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Abstract  
 
Neurodegenerative disorders of ageing (NDAs) like Alzheimer’s disease, Parkinson’s disease, 

frontotemporal dementia, Huntington’s disease and amyotrophic lateral sclerosis represent a 

major socio-economic challenge in view of their high prevalence yet poor treatment. They are 

often called proteinopathies in view of the presence of misfolded and aggregated proteins which 

may lose their physiological roles and acquire neurotoxic properties. One reason underlying the 

accumulation and spread of oligomeric forms of neurotoxic proteins is insufficient clearance by the 

autophagic-lysosomal network. Several other clearance pathways appear likewise to be 

compromised in NDAs: chaperone-mediated autophagy, the ubiquitin-proteasome system, 

extracellular clearance by proteases, and extrusion into the circulation via the blood-brain barrier 

and glymphatic system. The present article focusses on emerging mechanisms for enhancing 

neurotoxic protein clearance, a strategy that may curtail the onset and slow the progression of 

ageing-related neurodegenerative disorders. 
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Neurodegenerative disorders of ageing, neurotoxic proteins and the importance of 
their clearance 
  Neurodegenerative disorders of ageing (NDAs) include Alzheimer’s disease (AD), 

Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), 

frontotemporal dementia (FTD) and related tauopathies. They are ultimately fatal, have no 

disease-modifying therapies and are associated with an increasing socioeconomic burden due to 

their rising incidence. These “proteinopathies” display complex and partly distinctive 

pathophysiological profiles, yet all share a cardinal feature: accumulation of aberrantly-processed 

and misfolded proteins like amyloid-b-protein (Ab), tau, a-synuclein, TAR DNA-Protein 43 
(TDP-43) and the polyglutamine protein, huntingtin (Htt). In NDAs, these proteins lose their 

physiological roles, aggregate and acquire novel neurotoxic functions1. Numerous therapeutic 

strategies for countering the generation, mis-processing, oligomerisation and accumulation of 

neurotoxic proteins are currently being explored. Amongst these, approaches for accelerating 

elimination are of particular interest since impaired clearance is a major factor in their buildup, 

aggregation and spread1-5. 
  As summarized in Figure 1, several endogenous mechanisms are dedicated to neurotoxic 

protein clearance. The glymphatic system and the blood-brain-barrier (BBB) extrude 

neurotoxic proteins from the extracellular space, interstitial fluid (ISF) and cerebrospinal fluid 

(CSF), where they may also be degraded by proteases or phagocytised by microglia and 

astrocytes. Within glial cells and neurones, intracellular elimination is predominantly effected by 

the ubiquitin-proteasome system (UPS), chaperone-mediated autophagy (CMA) and the 

autophagic-lysosomal network (ALN) (Figure 2). Owing to its predilection for aggregated forms of 

neurotoxic proteins, as well as damaged organelles which likewise build up in NDAs, the ALN is 

an especially attractive target for disease-modification. However, it is unlikely that modulation of 

the ALN alone will prove to be a panacea1,4,5. Thus, we likewise discuss opportunities for 

harnessing non-ALN driven mechanisms of clearance for course-alteration in NDAs2,3. 

 

The autophagic-lysosomal network 
Crucial role in clearing aggregated proteins  

Autophagy is a phylogenetically-conserved process essential for cellular homeostasis. 

Three basic types are recognised (Figure 2)3,4. 

Macroautophagy (“autophagy”) involves sequestration of cytosolic material into de novo 

synthesized, large, double-membrane-bound autophagosomes that deliver their contents to 

lysosomes for digestion. Autophagic flux (Box 1) describes the process spanning formation of 
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the autophagosome isolation membrane through to cargo digestion in the lysosome (Figures 2 
and 3). Autophagy is a fundamental feature of neurones, oligodendrocytes and endothelial cells. 

Further, astrocytes and several subtypes of microglia (some specific to NDAs) fulfil important 

functions in the phagocytosis then ALN-driven elimination of of extracellular pools of 
neurotoxic protein aggregates - although other beneficial and deleterious roles of microglia 

should be borne in mind6,7. (Jansen et al, 2014) In addition to bulk clearance of cytoplasmic 

contents, dedicated autophagy receptors promote sequestration of specific misfolded and/or 

aggregate-prone proteins, damaged organelles, aggresomes, stress granules, peroxisomes, 
endoplasmic reticulum (ER)/Golgi components, lipids, ribosomes, polysaccharides and nucleic 

acids4,8. LC3-II and adaptor/scaffold receptor proteins like optineurin and p62 recruit discrete 

classes of potentially neurotoxic protein like tau to autophagosomes9. Other scaffolds include 

“Nix”, “BNIP1” and Prohibitin-2 for dysfunctional mitochondria (Box 2)4,8-10. Ubiquitin and non-
ubiquitin dependent autophagy occurs but, in general, ubiquitination of tau and other 
neurotoxic proteins enhances capture by autophagic receptors like p62: other post-
translational modifications like acetylation (e.g., of htt) may also favour ALN degradation 
but await further evaluation (Khaminets et al, 2016).  

The other two modes of autophagy are microautophagy, where cytosolic material is directly 

engulfed by invaginations of lysosomes, and chaperone-mediated autophagy (CMA), further 

discussed below.  

 Autophagy can be constitutive or inducible, rapidly adapting to alterations in the internal 

and external environment of cells. Flexibility is important for mainting normal brain function and for 

ensuring a largely constant supply of recycled amino acids, sugars, lipids and other products 
of ALN-mediated catabolism3,11. That autophagy serves an essential role is demonstrated by 

genetic knockdown of autophagy-regulating genes (Atg). For example, mice with e-specific Atg 

7 deletions develop early post-natal neurodegeneration12, while knockdown of Beclin 1 (Atg6) 

exacerbates hippocampal neurone vulnerability to energy deprivation13. These findings highlight 

the crucial housekeeping role of autophagy in the maintenance of neuronal health. Moreover, 

since post-mitotic neurones cannot dilute harmful proteins via mitosis, they are uniquely vulnerable 

to its impairment1,3,5,14-16. 

Maintaining efficient ALN flux requires coordination of the actions of a suite of modulatory 

(and targetable) proteins - and phospholipids (Figure 3)3,9 Changes in their amount, 

stoichiometry and function are charactertistic of NDAs1-3,5,16-18. 
 
Operation and regulation of the ALN  
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Sensing, initiation and regulation  

 Initiation of the autophagic cascade depends on the actions of sensors and regulators 

(Figure 3). The heterotrimeric serine/threonine kinase, AMP-regulated Kinase (AMPK) and 

mammalian target of rapamycin complex (mTORC1) have dual roles and they respectively 

trigger and repress autophagy, as well as mitophagy (Figure 3, Box 2)3,9,18-21. Unc-51-like kinase 

(Ulk1) is primarily an autophagy-initiating protein3,9,17, and the same holds for mTORC1-

suppressed Transcription Factor EB (TFEB) which orchestrates the synthesis of lysosomal and 

other proteins critical for maintaining ALN flux18-21. Since the Class III deactylase, Sirtuin-1 requires 

nicotinamide adenine dinucleotide to sustain its activity, this positive regulator of autophagy 

may also be considered a sensor22.  
Intrinsic sensing refers to detection of localised changes in intracellular levels of glucose, 

amino acids, fatty acids, AMP, inositol triphosphate (IP3), cytosolic Ca2+, reactive oxygen species 

and metabolic intermediates like acetyl coenzyme A (Box 2)5,11,17,19,21,23. For example, decreased 

glucose availability and impaired mitochondrial respiration compromise ATP production, leading 

to elevated levels of AMP and ADP which allosterically activate the g-subunit of AMPK19. Extrinsic 

sensing occurs via inherently drug-targetable mechanisms situated at the plasma membrane. 

First, receptor tyrosine kinases converge onto mTOR1, AMPK or the Beclin 1-Vps34 complex 

(Figure 3) to modulate autophagy following stimulation by growth factors9. (Fraser et al, 2017) 

Second, G-protein coupled receptors (GPCR) as well as ion-channel coupled receptors control 

autophagy via signalling pathways that likewise modulate AMPK and mTORC124-26. GPCR-

mediated generation of cAMP can negatively regulate autophagy via, for example, protein kinase 

A (PKA)-mediated phosphorylation of Atg proteins24,26,27. Third, specific classes of cytokine and 

cytokine receptor also modulate autophagy, although events in the brain remain poorly defined21.  

 AMPK exerts a dual mechanism for triggering autophagy: phosphorylation-activation of of 

Ulk1/2 (Ser317 and Ser777) and phosphorylation-inhibition of mTORC119,28. Conversely, 

mTORC1 inhibits Ulk1/2 by Ser757 phosphorylation28. MTORC1 also restrains autophagy by 

preventing nuclear translocation of TFEB18. Other transcription factors that positively regulate 

autophagy include Forkhead-Box O1 and O320. Conversely, repression is effected by STAT3 

(Signal Transducer and Activator of Transcription 3) and, possibly, “ZKSCAN3” although its role 

has been disputed20,29. Sirtuin 1 is recruited by AMPK-mediated increases in nicotinamide: it fulfils 

a pivotal role in driving the ALN in view of its inhibition of mTORC1, induction of Forkhead O1/O3, 

and activation of key regulatory proteins like Atg5, Atg7 and LC3: these actions comprise part of 

a broad palette of Sirtuin1 mediated neuroprotective effects in NDAs22. 
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Autophagosome formation, cargo sequestration and delivery to lysosomes 
Activation of Ulk1 triggers autophagosome nucleation through the phosphorylation-

activation of Beclin 1 within the autophagy-specific Vps34 kinase complex9 (Figure 3). LC3 and 

other family members like “GABARAP” covalently conjugate with phosphatidylethanolamine and, 

together with several other factors (Figure 3), assist in the elongation of the isolation membrane 

and the closure of autophagosomes1,3,9. They also serve as docking sites for autophagy receptors 

that selectively capture ALN substrates (Box 1)3 Although autophagosomes form in the absence 

of LC3, efficiency is reduced30. Compared to glia, neurons are very complicated cells for 
orchestrating ALN degradation of neurotoxic proteins 1, 16 (Jansen et al, 2014). 
Autophagosomes formed in synaptic terminals and neurites must be retrogradely transported with 

the aid of microtubules and dynein-dynactin motor complexes to the perikarya where most 

lysosomal fusion occurs9,14. 164 Some fuse with endolysomal compartments containing 
membrane-localised Rab7 protein (a GTPase) and Lysosome-Associated Membrane 
Protein (LAMP)1 before reaching the perikaryon: this implies that a proportion of ALN 
degradation occurs before reaching the soma (Fig 2)9,14 (Maday et al, 2016) 

Autolysosome formation is facilitated by the retromer complex, itself retrogradely 
transported to cell bodies (Tammineni et al, 2017)17,31. “SNARE” proteins and the “Homotypic 

Fusion and Vacuole-Protein Sorting” complex bridge mature autophagosomes/amphisomes to 

lysosomes to initiate fusion4,17. Rab proteins and LAMP1/2 collectively aid in autophagosome 

maturation and lysosomal fusion, which is also dependent on membrane constituents like 

Phospholipase D1, phosphoinositols and other phospholipids like cholesterol9,17,32. Martens et 
al, 2016 to replace Dall’armi REF 32). 
 

Lysosomal digestion of cargo  

Autophagosomes fuse with lysosomes that provide the hydrolases required for cargo 

degradation and nutrient recycling (amino acids, lipids and sugars) (Kaminskyy and 
Zhivotovsky, 2012). Hydrolases are dependent on a low pH, and lysosomal acidification is 

promoted by vacuolar-type H+-ATPase complex (v-ATPase) which pumps protons into the 

lysosomal lumen. The electrogenic potential created by proton import is mediated by multiple ion 

channels that influence lysosomal pH33. Underpinning the importance of acidity, digestion can be 

halted by v-ATPase inhibitors like bafilomycin34 and lysosmotropic basic amphiphiles like 

chloroquine which alkalinize luminal contents35. Further, a deficiency of lysosomal cathepsins (B, 

L and D etc) prevents protein degradation and leads to accumulation of undigested cargo14,15 
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Kaminskyy and Zhivotovsky, 2012). Lysosomal dysfunction blocks flux across the entire ALN, 

as evidenced by lysosomal storage diseases (LSDs) like Niemann-Pick Type C which are 

associated with neuropathological phenotypes (Suppl Box 1)36.  
In addition to ALN function, the importance of maintaining lysosomal activity reflects a 

broader role in, for example, regulation of cytosolic Ca2+ and energy homeostasis37. 
 

Chaperone-mediated Autophagy  
Like autophagy, CMA is important for amino acid recycling during periods of poor 

nutrient availability but, in contrast, it involves transfer of substrates for degradation into 
the lumen without enclosure by any membrane structure (Figure 2) (39, Xilouri and 
Stenfanis, 2015; Catarino et al, 2017). The protein chaperone, “Hsc70”, recognises soluble, 
cytosolic proteins bearing a “KFERQ” or equivalent motive and, with the help of co-
chaperones like Hsp90, guides them to transmembrane LAMP2A receptor1-4,9,3,38,39 CHANGE 
ORDER REFS  The substrate complex binds to the cytosolic tail of LAMP2A leading to its 
stabilisation and oligomerisation and allowing - following protein unfolding - translocation 
into the lumen. This process is aided by a specific, low pH-dependent lysosomal form of 
Hsc70 which then promotes dissociation of the LAMP2A multimer such that the monomeric 
form is again available for substrate recognition. The level of LAMPA2A and translocation 
determines the rate of CMA. In contrast to the ALN, the CMA is not devoted to the 
degradation of higher-order neurotoxic proteins and aggregates, but it is important for 
clearing oxidized proteins. Tau, a-synuclein and TDP-43 as well as APP are substrates for 

CMA degradation, but not Ab42 itself3,38,39.. Htt is not efficiently cleared by CMA, and the 
same holds for fragments, mutant and post-translationaly modified forms but the precise 
role of CMA in this respects is still debated (2, 39 Xilouri and Stefanis, 2015).  

 

The Ubiquitin-Proteasomal System  
The UPS mainly targets soluble and monomeric proteins using a process involving 

Hsp70 and the sequential actions of three classes of ubiquitin ligases (E1, E2, and E3). 
They effect the additition onto targeted proteins of Ubiquitin residues at single or multiple 
Lysine sites, often as polyubiquitin chains (Figure 2)3,38,39 Ubiquitinated substrates are 
recognised by the 19S regulatory particle of the UPS complex. After binding to the 19S ring 
(Rpn subunits), ubiquitin motives are removed by three enzymes, Usp14, Uch37 and Rpn1. 
Rpn11 removes ubiquitination chains only after substrates are committed to destruction, 
whereas Ups14 and probably Uch37 act before commitment and hence can rescue 
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substrates40. Following removal of Ubiquitin moieties, proteins are unfolded by the Rpt 1-6 
subunits (ATPases) of the 19S component. The substrate then passes the a-subunit gate 
of the 20S particle to enter its contral β-subunit core which contains peptidase (trypsin, 
chymotrypsin and caspase-like) sites and effects proteolysis.  

In addition to ubiquitinated substrates the UPS can also handle oxidized proteins under 

conditions of cellular stress - which itself damages the 19S subunit (Bonet-Costa et al, 2016). 
The UPS degrades not only cytosolic proteins, but also mitochondrial proteins that accumulate 

owing to a dysfunction of mitochondrial import or sorting pathways, The UPS acts, then, in parallel 

to the ALN which clears damaged mitochondria themselves (Box 2)41. Further, the UPS is 

important for elimination of tau and other neurotoxic proteins in post-synaptic dendritic 

compartments (a key site of spreading), where it plays a more general role favouring synaptic 

plasticity, dendritogenesis and memory formation40,42. Susceptibility of neurotoxic proteins to 
ubiquitination is modified by phosphorylation and other post-translational modifications. 
However, in contrast to the ALN and mirroring the CMA, the UPS does not degrade oligomers 

and aggregates.  
 

