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Abstract: Synchrotron X-ray Phase Contrast micro-Tomography (SXrPCµT) is a powerful tool in
the investigation of biological tissues, including the central nervous system (CNS), and it allows
to simultaneously detect the vascular and neuronal network avoiding contrast agents or destructive
sample preparations. However, specific sample preparation procedures aimed to optimize the
achievable contrast- and signal-to-noise ratio (CNR and SNR, respectively) are required. Here
we report and discuss the effects of perfusion with two different fixative agents (ethanol and
paraformaldehyde) and with a widely used contrast medium (MICROFIL®) on mouse spinal cord.
As a main result, we found that ethanol enhances contrast at the grey/white matter interface and
increases the contrast in correspondence of vascular features and fibres, thus providing an adequate
spatial resolution to visualise the vascular network at the microscale. On the other hand, ethanol
is known to induce tissue dehydration, likely reducing cell dimensions below the spatial resolution
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limit imposed by the experimental technique. Nonetheless, neurons remain well visible using either
perfused paraformaldehyde or MICROFIL® compound, as these latter media do not affect tissues
with dehydration effects. Paraformaldehyde appears as the best compromise: it is not a contrast
agent, like MICROFIL®, but it is less invasive than ethanol and permits to visualise well both cells
and blood vessels. However, a quantitative estimation of the relative grey matter volume of each
sample has led us to conclude that no significant alterations in the grey matter extension compared
to the white matter occur as a consequence of the perfusion procedures tested in this study.

Keywords: Medical-image reconstruction methods and algorithms, computer-aided diagnosis;
Medical-image reconstruction methods and algorithms, computer-aided software
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1 Introduction

The micro-vascular structural organization of the central nervous system (CNS) plays a significant
role both in normal physiological processes [1] and in a broad spectrum of neurovascular and
neurodegenerative diseases (e.g. multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s and
Parkinson’s diseases) [2], stimulating extensive investigations in this field [3–6]. At the same time,
changes in morphological features relative to neuronal network architecture may be indicative of the
pathophysiology of many CNS disorders [7]. In particular, in recent years, it has been demonstrated
that changes in diffusion magnetic resonance imaging (DTI) parameters [8, 9], as well as in mor-
phological and topological features [10], are the hallmark of axon and myelin integrity and vascular
modifications. As a consequence, all these changes clearly correlate with physiopathological alter-
ations occurring in the white (WM) and grey matter (GM). An additional cause often giving rise
to important alterations in the morpho-physiology of CNS vascular and neuronal systems is repre-
sented by spinal cord injuries (SCIs). SCIs affect both the WM and GM, as well as vascularization,
inducing apoptosis of neurons and glial cells, degeneration of WM tracts, WM demyelination, GM
dissolution [11–14], and localised disruption of vessels and microvascular networks [15].

As a result, microscale visualization and quantification of the brain and SC vascular and
neuronal architecture can provide fundamental information to progress in the comprehension ofCNS
physiology and to propose new or improved pre-clinical ex-vivo investigations of SCI and diseases
affecting CNS. Although a number of 2D and non-invasive 3D imaging techniques have been used
to define and understand the complex 3D arrangement and morphology of individual neurons,
vessels, glia, and axons within the brain and the SC, little progress has been achieved so far, because
of the important limitations imposed by conventional approaches. For instance, high-resolution
2D imaging does not yield a complete spatial coverage, likely leading to misinterpretation of the
results, while the 3D imaging tools currently available (e.g. MRI, MR angiography, and computed
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tomography [16, 17]) do not provide a sufficient spatial resolution and/or an adequate contrast for
soft tissues. When higher resolution is achieved by conventional imaging techniques (e.g. scanning
electron microscopy, histological sectioning), an invasive or aggressive sample treatment is usually
required, such as sectioning, staining, or casting, and only 2D information is derived.

