Sk
αγ

=
R(wk) +Rref

Ron
wk −

R2
ref

Ron(Rint +Rref )
〈w〉.

Considering that for an ideal memristor R(wk) =
Roffwk + (1 − wk)Ron = Ron + (Roff − Ron)wk, we can
rewrite this equation in terms of adimensional quantities
only:

Sk
αγ

=
Roff −Ron

Ron
w2
k

+
Ron +Rref

Ron
wk −

R2
ref

Ron(Rint +Rref )
〈w〉

= ξw2
k + χwk − ρ〈w〉, (9)
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Fig. 2: Critical line of eqn. (10) of the non-equilibrium dynam-
ics starting from switched off memristors, wi(0) = 1. Parame-
ters of the model: Rref = 1000, Ron = 100, Roff = 1600, and
α = γ = 1.

where we defined ξ =
Roff−Ron

Ron
, χ =

Ron+Rref
Ron

and

ρ =
R2
ref

Ron(Rint+Rref )
. We note that the mean internal mem-

ory 〈w〉 acts as an effective voltage source for the circuit.
We see that already for this rather simple circuit, all-to-
all interactions can affect the position of the fixed points,
as these are modified by a mean field term 〈w〉 directly
proportional to ρ.

Asymptotic distributions for the homogeneous case.
Starting from the general dynamics and fixed-point equa-
tions, we consider the case of homogenous applied voltage
across all memristors, Sk = S, and consider two different
initial conditions. The non-equilibrium dynamics of the
system will determine two radically different asymptotic
states for these two cases. In the first case, all memristors
start from a switched-off condition, wk(0) = 1 for all k.
Such uniform condition combined with the homogenous
applied voltage results in an exact mean-field dynamics.
This implies that all memristors behave alike. This type
of dynamics allows us to exactly compute the asymptotic
state varying the applied voltage S. The critical value for
the voltage S can be worked out from eq. (9) and reads:

Sc = αγ

(
Roff +Rref

Ron
−

R2
ref

Ron(Rint +Rref )

)
. (10)

Fig. 2 shows the critical line as a function of the parame-
ter Rint/Roff . Above this line, memristors are activated
and all converge to the state of lower resistance w = 0,
corresponding to R(w) = Ron, while below the same line
memristors will remain on the state of higher resistance
w = 1, corresponding to R(w) = Roff . As we will see,
this simple analysis shows the existence of a phase transi-
tion, that we will study using mean-field techniques.

Non-interacting case. The case of a random initial
condition is radically different as a homogeneous dynam-
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ics is not established by the system. In this case, we need
to introduce a mean-field approximation of the heteroge-
nouos dynamics of the memristors. This approximation
provides an estimate of the asymptotic state of activation.
Let us consider first the case in which the memristors are
non-interacting, i.e. we assume that ρ = 0. Using this
parametrization, the non-interacting estimate becomes:

S

αγ
= ξw2 + χw (11)

where ξ and χ are the adimensional parameters defined
in eqn. (9), S

αγ can be tuned using the external voltage
sources, and χ depends on the interaction between the
memristive meshs. We note that ξ is typically positive as
Roff � Ron, and that it is important to note that χ can-
not be negative for any positive values of the resistances.
Let us thus consider for simplicity In the case Rref = 0,
implying ρ = 0 and χ = 1. The solution of equation (11)
is:

w∗± = − χ

2ξ
±

√
χ2

4ξ2
+

S

ξαγ
= − 1

2ξ

(
1±

√
1 + 4

Sξ

αγ

)
(12)

We observe that necessarily one root of eqn. (12) falls be-
low zero, and thus only one solution is feasible. In Fig. 3
(top) we plot the numerical solutions obtained for α < 0
and α > 0. One important fact that we need to stress
is that the dynamics of the circuits greatly depends on
the signs of S and α. The case in which Si’s and α have
identical signs is, as the fixed points will not fall in the
interval [0, 1], and thus the asymptotic state for memris-
tors is binary, either {0, 1}. We observe that meanwhile
for α < 0 the asymptotic fixed point is stable, in the case
α > 0 (which is the physical case) it is unstable. A simple
calculation of the Jacobian confirms this fact. Fig. 3 (bot-
tom) shows the position of the fixed points as a function
of α and S for both values of α.

