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Balapariya and De question the applicability of the power-law neutral evolution model to 
adequately describe the pattern of subclonal somatic mutations in bulk cancer sequencing data. 
 
The authors’ letter focuses on the issues of the inherent noise in next generation sequencing data, 
whereby random sampling of alleles, PCR amplification during library preparation, limited depth 
sequencing, and subclonal copy number changes may cause considerable noise in variant allele 
frequency (VAF) measurement. The authors suggest that these errors lead to VAF measurements 
that, due to over-dispersion, follow a beta-binomial and not a binomial distribution. We thank 
Balapariya and De for the insightful comments and address their point in the response below. 
 
The issue of VAF measurement accuracy is a very important point and something that concerned 
us in our original Williams, Werner et al. 20161 study. For this reason, we provided extensive error 
propagation analysis in our original manuscript to identify the inherent biases that affect VAF 
estimation (see Williams, Werner et al. 2016, Online Methods, equations 12-14). We aimed at 
starting from the analytical form of neutral evolution (Eq. 7 in the main manuscript) as the expected 
signal (S) and adding the different sources of noise (N), such as purity and allele sampling during 
library prep, to generate the expected pattern S+N reported by the data. Our results demonstrate 
that the signature of neutral evolution is detectable with current moderate sequencing depth (³75x, 
see Online Methods and Supplementary Figure 10), and we fully acknowledged that the signature 
of neutral evolution vs selection cannot be reasonably extracted (or rejected) from lower depth 
datasets.  
 
In an effort to address Balapariya and De’s critics, we have tested the ability of our model to 
recover neutral evolutionary dynamics in the presence of beta-binomially distributed noise and 
found no significant differences with respect to the binomial noise we used in our original 
manuscript, although with very high dispersion (𝜌=0.1) a degree of difference is appreciable 
(Figure 1A). Moreover, we estimated the degree of over-dispersion in the data we analysed in 
Williams, Werner et al. 2016 by fitting a beta-binomial model to the clonal cluster using Markov 
chain Monte Carlo (MCMC) inference. In both the 100X whole-genome gastric cancer (Wang et al. 
20142) and whole-exome colon cancer (Sottoriva et al. 20153) we estimated the dispersion 
parameter 𝜌 to be less than 0.005 (Figure 1B and C respectively), notably 10X times lower than 
what postulated by Balapariya and De in their Figures 1C,D). Given that as 𝜌 → 0, the beta-
binomial distribution converges to a binomial distribution, we argue that using a binomial 
distribution to model noise in sequencing data was appropriate in our original analysis.  
 
Balapariya and De also suggest that, since copy number alterations impact VAF distributions, very 
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strict thresholds are necessary to make sure regions analysed with our method are truly diploid. 
This is an important point and we concord that the original threshold of absolute LRR£0.5 may 
have been too lenient. To test the impact of this confounding factor, we have reanalysed the TCGA 
pan-cancer dataset using the new publicly accessible Genomic Data Commons Data Portal 
(https://portal.gdc.cancer.gov/) variant calls that were not available at the time of our original 
manuscript. We downloaded 8,455 TCGA tumours from different cancer types and selected 
cancers with high purity (³70%) using variants called with Mutect2, as we did in our original 
manuscript. We then adjusted the VAF for the purity obtained from Aran et al. 20154 and identified 
diploid regions using absolute copy number calls from Forbes et al. 20175. We then classified 
tumours as neutral/non-neutral using mutations in regions with copy number n=2. We employed 
the f=[0.12,0.24] integration range and requiring a minimum of 12 subclonal mutations, as in our 
original manuscript. Out of the 8,455 tumours, 724 satisfied all the conditions (see Supplementary 
Figure 1 for reasons of exclusions). This analysis confirmed our original findings and even 
improved the classification, with 40% of neutral cases identified in this cohort (290/724) with 
respect to the 31% in our original analysis (Table S1). Hence, these confounding factors are more 
likely to lead to incorrect rejection of the neutral model, rather than incorrect acceptance. In terms 
of copy number alterations, this makes sense because those would generate binomial clusters in 
the VAF distribution that would erroneously appear as subclonal clusters.  
 
Therefore, although a perfectly reasonable critique, the confounding factors pointed out by 
Balapariya and De do not invalidate our original conclusions. 
 
Balapariya and De suggest an alternative explanation of 1/f tails, namely that there is a subclone 
with high over-dispersion (emulating 1/f neutral tails) exactly positioned around 0.15 VAF in >30% 
of all tumours (Balapariya and De’s Fig 1C).  We consider this alternative explanation highly 
unlikely. Although we agree with the authors that we cannot exclude that specific combinations of 
parameters from specific distributions may also fit the 1/f cumulative distribution, there are 
problems with the biological interpretation of low frequency beta-binomially distributed sub-clonal 
clusters as sole alternative explanation. Specifically, the number of mutations we detect in the 1/f 
tail is consistently very large, almost always larger than the number of mutations in the clonal 
cluster. This makes sense in terms of neutral evolution because these mutations accumulate 
naturally in different lineages at the same time. According to the authors’ proposition, instead in 
30% of the cases, there would be an extremely old sub-clone (containing a large amount of 
variants), possibly older than the time between the patient’s birth and cancer initiation (as the 
subclonal cluster contains more mutations than the clonal cluster). Additionally, this very old sub-
clone would be always partially hidden from sight because of its low frequency, showing only the 
right-hand tail of its distribution but never presenting itself in full (Balapariya and De’s Figure 1C). 
We argue that this interpretation of the data is rather implausible, and more importantly, it is in 
conflict with the body of evidence from tumor phylogenetic trees that consistently show a long trunk 
and shorter diversification branches. Therefore, although we cannot definitively exclude this 
alternative explanation based on the observed power law distribution alone, we would argue that 
the alternative explanation is an artificial construction that immediately implies many implausible 
consequences. Furthermore, we note that in a recent study led by colleagues6, when we leveraged 
on multi-region sequencing of colorectal cancer to analyze neutral tails in exome data, we did 
demonstrate that those tails describe mutations that are not in the same cells, hence that 1/f tails 
are not subclones (see Figure 4 in Sun et al. 20176).  
 