As recently demonstrated, Synchrotron X-ray Phase Contrast micro-Tomography (SXrPCµT)
is highly promising for overcoming such limitations [6, 18–21], being it capable to simultaneously
visualise the 3D distribution of both the vascular and the neural network in an entire mouse SC
with micrometric resolution. This relevant capability of three-dimensional whole sample imaging
is particularly suitable for pre-clinical investigations and has already been successfully applied in
several applications, such as 3D imaging of liver, tumours, and CNS [21–25]. SXrPCµT does
not require sectioning or invasive sample preparation procedures and does not impose the use of
contrast agents [19, 21, 26, 27], that often introduce undesired modifications in the sample internal
structure and could lead to errors in the qualitative and quantitative interpretation of tomographic
images. In addition, SXrPCµT image analysis allows to obtain detailed quantitative information
on the neuronal structure, morphology and 3D arrangement (size, density, spatial distribution and
correlation) [7], that is expected to be closely related to tissue physiology. The potentiality of such
results even exceeds what has been recently obtained by in-vivo two-photon microscopy [15], that
provides 3D time-resolved information but is restricted by low penetration depth (∼100 µm) and
limited extension of the region of interest (∼ 100–200 µm).

As stated above, one of the key advantages of SXrPCµT without contrast agents is that it
represents a non-invasive technique, allowing a direct 3D characterisation of soft tissues at the
microscale [10, 21]. However, it is essential to identify optimized experimental strategies in
order to improve the achievable contrast-to-noise (CNR) and signal-to-noise (SNR) ratios in order
to highlight specific structures. In addition, it needs to be taken into account that SXrPCµT
always requires non-invasive sample treatments able to keep all structures stable. This implies
that any sample preparation protocol must not involve aggressive procedures inducing possible
morphological alterations.

In this framework, the choice of an adequate sample preparation procedure is crucial. Indeed,
it has come to light that different sample preparation procedures lead to different features visible in
the reconstructed images. Nonetheless, sample preparation methods for SXrPCµT experiments are
manifold and can involve a number of variables to take under control, thus an optimized protocol
for CNS imaging has not been defined yet.

In this study we report the analysis of the thoracic region of ex-vivo mouse SCs, imaged
after different sample perfusion procedures. We compare the use of two fixative agents, ethanol and
paraformaldehyde (PFA), withMICROFIL® compound (a low-density radio-opaque polymer which
enhances the signal coming from vasculature [28]), pointing out that distinct treatments differently
affect theWM and GM of SC and result in a different GM/WM contrast. In addition, it emerges that
the various agents used in the sample preparation procedure are not capable to make all the different
neuronal and vascular network features (vessels, neuronal somas, axons, glial cells) equally visible.

Summarizing, the goals of this paper are: i) evaluating the ability of each perfusion procedure
to better visualise neuronal cells and vascularization; ii) describing the effect of perfusion on the GM
morphology and the GM/WM interface, taking advantage of a fast semi-automatic algorithm for the
SC GM/WM segmentation and for the quantification of volumes corresponding to WM and GM.
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2 Material and methods

2.1 Sample preparation

Three adult male JAXC57BL/6J (5–6 weeks old, weight 21–28 g, Charles River) mice were used in
the study. The animals were housed in a room (22± 1◦C, 50%–60% humidity) with 12 h light/dark
cycle and free access to food and water. All animal procedures were approved by the Animal Care
and Use Committee of the Provincial Government of Southern Finland and performed according to
the guidelines set by the European Community Council Directives 86/609/EEC.

The mice were anaesthetized intraperitoneally with a ketamine (80mg/kg)/xylazine (10mg/kg)
mixture and perfused transcardiallywith 0.9% saline solution containing heparin (50U/ml) for 3min
at 2ml/min. After that, the perfusion protocol was as indicated in table 1: the Amouse was perfused
with absolute ethanol, the Bmouse was perfused with paraformaldehyde, and the last one (mouse C)
was perfused withMICROFIL®. The paraformaldehyde (PFA) solution was 4% in 0.1M phosphate
buffer saline (PBS). MICROFIL®, a low-viscosity radio opaque polymer, was purchased from Flow
Tech, Inc., Carver, MA. After the perfusion, the SC of each mouse was extracted from the spine
and placed in the incubation solution indicated in table 1.

Table 1. List of samples used in our experiments and the preparation protocols. Samples perfused with
ethanol, PFA and MICROFIL® are labelled as A, B, and C, respectively.