Defective ALN, CMA and UPS mediated clearance of neurotoxic proteins 
NDA-related impairments  

 Neurones adopt several strategies to deal with potentially-dangerous proteins. With the aid of 

chaperones like Hsp70, anomalously-configured proteins may be refolded or, if clumped in 

aggregates, disassociated2,3,43. Neurotoxic proteins may also be sequestered in insoluble tangles 

(tau) or in microtubule-associated aggresomes2,4. This intracellular lock-up may, at least initially, 

be neuroprotective but continuing accumulation eventually poses a threat to cells underscoring 

the importance of elimination2,4. While clearance systems are at least initially recruited in NDAs, 

they eventually become unable to cope with the additional neurotoxic burden (Table 1)1,5,16,44. The 

partly common and partly disease-specific patterns of ALN, CMA and UPS dysfunction are 

superimposed upon a generalized age-related decline in all modes of clearance efficiency both for 

neurones and for other cell types like scavenging microglia1,7 2, 39, 67 (Catarino et al, 2017). 
Jansen et al, 2014) Insufficient neuronal ALN flux is frequently manifested by lysosomal 

accumulation of lipofuscin16. 

For optimisation of therapy in NDAs, accurate interpretation of the causes of impaired 

elimination is paramount. This is challenging since it may be a repercussion of upstream 

anomalies like protein overproduction and misfolding or an excessive cytosolic Unfolded Protein 
Response (Suppl Box 2)45. Further, it is difficult to identify the exact nature of UPS, CMA and 
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ALN dysfunction (Box 1). While inadequate ALN flux is a common problem for NDAs, under 

certain conditions ALN overactivity may contribute to pathology and even autosis4 in ALS (Suppl 
Box 3). 

 The following paragraphs and Table 1 summarize the complex patterns of defective 

neurotoxic protein clearance seen in specific classes of NDAs. 

 
Alzheimer’s disease 

While likely induced in early phases of the disorders1,3,46, several lines of evidence suggest 

that ALN, UPS and probably CMA-mediated clearance eventually becomes overwhelmed and 

impaired in AD. First, autophagosomes and autophagic vacuoles indicative of failed maturation, 

transport and/or fusion with lysosomes are abundant, particularly in dystrophic neurites, and 

similar profiles are seen in mouse models of AD. Their accumulation may be linked to impaired 

lysosomal elimination of cargo, and rescuing lysosomal function improves deficits16. Maday, 2016. 
Second, while putative decreases in Beclin 1 levels in AD remain to be confirmed, Sirtuin-1 

expression is diminished22. Third, Apolipoprotein E4 allele (ApoE4), a major risk allele for 

sporadic AD, is associated with increased generation and accumulation of Ab4247,48. ApoE4 slows 

lysosomal Ab42 clearance and, like Ab42 itself, destabilizes lysosomal membranes: in addition to 

decreased degradation, one consequence is leakage of asparaginyl endopeptidase into the 

cytosol where it generates toxic fragments of tau49. Moreover, ApoE4 impairs the elimination of 

neurotoxic proteins by astrocytes and microglia, additionally compromised by decreased activity 

of Triggering Receptor Expressed on Myeloid cells (TREM)27,50. Fourth, genetic mutations and 

anomalies of Presenilin-1, a dominant-negative gene linked to AD, are associated with reduced 

lysosomal v-ATPase-mediated acidification33,51 and deficient mitophagy52. Presenilin-2, likewise 

an autosomal-dominant risk gene, is enriched in late endosomes/lysosomes where its dysfunction 

provokes lysosomal accumulation of insoluble Ab4253. Fifth, mutations in Ab42 precursor protein 

(APP), similarly disrupt endosomal and lysosomal function, in part due to accumulation of the b-

secretase generated carboxyl-terminal and Ab42 containing fragment of APP (“C99 or CTFb”)54. 

Sixth, Ab42 compromises the function of AMPK and obstructs the UPS and CMA55,56. The efficacy 
of the UPS for degrading hyperphosphorylated and oligomeric forms of tau is reduced 
compared to normal tau, and both aggregates of tau and mutant forms block the 
proteosome 56, 67. Bonet-Costa et al, 2016 Jansen et al, 2014. Tau possesses KFERQ 
motives and is degraded by the CMA, but aggregates, mutant forms and fragments interfere 
with its activity (39, Xilouri and Stefanis, 2015).  
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Parkinson’s disease 
By analogy to AD, disrupted proteostasis is a major feature of PD, with the efficiency of 

ALN, CMA, UPS and other modes of clearance compromised by multiple cellular anomalies, 

including reduced functionality of mitochondria (Box 2). First, autosomal-recessive forms of early-

onset PD are associated with mutations in Phosphatase and Tensin Homolog-induced Putative 

Kinase (PINK1) and E3 ubiquitin ligase Parkin, both important for mitophagic removal of damaged 

mitochondria (Box 2)57,58. Second, Leucine-Rich Repeat Kinase-2 GTPase is the most commonly 

“mutated" protein in late-onset, familial PD. Its role is complex but, in addition to impairment of the 

ALN, in part due to reduced activation of Beclin 1, another repercussion may be altered processing 

of APP providing an unexpected link to AD57,59-61. Third, a-synuclein mutations, triplication or 

excess amplify the ALN burden, interfere with autophagosome formation and irreversibly disrupt 

the lysosomal membrane1,62. Fourth, homozygous mutations of lysosomal b-glucocerebrosidase 

provoke the LSD, Gaucher’s Disease which is linked to decreased ALN flux, a-synuclein 

accumulation and a five-fold increase in risk for PD (Suppl Box 1)36. Decreased b-

glucocerebrosidase activity also occurs in sporadic PD with the build-up of glucosides, lipid 

dyshomeostasis, poor clearance of a-synuclein and impaired lysosomal activity36,63,64. Fifth, 

defects in several genes disrupt lysosomal acidification33. For example, disruption of ATPase, 

ATP13A2 (PARK9), depleted in sporadic PD, leads to lysosomal digestive failure65 together with 

accumulation and release of a-synuclein and other ubiquinated proteins65,66. Sixth, aggregates 

and mutant forms of a-synuclein disrupt the proteasome in dopaminergic neurons. Further, 
loss of Parkin activity may also compromise the UPS and numerous mutations are also 
linked to reduced UPS activity (Table 1) 2, 68 Zondler et al, 2017. Oligomeric and mutant 
forms of a-synuclein also impair LAMP2A-mediated cargo transport for CMA: moreover, 
LAMPA2A and Hsc70 are reduced in PD brain (67, Xilouri and Stefanis, 2015). CMA 
dysfunction is particularly awkward in view of its importance for eliminating a-synuclein 
and clearing pathologically-oxidated proteins. Further, compromised CMA may lead to 
inactivation of the dopaminergic neuron survival factor, “MEF2D” 2, 39, 67 (Xilouri and 
Stefanis, 2015). Finally, CMA is disrupted by several mutations that occur in PD, including 
LRKK22,3,39,67,68 (Catarino et al, 2017; Xilouri and Stefanis, 2015). 
 
Frontotemporal dementia 

 As FTD was initially associated with tau mutations, it is classed with “tauopathies” like 

progressive supranuclear palsy69,70. However, classification is complex and, due to common risk 
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genes like p62 (Sequestome1) and “C9orf72” (Chromosome 9 Open Reading Frame-72), it is 

increasingly linked to ALS70,71. Genetic anomalies in FTD are closely related to a deficient ALN, 

and, like ALS, the disease is also characterised by aggregates containing tau, TDP43, Fused in 

Sarcoma and other ubiquitinated proteins which are insufficiently cleared by the ALN70,72. 

Aggregates interfere with the UPS, creating a vicious circle that further overloads the ALN56,62,67,72. 

Recently, it was found that poly-glycine/alanine tracts linked to mutant forms of the C9orf72 
gene (seen both in FTD and ALS) form twisted ribbon aggregates that sequester and stall 
the activity of proteasomes (Guo et al, 2018). In addition, MAPT (tau) is a distinctive risk gene 

for FTD vs ALS, and dissociation of tau from microtubules disrupts retrograde transport of 

autophagosomes to the lysosome69,70. Lysosomal dysfunction and loss of acidification is caused 

by tau fragments and a deficit of progranulin70,71,73, while an interrelated deficiency of endosomal 

trafficking is linked to mutations in “CHMP 2B” (Charged Multivesicular Body Protein 2B) as well 

as C9orf72 (see further below)70,71.  

 
Amyotrophic lateral sclerosis  

  ALS share many causal genes with FTD, including p62, CHMP2B, “TBK1” (Tank-Binding 

Kinase 1), optineurin and others associated with deficits in the ALN and in mitophagy. For 

example, mutations in optineurin and TBK1 interfere with cargo loading70,72,74. Mutations in 

C9orf72 (the most prevalent risk gene for familial ALS and FTD) are likewise linked to disruption 

of the ALN, including interference with dynactin-dynein coordinated transport of autophagosomes 

along axons of motor neurones to the perikarya70,75. They may also lead to, for example, 

deregulation of Rab-GTPases and a failure of autophagosome elongation76. Paradoxically, 

however, certain anomalies of C9orf72 may stimulate the ALN while, under conditions of severe 

cellular stress, high ALN activity may potentially be detrimental (Suppl Box 3)38,75,77. In any event, 

depending on their genetic profiles, ALS patients reveal aggregates of risk gene-encoded proteins 

like TDP-43, Optineurin, Fused in Sarcoma (FUS) and Superoxide Dismutase (SOD1)70,72,74 
which disrupt operation of the UPS and CMA39,78. In addition to the anomalous function of the 
ALN in ALS, aggregated SOD1 and TDP-43 cannot be cleared by, and may disrupt, both 
CMA and the UPS – with the latter also disrupted by mutations in the C9orf72 gene 2, 67 
Guo et al, 2018 Jansen et al, 2014. Thus, mirroring other classes of NDA, a failure to clear 

neurotoxic proteins is characteristic of ALS38. 

 

Huntington’s Disease 
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In this autosomal-dominant, polyglutamine disorder, an increase in CAG-expansion 
repeats in the HTT gene encoding Htt protein magnifies its propensity to oligomerise1, with 

chaperone-containing aggregates impairing the UPS2,3,67,68. Mutant Htt is autophagically cleared 

but it compromises the ALN with decreased poor cargo loading and impaired autophagosome 

formation and transport56,62,67,79. Further, ALN disruption in the striatum (strongly impacted in HD) 

involves altered activity of the striatal-specific Beclin 1 and Htt-interacting protein “Rhes”80,81. In 

addition, loss of physiological Htt and abnormal polyQ-Htt perturb neuronal cilia, important sites of 

cellular communication and signaling which reciprocally interact with autophagic mechanisms 

controlling their formation and growth79. CMA only poorly handles mutant and post-
translationally modified forms of Htt, which may interfere with its activity (2, Xilouri and 
Stefanis, 2015; Bauer et al, 2010). While LAMP2A and are Hsc70 are upregulated in early 
HD to compensate for decreased ALN clearance, CMA eventually fails in parallel with 
neuronal loss (39, Xilouri and Stefanis, 2015). The status of the UPS in HD is currently 
unclear, but animal models suggest that it may be impaired which would reduce clearance 
of mutant Htt (Her et al, 2015). 

 
Strategies for enhancing neurotoxic protein clearance by the ALN 

Ultimately, any strategy that improves Protein Quality Control and reduces excess 

generation, aberrant processing and/or abnormal folding of neurotoxic proteins should moderate 

the ALN burden and facilitate clearance. For example, agents that promote folding of nascent 

proteins, prevent misfolding, refold aberrantly-configured proteins, dissociate aggregates, 
counter ER stress and/or blunt an excessive Unfolded Protein Response might pre-empt the build-

up of neurotoxic proteins (Suppl Box 2)44,72,82,83 2 (Mogk et al, 2018). However, the present review 

focuses on strategies for elimination of neurotoxic proteins once accumulated. As outlined in Table 
2 and depicted in Figure 4, there is a plethora of potential therapeutic targets. However, the 

precise mechanisms of drug actions are not invariably well-defined4. Further, many agents exert 

multiple beneficial (or deleterious) actions: for example, methylene blue counters tau 

oligomerization as well as promoting autophagy (Suppl Table 1)84,85. In addition, certain drugs like 

resveratrol interact at multiple nodes of the ALN. Indeed, future drugs designed to act in a multi-

modal manner may prove to be the most effective for enhancing clearance in NDAs. 

While the following comments mainly evoke classical “small molecules”, innovative 

treatment modes for reinforcing clearance are outlined in Box 3.  
 
Modulators of sensing, initiation and regulation  
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Direct and indirect activators of AMPK-induced autophagy 

Ligands acting at GPCRs coupled to the AC-cAMP-PKA axis are likely activators of 

AMPK24,26. Indeed, clonidine and rilmenidine, Gi/o coupled a2-adrenoceptor agonists, stimulate 

autophagy and clear Htt in cellular86 and animal models of HD87, although their precise 

mechanisms of action await further elucidation19,86,87. 

Calpains, Ca2+-activated cysteine proteases, are elevated in ageing and proteolytically 

generate various neurotoxic peptides44,69. They also stimulate the AC-cAMP-PKA axis to inhibit 

AMPK by activating GSa86. Genetic knockdown of calpain or overexpression of its endogenous 

inhibitor, calpastatin, increased autophagy and cleared aggregates in SK-N-SH cells 

overexpressing a mutant form of Htt86: efficacy was also seen in mutant Drosophila and mouse 

models of HD44. Calpeptin, a cell permeable calpain inhibitor, can also reduce Htt proteinopathy 

via induction of autophagy86,88. Calpain inhibition by calpastatin or pharmacological agents also 

comferred neuroprotective effects in other NDAs models, including enhanced clearance of toxic 

forms of tau, a-synuclein and SOD144,89,90. 

The aminoimidazole derivative, “AICAR,” undergoes intracellular transformation to an AMP 

analog that triggers AMPK-mediated autophagy19,91. It conferred neuroprotection upon exposure 

of astrocytes to Ab or oxidative stress92 and countered a-synuclein toxicity in cultured rat 

neurones93. Another direct facilitator of AMPK, A769662, elicited autophagy and reduced the 

burden of Htt in a striatal cell line derived from knockin mice expressing a humanized form of 

mutant Htt (Exon 1 containing 7 polyglutamine repeats94. Selenium deficits have been linked to 

AD, so it is interesting that its complementation with selenomethionine boosted ALN flux from 

AMPK recruitment through autophagosome formation to lysosomal degradation in the 3xTgAD 

mouse model95.  
The “anti-ageing” drug, resveratrol, is thought to indirectly recruit AMPK via activation of 

Calmodulin-Kinase-Kinase-b  which, acting in synergy with Ca2, exerts its effects via Thr172 

phosphorylation96. This action, amongst others (below), is involved in its reduction of Ab levels in 

N2a cells and neurones97 and the elimination of Ab and Htt in animal models of AD and HD97,98. 
The anti-diabetic drug, metformin, a prototypical activator of AMPK, induced autophagy 

and increased longevity in mice99. Like AICAR, metformin abrogated a-synuclein toxicity in primary 

cultures of cortical neurones, though the precise contribution of autophagy requires clarification93. 

Moreover, reductions in levels of hyperphosphorylated tau and Ab were seen in metformin-treated 

neurones,100,101 while it blunted neuronal loss in a neurochemical-lesion model of PD in mice102. 

The di-glucose derivative, trehalose, inhibits the “SLC2A” family of glucose transporters to 

promote AMPK-induced autophagy and reduce neurotoxic protein load, though it also exerts other 
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actions downstream in the ALN4,103. Trehalose promoted autophagy and reduced disease 

progression in a SOD1 mouse model of ALS103. It also proved effective in cellular models of PD, 

HD and AD,104,105 as well as in mouse models of HD, AD and tauopathies where it cleared 

aggregates, reduced neurodegeneration and ameliorated motor and cognitive performance106-108. 

Lithium inhibits inositol monophosphatase to deplete inositol phosphate-3. This 

mechanism may be involved in its promotion of autophagy and reduction in cellular levels of a-

synuclein, SOD1, Htt and tau109, amelioration of motor function in a P301L mouse model of of 

tauopathy110, and  slowing of disease progression in SOD1 mice111. However, its precise 

mechanisms of action in modulating the ALN await further elucidation109. 

Other drugs that mediate their effects at least partly through AMPK activation include the 

anti-aggregant, methylene blue (Suppl Box 1) which elevated levels of Beclin 1, p62 and LC3, 

induced autophagy and suppressed tau in organotypic neuronal cultures and a mouse model of 

FTD84,85. In addition, calcitriol (the active metabolite of vitamin D3) elicited AMPK-dependent 

autophagy in a neurochemical lesion-induced model of PD112. 
 