General case: use of Lyapunov functional. In the case
α < 0, S > 0, the asymptotic fixed point can be described
as the minimum of a functional. In fact, eqn. (9) can be
obtained from ∂wiH = 0, where H is given by:

H(wi) =
ρ

2n

∑
i

w2
i −

ρ

n

∑
i,j

wiwj −
∑
i

Si
αγ

wi +
∑
i

E(wi)

(13)
and where Ei(wi) = ξ

3w
3
i + χ

2w
2
i . As we will see, H(wi)

will be used as an approximate Hamiltonian for the Curie-
Weißmean field theory. It is important to note that the
functional in eqn. (13) is a Lyapunov function, as we show
in the Appendix of [25], implying that d

dtH(wi) < 0 for
α < 0. Thus, for α < 0 the asymptotic states 〈w(t =∞)〉
are directly connected to fixed points of a functional which
can serve as a Hamiltonian. For α > 0 the Lyapunov
functional is given by L = −H in eqn. (13); in which
the evolution of the Lyapunov functional is shown in Fig.
4. Although the Hamiltonian of eqn. (13) is reminiscent

Fig. 3: Top: Dynamics for the interacting case in the case
Rref = 100 = Rint = 100, Ron = 100, Roff = 16000, γ = 10.
The case of S = 20 and α = 1 is shown with black curves,
meanwhwile S = −20, α = −1 in red. These equations have
been obtained solving numerically eqns. (5) with an integration
step dt = 0.1 and n = 1000 memristors. The blue dashed line
is the threshold calculated from eqn. (11). We note that the
same fixed point can describe an attractive or a repelling fixed
point, depending on the signs of S and α. Bottom: Fixed
points as functions of α, S > 0 are dashed curves (unstable)
and α, S < 0 are continuous curves (stable).

of an Ising model with long-range interactions but with
non-linear self-energy [26, 27], it is worth to mention that
here the parameters wi take values in [0, 1]. To begin
with, we anticipate that we will perform all the statistical
mechanical calculations at a non-zero temperature, and
then take the limit T → 0 at the end.

The first question we aim to answer is whether we can
use the (unphysical) situation S > 0, α < 0 to make any
statement regarding the behavior of the system for S <
0, α > 0. As mentioned before, α > 0 corresponds to a
relaxation into an insulating phase, which is the physical
case observed in Ag+ memristors [20, 21]. We can thus
take advantage of a heuristic observation: we can use the
fact that location of the unstable fixed determines which
fixed point each memristor will reach. For instance, in
Fig. 3 (top), if win > w∗, since the time derivative is
positive, we would expect w(t = ∞) = 1; if on the other
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Fig. 4: The evolution over time of the Lyapunov function as
the memristors converge to their asymptotic values.

hand win < w∗, then we would expect w(t = ∞) = 0, up
to a set of measure zero, win = w∗. This also shows that
there is a duality between the cases S < 0, α > 0, and
S > 0, α < 0, which is also evident by the fact that since
the fixed points depend only on the ratio S/α, the position
of the fixed point will be unaffected. We can then use the
following rule of thumb which connects the probability on
the asymptotic states for α < 0 to the ones of the initial
states for α > 0:

P (w(t =∞) = 1) = P (win > w∗)

P (w(t =∞) = 0) = P (win < w∗)

P (win < w∗) = 1− P (win > w∗). (14)

With this in mind, we use the Lyapunov functional of
eqn. (13) as a Hamiltonian in a statistical mechanics set-
ting. If we assume random initial conditions, we can try
to predict ψ = 〈w(t =∞)〉 using an equilibrium approach
in a canonical setting. Given the similarity of the func-
tional to an Ising model, implies a Curie-Weiß approach
for the average magnetization 〈w〉. Using standard mean
field theory techniques and after some straightforward cal-
culations (which are provided in the Appendix in [25]), we
find the following mean field theory equation at zero tem-
perature [29]:

ψ = arg supw∈[0,1]

((
ρψ +

S

αγ

)
w − E(w)

)
. (15)

Eqn. (15) can be exactly inverted as a function of ψ = 〈w〉.
This gives the same result as the one we would obtain if
we substituted wk → 〈w〉 in eqn. (9). This is simply a cor-
rection to the physical parameter χ, as in fact we obtain
the same effective equation as the non-interacting approx-
imation with the substitution χ → χ − ρ, which is the
correction due to the interaction between the memristors.

Fig. 5: Asymptotic fixed points as a function of S for α = ±1,
γ = 1, Rref = Rint = Ron = 100, Roff = 16000 and n = 1000
memristors. We compare the numerical results obtained by
simulating the system and the theoretical estimate from the
non-interacting assumption and the mean field theory, using
the relation of eqn. (14). This figure has been obtained with-
out averaging over the inital condition. For each point, the
memristor memories were initiated randomly in [0, 1].

Since the memristor memory is bounded between 0 and 1,
we consider the function 〈w〉 = max (0,max (ψ(S), 1)).

In Fig. 5 we plot the numerical results on the mean field
〈w(t = ∞)〉 for α > 0 and compare these, as a function
of S, to the non-interacting estimate obtained using eqn.
(14). We observe that such approximation fails for larger
values of S, but yet it provides nonetheless a good esti-
mate for the asymptotic dynamics. Few comments are in
order. First we note that for α = −1 the mean field theory
calculation exactly reproduces the behavior of 〈w〉. This
approximation suggest a second order phase transition at
S = 0, as in fact one has ∂S〈w〉 given by

∂S (max (0, w∗(S))) =


1
ξαγ

1

2

√
(χ−ρ)2

4ξ2
+ S
ξαγ

S < 0

0 S > 0

(16)

which is not a differentiable function.
For α > 0 we use the approximation of eqns. (14) to

calculate the behavior of the system. The validity of this
approximation is shown on the right hand side of Fig. 5.
We observe that the heuristic assumption of eqn. (14) for
α < 0 is closer to the numerically obtained curve for S ≈ 0.
For larger values of S however, such approximation is less
valid. We also observe stronger fluctuations around the
mean field theory calculation, which we attribute to the
effective instability of the fixed point. Nonetheless, such
simple approximation provides a good estimate for the
behavior of the internal memory also for larger values of
the external applied voltage. The discrepancy is due to the
fact that for larger values of S, because of the instability
aforementioned, there can be trajectories which can invert
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their course. Since we observe that the real curve lies
below the one obtained from the mean field theory, this
implies that some memristors whose initial condition lies
above the fixed point can invert and reach the asymptotic
state w = 0, rather than w = 1. We observe that eqn.
(14) is valid for S ≈ 0, this implies that the discontinuity
of eqn. (16) is valid also for α > 0. This seems evident
from Fig. 5, where the discontinuity in the first derivative
of 〈w〉 between α < 0 and α > 0 is opposite in the sign of
the derivative. Also, we note that possibly a divergence
would occur if χ = ρ in eqn. (16), but this does not
happen for any positive values of the resistances. From
eqn. (16) we can also promptly infer the critical exponent
of the transition point S = 0 is 1

2 .
As a last comment, we note that we can derive the

asymptotic susceptibility from the mean field exact solu-
tion in the approximation that S(t) is stepwise constant.
The result is given by:

∂Sw(t� 1) ≈ Ron

2γ
√
α(Roff −Ron)

e−αt, (17)

and the derivation provided in the Appendix of [25].