Mouse Weight (g)
Procedure

Perfusion (2 ml/min) Incubation

A 27.0
1) Heparinized saline (3 min)
2) 4% PFA (15 min)
3) Absolute ethanol (10 min)

Absolute ethanol

B 27.9 1) Heparinized saline (3 min)
2) 4% PFA (15 min)

4% PFA

C 21.4 1) Heparinized saline (3 min)
2) MICROFIL® (15min)

4% PFA

2.2 Synchrotron X-ray microtomography

In-line synchrotron X-ray phase contrast microtomography (XrPCµT) has been employed to ben-
efit the high image contrast of hard X-rays transparent specimens arising from the sensitivity of a
coherent or partially coherent beam to the phase shift induced by the object [22, 29–32]. XrPCµT
measurementswere carried out at the I13-2 beamline ofDiamondLight Source (Harwell Science and
InnovationCampus, Oxfordshire, U.K.) and at the SYRMEPbeamline of Elettra Light Source (Baso-
vizza, Trieste, Italy). At I13-2 tomographic images were collected using a pseudo-monochromatic
X-ray beam with main peak at 14.7 keV and a system of magnification optics connected to a
PCO.Edge 5.5 camera to get an affective pixel size of about 1.625 µm; the sample was located
70 cm far from the detector. At SYRMEP a monochromatic X-ray beam at the energy of 25 keV was
used, in combination with a sample-detector distance of 1.0m and a detector pixel size of 4.5 µm.
Samples were embedded in agar-agar and included in polypropylene containers; the number of the
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collected projections for each tomography was 2000 at I13-2 and 1440 at SYRMEP. Phase retrieval
was performed applying the single distance method proposed by Paganin [33] and all projections
were processed and reconstructed using SYRMEP Tomo Project (STP) [34]. We thus obtained a set
of high-spatial resolution tomographic images, where the different grey-levels are proportional to the
electron density of the different tissues inside the sample. The reconstructed images were analysed
bymeans of ImageJ, using available and home-developed plugins, together withMATLAB® scripts.

2.3 Image segmentation

In order to estimate the WM and GM extension, we developed a software tool for the segmentation
of GM and WM [35]. We used this tool to compute the volume occupied by GM and WM in
each SC sample. We segmented images obtained by averaging the intensity of a small volume
corresponding to a sample thickness of about 85 µm, in the same thoracic region of SC. The tool
adopts a procedure corresponding to a “region growing” segmentation method [36, 37] in which
a two intensity thresholds are imposed [38]. These thresholds, say t1 and t2, are taken as the
minimum and the maximum grey levels, respectively, that are found within a rectangular region that
is initially selected by the user well inside the area to be segmented. In some cases, when this region
is particularly non-uniform, exhibiting grey level peaks, the thresholds are taken as t1,2 = 〈g〉 ± 2σ,
with 〈g〉 the average and σ the standard deviation of the grey levels in the region. The “seed”
starting point of the algorithm is the upper-right corner of the initially selected region. The adopted
region growing method is based on the flooding algorithm (also known as “flood-fill” method,
see [39]): starting from the seed point, all the pixels whose grey level lies in the range [t1, t2] are
considered as belonging to the segmented region, and the pixel selection goes on in a recursive way
by selecting only pixels that are the neighbours of those selected in the previous iteration. Hence,
the segmented region grows up as a “flood”, by enclosing a connected and larger and larger surface,
until no more pixels can be selected according to the criterion explained above. Possibly, a “barrier”
can be manually selected by surrounding the area of interest with a contour so to avoid that the
flooding “overruns” into the background because of the presence of even a few pixels of similar
intensity (see the yellow contour in the example of figure 1). At the end, a quantitative measurement
is yielded by counting the pixels embedded in the segmented area and the result is converted to a
volumetric estimation by multiplying for the sample thickness. We have employed this algorithm
to segment both the GM and WM. In order to provide a quantitative (statistical) assessment of the
modifications of the distribution of GM with respect to WM, we considered the ratio between the
voxel volume assigned to GM and the total volume occupied by SC, given by the sum of GM and
WM. An example of GM segmentation is reported in figure 1.