Modulators of mTORC1 and its transcriptional control of the ALN  

One major strategy for promoting autophagy is relief of repression by mTORC1. This 

kinase is classically inactivated by rapamycin that binds to the modulatory protein, “FKBP12” (12-

kDa FK506-binding protein). Enhancing autophagy with rapamycin reduced levels of a-syn, 

Fused-in-Sarcoma and htt113-115. It also diminished polyglutamine aggregates and countered motor 

impairment in a Drosophila model of HD116. In addition, rapamycin abrogated pathology in murine 

models of AD and FTD, as well as countering neuronal loss in MPTP-treated mice117-119. Likewise, 

temsirolimus reduced the accumulation of phosphorylated tau in SH-SY5Y cells and P301S 

tauopathy mice120. It also removed cellular aggregates of mutant Htt and improved motor 

performance in a mouse model of HD, reduced a-synuclein aggregation and afforded 

neuroprotection in a lesion-based model of PD, and depleted mutant Ataxin-3 in a mouse model 

of supraspinal cerebellar ataxia-3116,121,122. Interestingly, several “small molecule enhancers of 

rapamycin” promoted autophagy and eliminated Htt in cellular and Drosophila models, but the 

precise role of mTORC1 in their actions remains to be clarified123. 

The natural compound, curcumin, induced macroautophagy and neuroprotected rotenone-

treated dopaminergic neurones124 as well as accelerating elimination of mutant A53T-a-synuclein 

by repression of mTORC1 in a cellular model of early-onset PD, although it may also exert other 

actions like modulation of protein acetylation and aggregation125,126. Pro-autophagic effects of 
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curcumin are reflected in improved function, as well as reduced levels of a-synuclein aggregates127 

and Ab/tau oligomers in cellular and animal models of PD and AD128,129.  

Inasmuch as phosphorylation by mTORC1 blocks translocation of TFEB from lysosomes 

to nuclei, mTORC1 inhibitors should promote the coordinated synthesis of proteins driving the 

ALN18,20,130. Indeed, TFEB over-expression reduced amyloid plaques in a APP/PS1 mouse 

model131. Moreover, the flavonol, fisetin, stimulated autophagic degradation of phosphorylated tau 

in cortical neurones via mTORC1-dependent activation of TFEB and the cytoprotective 

transcription factor, Nuclear factor Erythroid-2-Related factor 2 (Nrf2)132. Fisetin also reduced 

Ab accumulation in an APP/PS1 mice model of AD133. Thus, mTORC1- and, possibly AMPK via 

poorly-characterised cascades19 - offer channels into TFEB. It remains, nonetheless, a challenging 

target for (direct) induction20,134.  

C-Abl” tyrosine kinase is a proto-oncogene that negatively regulates autophagy, partly 

acting upstream of the Akt-mTORC1 axis. It is over-activated in AD and tauopathies like FTD135. 

Inactivation of c-Abl with the brain-penetrant nilotinib conferred neuroprotective autophagy in 

lesion and a-synuclein-provoked mouse models of PD136. It also reduced aggregates in cell and 

mouse models expressing TDP-43 protein137. Nilotinib recently underwent a Phase I safety study 

for treatment of PD138. 
 

Modulators of Sirtuin-1 and inhibitors of acetyl transferases 

Activity of the deacetylase Sirtuin-1 declines with age, partially due to limited availability of 

its co-factor, nicotinamide22,62,139. Therefore, it is interesting that nicotinamide and its analogues 

promoted autophagic removal of damaged mitochondria in fibroblasts140 and reduced Ab toxicity 

in rat cortical neurones141. They also improved mitochondrial energy generation and, partly as a 

consequence, reduced plaques in Aβ-expressing neuronal cells and AD mice, while improving 

cognitive function46. Nicotinamide analogues similarly slowed cognitive decline and 

neuropathology in a 3xTgAD mouse model of AD142.  

Resveratrol can stimulate Sirtuin-1 via AMPK (see above), and it also possesses an 

AMPK-independent mode of Sirtuin-1 recruitment accounting for its ability to blunt the neurotoxicity 

of Aβ25-35 fragments in PC12 cells143. This involved a role for the DNA-repair protein, poly(ADP-

ribose)polymerase-1 (“PARP”), of which the direct inhibition boosted nicotinamide levels to favours 

autophagy and mitophagy144. 
Cilostazol (a phosphodiesterase-3 inhibitor) mimicked resveratrol in clearing Aβ42 from 

neuronal cell lines by promotion of autophagy, and it upregulated Beclin 1, Atg5 and LC3 while 

down-regulating mTORC1 and inducing lysosomal cathepsin B. These actions of cilostazol 
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involved recruitment of Sirtuin-1 as well as upstream Tyr-172 phosphorylation of AMPK91. 

Cilostazol improved cognition and reduced levels of A42 and hyperphosphorylated tau following 

intracerebroventricular injection of Ab(25-35) into mice145,146.  

Protein deacetylation, as effected by inducers of Sirtuin-1, is of broader relevance to the 

ALN as reflected in activation of Atg gene transcription18,147. Further, acetyl transferases like p300 

are druggable18,148 and their inhibition (by garnicol) protected against autophagic deficits in a 

rodent model of PD149. Another p300 inhibitor, spermidine, has attracted attention by virtue of its 

autophagy-related increase in longevity147 and spermidine inhibited the acetylation of Atg proteins 

7, 11 and 15 as well as Histone 3, while indirectly inducing Beclin 1 by blocking its cleavage by 

caspase-3150. Spermidine also, by analogy to rapamycin, decreased disease progression in a 

mouse model of FTD151 and reduced a-synuclein toxicity in C. elegans152. Depletion of acetyl 

coenzyme-A would also be worth exploring in models of NDAs153. Underpinning interest in 

inhibitors of acetyl transferase, p300 expression is increased in AD brain and involved in the 

aberrant acetylation of tau148,154.  

 

Inducers of autophagosome formation 
As outlined in Box 3, the cell-permeable peptide, Tat-Beclin, increases autophagy by 

competitive inhibition of the Beclin 1 binding protein, “GAPR-1”156. In addition, the plant-derived 

alkaloid, isorhynchophylline, upregulated Beclin 1 independently of mTORC1 and promoted 

autophagic clearance of a-synuclein, although its precise mechanism of action remains to be 

clarified157. Beclin 1 bears a “BH3” element on its N-terminus that is subject to inhibition by the 

anti-apoptotic protein, B-cell lymphoma (Bcl)-217,148,158. Disruption of this Bcl2/Beclin 1 complex is 

an alternative approach for promoting autophagy, as achieved in mouse fibroblasts by the BH3 

mimetic, ABT-737159. A knockin, gain-of-function Beclin 1 mutant with reduced repression by Bcl-

2 also increased autophagy, promoted Ab sequestration and improved cognition in a 5XFAD 

mouse model of AD: this pattern of effects was reproduced with ML246, a novel autophagy 

potentiator, albeit with an uncertain mode of action160. Other potential approaches to Beclin 1 

activation include inhibitors of (tau-phosphorylating) cyclin-dependent kinase-5161.  

The multi-modal agent, resveratrol, induced the formation of Atg4 and promoted 

autophagosome formation: this led to accelerated degradation of polyQ-Htt aggregates and 

protected SH-SY5Y cells from toxicity162. An unusual approach to augmenting autophagosome 

formation is represented by brain-penetrant “Autophagy Enhancer-99” (Auten-99) which blocks 

“Jumpy”, a phosphatase that inhibits phosphotidyl-inositol-3-kinase-mediated generation of the 

autophagosome membrane (Figure 3). Auten-99 augmented autophagic flux in isolated neurones, 
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increased markers of autophagy in mouse brain and slowed neurodegeneration in Drosophila 

models of PD and HD163.  

 

Promoters of autophagosome transport and lysosomal fusion  
Disruption of cytoskeletal networks and loss of axonal microtubule function, which occurs 

upon dissociation of tau, compromises transport of autophagosomes and late endosomes to 

lysosomes and hence impedes degration of neurotoxic proteins: axonal transport of retromers 
(and protease-deficient lysosomes) is also decreased in AD 164 Maday, 2016; Tammineni 
et al, 2017. Accumulation of autophagosomes and lysosomes in axonal swellings is linked to local 

APP processing into Ab42 and plaque formation14,164. The microtubule stabilizer, paclitaxel, 

countered Ab42-induced microtubule disruption, restored autophagosomal transport and 

promoted autophagy in neurones165 while epothilone D countered microtubule disruption and 

cognitive deficits in aged P301S/P19 AD mice166. Nonetheless, a risk of excessive cytoskeletal 

rigidity should not be neglected, so mechanisms that promote microtubule/actin dynamics and 

cytoskeletal shuttling of autophagosomes/endosomes to lysosomes present alternative strategies 

for evaluation167. Several other, potentially-targettable mechanisms might also aid 

autophagosome delivery to (and fusion with) lysosomes168. These include Rab and Rab-effector 

proteins which facilitate the assembly of Synataxin17-SNARE complexes critical for fusion169
. 

Interestingly, genetic or pharmacological activation of Rab5 countered neurodegeneration 
in mouse C9orf72 models of ALS and FTD (Shi et al, 2018). There is also growing interest in 

the stabilization of retromers for promoting fusion: this appears feasible based on modulation of 

their role in diverting APP out of endosomes and hence curtailing its cleavage into Ab4231,170. 

Finally, inducers of Histone Deacetylase-6, broadly implicated in cytosolic transport and the fusion 

of autophagosomes, might be an option3.  

 
Facilitators of lysosomal digestion  

After fusion of autophagosomes with lysosomes, neurotoxic proteins are degraded and 

amino acids released for re-utilization. Maintaining optimal intraluminal acidity is critical for 

activating lysosomal hydrolases and digesting cargo. There are several ways that a loss of 

lysosomal acidity in NDAs might be countered.  

First, lysosomal acidification could be favoured by stabilised cAMP analogues: in human 

fibroblasts bearing a PS1 mutation, cAMP acidified lysosomes and augmented the availability of 

cathepsins171. Second, the TFEB inducer, 2-hydroxypropyl-β-cyclodextrin promoted the acidity of 

lysosomes in neurones172. Third, acidic nanoparticles like polylactic acid and poly(lactide)co-
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glycolide increase acidification (Box 3). Finally, activation of the lysosomal Ca2+ channel, “transient 

receptor potential mucolipin-1” with a synthetic agonist (ML-SA1) increased intralysosomal Ca2+ 

and lowered pH, justifying future studies in models of NDAs173,174. Nevertheless, the above 

strategies need better linking to improved neurotoxic protein clearance in NDAs. Further, it 

remains a challenge to act on the causes of poor lysosomal acidification, such as v-ATPase activity 

and insertion into lysosomes as well as deficiencies in progranulin33,51,73,175.  

Dysfunction of PARK9/ATP13a2 leads to an imbalance in the handling of zinc, a disruption 

of lysosomal activity and accumulation of a-synuclein66. Clioquinol, which acts as a metal-chelator, 

reverses these deficits and may reinforce lysosomal function (and acidification) in NDAs where 

the regulation of zinc and other metals is abnormal66,177. Indeed, clioquinol countered disruption of 

autophagy by chloroquine in retinal cells, reduced Ab42 accumulation in CHO cells expressing 

APP and mutant PS1, and diminished amyloid-misfolding and aggregation in Tg2576 AD 

mice177,178. Cathepsins are an important class of lysosomal hydrolase. Cystatin B and C are 

endogenous antagonists of the cysteine-active site on cathepsins and their genetic down-

regulation ameliorated deficits in lysosomal proteolysis, synaptic plasticity and amyloid clearance 

in TgCNRD8 AD mice179. Pharmacological mimics of cystatins are currently being sought. In 
addition, upregulation of retromer complex stimulates provision of hydrolases to the 
lysosome (Tammineni et al, 2017).  

Lysosomal enzyme replacement is a staple treatment for primary LSDs: for example, b-

glucosidase supplementation for Gaucher’s Disease (Suppl Box 1)36. Due to BBB impermeability, 

enzyme supplementation does not appear promising in PD. However, inhibition of substrate 

(glucosylceramide) synthesis by brain-penetrant GZ/667161 and GZ/SAR402671 reversed 

synucleinopathy in A53T-SNCA mice181. Another glycosphindolipid synthesis blocker, miglustat36 

showed activity in cellular and in vivo models of PD64, although its ability to downregulate target 

sphingolipids in the brain is limited.  

One might also act upstream to promote lysosomal function by accelerating the import of 

functional enzymes. b-glucocerebrosidase again provides a good example. Ambroxol acts as a 

molecular chaperone to promote folding of b-glucocerebrosidase and aid its transit from the ER to 

lysosomes36. It increased expression of b-glucocerebrosidase, normalised autophagy and 

accelerated degradation of a-synuclein in a stem-cell model of dopaminergic neurones derived 

from PD patients bearing mutations for b-glucocerebrosidase182. Ambroxol, which also decreased 

ER stress in Drosophila183, reduced a-synuclein levels in overexpressing, transgenic mice184: it is 

being evaluated for use in idiopathic PD. A downside of ambroxol is that it occludes the catalytic 

site of b-glucosidase, but novel agents like NCGC607 avoid this untoward effect185. Intriguingly, 
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while enhancement of b-glucocerebrosidase conferred therapeutic benefit in animal models of PD, 

its inhibition by conduritol-b-epoxide was beneficial in a mouse model ALS, underpinning the 

apparently distinctive nature of ALS as regards ALN function and energy balance (Suppl Box 3)77.  

Finally, a more global approach for harnessing lysosomal activity would be the induction of 

TFEB18,20. Harnessing TFEB by 2-hydroxypropyl-β-cyclodextrin promoted the clearance of 

proteolipid aggregates and a-synuclein in a cellular model of PD176,186. Reflecting increased 

transporter-driven clearance, it also augmented the elimination of Ab in a Tg19959/CRND8 mouse 

model of AD155. The protein kinase C activator, “HEP14”, stimulated nuclear translocation of TFEB 

to boost lysosomal gene transcription and reduced Ab plaques in APP/PS1 AD mouse brains134. 

Modulation of DNA methylation and histone marking offer further prospects for transcriptional 

control of lysosomal activity, while miRNAs could intervene at the level of translation (Box 3)18,148. 

 

Clinical studies of agents that modulate the ALN 
  Certain of the above-discussed agents have been clinically evaluated, alone or in 

association, in NDAs (Suppl Table 1). For example, metformin for cognitive function and energetic 

status in AD; resveratrol for functional decline and Ab load in AD; rilmenidine for motor 

performance in HD; and ambroxol for b-glucocerebrosidase activity and motor function in PD. To 
date, despite some positive observations, unequivocal proof for symptomatic improvement 
and/or course-altering effects has not been shown for any drug (Suppl Table 1). 
Nonetheless, potential long-term effects remain under study and no medication that 
specifically and exclusively induces the ALN has as yet been therapeutically characterized. 
Further proof of target and mechanistic engagement in human brain remains challenging. 
Hence, it is premature to conclude as regards their efficacy (see also Perspectives below)  
  In fact, the anti-oxidant, edavarone, which decreased autophagy in ischaemic brain and 

macrophages187, was recently authorized for use in a subset of ALS patients(Suppl Box 3)188. 

This appears paradoxical, but fits with the suggestion that high ALN flux is detrimental under 

conditions of severe cellular stress in ALS77 (Suppl Box 3). Whether decreased ALN flux is 

genuinely implicated in its clinical actions remains to be confirmed3,188. 

 

Caloric restriction and exercise mimetics for promoting ALN clearance   
Anti-ageing and lifespan-extending benefits of “caloric restriction mimetics” expressed 

across a range of multicellular organisms are related, at least in part, to the induction of AMPK 

and Sirtuin-1 leading to promotion of autophagy147,189. These mimetics are generally safe yet 

encompass drugs that reduce ATP availability by interfering with cerebral/neuronal glucose 
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uptake. This may pose problems since compromised neuronal energy is itself a risk factor for 

NDAs like AD and PD23,147. Nonetheless, efforts to find autophagy-inducing mimetics that respect 

cerebral energy requirements are continuing147 and clinical trials of caloric restriction and 

nutraceuticals should prove instructive23,147. Further, there is increasing interest in 

pharmacological exercise mimics that exert putative neuroprotective properties via the modulation 

of AMPK, mTORC1, Beclin 1 and other regulators of the ALN19,189.  

 

Strategies for enhancing neurotoxic protein clearance by CMA and the UPS 
Opportunities for pharmacological manipulation of the UPS and CMA are less well-

established than those for the ALN, but there are encouraging routes of progress2,56,62,67. 