Conclusions. – Memristors are becoming of interest
for their use in on-chip implementations of neural net-
works [30, 31]. Yet, only a few works focus on their col-
lective dynamics. The results presented in this paper con-
nect the Hamiltonian of interacting spin systems with the
Lyapunov function of memristive circuits. This implies a
connection between the equilibrium states of a statistical
system of spins and the asymptotic states of memristors
in a circuit. This statistical mechanics interpretation of
memristors, is also analogous to the case of neural net-
works with temporal delays [28], and provides a solid ba-
sis for further generalizations. It has been insofar hard to
obtain an analytical control of the dynamics of memristive
circuits, in this paper we introduced a mean field theory
via a mapping between the equilibrium states into a suit-
able minima of Lyapunov function. Thus, we have shown,
both analytically and numerically, that a first order phase
transition occurs for positive α, when memristors are ini-
tialized to the high-resistance state, and that a second
order phase transition occurs when the initial conditions
are chosen uniformly at random between the high and low
resistance states. Our results on the mapping between
non-equilibrium dynamics and equilibrium states could be
extended to the more general case of purely memristive
circuits. This work gives predictions on the convergence
to boundary values of DC-controlled memristors. In fu-
ture works we will consider the case of noisy memristive
dynamics, heterogeneous applied voltages and generic net-
work topology [9], where complex non-equilibrium glass-
like behaviour is expected [32].
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Supplementary Material

Single mesh toy model. –

Simple derivation. From the mesh circuit equations
we have:

ik =
Sk

Rref +R(wk)
+

Rref
Rref +R(wk)

i0 (18)

And,

i0 =
Rref

Rref +Rint

1

n

n∑
k

ik (19)

So that we have:

ik =
Sk

Rref +R(wk)
+

Rref
Rref +R(wk)

Rref
Rref +Rint

1

n

n∑
j

ij

(20)
That leads to:

ik =

n∑
j=1

(I − 1

n
MJ )−1

kj

Sj
Rref +R(wj)

(21)

where J is the all-ones matrix and Mij =

δij
Rref

Rref+R(wi)

Rref
Rref+Rint

. And to the dynamics:

dwk
dt

= αwk−
n∑
j=1

Ron
γ

(I− 1

n
MJ )−1

kj

Sj
Rref +R(wj)

(22)

Alternative derivation and formula. An alterna-
tive derivation of the equation above can be obtained via
a direct calculation of the inverse. The relation between
currents and voltages can be can be written as: which
means we need to invert a matrix of the form:

M =



a0 −b −b · · · −b
−b a1 0 · · · 0

−b 0 a2 0
...

...
...

. . .
. . . 0

−b 0 · · · 0 an

 (24)

which a special case of an arrowhead matrix. The in-
verse of this matrix is rather complicated, but can be eas-
ily obtained by means of a cofactor formula: (A−1)ij =

1
det(A)

Cji where Cij = (−1)i+jdet(Aĩj̃) is the determi-
nant of the matrix A where the row i and the column j
has been removed. We note that because of the proper-
ties of A, C is a symmetric matrix. Let us also note that
the determinant of matrices of the form as in eqn. (24),
D = det(M) =

∏n
k=0 ak − b

2∑n
k=1

∏
j 6=k,j>0 aj .

Thus:

(M−1)ij =
Cij
D

(25)

We that the cofactor of the matrix in the case in which
i = j > 1 has the same form. We can thus already say

that Cij for i = j > 1 is of the form: Cii = det(M ĩ̃i) =∏n
k=0,k 6=i ak − b

2∑n
k=1,k 6=i

∏
j 6=k,j>0 aj . The special cases

i = 1, j > 1 and j = 1, i > 1, take the form C1j = Cj1 =
−b2

∏
k 6=1,k 6=j ak. The case Cij with i 6= j, i, j > 1 has to

be calculated on its own. We note that for instance the
matrix C12 is of the form:

C12 = C21 = −det


a0 −b −b −b −b −b
−b 0 0 0 0 0
−b 0 a3 0 0 0
−b 0 0 a4 0 0
−b 0 0 0 a5 0
−b 0 0 0 0 a6

 (26)

and thus introduces a zero on the diagonal. For this rea-
son, the determinant of these matrices are of the form
Cij = −b2