3 Results

We employed XrPCµT for making feasible imaging of ex-vivomouse SCs obtained by perfusion of
the samples with ethanol (Mouse A), PFA (Mouse B), and MICROFIL® (Mouse C). We performed
our analysis on the whole mouse SC, but we report here only results obtained on a selected
region (the thoracic region, by way of example). Such an approach ensured a fair comparison
between the different sample preparation procedures employing fixative agents, avoidingmisleading
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Figure 1. Example of the “flooding” algorithm applied to the GM segmentation of the axial section of a
SC imaged at Diamond Light Source. Image (A) displays the average intensity calculated over a stack of
consecutive slices corresponding to a volume thickness of about 85 µm. In (B) an example of the application
of the home-made ImageJ plugin to the segmentation of GM of the sample in (A) is shown. The yellow
solid line was generated by-hand so to avoid that the flooding “overruns” into the background because of the
presence of a few pixels of similar intensity connecting the latter with the segmented region.

conclusions due to normal anatomical GM/WM variations occurring across different regions of the
SC longitudinal extension.

In order to discuss the different features detectable in the tomographic slices and the variations
inGM/WMdistribution, we report for each sample theminimumandmaximum intensity projections
across a reconstructed axial section in the thoracic region of the SC (figures 2–4). A general inspec-
tion reveals that all images showagood contrast betweenWMandGM, even though somedifferences
emerge as a function of the sample preparation procedure adopted. TheGM/WMinterface appears to
bemarkedly emphasised in the SCperfusedwith ethanol (figure 2A–C and F–I), where theH-shaped
GM can be clearly distinguished. It further emerges that ethanol perfusion induces a strong increase
in tissue rigidity, avoiding vessel walls collapse. As a result, images show the morphology of vascu-
lature features with high contrast, making ethanol perfusion particularly suitable for highlighting the
SC vascularization (figure 2 A–E), that distinctly emerges with its vessel and micro-vessel networks
providing the blood supply to SC without using contrast agent. On the contrary, ethanol perfusion
heavily alters the actual dimensions and 3D morphology of cells, appearing as not appropriate for
detecting neurons which are expected to be found in the ventral horn and in the central region of
the SC (figure 2F). This is likely due to heavy dehydration experienced by tissues and neuron soma,
being water the main constituent of cytosol. As a consequence, neurons become smaller and cannot
be resolved because their dimensions are below or close to the spatial resolution limit. Therefore,
the absence or marked reduction of water within the neuron somas presumably levels the density
differences between the dry soma and the surrounding tissues; this considerably reduces the contrast
preventing neurons from being properly imaged. It can be further observed that perfused ethanol
also causes a stiffening effect on tissues, especially affecting vessel walls and nerve fibres. However,
it is still possible to identify at the GM/WM interface the axonal processes emerging from motor
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Figure 2. Reconstruction of ∼ 400 µm thick volume of the thoracic region of a mouse SC perfused with
ethanol (Mouse A), with spatial resolution of 1.625 µm. (A) Axial section of the reconstructed minimum
intensity. (B) Enlargement of the right side of the H-shaped GM region, showing in detail the intricate
vascularization of SC. Diameter of vessels indicated by yellow and blue arrows is around 11 µm and 5 µm,
respectively. (C) Detail of the central region of SC shown in (A), where the transversal section of the central
canal is clearly imaged (red arrow). (D)Magnification of the right dorsal horn visible in (A). (E) Longitudinal
section of the region selected in (A) (red box): the yellow arrow indicates the central canal, while 1 and