Furthermore, the UPS inhibitor bortezmib is approved as a first-in-class treatment for multiple 

myeloma, indicating that clinical application of UPS modulators is possible3.  

 
Facilitation of chaperones acting on client proteins 

One approach for reinforcing the UPS focuses on agents that target chaperones involved 

in the handling, recognition and elimination of neurotoxic proteins2,56,190. Of particular interest is 

Hsp70 which interacts with the E3 ubiquitin ligase “CHIP” to aid ubiquitination of proteins destined 

for proteasomal destruction190. Hsp70 binds to Heat Shock Factor 1 (HSF1) and, under 

neurotoxic protein stress, dissociation leads to their mutual activation with HSF1 driving 

transcriptional generation of Hsp70 and other chaperones that facilitate proteostasis190,191. Hsp70 

also exerts a more general role in the refolding and disassociation of aggregated proteins2,3,43. 

One promising agent is the hydroxylamine derivative, arimoclomol, which increases the activity of 

Hsp70 by augmenting transcriptional activity of HSF1192. Arimoclomol rescued cultured 

motoneurones from oxidative stress and from the pro-apoptotic actions of staurosporine193. It also 

mediated the removal of mutant SOD1 aggregates and improved motor function in a mouse model 

of ALS194. Supporting interest in arimocomol, it mimicked recombinant Hsp70 to reverse lysosomal 

pathology in fibroblasts from patients with LSDs (Suppl Box 3). In an alternative approach, the 

rhodocyanine derivative, YM-1, allosterically promoted the activity of Hsp70 to enhance 

degradation of polyglutamine proteins: these findings suggest potential utility in HD195. Further, 

Hsp70 has been pharmacologically co-administered with inhibitors of the deubiquitinating enzyme, 

USP14, like IU1 and its more potent derivative IU1-47, to enhance proteasomal degradation of 

tau196-198. USP14 inhibitors act by preventing deubiquitination rescue of tau and other UPS 
substrates like TDP43 and Ataxin-3: they may also effect allosteric changes in proteosomal 
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subunits (Harrigan et al, 2018). Interestingly, USP14 inhibitors promote the ubiquitination 

activation of Beclin 1 to recruit the ALN198  

Hsp90 counters the effects of Hsp70 by forming a complex with it to impede substrate 

ubiquitination: it likewise exerts a suppressive influence on HSF1192,199. Amongst compounds that 

inhibit Hsp90, geldanamycin promoted elimination of both hyperphosphorylated tau and oligomeric 

a-synuclein in cell lines200,201. Moreover, geldanamycin reduced Lewy-like bodies202 and Htt 

aggregates in Drosophila neurites203 and reduced tau in AD mice200. The less cytotoxic analogue 

of geldanamycin, 17-AAG, has improved brain penetrance. It decreased Ab levels,204  improved 

memory205 and lowered tau in transgenic AD mice205. 17-AAG also reduced a-syn oligomers in H4 

cells201 Another Hsp90 inhibitor, HSP990, has shown promise in that it lowered Htt aggregates 

and improved motor performance in two mouse models of HD206. 

 

Modulation of the phosphorylation status of the proteasome 
Numerous targetable classes of kinase phosphorylate the proteasome56,208. (Verplank and 

Goldberg et al, 2017) Phosphodiesterase inhibitors protect cAMP from degradation to recruit 

protein kinase A and boost UPS activity. Correspondingly, rolipram relieved rat cortical neurones 

of AD pathology209. Further, in a transgenic tau mouse model of FTD where 26S proteasomal 

activity was impaired, rolipram attenuated markers of tauopathy, improved memory and protected 

synaptic integrity by strengthening protein kinase A-mediated phosphorylation of the “Rpn6” 

component of the 26S proteasomal subunit210,211. Rpn6 activation may also be involved in the anti-

ageing effects of caloric restriction62. Interestingly, resveratrol inhibits Phosphodiesterase-4, 

suggesting that proteasomal recruitment may be yet another component of its global impact on 

neurotoxic protein clearance96. One concern with phosphodiesterase inhibitors/protein kinase A 

inducers is their huge range of targets (including AMPK), as well as side-effects, but it may be 

possible to target proteasome-specific isoforms. Further, acting upstream of cAMP may improve 

specificity. Chronic administration of CGS21680, a selective agonist at AC-coupled Adenosine-2A 

receptors, restored proteasomal activity in cellular and murine models for HD via protein kinase 

A-enforced Ser-120 phosphorylation of the Rtp6 component of the 19S subunit212.  

Another kinase that activates the proteasome (Rpt6 subunit) - and directs it to dendritic 

spines - is Calmodulin-dependent kinase II (VerPlank and Goldberg, 2017): its recruitment may 

account for proteasomal activation by the GABAA receptor antagonist, bicuculline42,213. Protein 

kinase G similarly activates the proteasome and sildenafil’s inhibition of cGMP breakdown- 

reduced neurotoxic protein aggregation in cardiomyocytes, encouraging studies in NDAs56,208. P38 

mitogen-activated protein kinase, which accumulates in NDAs, indirectly influences the 
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phosphorylation status of the proteasome, likely via cAMP signalling3,56. P38 depletion, or its 

blockade by PD169316, accelerated the degradation of ubiquinated proteins, specifically 

promoting a-synuclein clearance and improving cell survival214.  

Phosphorylation is a dynamic process, and small molecule inhibitors of the nuclear 
proteasome phosphatase, “UBLCP1” suggest that calcineurin and other cytosolic 
phosphatases represent hitherto-unexploited targets for boosting UPS-driven clearance of 
neurotoxic proteins (VerPlank and Goldberg, 2017). 

 
Selective elimination of specific classes of neurotoxic protein 

An important question is whether the UPS can specifically clear neurotoxic proteins while 

safeguarding those that function normally. Several strategies are under exploration. First, cereblon 

is the substrate receptor for the E3 Ubiquitin ligase, Cullin Ring Ligase 4. It is specifically 

recognised by immunomodulatory drugs like pomalidomide, binding of which changes ligase 

specificity to encourage degradation of discrete classes of protein215,216. Second, PROteolysis 

TArgeting Chimeras (“PROTACS”) and related multi-functional compounds simultaneously bind a 

E3 ubiquitin ligase and a defined neurotoxic protein like tau to permit polyubiquitination and UPS-

driven removal (Box 3)215,217. Certain agents amplified PROTAC-mediated breakdown of a-

synuclein214, while other classes of bifunctional ligand bind a target protein plus Hsp70 which 

directs UPS degradation216. Third, target proteins can be bound by agents bearing bulky, 

hydrophobic adamantyl tags which provoke conformational instability and encourage proteasomal 

elimination215. Fourth, the cytosolic antibody receptor, “Tripartite Motif Protein 21” binds to the Fc 

domain of protein-coupled antibodies, then recruits the UPS for  substrate degradation. This has 

been demonstrated for tau and could be adapted for degradation of other classes of neurotoxic 

protein218. Finally, “Cellular Inhibitor of Apoptosis Protein” specifically binds mutant SOD1, thereby 

driving it to proteasomal degradation. This provides another potential path to discrete elimination 

of unwanted proteins in NDAs219. 

 

Control of transcription factors generating UPS components 
The transcription factors NRf1 and Nrf2 are both substrates of proteosomal 

degradation, as well as inducers of proteosomal synthesis, and the latter has been 
specifically linked to neurodegenerative diseases (Vangala et al, 2016; Pajares et al, 2017) 
Further, Nrf2 is a master regulator of the anti-oxidant response and drives synthesis of 
lysosomal and anti-inflammatory proteins in addition to 26S proteasome components132. 
Interestingly then, translocation of Nrf2 to the nucleus is promoted by triterpenoid derivatives which 
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counter the ageing-related diminution of UPS activity220. In addition, sulforaphane elevates 

proteasome levels in vivo by inducing Nrf2, protects neurones against oxidative stress and has 

been proposed for the treatment of HD221. Several other agents promote the proteolytic 

competence of proteasomes and facilitate clearance of Ab and/or tau in cellular models, including 

betulinic acid. Although enhanced transcription has been implicated in their actions, this remains 

to be clarified221. Finally, mirroring the inhibitory influence of mTORC1 on the ALN, it also 
suppresses the formation and assembly of proteosomal subunits, so its suppression may 
promote UPS degradation of neurotoxic proteins in parallel (Rousseau and Bertolotti, 
2016).  

 

Modulation of CMA-mediated clearance 
Some mechanisms outlined above for the UPS, like increasing chaperone-driven delivery 

of client proteins to degradative machinery,  are also relevant to the CMA, and an approach along 
these lines has been proposed for selectively removing mutant htt (Bauer et al, 2010). In 

fact, specific induction of CMA has received little attention, possibly since the rate-limiting element 

LAMP2A has proven intractable for small molecule chemistry. Nonetheless, over-expression of 
LAMP2A accelerated CMA clearance of a--synuclein - and reduced its disruption of CMA 
while affording protection of dopaminergic neurons (Xilouri and Stefanis, 2015). Several 
routes to potential therapeutic exploitation may be evoked. First, Cathepsin A cleaves 
(mainly monomeric) LAMP2A resulting in its lysosomal degradation, so selective inhibitors 
should reinforce CMA 39 (Kaminskyy and Zhitovsky et al, 2012). Second, LAMP2A is stored 
in cholesterol-rich membrane regions: hence, cholesterol depletion might enhance transfer 
to regions where it becomes functionally active (Catarino et al, 2017). Third, the dynamics 
of LAMPA2A/translocation complex assembly are (oppositely) controlled by mTORC2 and 
the phosphatase “PHLPP1” which offer potential targets for boosting CMA (Arias et al, 
2015). Fourth, CMA is under the negative control of Retinoic Acid Receptora and blockade by 

synthetic all-trans retinoic acid derivatives resulted in upregulation of CMA, including the activity 

of LAMP2A - despite its lack of a relevant promoter222. Mouse fibroblasts treated with these agents 

showed improved resistance to combined over-expression of a-synuclein and oxidative stress222.  

  
Importance of early intervention  

There are, then, emerging opportunities for intensifying the elimination of neurotoxic 

proteins by the UPS and the CMA, both at the level of ubiquitination/folding and of 

degradation56,208. By analogy to the ALN, it is important that CMA and UPS effected elimination is 
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homeostatically regulated because excess activity is potentially dangerous220. Since the UPS and 

CMA are disrupted by neurotoxic proteins like Ab42 and tau, early and preventative reinforcement 

of UPS and CMA elimination may be critical. This might be particularly efficacious when enacted 

in dendritic sites of neurotoxic protein spreading, where UPS reinforcement of clearance would 

also counteract NDA-related deficits in synaptic plasticity and learning39,42,56. 
 

Interplay between the UPS and ALN: therapeutic relevance 
As pointed out above, there is evidence of coordinated regulation of the ALN and 

UPS via mTORC1 (Rousseau and Bertolotti, 2016). Furthermore, studies of a mutant tau allele 

that increases the risk for FTD and AD showed that upregulating the ALN compensated for the 

impairment of proteosomal activity223. This finding underscores the reciprocal interplay between 

these clearance systems3. Indeed, the ALN can “sense” UPS failure to compensatorily upregulate 

its own activity. For example, proteosomal failure exacerbates ER stress and leads via the UPR 

to the expression of Sestrin-2 which recruits AMPK to down-regulate mTORC1: Nrf2 is also 

upregulated224. Supporting the potential therapeutic relevance of Sestrin-2, it protects 

dopaminergic neurones from the neurotoxin, rotenone, via AMPK-transduced autophagy225. 

Sestrin-2 overexpression also prompted mTORC1-dependent autophagy in cortical neurones in a 

presenilin-knockout model of AD226. Proteosomal degradation of Ulk1, LC3 and other ALN 

regulatory proteins may prevent ALN over-activity, an observation of particular relevance to ALS 

(Suppl Box 3)3. By analogy, subunits of the catalytic core of the proteasome are regulated 
by CMA-mediated degradation 39, 67. 

 

Extracellular elimination of neurotoxic proteins and its impairment in NDAs  
Exosomal liberation of neurotoxic proteins from neurones 

When intracellular pathways of protection prove insufficient, neurones may alleviate the 

burden of harmful proteins by discharging them into the extracellular space. This may be a self-

preservation mechanism and an attempt to acquire glial support for elimination. However, the 

“release“ of neurotoxic proteins contributes to trans-cerebral spread of pathology. That is, 

abnormal conformers of proteins originating in donor cells enter recipient cells to promote protein 

misfolding and disrupt clearance, diffusing in a domino, snowball-like fashion across the brain69,227. 

Exosomes are involved in the release of tau, APP/Ab-42 and a-synuclein. Accordingly, 

they are linked to the progression of NDAs66,69,228,229. Intriguingly, when the ALN is overwhelmed 

and cargo accumulates, a specialised process of “autophagic” exocytosis participates in the 

neuronal liberation of neurotoxic proteins, accelerating transmission of pathology to 
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interconnected neurons. This discharge of neurotoxic proteins adds to the extracellular burden 

from dying cells, and underpins the importance of clearance mechanisms extrinsic to neurones230. 

228 In this light, recuperation and digestion of extracellular proteins by glial cells is primordial7. 
However, there exist several other, therapeutically-pertinent mechanisms for ridding the brain of 

extracellular pools of neurotoxic proteins. 

 
Clearance by proteases in the extracellular space 

Neurones and glia contain many classes of protease, localized in all compartments where 

neurotoxic proteins accumulate - cytosol, mitochondria and even the nucleus231-234 Kaminskyy 
and Zhivotovsky, 2012). However, certain intracellular proteases generate toxic fragments, 

notably of tau (calpains and caspases) and Htt (matrix metalloproteinases (MMPs)235. 
(Kaminskyy and Zhivotovsky, 2012). Accordingly, their inhibition is of potential interest in 
the treatment of disorders like AD and Huntington’s disease. Nonetheless, in addition to 
LAMP2A-degrading Cathepsin A (above), the proteases most relevant to promoting 
clearance are those actively secreted, located on exosomes and/or presented on plasma 

membranes and which degrade extracellular pools of neurotoxic protein (Figure 1)232. They 

include several classes of MMP, neprilysin, insulin-degrading enzyme (IDE) and plasmin, all 

implicated in NDAs231,234,236,237. 

Ab42 and amylin (a pancreas-derived, AD-associated protein found in brain) are substrates 

for degradation by IDE which also irreversibly “traps” Ab42  and a-synuclein, preventing their 

aggregation and promoting ALN/UPS elimination237. Cerebral levels of IDE are reduced in early 

AD and in mouse models of AD while, mirroring AD, Ab42 accumulates in mice genetically 

depleted of IDE: in a vicious circle, Ab42 itself decreases IDE expression232,237. IDE also degrades 

and prevents the formation of a-synuclein fibrils237. By analogy to IDE, neprilysin catabolizes Ab42 

and its loss in mouse models of AD and patients alike also contributes to levels Ab42 

accumulation231,234,238.  
Another Aβ42-degrading protease, plasmin, is derived from inactive plasminogen by 

actions of tissue-type plasminogen activator (used to treat stroke) or “Urokinase”: it is secreted by 

neurones (and possibly glia) into the extracellular space. Like IDE and neprilysin, plasmin 

degrades Aβ42 and blocks Aβ42-induced toxicity, suggesting that the decrease in its levels in AD 

is involved in the evolution of AD232,234,239. Plasmin also degrades α-synuclein to retard intercellular 

spreading240.  

Interestingly certain isoforms of MMPs cleave fibrillar as well as monomeric Ab42232 and 

extracellular a-synuclein is also a substrate for MMP-3234,236. Another protease with 
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pharmacotherapeutic potential is angiotensin-converting enzyme which contributes, albeit less 

prominently, to the degradation of neurotoxic proteins in NDAs241. Finally, the extracellular and 

intracellular (neuronal and glial) serine protease, neurosin (kallikrein 6) cleaves a-synuclein. 

Levels are reduced in Lewy body dementia and, based on lentivirus transduction studies, it is a 

potential treatment for clearing a-synuclein in PD242. 

 

Clearance via the blood-brain barrier and the glymphatic system 
In AD and other NDAs, disruption of the structure and function of the dynamically-

regulated BBB is driven, at least in part, by detrimental actions of neurotoxic proteins like Ab42. 

This permits the otherwise-restricted entry of immune cells and toxic substances into the brain. 

In addition, the active elimination of neurotoxic proteins like Ab42 and tau (possibly 

encapsulated in exosomes) from the brain may be compromised (Table 1 and Figure 1)243-

251. 