∏
k>0,k 6=i,k 6=j ak. We thus have: where we

used the fact that because S0 = 0 and we are also inter-
ested in ik≥1, we can write the equation directly for the
side loop. Also, we have implicitly defined:

D = n(Rint +Rref )

n∏
k=1

(R(wk) +Rref )

− b2
n∑
k=1

∏
j 6=k,j>0

(R(wk) +Rref ) (28)

cij =

n∏
k=1,k 6=i,j

(R(wj) +Rref ) (29)

qi = n(Rint +Rref )

n∏
k=1,k 6=i

(R(wk) +Rref )

− b2
n∑

k=1,k 6=i

∏
j 6=k,i,j>0

(R(wj) +Rref ) (30)

b = Rref (31)

We are in particular interested in the inverse of the sub-
matrix which acts only on the memristor currents. This

can be easily obtained, and is given by − R2
ref

n(Rint+Rref )
J +

(R(~w) +Rref )I, where J is the matrix made of ones and
R(~w) is the diagonal matrix with the resistances of each
memristor. This implies the following dynamics:

d

dt
~w = α~w

− Ron
γ

(
diag (Rref +R(w))−

R2
ref

n(Rint +Rref )
J

)−1

~S.

(32)

here diag(~x) = δijxj , and which is the equation we find
in the paper.

Formal mean field dynamics solution and perturba-
tive expansion. In the mean field approximation, eqn.
(32) can be solved. If we use the Sherman-Morrison for-
mula assuming that all memristors are equal, in such a
case the equation becomes:

as

bw(t) + c
+ w′(t)− αw(t) = 0 (33)

with a = Ron
γ

, s = 〈~S〉 = 1
n

∑n
i=1 Si, c = Rref + Ron −

R2
ref

Rint+Rref
= Ron +

RrefRint
Rref+Rint

and b = Roff − Ron, and

where we are assuming that Si = 〈Si〉.
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

n(Rint +Rref ) −Rref −Rref · · · −Rref
−Rref R(w1) +Rref 0 · · · 0

−Rref 0 R(w2) +Rref 0
...

...
...

. . .
. . . 0

−Rref 0 · · · 0 R(wn) +Rref





i0
i1
...
...
in

 =



0
S1

...

...
Sn

 (23)



i0
i1
...
...
in

 =
1

D
C



0
S1

...

...
Sn

→


i1
...
...
in

 =
1

D



q1 b2 c12 b2 c13 · · · b2 c1n

b2 c12 q2 b2 c23
...

b2 c13 b2 c23
. . .

. . .
...

. . . qn−1 b2 c1n−1
b2 c1n · · · b2 c1n−1 qn




S1

...

...
Sn

 (27)

An analytic solution for such an equation can be found in
terms of an inverse. Let us define:

Q(t) =

c ArcTan

(√
α(2(c1+t)b+c)√
−4abs−αc2

)
√
α
√
−4abs− αc2

+
log(as− (c1 + t)α ((c1 + t)b+ c))

2α
(34)

for an arbitrary integration constant c1 due to time invari-
ance symmetry. Then, the solution of eqn. (33) is given
by the inverse function of Q(t):

w(t) = Q−1(t). (35)

which is not analytical. In order to solve this equation,
we use the a perturbative method in ε = c/b, assuming

that Rint � Ron � 1. In fact, 1
2
<

RrefRint
Rref+Rint

< 1 for

positive resistances. In this case, the differential equation
becomes:

as

bw(t)
+ w′(t)− αw(t) = ε

as

bw(t)2
+O(ε2) (36)

We thus search for perturbative solutions w(t) = w0(t) +
c
b
w1(t) + · · · up to the first order. We have the two dif-

ferential equations up to the first perturbative order in ε,
which are:

O(ε0) :
as

bw0(t)
+ w′0(t)− αw0(t) = 0

O(ε1) :
as

bw2
0(t)

+ w′1(t)−
(
α+

as

bw2
0(t)