2 mark GM and WM, respectively. In the region corresponding to GM vessels entering/leaving the spinal
cord transversally are clearly identified, while in the region corresponding to WM some vertical features are
detected, likely representing the axon-bundles (strongly stiffened and heavily dehydrated) running parallel to
the longitudinal extension of SC. (F) Axial section of the reconstructed maximum intensity. (G) Enlargement
of the left side of (F), focusing on the GM/WM interface. The red arrow points out nerve fibres radially
distributed. (H)Detail of the region imaged in (G). (I)Magnification of the region selected in (F) (yellow box),
likely depicting two of the axonal processes emerging from motor neurons (not visible) and moving outside
the SC, towards the ventral and dorsal root filaments. Scale bars in (A)–(H): 100 µm; scale bar in (I): 50 µm.
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Figure 3. Reconstruction of ∼ 400 µm thick volume of the thoracic region of a mouse SC perfused with PFA
(Mouse B), with spatial resolution of 1.625 µm. (A) Axial section of the reconstructed minimum intensity.
(B), (C) Details imaged in (A) (green and blue boxes) clearly showing the vascular vessel arrangement around
the ventral horn and the central region. The GM/WM interface is also visible. The green arrow in (B) points
at vessels that are compatible with ramifications of posterior spinal arteries, whereas blue arrows in (C)
indicates vessels which might be identified as ramifications of the anterior spinal artery forming the vascular
tree penetrating the GM. Red arrows in (C) point at the section of a vessel of ∼11 µm in diameter; diameter
of vessels indicated by yellow and red arrows is around 10 µm and 5 µm, respectively. (D) Axial section
of the reconstructed maximum intensity. (E) Detail of the ventral horn shown in (D) focusing on features
compatible with motor neurons (white spots). (F) Longitudinal section of the same volume reported in (E).
(G) Enlargement of (D) showing the GM/WM interface. In the region corresponding to WM, glia and nerve
fibres radially distributed are visible. Scale bar in (A)–(D): 100 µm; scale bars in (E)–(G): 50 µm.
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neurons (not visible) andmoving outside the SC, towards the ventral and dorsal root filaments. Some
hints can be captured also by observing the effect on the relative GM spatial distribution: ethanol
perfusion produces a manifest shrinking of the GM andWMmorphology, to an extent that might be
justified with the strong dehydrating effect of ethanol on soft tissues. This behaviour can be visually
assessed by comparing figure 2A and figure 2F with any other image here presented. Similarly to
what observed with SC perfused with ethanol, PFA perfusion induces a good contrast between GM
and WM (figure 3) and enables a clear detection of blood vessels (figure 3 A–C), even though the
performance is less amazing than that produced by ethanol. Conversely, PFA perfusion allows not
only to visualize the vascular system but also neuronal cells (figure 3 D–F), appearing as white spots
much brighter than the surrounding tissues. In particular, knowing that the ventral horn is populated
by groups of cells forming themedianmotor nuclei located in the lamina IX [40], figure 3 E–F clearly
point out the presence of cells whose shape, position and dimensions are compatible with motor
neurons, whose average size is of the order of 30–50 µm. Likewise, the reconstructed volume of the
sample shown in figure 4 shows thatMICROFIL® allows to detect motor neurons in the ventral horn.
Moreover, as expected, the presence of MICROFIL® enhances the signal due to the microvascular
network, making the characteristic “tree” clearly visible both in the maximum and in the minimum
intensity projections and highlighting the bifurcation of the central vascularization (figure 4). How-
ever, the fine details of the vascular network are missing (figure 4 A–B), as stands out by comparison
with results obtained on samples perfusedwith ethanol and PFA (see figure 2A–E and figure 3A–B).