Dysregulation of BBB integrity is serious since it normally transfers neurotoxic proteins 

to the circulation using both generalized and specialized receptors and transporters (Figure 
1)243-248,251. In addition, proteins are degraded by vascular smooth muscle and endothelial cells of 

the BBB itself249,250. In ageing, AD and PD, a diminution of BBB-localized P-glycoprotein efflux 

transporters compromises elimination of neurotoxic proteins246,252. There are also decreases of 

low-density lipoprotein receptor-related protein1 (LRP1) transporters in AD, whereas receptor 

for advanced glycolation end-products (RAGE) receptors are induced: these changes would 

respectively contribute to retention in, and return of Ab42 to, the brain248,250,251. An ApoE4 

genotype in AD exacerbates poor Ab42 clearance by reducing its transport to the BBB and 

diminishing efflux250. 

Arterial pulsing aids CSF/ISF flow in flushing out interstitial extraneuronal proteins via 

the complementary glymphatic system (Figure 1)243,245,249. Its regulation is not well understood, 

but roles for Aquaporin-4 water channels, other astrocytic mechanisms and noradrenaline have 

been documented253,254. Deletion of Aquaporin-4 in astrocytes markedly reduced glymphatic flow 

and aggravated Ab42 accumulation in a genetic mouse model of AD254,255 while Aquaporin-4 

expression is altered in the ageing, AD and PD brain254,256. Loss of sleep has been linked to an 

impairment of glymphatic clearance253. This is important since “rapid eye movement sleep-

behavior disorder” is the most robust predictor of PD and, together with insomnia and anomolous 

sleep patterns, also occurs in other NDAs like early-onset AD, where disrupted sleep is correlated 

with alterations in Ab levels257. 

Transfer of neurotoxic proteins into the circulation reduces their propensity to exert 
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detrimental effects on neurones and to trigger spreading245. Augmenting extracellular clearance 

is, therefore, an attractive goal for therapeutics.  

 
Strategies for promoting extracellular clearance of neurotoxic proteins 
Increasing protease-driven clearance 

Overexpression of neprilysin or IDE reduces levels of Ab42 and amyloid plaque burden in 

senescence-accelerated mice234. Suggesting feasibility of their exploitation, epigallocatechin, 

somatostatin and several other classes of compound promote the expression, secretion and 

(allosterically) catalytic activity of IDE and neprilysin in parallel with increased degradation of Ab 

peptides237,258. Further, expresson of progranulin in the hippocampus of AD mice reduces the 

density of amyloid plaques by enhancing the activity of neprilysin259. Epigenetic regulation of 

neprilysin at the level of histones, as exemplified by valproate, offers another potential approach 

to potentiation231. As regards other proteases, augmentation of plasmin clearance by blockade of 

the endogenous plasminogen inhibitor “PAI-1” (the expression of which increases with ageing and 

in mouse models of AD) reduced Aβ levels and restored memory deficits in mouse models of 

AD239,260. 
These observations underscore the interest of proteases as targets for degradation of 

neurotoxic proteins231. Further, several drugs evoked above like resveratrol and curcumin induce 

IDE and/or neprilysin, suggesting a contribution to their actions231. Nonetheless, structure-activity 

relationships for small molecules that directly enhance the catalytic activity (or production) of 

proteases are not well-characterised231,261. Further, there are issues of substrate specificity. For 

example, IDE degrades insulin and glucagon as well as Ab42 and interacts with many other 

proteins, including the proteasome237. Neprilysin targets a range of substrates like atrial natriuretic 

peptides and substance P, and inhibitors are employed in the therapy of heart failure,231 while 

MMP activators exert deleterious as well as beneficial effects reflecting their influence on microglia 

and the BBB236,262. Additional questions centre on whether any protease inducer alone could 

comprehensively and enduringly clear the burden of neurotoxic proteins in NDAs. 

Thus, further work is needed to determine to what extent potentiation of extracellular, glial 

and endothelial/BBB-localized proteases is a viable strategy for safely enhancing neurotoxic 

protein clearance in NDAs231,237. 
 

Immunotherapy for neurotoxic protein sequestration 
Immunotherapies for neurotoxic protein clearance in NDAs have been pursued for over 

a decade, and include intravenous immunoglobulin which held promise in Phase II 
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(NCT00299988) but failed in Phase III trials. As reviewed elsewhere69,263, the most advanced 

approach is currently antibodies for sequestering extracellular pools of Ab and tau (AD) or 

a-synuclein (PD) and enhancing Fc receptor-facilitated uptake and destruction by microglia7,264. 
BBB penetration is limited, but they may generate a “peripheral sink” in addition to central actions. 

Although Ab-immunotherapy has not yet yielded an approvable treatment (examples being 

AN1792-NCT00676143 and bapineuzumab-NCT00112073), more refined cohort selection, 

amyloid imaging for selection of early-disease patients, and the use of monoclonal antibodies from 

human patients such as aducanamab (NCT01397539/02782975/02434718 in MCI, and recruiting 

for Phase III-NCT02484547/0247780) offers hope for progress265. 

 Furthermore, there are at least 5 antibodies under investigation for tau, including a Phase 

II trial (NCT02880956) for C2N8E12 in AD266. Another trial (NCT02985879) in post-cerebral palsy 

is employing a single-chain, passive antibody targeting extracellular tau. This is the second tau-

based Phase II trial after AADvac-1 (NCT02579252) to use an active immunotherapy approach. 

Passive immunity approaches are also being tested using the PHF1 (Ser396/Thr404) epitope 

(ACI-35; ISRCTN13033912) and Ser409 epitope (RG1600; NCT03289143)69. Targeting 

extracellular tau to block intercellular spreading227 should preclude the need for high antibody 

inclusion into cells for efficacy. Antibodies like PRX002267 have also shown promise for reducing 

extracellular a-synuclein and propagation of pathology, and Phase I testing has been completed 

(NCT02157714 and NCT02095171)263.  

Potential problems should not be neglected, like deposition of immune-complexes in 

vascular tissue, inaccessibility of tau in exosomes, and antibody-driven import of Ab into the brain. 

Nonetheless, employing biomarkers for identification of subjects with early-phase disease, 

surrogate/functional biomarkers of efficacy, and more effective antibodies, there are still 

reasonable prospects for achieving course-alteration with immunotherapy.  

 

Improving BBB-mediated and glymphatic transfer to the circulation 
 As mentioned above, the BBB is equipped with potentially-targetable transporter proteins, 

channels and receptors (Figure 1)246,248,251. Inhibition of the a-secretase, “ADAM10” was found to 

drive LRP1-mediated extrusion of Ab42 into the circulation268. In addition, LRP1 might be indirectly 

modulated by Aquaporin-4 channels254 and epigenetically via miRNAs148. Further, the 

hydroxymethylglutaryl-coenzyme-A inhibitor, fluvastatin, upregulated LRP1 in the BBB to reduce 

Ab42 load and provoke extrusion269. The antibiotic, rifampicin, likewise promoted Ab42 clearance 

by inducing BBB-localised LRP1 as well P-glycoproteins252,270. Whether LRP1-driven uptake of 

Ab42 by microglia (and hepatocytes) is involved in the beneficial effects of LRP1 up-regulation 
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remains to be clarified250. Interestingly, both fuvastatin and rifampicin have additional actions - 

including a probable induction of the ALN - that contribute to beneficial actions in models of 

AD269,271. As for RAGE receptors, their blockade should temper re-entry of Ab into the brain - and 

exert anti-inflammatory properties272,273. Phase III studies are underway with azeliragon (TTP488) 

in AD (NCT02080364; 02916056) following promising improvement in cognition in a Phase II 

trial274. Interestingly, resveratrol downregulated RAGE as well as MMP-9, actions related to 

decreased hippocampal load of Ab42275. Finally, at least in murine models of AD, agonists of 

retinoid-X receptors induce the BBB-localized P-glycoprotein “ABCB1” transporter, and this may 

account for bexarotene-mediated Ab clearance from the brains of AD mice276. Data with 

bexarotene remain controversial, but the principle of acting via BBB-localised transporters to 

encourage neurotoxic protein extrusion is clearly valid.  

Focused Ultrasound Therapy has mainly been used to enhance the entry of proteins and 

vectors into the brain. For example, siRNA probes for knocking down Htt or, in principle, genes 

encoding clearance-promoting mechanisms277,278. However, it acts bi-directionally, so CNS-to-

periphery transfer of neurotoxic proteins might likewise be accelerated. By targeting selective brain 

areas like the hippocampus/entorhinal cortex in AD, neurotoxic proteins could be driven into the 

periphery. Safety is obviously an issue but it is reassuring that  gap junctions close within 6 hours 

or less279. 

Activation of Aquaporin-4 channels on perivascular astrocytes to aid the glymphatic system 

elimination of cerebral Ab and other toxic proteins is a potential strategy for stimulating clearance. 

Antagonists have been identified as well as positive modulators, so this seems “chemically” 

feasible249,251,254,255. Reflecting a contrasting strategy, dobutamine stimulates arterial pulsation and 

the perivascular/glymphatic CSF flushing of neurotoxic proteins from the ISF via lymphatic 

conduits into the blood245. Deposition of Ab42 in cerebral vessels impairs vascular function-

flexibility and is accompanied by an upregulation of Phosphodiesterase-3 in smooth muscle 

cells280. Cilostazol, a phosphodiesterase-3  inhibitor clinically approved for peripheral vascular 

disease (and an UPS activator), restored vascular reactivity, increased perivascular drainage of 

Ab and promoted cognitive performance in a mouse model of cerebral b-amyloidogenesis280. 

Intriguingly, a retrospective clinical analysis suggested that cilostazol abrogates cognitive decline 

in patients with mild cognitive impairment and modest dementia281. Adrenergic mechanisms 

influence ISF volume and hence neurotoxic protein clearance253, and additional pharmacological 

opportunities for promoting glymphatic efflux will likely emerge from an improved understanding 

of its regulation by astrocytic, neurotransmitter and other mechanisms249,251,253. 
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Disruption of sleep impedes glymphatic clearance of neurotoxic proteins, so encouraging 

sleep hygiene should promote CSF/ISF transfer to the periphery. The atypical antidepressant and 

sleep-promoting agent, trazodone, is of particular interest since it normalized an over-protracted 

Unfolded Protein Response and reversed pathology in animal models of tauopathies (Suppl Box 
2)83. Therapies that favour sleep or specifically counter sleep syndromes in NDAs may prove 

beneficial for improving glymphatic clearance of proteotoxic substrates and abating disease 

progression243,249,257. Interestingly, alcohol displays a J-shaped curve, with low and high 
consumption respectively enhancing/reducing glymphatic function – and 
moderating/aggravating the risk of dementia (Lundgaard et al, 2018). 

Finally, a recent study in human subjects revealed that peritoneal dialysis cleared 

peripheral Ab from the circulation, while parallel experiments in APP/PS1 mice showed that 

peritoneal dialysis reduced ISF and brain Ab load and ameliorated behavioural deficits282. If 

confirmed, these observations may open a new avenue of research for clearing extracellular 

neurotoxic proteins in NDAs. 

   

Therapetic perspectives and open questions 
 Accumulation of neurotoxic proteins unquestionably contributes to the onset and 

progression of NDAs. Accordingly, agents that promote their elimination are attractive as potential 

therapeutic agents. Nonetheless, several issues remain to be resolved prior to successful and 

safe clinical exploitation. 

First, improved knowledge of the causes, characteristics and chronology of poor clearance 

in NDAs, and of similarities and differences amongst them, would be important for clarifying which 

therapeutic strategy is best adapted to the treatment of specific classes of NDA and subsets of 

patients. This would also help determine the optimal mode, timing, pattern and dosage of 

treatment4.  
      Second, it is important to better understand the interplay between neurotoxic protein 

clearance and other pathophysiological processes, such as neuroinflammation283. Moreover, hub 

proteins like AMPK, mTORC1 and Sirtuin-1 impact both the ALN and manifold other processes 

implicated in NDAs, such as energy homeostasis19,283,284. Hence, drugs that modulate their activity 

will have beneficial and/or deleterious actions beyond their influence on clearance. Indeed, 

potential side-effects hould not be ignored. This is exemplified by mTORC1 antagonists like 

rapamycin which possesses immune-suppressive actions and affect memory formation, although 

studies in oncology and neurodevelopmental disorders are reassuring19,69,284. 
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 Third, numerous mechanisms remain to be pharmacologically manipulated. These include 

receptor tyrosine kinases for the ALN and “upstream” GPCRs potentially for all modes of 

elimination24,26 (Fraser et al, 2017). For the ALN, additional targets include the Vps34 complex, 

Histone Deacetylase-6, Rab proteins implicated in autophagosome-lysosome fusion169 and v-

ATPase, crucial for lysosomal acidification33. There has been much recent progress towards 

manipulation of the UPS, whereas exploitation of the CMA remains a major challenge2,39,56,68. For 

certain targets, non-small molecule strategies like PROTACS, aptamers and RNA probes, as well 

as nanoparticles and nucleic acid-based therapeutics, may prove useful (Box 3). Novel 

technologies will also be of importance for achieving the specific clearance of neurotoxic vs 

“normal” proteins, and for directing actions to discrete cells and brain regions, like dopaminergic 

pathways in PD (Jansen et al, 2014; Xilouri and Stefanis, 2015) . Further research is needed to 

confirm, clarify and potentially exploit the role of glymphatic clearance in the elimination of 

neurotoxic proteins in NDAs285. Another line of research could focus on the comparatively-

neglected blood-CSF-barrier which bears parallels and differences to the BBB, is impacted in 

ageing, and also represents a potential site for acceleration of neurotoxic protein elimination: its 

role in clearance of Ab42 is impaired in AD251,286,287.  
 Fourth, to improve the preclinical characterization of candidate medicine, we need more 

refined cellular and animal models, including induced pluripotent stem cells from patients (Box 
1)1,3,4,9,21. This will help to determine precisely which components of the ALN, CMA and UPS are 

impacted by specific classes of medication, and to quantify their influence on overall ALN flux. 

Improved models and measures should facilitate the development of translational readouts for 

facilitating clinical trials. This is important since they are onerous and costly. Studies of the 
multi-functional ALN promoter and aggregation inhibitor, Methylene Blue exemplify the 
challenges faced in terms of patient selection, trial design, dose-response relationships, 
structural and functional readouts of efficacy, and optimal time of intervention (Suppl Table 
1).  
 Fifth, improved clearance may well have a broad therapeutic time-window, yet early 

treatment would be advantageous, especially as regards reinforcement of the UPS and CMA 

before aggregation predominates. Hence, reliable biomarkers of clearance will be important for 

detecting pre-symptomatic subjects for early intervention69,288. Biomarkers are likewise crucial for 
demonstration of target engagement and as surrogate signals of disease-slowing and long-term 

efficacy. While we cannot directly monitor the ALN, CMA or UPS in human brain, quantification of 

CSF and plasma levels of neurotoxic proteins like Ab42 and tau is instructive. Further, imaging of 

neurotoxic protein load is helping enrollment of subjects into clinical trials288. In addition, retinal 
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imaging offers a window on cerebral clearance of tau289 while biomarkers of neurovascular flow 

from the brain to the circulation are under development249,250.  

Sixth, the therapeutic strategies evoked herein are likewise pertinent to other classes of 

NDA. For example, Machado-Joseph disease (Spinocerebellar Ataxia type-3) is an autosomal-

dominant, polyglutamine disease provoked by over-repetition of a CAG sequence in the Ataxin3 

gene. The mutant protein destabilizes Beclin 181. Accordingly, studies in transgenic mice and 

fibroblasts from patients suggest that reinforcing Beclin 1 dependent ALN flux would be a 

beneficial intervention290,291. Blockade of mTOR1 to induce autophagy may likewise be useful122 

  Finally, reinforcing clearance might best be undertaken in association with other strategies 

like suppression of protein misfolding, restoration of cerebral energetics or moderation of 

neuroinflammation7,23,147,163,284. Drug associations or multi-target agents possessing 

complementary mechanisms of action are both viable options. In addition, medication for 

promoting neurotoxic protein clearance will likely prove most effective when used in conjunction 

with lifestyle changes like improved sleep hygiene, exercise and a healthy diet. 