)
w1(t) = 0

(37)

The zeroth perturbative order equation has solutions:

w0(t) = ±
√
as+ e2α(bz0+t)
√
α
√
b

(38)

with z0 associated with the initial condition, and of which
we take the positive sign only. For t > 1

2α
we have an

exponential function of the form:

w0(t� 2α) =
eαt√
αb

+
ase−2αt

2
√
αb

+O((as)2) (39)

The first perturbative order is of the form:

x′(t) = h(t)x(t) + g(t) (40)

and has a general solution of the form:

x(t) =
(
e−

∫ t h(t′)dt′)(z1 +

∫ t

g(t′)e
∫ t′ h(t′′)dt′′dt′

)
(41)

where we identify h(t) = α + as
bw2

0(t)
and g(t) = a

bw2
0(t)

.

For large times h(t � 2α) ≈ α and g(t � 2α) ≈
a
b

√
αb

2
e−2αt = aαe−2αt. Thus we have:

w1(t� 2α) ≈ e−αt(z1 +
a

b
e−αt) (42)

We thus obtain the dynamic susceptibility for long times,
which is given by:

∂sw(t� 2α) ≈ a

2
√
α
√
b
√
as+ e2α(bc1+t)

→ a

2
√
αb
e−αt

=
Ron

2γ
√
α(Roff −Ron)

e−αt (43)

which falls off exponentially in time.

Fixed point structure. Since the interaction matrix
is always invertible, we can study the equivalent equation:

which we note we can rewrite the fixed point equation
as:

0 =
1

α

d

dt

(
χwi +

ξ

2
w2
i − ρ〈w〉

)
= χwi+ξw2

i −ρ〈w〉−
Si
αγ

(45)
Fixed points then require that the following two equations
are satisfied at the same time:

χwi +
ξ

2
w2
i − ρ〈w〉 = c (46)

χwi + ξw2
i − ρ〈w〉 −

Si
αγ

= 0 (47)

for an arbitrary constant c and with wi ∈ [0, 1].
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(
diag (Rref +R(w))−

R2
ref

n(Rint +Rref )
J

)
d

dt
~w = α

(
diag (Rref +R(w))−

R2
ref

n(Rint +Rref )
J

)
~w − Ron

γ
~S (44)

Lyapunov function. Let us now consider the func-
tion

H(wi) =
ρ

2n

∑
i

w2
i −

ρ

n

∑
i,j

wiwj −
∑
i

Si
αγ

wi +
∑
i

E(wi)

(48)
we have

d

dt
H =

∑
i

(∂wiH)
dwi
dt

=
∑
i,j

(
−ρ〈w〉 − Si

αγ
+
∂E

∂wi

)
δij
dwj
dt

(49)
and using the equations of motion we obtain

d

dt
H =

1

α

∑
i,j

dwi
dt

(
(1 +

Rref
Ron

+
Roff −Ron

Ron
wi)δij

−
R2
ref

Ron(Rref +Rint)

1

n
Jij
)dwj
dt

(50)

Let us define

Qij =
(

(1 +
Rref
Ron

+
Roff −Ron

Ron
wi)δij

−
R2
ref

Ron(Rref +Rint)

1

n
Jij
)
. (51)

We have:

d

dt
H =

1

α
〈Q d

dt
~w,

d

dt
~w〉 =

1

α
〈 d
dt
~w,

d

dt
~w〉Q =

1

α
|| d
dt
~w||2Q

(52)
This quantity is positive or negative depending on the sign
of α and the eigenvalues of Q. If Q is positive definite,
then the sign of d

dt
H depends only on α. We note that

Q is the sum of two Hermitean matrices. Thus the mini-
mum eigenvalue of Q satisfies the bound λmin(A+ B) ≥
λmin(A) + λmin(B) for A and B Hermitean. Thus:

λmin(Q) ≥ λmin

(
(1 +

Rref
Ron

+
Roff −Ron

Ron
wi)δij

)
+ λmin

(
−

R2
ref

Ron(Rref +Rint)