Balapariya and De suggest further alternative explanations for a 1/f tail in their Figures 1D-F.  
These simulated examples show how a specifically chosen mixture of 2 or 3 sub-clones produces 
a similar 1/f pattern in the cumulative distribution and suggest that such mixtures may confound 
our calling of neutrality. Although we cannot exclude that any specific mixture of subclones may by 
chance present a signature that is similar to the null model, it seems extremely unlikely that such a 
‘perfect mixture’ of sub-clones exists in >30% of all tumours, especially because the frequency and 
number of mutations in these clones has to be within a very tight range (in the example shown by 
Balapariya and De and colleagues there are precisely 1000 mutations in each clone and the 
dispersions are also very specific). From a phenomenological perspective, a clonal mixture to 
appear neutral-like requires both the time of appearance of a new subclone (which sets the 
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number of mutations in the subclone) and its selective advantage (which defines the size of the 
sub-clone at the time the tumour is sampled)6 to be ‘just right’ . This fine tuning is only exacerbated 
as more subclones are introduced. 
 
We would like to stress that our analysis is built from first principles: we construct a dynamical 
model of tumour growth that incorporates the fundamental mechanisms of cell division and 
mutation, and we do not make assumptions on what clonal mixtures should look like. We argue 
that Balapariya and De’s synthetic examples are not based on a model of tumour evolution. In 
particular, their sub-clones are isogenic, and mutation frequencies are normalised, hence we argue 
neutrality is a more parsimonious and much more likely explanation of the available data. 
 
Balapariya and De also report that TCGA tumours classified as neutral with our method were 
classified as polyclonal (2-8 subclones) with other methods7. The authors however do not mention 
which specific cases they refer to, and do not present their VAF distribution for examination, hence 
we are unable address this point. We note however, that further work has shown that neutral tails 
can be mistaken for subclones6, hence it is not surprising that previous clustering methods are 
biased towards over-clustering. We do acknowledge however that the 1/f analytical test is sensitive 
to the integration range, hence why we have been developing new methods that instead use the 
whole VAF distribution8.  
 
Overall, we maintain that if the data are adequately described by the null model of what we expect 
in the absence of selection, then by Occam’s razor, we would need additional strong evidence for 
selection to incorporate additional complexity into our explanations of the available data. As we 
collect higher resolution data we may later be able to reject the null hypothesis. 
 
We wholly agree with the authors’ point that the limited depth of sequencing data restricts the 
resolvability of ‘microscopic’ evolutionary dynamics, and we discussed this in Williams, Werner et 
al. 2016. As Figure 5 in our original manuscript described, our analysis connects time with the 
allelic frequency spectrum so that only the earliest branches of the evolutionary process are 
observable via bulk sequencing at the current usually moderate depth. The deeper the 
sequencing, the more recent evolutionary events we can observe. Therefore, the majority of what 
we can observe with current bulk sequencing occurred early in tumour development, and 
microevolution, as also stated by the authors, cannot be observed with current standards. This 
however, does not invalidate our analysis, but rather informs on the level of accuracy at which we 
can understand tumour evolution with current sequencing data. We entirely agree that potentially 
variable ‘microevolution’ occurs in tumours at a scale that is currently undetectable in the data and 
we maintain that to study microevolution, multi-region sequencing9 is likely the only solution. This is 
the reason why in follow-up studies we did extend our approach to multi-region profiling6. 
 
Importantly, the salient point that we would like people to take away from Williams, Werner et al. 
2016 is that in many cancers neutral evolution – the most parsimonious description of the 
evolutionary process of cancer growth - is an entirely adequate description of the available 
sequencing data. 
 
In conclusion, we thank Balapariya and De for providing constructive criticism that has led to 
important new analyses and improvement of our methods. All these new analyses however 
confirm that effectively neutral evolution does play an important role in cancer and, although 
selection remains the critical force that leads to adaptation, neutrality is fundamental to the 
understanding of how genomic alterations accumulate in a growing tumour within and between 
selected subpopulations. 
 
Figure 1. Signatures of neutral evolution are robust to confounding factors in the data. 
Using our stochastic simulation of neutral tumor growth described in Williams, Werner et al. we 
generated 1000 in silico tumors and then subjected the same 1000 simulations to different 
sampling regimes to generate synthetic datasets. From these synthetic datasets we calculated R2 
values by fitting the neutral model. (A) As the degree of dispersion increases (increased ρ) the 
mean R2 becomes lower. However, using our cutoff of 0.98 we would still correctly identify 86% of 
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samples as neutral even in the most extreme case of over-dispersion (ρ=0.1) compared to 92% 
using binomial sampling. (B,C) Using Markov chain Monte Carlo to fit a Beta-Binomial model to the 
clonal cluster on our data we demonstrate that the dispersion ρ<0.005 (10 times lower than what 
proposed by Balapariya and De) in both our whole genome sequencing gastric cancer cohort and 
whole exome sequencing colon cancer cohort. The Beta-Binomial distribution becomes a Binomial 
distribution for 𝜌 → 0. As we find low 𝜌 in our cancer genomic data consistently, we argue that 
binomial sampling and beta-binomial sampling converge. 
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