 

Concluding comments  
An excessive neurotoxic protein load is a core pathophysiological feature underlying and 

driving NDAs. Amongst several potential strategies for alleviating this burden, an enhancement of 

clearance is particularly attractive in view of the range of options available, and because insufficent 

elimination is itself implicated in the pathogenesis of NDAs. While challenges remain, ALN, 

CMA/UPS, proteolytic and neurovascular/glymphatic mechanisms of clearance offer potentially 

important strategies for preventing the onset and progression of diverse classes of NDA. Intensive 

work in this field will hopefully soon be translated into clinical benefits for patients. 
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Glossary 
 
Neurodegenerative diseases of ageing (NDA): A suite of neurodegenerative diseases including 

Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and Frontotemporal 

Dementia that typically are diagnosed in the elderly. Most cases are sporadic, but rare forms are 

associated with mutations (Table 1). Huntington’s disease is an exception in being purely genetic 

and having a somewhat earlier onset at 30-50 years of age. 

 
Proteinopathy: General term for disorders characterised by the buildup of excess, anomalously-

marked, misfolded and/or aggregated neurotoxic proteins like Ab, tau or a-synuclein. 
 
Amyloid b42: The major neurotoxic product of APP processing that deposits into extracellular 

amyloid plaques in Alzheimer’s disease. It is toxic as a soluble monomer or low-order oligomers 

by, for example, disrupting synaptic transmission, damaging mitochondria and impeding 

proteosomal clearance.  

 

Tau: A protein that stabilizes axonal microtubules. It is prone to cleavage, hyperphosphorylation 

and other modifications that trigger and/or follow microtubule dissociation. This leads to misfolding, 

oligomerisation, synaptic mislocalization and inter-neuronal spreading. Aggregates, fibrils and 

initracellular neurofibrillary tangles are also formed. 

 
a-Synuclein: A phospholipid-binding protein abundant in pre-synaptic terminals and involved in 

the release and regulation of synaptic vesicles. a-synuclein is a major component of Lewy bodies 
(protein and lipid aggregates) in PD. Its spread and accumulation in dopaminergic cell bodies and 

other cell types is a typical feature of the disease. 

 
TAR DNA Protein-43: A normally nuclear protein that is associated with FTD and ALS. In these 

diseases, it is found in the cytoplasm where it aggregates.  
 
Glymphatic System: CSF-driven system for flushing ISF-located neurotoxic proteins into the 

circulation that involves perivascular drainage, astrocytes and the lymph system.  

 
Blood-brain barrier: Physical and functional barrier that isolates the brain from the rest of the 

body. Certain nutrients, lipid vesicles and small molecules enter, yet it excludes toxic elements 
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that may damage the brain. It also ejects neurotoxic proteins and other unwanted material. Active 

transfer of neurotoxic proteins from the brain to the periphery involves specific classes of receptor 

and transporter. 

 
Aggresomes: Microtubule-associated inclusions located in the perinuclear region that contain 

mainly oligomeric, aggregated and ubiquitinated neurotoxic proteins together with p62 and 

chaperones that aid in their formation. Often generated when UPS activity is insufficient. Protective 

when short-lived, yet may be harmful in the long-term and can morph into Lewy bodies in PD. 

Cleared by the ALN. 

 
Stress granules: Non-membrane enclosed, cytoplasmic agglomerates of ribonucleoproteins that 

store and protect mRNA during short-term cellular stress. Chaperones like Hsp70 are involved in 

assembly and unfolding. In NDAs, neurotoxic proteins prolong the presence of stress granules 

and decrease their solubility, leading to aggregation or transformation into aggresomes. 

 
Peroxisomes: Small (100nm-1µM) organelles which oxidize long-chain fatty acids and act in 

detoxification. They can be generated by budding-off the endoplasmic reticulum and replicate via 

fission. Pexophagy refers to autophagy of peroxisomes. 

 
Lysosomes: An acidic compartment for the degradation of proteins and other cellular 

constituents. Their breakdown yields products like amino acids and lipids which are recycled.  

 

Autophagy-regulating genes: Autophagy was originally characterised in yeast by Y. Ohsumi 

(Nobel prize in Physiology or Medicine, 2016). The associated genes, identified using mutants, 

were termed Apg1-15. In view of conservation across species, the essentially same terminology 

is used for genes/proteins that regulate autophagy in humans.  

 
AMP-kinase: 5'-adenosine monophosphate-activated protein kinase, an enzyme involved in 

energy and nutrient sensing. When activated, AMPK triggers glucose uptake, lipogenesis and 

triglyceride synthesis. It is a major protein for sensing ATP deficits and initiating the autophagic-

lysosomal network. 

 

Mammalian target of rapamycin: Multi-tasking serine/threonine protein kinase that inhibits 

autophagy and mitophagy: it also has other roles in, for example, controlling mRNA translation 
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and protein synthesis. Comprises part of a complex (mTORC1) together with several other 

regulatory and effector proteins. (As part of a complex mTORC2, mTOR functions as a tyrosein 

protein kinase exerting other roles).  

 

Nicotinamide adenine dinucleotide: Dinucleotide co-enzyme necessary for energy generation 

in all types of cell. It is a co-factor for activation of Sirtuin-1, and is required for operation of the 

ALN. The oxidised and active form is NAD+. 

 
Acetyl coenzyme A: Cofactor involved in protein, carbohydrate and lipid metabolism; formed 

during glycolysis. It provides the acetyl used by acetyl transferases like p300 to acetylate Agt 

proteins, histones and other substrates like tau. 

 

Rab proteins: Members of the Ras superfamily of monomeric G-proteins that participate in 

vesicular trafficking, vesicle formation, vesicle movement (actin/tubulin-mediated) and vesicular 

fusion, as in autophagosomes with lysosomes. 

 

SNARE: SNARE (Soluble N-ethylmaleamide-sensitive factor Attachment protein REceptor) refers 

to a complex of proteins including Synaptobrevin, Syntaxin, “SNAP-25” and Synaptotagmin. 

SNARE contributes to vesicle fusion with target compartments by “zippering” the donor vesicle 

(like an autophagosome) onto the recipient compartment (like the lysosome).  

 

Phospholipase D: Enzyme involved in the transformation of various lipids and involved in the 

fusion of autophagosomes and lysosomes. 

 

Lysosomal storage disorders: Diseases resulting from genetic mutations that lead to failure of 

lysosomal digestion and cellular accumulation of lipids, proteins and other non-digested material. 

Pathology not restricted to the brain. Age of onset much earlier than for sporadic, age-related 

neurodegenerative disorders. 

 
Niemann-Pick’s Type C disease: Disease triggered by a defect in the NPC1 gene responsible 

for cholesterol transport. NPC patients often display Ab42 and tau pathology, underpinning 

parallels to Alzheimer’s disease in which cholesterol transport is also disrupted. 
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Hsc70: Hsc70 (Heat shock cognate 71kDa protein) is a constitutively-expressed chaperone also 
known as Heat Shock Protein family A member 8 which effects ATP-dependent nascent/unfolded 
protein folding. It specifically recognizes proteins with an exposed KFERQ-like sequence and 
delivers them to LAMP2A on lysosomes where, aided by other proteins, substrates are translocated 
to the lumen for degradation. 
 
KFERQ: The KFERQ motive on a protein is the principal criterion for CMA capture. Q refers 
to Glutamine - although this sometimes may be an asparagine (N). The other residues are 
acidic (D), basic (K, R) or basic/hydrophobic (F). Post-translational modification can, 
however, modify susceptibility of proteins with a KFERQ signal for CMA. 
 
Lipofuscin: Pigmented cellular inclusions composed of undigested lysosomal content, including 

oxidised and cross-linked proteins. This electron-dense autofluorescent material is characteristic 

of ageing and NDAs and can be seen in all types of cerebral cell. 

 

Unfolded protein response (UPR): Protective response to help cells recover from cellular and 

ER stress. Acts via three key effector proteins to modify gene transcription/mRNA translation. The 

UPR interrupts bulk protein synthesis, promotes the generation of chaperones for protein folding, 

and increases degradation of misfolded proteins. Over-activation and protracted engagement of 

the UPR is harmful for neurones and implicated in NDAs. 

 
ALN dysfunction: Underactive autophagy - term used when rates of autophagosome formation 

and cargo sequestration decrease below basal levels, or fail to upregulate sufficiently under stress. 

Impaired autophagy - lysosomal delivery, fusion or digestion of autophagosomes is compromised. 

Overactive autophagy - over-production of autophagosomes and excess ALN activity: can lead to 

autosis. 

 
Autosis: Autophagy-mediated cell death mediated principally by the Na+/K+-ATPase pump. Can 

occur with prolonged and excessive autophagy. Triggered by hypoxia-ischemia (as in stroke or 

traumatic brain injury) but occurrence in NDAs debated. 

 
Apolipoprotein Epsilon 4 (ApoE4): Robust genetic risk factor for Alzheimer’s disease as 

compared to ApoE2 and E3 alleles. ApoE is secreted by astrocytes and binds lipids like cholesterol 

which are carried to neurones. Also involved in transport of cholesterol-bound Ab to the blood-
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brain barrier (ApoE4 less efficient than 2/3), and in driving synthesis of Ab42 (ApoE4 more potent 

than 2/3). 

 

Presenilin-1 (PS1): Catalytic unit of the g-secretase complex that processes APP into b-amyloid. 

Mutations associated with familial AD, but altered APP cleavage unlikely to be the sole 

explanation. Rather, a role for reduced lysosomal acidification has been proposed based on 

deficits in maturation and translocation of vATPase subunits to the lysosome. Deficient mitophagy 

may also be implicated. 

 

Amyloid precursor protein: Transmembrane protein highly expressed in neurones and involved 

in maintaining cell-cell contact. Successive cleavage by b- and g-secretases results in the 

formation of Ab42 and related species of neurotoxic peptide. 

 

Parkin: Component of the E3 ubiquitin ligase complex that binds to its partner PINK1 to facilitate 

the autophagic removal of dysfunctional mitochondria that have lost their membrane potential.  

 

Gaucher’s disease: Primary, autosomal-recessive lysosomal storage disease caused by 

mutations in the GBA1 gene which encodes b-glucocerebrosidase: 5-fold higher risk for PD among 

affected carriers. The activity of b-glucocerebrosidase is impaired in a sub-population of idiopathic 

PD patients, many of whom show genetic mutations related to lysosomal disruption. 

 

Superoxide dismutase (SOD1): Mitochondrial enzyme dedicated to the reduction of free radicals 

(reactive oxygen species). SOD1 mutations and dysfunction are seen in a subset of patients with 

amyotrophic lateral sclerosis. 
 
CAG-expansion repeats: Proteins containing multiple CAG repeats - CAG encoding glutamine 

(symbol “Q”). When the number of CAG repeats is supra-normal (for example, >35 for Htt protein), 

proteins aggregate, provoke cellular damage and trigger inherited, polyglutamine diseases like 

Huntington’s disease, Spinocerebellar Ataxia 3/Joseph-Machado disease (Ataxin-3), and Spinal 

and Bulbar Muscular Atrophy (Androgen Receptor). 

 

TAT-Beclin: Synthetic peptide comprising 11 amino acids of the Human Immunodeficiency Virus 

Tat protein transduction domain, a diglycine linker and amino acids 267–284 of Beclin 1. Cell-
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penetrant and triggers ALN-mediated neurotoxic protein clearance without causing cytotoxicity, 

although higher concentrations may carry the risk of autosis. 
 
Heat Shock Factor 1 (HSF1): Protein that occurs as a monomer in the nucleus and cytoplasm, 

being repressed by Heat Shock Proteins like Hsp70. Following disruption of proteostasis, Heat 

Shock Proteins dissociate to aid protein-folding: Heat Shock Factor 1 then trimerizes and 

increases transcription of Hsp70 and other neuroprotective proteins.  

 

Exosome: Small (30-150nm), ceramide-rich, intraluminal vesicles formed from cytosolic 

endosomes, multivesicular bodies and lysosomes. Released with contents (proteins, lipids, 

nucleic acids) into extracellular space upon fusion with plasma membrane. Contribute to spread 

of neurotoxic proteins. Exosomes in CSF, blood and urine are stable and useful as biomarkers.  

 

Immunotherapy: A “biological” therapy that passively or actively boosts the body's natural 

defenses. Specific classes of antibody aim to neutralise neurotoxic proteins like Ab42 or tau. 

Entrance to the brain is limited, but they may also act as a peripheral sink for neurotoxic proteins 

in the circulation. In the brain, antibodies mainly act extrinsically to neurones. 
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Box 1: Autophagic-lysosomal flux and its measurement: cellular and animal models  
      Characterisation of the ALN and its therapeutic restitution in NDAs necessitates accurate 

interpretation of autophagic states both in vitro and in vivo9,21. While electron microscopy has 

traditionally been used to observe key features of autophagosomes, recently-introduced 

approaches allow for more refined analysis of the ALN: for example, whether increases in 

autophagosome number (the most common measure undertaken) reflect an increase in their 

synthesis or enhanced ALN flux21. 

Since LC3-II (membrane-bound) is covalently conjugated to phosphotidylethanolamine on 

the outer and inner autophagosomal membranes (Figure 3), its expression and localisation is 

widely used to track autophagic kinetics. Calculating the ratio of LC3-II to tubulin is a preferred 

method for measuring cellular autophagosome levels by immunoblot since decreased amounts of 

LC3-I (cytoplasmic) occur in certain cell types upon conditions of activation15. Green fluorescent 

protein (GFP)-tagged LC3 has proven instrumental for quantifying autophagosomes but self-

aggregation of cytosolic GFP-LC3 and the quenching of GFP fluorescence in acidic lysosomes 

complicates interpretation in cytological assays21. To overcome GFP quenching, tandem 

constructs containing GFP and an acid-resistant red fluorescent protein (DsRed or mCherry) can 

be used to discriminate autophagosomes and amphisomes from autolysosomes (Figure 3). To 

show that increased levels of LC3-II genuinely represent accelerated ALN flux, a useful approach 

is to use compounds like bafilomycin or chloroquine which neutralise lysosomal pH and produce 

an additive elevation in LC3-II under conditions where flux is indeed high. Levels of p62 or other 

cargo acceptors are also useful readouts: a decrease in p62 often accompanies accelerated 

autophagic flux, while its accumulation may indicate a decrease. Potential variables that 

complicate this measure include proteasomal degradation of p62, alterations in transcription (e.g., 

in response to oxidative stress), and reduced protein synthesis in degenerating cells292. Therefore, 

parallel monitoring of p62 mRNA and UPS status is recommended210. Phospho-specific antibodies 

that detect activation states of key autophagy-regulatory kinases like AMPK, mTORC1 and Ulk1 

are also useful indicators of ALN status.  

As regards in vivo models, Zebrafish (Dano rio) larvae are transparent and permit 

visualization of ALN reporters like GFP-LC3-II constructs and neurotoxic proteins293. Further, 

targeted gene transduction, deletion or editing can easily be performed by morpholinos and the 

“CRISPR/Cas” system. Comparatively “high-throughput” screening can also be undertaken with 

compounds added to water that are absorbed transdermally86. For example, stimulating autophagy 

and TFEB nuclear translocation by trifluoperazine prevented neuronal loss in PINK1-deficient 

zebrafish294. Fruitflies (Drosophila melanogaster) are also useful. They can be rendered 



 

NRDD CLEARANCE TEXT AND BOXES REVISION 11 04 2018s 42 

autophagy-deficient, resulting in spontaneous neurodegeneration, while restoration of autophagy 

is neuroprotective in PINK1 mutants295. In addition, genetic tools are available for manipulating 

each step of ALN disruption, while somatic mutant clones in subsets of specific neurones permit 

evaluation of ALN in impacted cells surrounded by wild-type tissue296. Drosophila have been used 

to validate the effects of drugs regulating the ALN: for example, rapamycin in a polyglutamine 

model of HD116. Nonetheless, mice remain the most common in vivo pre-clinical model for 

modulation of the ALN in NDAs21 and a broad range of pharmacological agents has been studied, 

as summarized in Table 2. Apart from the brain, retinal tissue has proven instructive: for example, 

in evaluating axonal transport of acidic vesicles to lysosomes297. 