Lastly, in order to quantitatively assess how the sample preparation procedure affects the
GM/WM interface, namely the relative extension and distribution of GM with respect to WM, a
dedicated ImageJ plugin was developed, allowing the segmentation of GM and the surrounding
WM, as described in section2.3. This segmentation algorithm was applied on four sets of slices in
the same thoracic region of SC for each sample and the results are depicted in figure 5, where the
error bars were defined as the maximum error of the GM volume/SC total volume ratio obtained
for each sample.

However, regardless of the results presented in this work, it is needed to be emphasized that
the segmentation method here proposed is fast and efficient and can find application also for
segmentation of cerebrospinal fluid, WM, and GM in brain images, along with other algorithms
proposed in the literature [41–43].

4 Discussion

Recently it has been shown that a fixation procedure can further improve the resolution of XrPCµT
images of mice SC tracts and sciatic nerve. In particular, protein and lipid fixation by means of an
optimized protocol leads to a better X-ray contrast and a better membrane preservation [44]. On
the other hand, the interaction of SC tissues with different agents (even though not contrast agents)
is expected to induce alterations in the sample morphology or to differently affect the feasibility of
visualizing different features in the neuronal and vascular networks. As a result, a correct compre-
hension of the effects of sample preparation is crucial to: i) correctly evaluate the influence of sample
preparation procedures using fixative agents onGMandWMdistribution, ii) establish sample prepa-
ration procedures optimized for the aims of specific experiments. Systematic and exhaustive studies
of this issue are still lacking, thus this work is to be intended as one of the first steps in this direction.
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Figure 4. Reconstruction of ∼ 1mm thick volume of the thoracic region of a mouse SC perfused with
MICROFIL® (Mouse C), with spatial resolution of 4.5 µm. (A) Axial section of the reconstructed minimum
(A) and maximum (C) intensity. The presence of MICROFIL® filling the main vessels evidences the
arborescent structure of the vascular tree penetrating the GM. Enlargements of the tree, with the detail of
radial vessels, are reported in (B) and (D), where the visible vessels are around 5 µm in diameter. (E), (F)
represent the two areas selected in (C): the GM/WM interface is shown, where features compatible with
motor neurons (white spots) in the ventral horn can be easily detected. Scale bar in (A) and (C): 100 µm;
scale bars in (B) and (D)–(F): 50 µm.
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Figure 5. Relative GM volume (calculated with respect to the SC total volume, defined as GM volume +
WM volume) evaluated using the home-made ImageJ plugin for the different perfusion protocols described
in table 1.

Ex-vivo XrPCµT measurements have made feasible to obtain a 3D reconstruction of several
SC samples. In particular, vascular network, nerve fibres, axon-bundles, and neuron soma have
been imaged and have resulted to be easily distinguishable at the GM/WM interface. In addition,
we found that some perfusion procedures better increase the CNR and are more suitable for
visualising neurons, while others reveal better performance in reproducing the vascularization
image, as discussed in more detail below.

Investigation of specimens with different sample preparation procedures allowed us to test the
effect on SC tissues of MICROFIL® and two fixative agents (ethanol and PFA), evidencing how
they differently affect the sample morphology and assessing the ability of the XrPCµT technique in
bringing out the diverse morphological features at the microscale. Generally speaking, perfusion
seems to be well suitable for visualising the vascular network without contrast agents, in the case of
both ethanol and PFA, even though ethanol provides a better result (figure 2 A–E and figure 3 A–C).
Interestingly, sample preparation obtained using ethanol under perfusion exhibits a marked increase
in the tissue rigidity, including the vessel walls. This effect efficiently circumvents the problem of
vessel collapse, increases the SNR and allows to properly visualize the vascular network avoiding
the use of contrast agents. Moreover, perfused ethanol produces a strong contrast between GM and
WM, but at the same time it seems to induce a simultaneous shrinking of the GM and WM volume
(figure 2). Perfusion with ethanol shows a further limitation: cells cannot be distinctly resolved,
probably because of dehydration that lowers the obtainable CNR and reduces neuron dimensions
below the resolution limit (figure 2 F–I). Perfusion with PFA can make up for this important short-
coming: figure 3 E–F distinctly indicates the presence of motor neurons in the ventral horn, while
figure 3 A–C allows for visualizing in detail the vascularization (even though less evident with re-
spect to ethanol), with a good contrast between GM and WM. The neuronal population can also be
retrieved by injecting MICROFIL® compound, as shown in figure 4 C–F. With reference to vascu-
larization detection, figure 4 A–B shows how MICROFIL® enhances the contrast of blood vessels.
However, it is worth observing that the sample preparation involving perfusion with MICROFIL®

is not trivial and less reliable with respect to the fixative agents used in this study. If MICROFIL® is
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allowed towell penetrate vessels at all scales up to small capillaries, the resulting tomographic image
might be of superlative quality and profuse in useful and detailed information, as reported in previous
experiments [21]. Nonetheless, the probability to obtain aMICROFIL® perfused SC of high quality
is quite low because very often MICROFIL® fails in filling the vessels, especially the smallest ones,
or spills out from cracks or discontinuities in vessel walls of damaged or injured samples.

Since by visual inspection the different procedures adopted for sample preparation seem to
especially affect the morphology and the volume extent of GM, we quantified for each sample the
GM relative volume (defined as GM volume/SC total volume, where SC total volume is given by
the sum of GM and WM volumes) evaluated on a series of axial sections (∼ 85 µm thick) in the
thoracic region of the SC. We performed this assessment using our ImageJ plugin described in
section 2.3. In fact, all our specimens were derived from three mice with the same characteristics
(species, sex, age, weight), which underwent the same treatment before perfusion. This implies
that it is reasonable to expect that the proportion of GM/(GM+WM) before perfusion is the same
within the experimental errors, also accounting for the unavoidable biological variability. As a
result, if any significant difference in the GM/(GM+WM) ratio is observed across our specimens, it
would be explained as due to the specific perfusion protocol. However, despite we have previously
observed that ethanol perfusion induces morphological modifications in GM and stiffening effects
on tissues due to dehydration, a quantitative analysis reveals that shrinking simultaneously affects
both the GM and WM. In fact, our segmentation algorithm has evidenced no significant differences
between the relative GM volume extent across different sample preparation procedures, as shown
in figure 5, where the GM relative volumes calculated for the three sample treatments are the same
within the experimental errors.