1

n
Jij

)
(53)

Since 1
n
Jij has maximum eigenvalue 1, we immediately

observe that, since Ron is positive by construction:

λmin(Q) ≥ 1 +
Rref
Ron

−
R2
ref

Ron(Rref +Rint)

= 1 +
Rref
Ron

(
1− Rref

Rref +Rint

)
≥ 1

∀Rint, Rref ≥ 0 (54)

This implies that Q is positive definite. The function H
is thus a decreasing function of the dynamics when α <
0. Since the function is a weighted negative norm of the
derivative of the memristor memories, then it is also zero
at the fixed point. For α > 0, it is sufficient to define
−H as a Lyapunov function. In this case, the fixed points
become w = 1 and w = 0.

Mean field theory for random inizialization
of homogeneous memristors. – We are interested
in the low temperature regime of this model. Its partition
function can be written as:

Z(β, n, S) = Trwe
−βH(w) (55)

with H(w) from eqn. (13), β = 1/T and we have implicitly
defined the trace:

Trw (·) ≡
n∏
i=1

∫ 1

0

dwi (·) .

We now use the Hubbard-Stratonovich identity, with m =∑
i σi
n

,

ebm
2

=

√
b

π

∫ ∞
−∞

dx e−bx
2+2mbx (56)

with b = nρβ
2

. Let us define Ẽ(wi) = E(wi) + ρ
2n

∑
i w

2
i .

We write:

Z(β, n, S) = Trwe
−β

∑n
i=1(Ẽ(wi)−wi

Si
αγ

)

√
nβρ

2π
·

·
∫ ∞
−∞

dψ e−
nβρ
2
ψ2+mnβρψ

=

√
nβρ

2π

∫ ∞
−∞

dψ e−
nβρ
2
ψ2

Q(β, S, ψ)n

=

√
nβρ

2π

∫ ∞
−∞

dψ e−
nβρ
2
ψ2+n log(Q(β,S,ψ))(57)

where Q(β, S, ψ) = Trwe
β
(
(ρψ+ S

αγ
)w−Ẽ(w)

)
.If we take the

limits n → ∞ first, for which limn→∞ Ẽ(wi) = E(wi),
which gives

Z ≈ enβf̃(β) (58)

with f(β) = arg minψ

(
1
2
ρψ2 − 1

β
log (Q(ψ))

)
.

In turn, f(β) is given by ψ solution of

ρψ = ∂ψ

[
1

β
logQ (β,w(ψ, S))

]
=

1

β

∂ψQ (β,w(ψ, S))

Q (β,w(ψ, S))
(59)

Now we have

1

β

∂ψQ (β,w(ψ, S))

Q (β,w(ψ, S))
=

ρβ

β

Trwwe
β
(
(ρψ+ S

αγ
)w−E(w)

)

Trwe
β
(
(ρψ+ S

αγ
)w−E(w)

)

= ρ

1
β

Trwwe
β
(
(ρψ+ S

αγ
)w−E(w)

)
1
β

Trwe
β
(
(ρx+ S

αγ
)w−E(w)

)(60)

which, in the limit β →∞ is given by the following mean
field equation:

ψ = arg supw∈[0,1]

((
ρψ +

S

αγ

)
w − E(w)

)

=

√
χ2

4ξ2
+

S
αγ

+ ρψ

ξ
− χ

2ξ
(61)
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which is the result presented in the paper. The mean field
susceptibility at equilibrium can be calculated from this
equation. We have:

〈w2〉 =
1

β

∂ψ

∂S
=

1

αγ

1
β

Trww
2e
β
(
(ρψ+ S

αγ
)w−E(w)

)
1
β

Trwe
β
(
(ρx+ S

αγ
)w−E(w)

)

≈︸︷︷︸
β→∞

1

αγ

(
arg supw∈[0,1]

((
ρψ +

S

αγ

)
w − E(w)

))2

=
ψ2

αγ
, (62)

which is the result shown in the main text.
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