 Finally, for in vitro and in vivo studies of the ALN, overexpression of mutant proteins 

associated with NDAs is often used as a model of proteinopathy burden. However, this may not 

faithfully recapitulate sporadic forms of disease and the importance of other factors influencing the 

ALN, like ER stress, the cytosolic and mitophagic UPR and diminished energy supply, should also 

be borne in mind23,44,46,83,298. 
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Box 2. Defective mitophagy and restoration in NDAs  
  

Neuronal mitochondria support the high energetic costs of a complex and dynamic 

architecture, synaptic transmission and, last but not least, operation of the ALN. Indeed 

mitochondrial function and the ALN are reciprocally interlinked. For example, generation of radical 

oxygen species and ATP depletion induce the ALN via AMPK which will, in turn, eliminate 

damaged mitochondrial19,299. In fact, there are several quality control mechanisms that preserve 

healthy mitochondrial populations: fusion and fission cycles to redistribute mitochondrial content 

and isolate damaged mitochondria; chaperones for ensuring maturation and folding of 

mitochondrial proteins; proteases for degrading misfolded mitochondrial constituents; lysosome-

dependent pathways for destruction of damaged mitochondria; and a specific mitophagic UPR 

that preserves mitochondrial proteostasis45,233,300. 

Mitophagy refers to a selective type of macroautophagy that leads to degradation of 

mitochondria (Figure 2)58,300. While crucial for many developmental programmes, mitophagy has 

a more generalized, protective role in preventing the accumulation of reactive oxygen species and 

the release of pro-apoptotic factors. Of particular significance to NDAs is a stress-responsive, 

mitochondrial degradation cascade co-regulated by two genes mutated in familial PD: the 

mitochondrial kinase, PINK1 and the E3 ubiquitin ligase, Parkin57,58. This cascade, driven by 

PINK1-dependent activation of Parkin and ubiquitylation of proteins in dysfunctional mitochondria, 

is a well-characterised pathway of mitochondrial clearance, and studies using fluorescent reporter 

systems to track mitochondria in autophagosomes and lysosomes have highlighted its role in 

neurones301. PINK1 may also clear damaged mitochondria independently of Parkin by recruiting 

autophagy receptors like optineurin: for example, in AD where PINK1 appears to be deficient302. 
Whether driven by the PINK1/Parkin system or ubiquitin-independent mechanisms, 

mitophagy decreases with age. Further, while mitophagy may be compensatorily augmented at 

the onset of NDAs, in later phases, it is generally disrupted8,46,300. There is a complex interplay 

between protein aggregation, mitochondrial dysfunction and mitophagy. Aggregation-prone 

proteins, such as Aβ, SOD-1 variants and a-synuclein are imported into mitochondria224. This may 

reflect an adaptive mechanism, using mitochondria to clear aggregates233. However, in the long 

run, aggregation-prone proteins provoke mitochondrial dysfunction and block mitochondrial 

protein import. Stimulating mitophagy may, thus, improve both mitochondrial function and as well 

as cytosolic proteostasis46.  

As for pharmacological approaches for promoting mitophagy in NDAs303, certain are common 

to those inducing cytosolic autophagy. More specifically, several strategies aim to activate 

PINK1/Parkin-driven mitophagy, for example by the neo-substrate, kinetin triphosphate, which 
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enhances PINK1 kinase activity304. Small-molecule transcriptional activators of Parkin have also 

been proposed305. Other approaches use iron chelators to induce PINK1/Parkin-independent 

mitophagy. The ubiquitin-specific deubiquitinase, USP30, negatively regulates the initiation of 

Parkin-mediated removal of damaged mitochondria: its structurally-distinct features compared 

with other deubiquitinases are encouraging interest as a Parkin-related drug target306. (Harrigan 
et al, 2018). Interference with two other deubiquitinases, USP8 (delays Parkin binding to 
damaged mitochondria) and USP15 (suppresses Parkin-driven mitophagy) is also under 
scrunity as targets for promoting mitophagy in NDAs (Harrigan et al, 2018). 

The inner mitochondrial protein, prohibitin-2, directly binds LC3-II to target ruptured 

mitochondria for degradation and is depleted in human PD brain10. Since Prohibitin-2 

overexpression is protective in cellular models of PD, it is an interesting target for potential 

therapy307. Compounds that stabilise Nrf2 are also of interest, since Nrf2 triggers Parkin-

independent mitophagy by a mechanism involving activation of p62308. Replenishment of 

nicotinamide, which declines with age, may promote mitochondrial clearance by activating Sirtuin-

1 driven mitophagy309. Further, in promoting mitochondrial proteostasis, nicotinamide derivatives 

opposed the deposition of Aβ in cellular and mouse models of AD46. The plant flavanol, 

kaempferol, induces autophagy and exerts protective effects on mitochondria, for example against 

toxins triggering PD-like dysfunction. Its actions involve induction of Akt upstream of mTORC1310. 

Other natural compounds, such as urolithin A, promote mitophagy by mechanisms that remain to 

be determined311. Finally, lifestyle factors, like exercise and intermittent fasting, favour 

mitochondrial and neuronal health by a combination of mechanisms that include the stimulation of 

mitophagy8,23,147. 
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Box 3: Novel, non-small molecule strategies for enhancing intracellular neurotoxic 
protein clearance  

 Classical ”small molecules” cannot explore all potentially-available chemical space and 

may not be suitable for some targets like protein-protein interfaces and lipids. They are also not 

ideal for discrete delivery to specific brain regions. Thus, it is important to outline a suite of novel, 

non-small molecule approaches for eliminating neurotoxic proteins in NDAs. 
Protein-protein interactions like Beclin-Bcl2 can be disrupted by a “Tat” strategy that homes 

in on a unique peptide sequence in one protein partner, and incorporates the addition of a short, 

basic, arginine-rich sequence to improve cell penetrance. A Tat-Beclin 1 construct triggered 

autophagy and cleared polyglutamine expansion protein aggregates in vitro and in mice without 

engendering cytotoxicity156. 

Aptamers are small oligonucleotides that recognise specific proteins. They offer another 

chemically-distinctive strategy for modulating clearance. Using this technology, the de-

ubiquitinase, USP1440 could be inhibited to facilitate tau clearance196. Inhibiting ubiquitin carboxyl-

terminal hydrolase37, another proteosome-linked de-ubiquitinase, may also facilitate proteasomal 

clearance of neurotoxic proteins312. Similarly, aptamers moderated the ALN burden by blocking 

the misfolding and oligomerisation of tau313 and a-synuclein314. 

Numerous classes of miRNA are deregulated in NDAs148, including an increase of miR-

34a in AD which neutralizes mRNAs encoding Sirtuin-1 and TREM2148. Conversely, miR-132, 

which likewise interacts with Sirtuin-1, is down-regulated in AD148. Another example is the loss of 

miR-124 in a lesion model of PD315. Selective targeting of miRNAs in NDAs is becoming possible 

using modified oligonucleotides like antagomiRs, locked nucleic acids and miRNA sponges148. In 

addition, stabilized antisense oligonucleotides are showing promise not only for silencing miRNAs 

like miR-34, but also for knocking out or altering the aberrant splicing of specific 

neurotoxic/aggregating protein like tau, mutant Htt, CRorf72 and SOD1316. 

“PROTACs” (see main text) permit selective proteosomal elimination of unwanted proteins. 

They are composed of two motifs joined by a linker: one recognises a specific protein like tau217, 

whereas the other encodes an E3-ligase binding site215. This allows the target protein to be poly-

ubiquitinated, captured and degraded by proteasomes (and the ALN): addition of TAT-like motifs 

can increase efficacy93,215. In the 3XTgAD mouse model, PROTACs moderated levels of tau in the 

cortex and hippocampus suggesting target engagement in key pathological regions215. 

Interestingly, PROTACs may also be useful for orienting proteins towards CMA since the E3-ligase 

binding site can be substituted by a “KFERQ” CMA-recognition motif. This approach was used to 
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clear a-synuclein in vitro214. Smaller PROTAC variants offer improved stability, higher potency and 

better structure-activity relationships317.  

Restoring lysosomal acidification using poly(DL-lactide-co-glycolide) acidic nanoparticles 

proved neuroprotective in preclinical models of PD.318 Though they are poorly brain-penetrant, 

nanoparticles with improved pharmacokinetic profiles are being developed. Encouragingly, 

intranasal delivery reduced 6-hydroxydopamine-induced neurotoxicity in rats319. Another 

dimension of nanotechnology is represented by engineered nanorods which, when internalized by 

Hela cells, accelerated the ALN and cleared Htt aggregates in synergy with trehalose via a 

mTORC1/ERK-signalling pathway: in vivo actions and safety remain to be established320. 
One strategy for locally enhancing intracellular clearance is virally-produced gene delivery 

to the pathological site, avoiding autophagic induction in “healthy” areas321. A target protein might 

be expressed in restricted areas using neuronal-type-specific promoters, like the dopamine 

transporter in dopaminergic neurones322. Invasiveness of delivery is a drawback, but peripheral 

administration employing exosomes together with the use of focused ultrasound to favour local 

BBB passage may offer a solution323. The latter approach enhanced access of siRNA to the 

striatum for knocking down mutant Htt278. Further, localised clearance was achieved with striatal 

lentivirus transfer of the proteasome activator, “PA28g”, that binds the 20S subunit to form an 

immunoproteasome. It enhanced clearance and improved motor performance in an Htt mouse 

model324. Another example is provided by intranigral gene delivery of Beclin 1 or TFEB that 

stimulated the ALN and alleviated pathology in a-synuclein overexpressing mice325.  

Finally, recurrent exposure of mice to a non-invasive, 40Hz flicker regime that entrained 

GABA interneuron-driven oscillations in visual cortex reduced Ab40/42 load: this resulted from a 

suppression of amyloidogenesis and a shift in microglial activation status leading to enhanced 

uptake and clearance326.  
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Figure 1: Overview of intra and extracellular mechanisms for the clearance of neurotoxic 
proteins from the brain.  
      Neurotoxic proteins are eliminated by a broad suite of specific and non-specific mechanisms 

expressed in neurones, glial cells and endothelial/vascular smooth muscle cells of vessels. The 

three major modes of intracellular clearance are shown for neurones, but they are also active in 

other cells like microglia (“clearance”). Under conditions of inflammation, proteosomal b-
subunits in glia are switched and substrate specificity changes: the precise role of 
these ”immunoproteosomes” - specialized in peptide production for antigen presentation 
- for neurotoxic protein elimination in NDAs is debated (Jansen et al, 2014). Clearance also 

occurs in the extracellular space, the interstitial fluid (ISF) of the brain parenchyma that surrounds 

neurones, and the CSF with which the ISF exchanges. Intraneuronal mechanisms of clearance 
are illustrated by both Ab42 and tau, but only Ab42 is shown for extracellular clearance 
since it has yielded the vast majority of available data. Extracellular pools of neurotoxic protein 

are derived from release by terminals, extrusion by exocytosis and diffusion following cell death. 

They disrupt neuronal and synaptic function and are taken up by other neurones and glial cells 

(“spreading”). Therapeutically-relevant proteases degrading neurotoxic proteins include 

endothelin-converting enzyme and insulin degrading enzyme (IDE) (mainly cytosolic), neprilysin 

and matrix metalloproteinases (MMP) (intracellular and extracellular), and plasmin (mainly 

extracellular). Neurotoxic proteins that escape glial capture and proteases are driven into the 

circulation. First, blood-brain barrier (BBB) localised receptors and transporters actively eject them 

into the blood, including P-glycoproteins like “ABCB1” transporters and low-density lipoprotein 

receptor related protein 1 (LRP1). Conversely, the Receptor for Advanced Glycation End-product 

(RAGE) receptor returns Ab into the CNS. Similar mechanisms operate at the blood-CSF-barrier 

in the choroid plexus; for example, LRP2 transfer of transthyretin-bound Ab from CSF into blood. 

Second, transfer of neurotoxic proteins to the periphery is mediated through the glymphatic 

system. CSF runs along the peri-arterial space, transverses Aquaporin 4 receptor-bearing 

circumvascular astrocytes to enter the ISF. Convective flow driven by arterial pulsing flushes 

neurotoxic proteins via glial cells and the peri-venous space back into the CSF. Glymphatic-

cleared, CSF-derived neurotoxic proteins mainly reach the circulation mainly via the cervical lymph 

nodes, but also via the dural venous sinus. Within the blood, specific proteins sequester Ab, such 

as the soluble fragment of LRP1 and immunoglobulins (IgG). Neurotoxic proteins are ultimately 

eliminated in the kidneys and liver. Abbreviation not in main text: s, soluble. 
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Figure 2: Overview of intracellular mechanisms for the elimination of neurotoxic proteins 
from neurones and other classes of cell in the brain.  
 Within neurones and other classes of cell, the UPS and CMA clear non-aggregated forms 

of neurotoxic protein, and the UPS also deals with substrates of Endoplasmic Reticulum 

Associated Degradation of incorrectly-folded proteins (“ERAD”). Proteins destined for the 

proteasome are poly-ubiquinated and guided to the proteasome by chaperones. They are 

deubiquinated “Rpn11” once committed to entering the proteosome pore: other  deubiquitinases 

like USP14 may rescue them before entry40. Unfolding is followed by degradation. The CMA 

operates on proteins bearing a KFERQ-like motif. This sequence is found in, for example, tau but 

not Ab. Hsc70 recognises the KFERQ sequence and together with co-chaperones transportd the 

protein for the LAMP2A receptor on lysosomes where is translocated into the lumen. The ALN is 

the major system for removing misfolded, higher-order, aggregated proteins as well as damaged 

organelles. Autophagosomes bearing cargo fuse with acidic lysosomes leading to degradation of 

contents. In addition, some autophagosomes fuse with endosomes, of which the “late” variety is a 

site for APP transformation into Ab. The resultant amphisomes then likewise fuse with lysosomes. 

See also Figure 3.  

 

Figure 3 Organization, operation and regulation of the autophagic-lysosomal network 
The top part of the schema illustrates the sequence of steps associated with operation of 

the ALN, while the bottom part shows the main regulatory proteins involved, focusing on potential 

targets for pharmacotherapy. “Sensing”, both extrinsic (e.g. glucose levels) and intrinsic (e.g. 

ATP/AMP levels), can determine whether or not autophagy is initiated by activation of AMPK 

and/or inhibition of mTORC1 - which leads to TFEB-driven transcription of ALN-requisite proteins. 

The pre-autophagosome (phagophore) structure first emerges from diverse membrane sources, 

and its formation is promoted by Atg9 (not shown). Nucleation is accomplished with the help of a 

complex cluster of proteins. Thereafter, Phosphatidylinositol 3-Kinase (PI3KC3) generates 
phosphatidylinositol-3-phosphate (Ptsnins3P), a signal recognised by “WIPI proteins” 
(WD-repeat-protein-interacting-with-phosphoInositides) that induce autophagosome 
elongation in association with with several classes of Atg protein and small GTPases like 
Rab5. With the aid of LC3 and cargo acceptors, autophagosomes take up cytoplasmic material 

like aggregated proteins and dysfunctional mitochondria (Box 2). Autophagosomes and other 

autophagic vesicles are transported with the help of dynactin and dynein along microtubules 

towards acidic lysosomes. Autophagosomes fuse with lysosomes containing resident hydrolases 

that degrade their contents into amino acids, sugars and lipids etc for recycling. The Figure also 



 

NRDD CLEARANCE TEXT AND BOXES REVISION 11 04 2018s 49 

depicts exosomal release of neurotoxic proteins which may occur as a consequence of reduced 

ALN flux and accumulation of autophagosomes. For details, see main text. Abbreviations not in 

main text: FIP, Family interacting protein; PE, Phosphoethanolamine and PLD, Phospholipase.  

 

 

Figure 4: Major molecular sites of action of agents that enhance protein clearance in NDAs  
Representative agents are shown for diverse modes of intracellular (ALN and UPS), 

extracellular (immunotherapy and protease-driven) and vascular (BBB extrusion and glymphatic) 

clearance. The principal loci of drug actions are depicted, yet precise mechanisms of action remain 

to be more fully deciphered for many drugs while several agents like resveratrol act at multiple 

sites (main text). As illustrated, a broad range of drugs exert their actions via AMPK, mTORC1 or 

Sirtuin-1 (which also influences downstream events like autophagosome formation). Certain 

agents exert their effects via other components of the ALN, up to and including lysosomal 

catabolism. In addition, ambroxol acts as a chaperone to help transport b-glucocerebrosidase to 

lysosomes. Diverse class of agent likewise promote UPS activity, including chaperones that assist 

in protein refolding and triage, modulators of proteasomal phosphorylation, and agents acting via 

the transcription factor, Nrf2, to induce coordinated synthesis of proteasomal subunits. 

Extraneuronal clearance can be promoted by agents that enhance the activity of proteases like 

neprilysin, by immunotherapies targeting specific neurotoxic proteins, and by increasing BBB and 

glymphatic extrusion of neurotoxic proteins into the circulation. For details, see main text. 