Nonetheless, it should be noted that this outcomemight descend fromhigh relative errors associ-
ated with each measure. However, this is not due to an intrinsic variability in the pixel intensity from
the reconstructed slices of the samples, but rather to the different contrast between GM andWM re-
vealed by each sample preparation procedure. In particular, perfusion with ethanol is able to greatly
enhance the GM/WMcontrast, reducing the uncertainty of the flooding algorithm in identifying pix-
els corresponding to GM or WM. Conversely, sample perfused with PFA reveals a less pronounced
GM/WM contrast, as well as the sample perfused with MICROFIL®, whose GM/WM contrast is
further worsened by image artifacts and lower resolution affecting tomographic images collected at
Elettra. This clearly led to a higher uncertainty in the segmentation procedure and in the calculation
of the corresponding GM and WM volume, that could, in turn, make differences not appreciable.

5 Conclusions

In this work we show tomographic images of the thoracic region of ex-vivo mouse SCs obtained by
means of the synchrotron-based phase-contrast tomography, which allows to investigate simultane-
ously vascular and neuronal networks avoiding contrast agents and invasive sample treatment pro-
cedures. Therefore, we performed a series of three non-invasive sample treatments testing how they
lead to images capable to highlight different features and showing that the choice of a fixative agent
over another canmake a difference in what a given experiment may tell us. In particular, we assessed
the effect of sample perfusion with two different fixative agents (ethanol and PFA) andMICROFIL®

on the feasibility of detecting the vasculature, the neuronal network, and the GM/WM interface.
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We have pointed out that perfusion with ethanol induces a strong increase in tissue rigidity,
avoiding vessel collapse. This result demonstrates that perfusion with ethanol represents a well-
suited strategy for imaging vasculature without using contrast agents. Thus, if the target of the
experiment is to visualize the vascular network or enhance the GM/WM interface, perfusion
with ethanol might be the best choice, giving access to the actual morphology of the vascular
features thanks to the higher tissues rigidity preventing vessel walls collapse. Perfusion with PFA
appears as the halfway solution: it simultaneously provides information about vascularization and
permits to detect motor neurons, preserving a sensible GM/WM contrast. For neuronal cells and
vascularisation, perfusion with PFA is likely to be preferred even to perfusion with MICROFIL®,
as the latter often entails the uncertainties and experimental difficulties discussed in the previous
section. Moreover, PFA is to be regarded as the most versatile fixative agent as it can be also
employed in other experimental techniques, such as MRI, allowing for multimodal approaches.
Combining all results, it clearly emerges that the sample should be prepared on the basis of the
specific aims of the experiment.

Finally, we attempted to quantify changes induced by ethanol, PFA, and MICROFIL® on the
relative GM volume using a segmentation algorithm for properly detecting the GM/WM inter-
face. Despite a visual inspection seems to demonstrate that perfused ethanol is responsible for
morphological modification of GM resulting in a shrinking effect, no dramatic differences in the
GM/WM volume ratio among the different sample preparation procedures here investigated have
been revealed. We can thus conclude that the three different perfusion protocols here tested affect the
percentage ofWMandGMofmouse spinal cord in the samemanner, within the experimental errors.

This report intends to be a guide for establishing the best sample preparation protocol as a
function of the features one is interested to observe, taking under consideration that any experiment
requires some compromises. The idea is thus to allow for designing more efficiently targeted
XrPCµT experiments in the next future. We also give a reference for evaluating which changes a
specific perfused agent (ethanol, PFA,MICROFIL®) is expected to produce on vascular and cellular
features and on the GM/WM interface.

Our results might provide relevant information for assessing new and improved therapeutic
strategies and for better understanding pathological mechanisms and their evolution.
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