Abbreviations not in main text or Figure 3: AT, Acetyl transferase; DUB, deubiquitinase; GBA; 

b-glucocerebrosidase; G-synthase, Glucoceramide synthase; PDE, Phosphodiesterase and 

RAR, Retinoid Acid Receptor. 
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Table 1: Neurodegenerative disorders of ageing: major clinical and pathophysiological features, disruption of proteostasis, and impairment of 
neurotoxic protein clearance.  

Clearance mechanisms are recruited early in disease, yet they eventually become dysfunctional and/or inadequate to cope with the neurotoxic burden. 
Not all alterations in clearance and other features of specific NDAs are shown in view of space limitations, and essentially all are associated with 
neuroinflammation/immune deregulation, glial anomalies, disruption of cerebral bioenergetics, mitochondrial dysfunction and ER/oxidative stress. Several 
variants of frontotemporal dementia (FTD) are recognized, including behavioural, progressive non-fluent aphasia and semantic forms. While a distinct disease, ALS 
shares common pathological hallmarks and risk genes with FTD like C9orf72 (Chromosome 9 Open Reading Frame 72). This and other NDA-associated risk genes 
linked to impaired clearance (corresponding protein) are indicated in column one. Examples of genes/proteins incriminated in pathological processes are given in 
columns 3-6. Genes (proteins) as follows: APOE4 (Apolipoprotein E4); PARK9 (ATPase13A2); CHMP2B (Chromatin-modifying protein 2B); DCTN1 (Dynactin); FUS 
(Fused in sarcoma); GBA1 (b-glucocerebrosidase); GRN (progranulin); HTT (huntingtin); LRRK2 (leucine-rich repeat kinase 2); MAPT (microtubule association 
protein tau) ; OPTN (optineurin); PARK2 (Parkin); PICALM (Phosphatidylinositol binding clathrin assembly protein); PINK1 (PTEN-induced putative kinase 1); PSE/2 
(Presenilin 1/2); SNCA (a-synuclein); SOD1 (superoxide dismutase 1); SQSTM1 (Sequestome 1, p62); TBK1 (TANK-binding kinase 1); TARDBP (TAR DNA binding 
Protein 43); TMEM106, Transmembrane Protein 106B; TREM2 (Triggering receptor expressed on myeloid cells 2); UBQN2 (Ubiquilin 2); UCH-L1, Ubiquitin carboxy-
terminal hydrolase L1 (deubiquitinase) and VCP (Valosin-containing protein). Ab refers to Ab42 and similar neurotoxic fragments of APP. See main text and 
following citations for further information1-3,62 243,249,251  Check ref link to text Abbreviations not above nor in text: DA, Dopaminergic; GI, Gastrointestinal; MSN, 
Medium Spiny Neurone; SNPC, Substantia nigra, pars compacta and RBD, Rapid Eye Movement Sleep Behavioural Disorder.  
 
Disease 

(age of onset) 
 

% Familial 
 

Main risk genes 
related to poor 

clearance 

 
 

Clinical and 
pathophysiological 

 phenotype  

 
 

Disruption  
of proteostasis 

 

 
 

Autophagic-lysosomal 
network impairment  

 

 
 

Impairment of  
CMA and of UPS 

 

 
Impairment 

in other modes of 
neurotoxic protein 

clearance  

Alzheimer’s 
(usually over 70) 

 
 ca. 5% 

 
APOE4, APP, PS1, 
PICALM, TREM2 

Cognitive deficits; 
psychiatric symptoms; 
disorganized language; 
disrupted sleep/circadian 
rhythms. Neurodegener-
ation (entorhinal cortex, 
medial temporal lobe, 
hippocampus etc); ¯axonal 
transport; axonal and 
synaptic degeneration; 
altered microglial 
phenotype. 

Ab oligomers disrupt neurones, 
synapses, aggravates tau 
toxicity ; Ab aggregates in extra-
cellular plaques/vessels; 
aberrant tau cleavage, post-
translational marking, folding 
and oligomerisation; tau 
release and spreading; intra-
cellular tau tangles (with p62 
and other Ub-proteins). a-syn 
neuropathology in 
subpopulation. 

¯Sirtuin-1; ¯Neuronal ALN flux; 
¯Autophagosome maturation, 
transport and fusion with 
lysosomes (MAPT); ¯APP 
loading (PICALM); APP and CTF 
fragment accumulation in endo-
lysosomes; ¯Lysosomal acidity 
and digestion (PS-1/2, APP 
ApoE4); ¯Glial ALN (TREM2, 
ApoE4). ¯Mitophagy (PS1). 

¯ CMA (disrupted by 
Ab/tau aggregates); 
Anomalous mutant 
tau behaviour at 
LAMP2A impedes 
CMA; ¯ UPS clearance 
(perturbed by Ab and 
tau oligomers); 
FKBP51 binds Hsp90 to 
interfere with UPS 
substrate loading. 

¯Proteolytic Ab clearance 
(¯IDE, Neprilysin, Plasmin); 
¯BBB clearance of Ab and, 
probably, tau (¯LRP1; ¯P-
glycoprotein; RAGE); ¯Ab 
provision to BBB (ApoE4); 
¯glymphatic clearance of Ab 
and, probably, tau. 
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Parkinson’s 
(usually over 60) 

 
ca. 5-10% 

 
SNCA, PINK1, GBA, 

PARK2, LRRK2, 
PARK9, UCH-L1 

Motor impairment (poor 
gait, tremor, rigidity, 
bradykinesia); ¯olfaction; 
GI problems; cognitive 
deficits; pain; depression; 
prodromal RBD. Neuronal 
loss (DA cells in SNPC etc). 

a-syn inclusions and Lewy 
Bodies (contain lipids, a-syn, 
Tau, other neurotoxic proteins, 
ubiquitin); a-syn release; 
spreading in brain and, possibly 
earlier, gut. Tau neuropathology 
in subpopulation. 

Many a-syn related anomalies 
of ALN: ATG9 mislocalisation; 
¯Formation, maturation, axonal 
transport and lysosomal fusion 
of autophagosomes;¯Lysosomal 
function (LRRK2, PARK9, GBA); 
¯beclin 1 (LRRK2); ¯Mitophagy 
(PINK1, PARK2). 

¯LAMP2A/Hsc70 
levels;  ¯ CMA activity 
(aggregated a-syn and 
mutant a-syn/LRRK2 
block); Slow a-syn 
dissociation from 
LAMP2A.¯ UPS 
clearance (a-syn 
aggregates and 
mutant forms block); 
Impaired a-syn traffic 
to UPS (UCH-L1). 

¯BBB a-syn clearance; likely 
¯a-syn elimination by 
glymphatic system. 
 

Frontotemporal 
dementia 
(~40-60) 

  
ca 10-15% 

 
MAPT, C9ORF72, 
GRN, VCP, FUS, 

TARDBP, TREM2, 
CHMP2B, 

TMEM106, 
UBQLN2 

Cognitive impairment; 
altered personality; mood 
and language deficits; cell 
loss prominently in inferior 
frontal and anterior 
temporal cortex, 
asymmetrically or 
bilaterally.  

Misfolded and aggregated 
forms of tau, TDP-43 and/or 
(more rarely) FUS; Often found 
with p62 and ubiquitin in 
inclusions. 
 
 

Autophagosome accumulation; 
¯Cargo loading into 
autophagosomes by p62; 
¯Axonal autophagosome 
transport (MAPT); ¯Endosomal 
trafficking (CHMP2B); Lysosomal 
dysfunction (GRN, TMEM106); 
¯Glial ALN flux (TREM2). 

¯CMA and UPS 
clearance (impeded by 
aggregates of tau, TDP-
43 and FUS); poly-GA 
aggregates (caused by 
C9orf72 mutations) 
sequester and stall 
proteasomes; p62 
dysfunction. 

Not well defined, but likely 
similarities to AD as regards 
altered BBB permeability 
and ¯ glymphatic flow. 
 

Amyotrophic 
lateral sclerosis 

(~50-60) 
 

ca 10% 
 

SOD1, TARDBP, 
FUS, C9ORF72, 
VCP, SQSTM1, 

UBQLN2, OPTN, 
TBK1, DCTN, GRN, 

TREM2 

Motor impairment 
(cramps, muscle weakness, 
spasticity); cognitive 
impairment; mood 
disturbances (especially 
late-phase); ventral horn 
motoneuron loss; 
brainstem and cortical 
neuron degeneration. 

Misfolded and aggregated TDP-
43 and (more rarely) SOD1 and 
FUS inclusions in brain and 
spinal cord; inclusions may 
contain ubiquitin and ubiquitin-
ligases. 
 

Mainly ¯ALN, but may be  
and/or detrimental if cellular 
stress severe; ¯Autophagosome 
maturation (C9ORF72); ¯Cargo 
loading (SQSTM1, UBQN2, 
OPTN, TBK1); ¯Autophagosome 
retrograde transport (DCTN, 
C9ORF72); ¯Lysosomal function 
(CHMP2B/GRN); ¯Glial ALN flux 
(TREM2). 

Aggregated proteins 
including poly GA block 
proteasome; ¯Hsp70 
and Hsp40; ¯ Provision 
SOD1 and other 
proteins for UPS 
degradation (VCP); 
 ¯ CMA clearance of 
TDP-43. 
 

BBB disruption; ¯glymphatic 
flow.  
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Huntington 
(~30-50) 

 
Inherited 

 (ca. 8-10% = de 
novo mutations)  

 
HTT 

Motor dysfunction 
(chorea, dystonia, slurred 
speech); cognitive 
impairment; sleep 
disturbances; basal ganglia 
neuron loss, especially 
striatal MSNs; disruption 
of corticostriatal pathway; 
failure of axonal transport. 

Aggregates of mutant (excess 
CAG repeat number) Htt; 
mutant Htt inclusions with 
ubiquitin, beclin1, mTOR1, p62 
and other cargo-loading 
proteins; Mutant Htt and Htt 
fragments cytotoxic. 
 

Mutant Htt poor substrate of 
and disrupts ALN - and 
mitophagy; interference with 
Beclin-1; ¯Autophagosome 
formation and cargo 
recognition/loading; ¯Axonal 
transport of autophagosomes. 

Mutant Htt poor 
substrate of CMA and 
UPS; LAMP2A and 
Hsc70 initially 
upregulated, but 
becomes less efficient 
in later stages;  
Possible ¯ UPS 
(blocked by mutant 
forms of Htt?); 
¯Hsp70. 

BBB disruption due to 
accumulation of Htt, but role 
in Htt clearance uncertain; 
potential ¯glymphatic 
clearance to establish. 
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Table 2: Pharmacotherapeutic strategies for promoting intracellular clearance: actions in cellular and animal models of neurodegenerative 
disorders of aging.  

The Table is representative of drug classes that exert effects in brain-related cell and animal models of clearance/neurotoxicity. ↓indicates reduced levels 
of a specific neurotoxic protein etc. For in vitro and in vivo models, cell line/species is given followed by drug action in the procedure/model indicated. SK-N-SH 
and its sub-line SH-SY5Y as well as M17 are immortalized, human neuroblastoma cell lines, H4 is a human neuroglioma cell line, and RPE denotes human retinal 
pigmented cells. Pheochromocytoma-12 (PC12) and neuro 2a (N2a) are mouse neuroblastoma cell lines, while HT-22 is a mouse hippocampal cell line.  Cells were 
transfected with mutant protein, treated with Ab peptides, or exposed to cytotoxic stressors like serum deprivation, okadaic acid (phosphatase inhibitor), rotenone 
(mitochondrial complex I inhibitor), staurosporine (protein kinase A/C inhibitor), hydrogen peroxide (H2O2) or lipopolysaccharide (pro-inflammatory). In addition, 
prostaglandin J2 is neurotoxic to cells, but note that in this study IU1 itself induced tau cleavage at “protective” concentrations. Mutant protein variants are given 
as superscripts: e.g., SynA53T. YFP signifies yellow-fluorescent protein tagged, pro-aggregating proteins that fluoresce when they oligomerise. For in vivo models, 
overexpression of mutant forms of neurotoxic protein has commonly been used, in certain cases tagged with Green Fluorescent Protein (GFP) for improved 
visualization. Specific models employing transgenes and/or mutations (superscript) are listed as, for example, R6/2-Htt150. Transgenic models for HD and other 
polyglutamine disorders express pro-aggregant proteins bearing multiple CAG repeats. Thus, the R6/2 HD mouse expresses exon 1 of the human HTT gene 
containing 144-150 CAG repeats, while other HD models employ different numbers of CAG repeats. In a model of Joseph-Machado disease, mice overexpressed 
Ataxin 3(Q70)) with 70 CAG repeats. In a model of spinal and bulbar muscle atrophy, mice overexpressed a PolyQ mutant form of the Androgen receptor. TDP43 
and FUS (Fused in Sarcoma) refer to mice overexpressing these proteins as models for FTD and/or ALS. FLTD-U mice show Ubiquitin-inclusions upon TDP43 
overexpression. The SOD1 mutant mouse, G93A, is a model of ALS. Tau (MAP gene)-based models related to FTD (and AD) include mice with P301L (JNPL3 line) or 
P301S (PS19 line) mutations. RTg4510 mice have regulatable tau (P301L) expression. HTau signifies overexpression of human, wild-type tau. Mouse models for AD 
are based on overexpression of Tau and/or APP (Swedish and Swedish/Indiana) mutations: Tg2576 mice overexpress mutant APP (isoform 695) with the Swedish 
mutation (KM670/671NL); J20, TgCRND8 and Tg19959 mice overexpress mutant APP with the Swedish plus Indiana (V717F) mutations; APP/PS1 mice bear the 
APP-Swedish mutation plus the PS1-L166P mutation; 3XTgAD mice contain 3 mutations (APP-Swedish, PS1-M146L and tau-P301L) and 5XFAD mice encode 3 APP 
mutations (Swedish, Florida and London) plus 2 PS1 mutations (M146L and L286V). Models for PD comprise overexpression of wild-type or mutant (A53T, A30P) 
human a-synuclein, including on a a-syn knockout background (SNCAKOtm1Nbm). R275W is a mitophagy-linked Parkin (PARK2 gene) mutant mouse. GBA 
(b-glucocerebrosidase) mice embrace lines with natural (N370S and L444P) and induced mutations (D409V). Lesion-based models of PD employed the 
dopaminergic neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), okadaic acid or H2O2. Certain drugs like resveratrol interact at several nodes in 
the ALN. For more information, see main text and citations. Abbreviations not above or in text: CaMKK2, Calmodulin Kinase Kinase 2; DA, dopaminergic; icv, 
intracerebroventricular; MAP Kinase, Mitogen Activated Protein Kinase;  PE, Phosphotidylethanolamine; PrP, Prion protein; PS, Presenilin; and PtdnIns, 
Phosphatidyl-inositol-3-kinase. 
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Agent   
Clinical indication (or other use), and mechanistic 

influence on clearance mechanisms 
Influence on neurotoxic 

proteins: In vitro procedures  
Influence on neurotoxic proteins: 

In vivo models 

Autophagy activators: sensing, initiation and regulation 

AMPK facilitation 
Antihypertensives a2-adrenergic agonists/AC inhibition, 

↓AC-AMP/↑AMPK  
PC12: ↓a-syn(Syn A53T) / 

↓Htt(HttQ74)86 
Mice: ↓Htt, ↑motor function  

(Htt82Q)87 Clonidine, 
Rilmenidine 

Calpastatin, Calpeptin Investigational compounds 
(endogenous peptides) 

Calpain inhibitors:  
↓Cdk5 activation, ↑AMP/AMPK 

induction, ↓ cleavage Atg proteins 
SK-N-SH: ↓Htt(HttQ74)86  

Drosophila: ↓Htt, ↓ neurodegeneration 
(HttQ46)44 Mice: ↓Htt aggregates, 

↑motor function (Htt171-82Q)44; 
↓motoneuron loss (SOD1G93A)90, 
↓tauopathy(JNPL3-MAPTP301L)89 

AICAR 
Experimental agent. 

 Potential treatment for 
myocardial ischaemia 

AMP analogue - 
allosteric inducer of AMPK 

N2a: ↑AMPK91; 
Glia: ↓toxicity(Ab/LPS)92; SH-SY5Y: 

↓a-syn (wild-type protein)93 
- 

A-769662 Experimental agent Allosteric AMPK inducer 
 

Striatal neurones/mouse fibroblasts: 
↑LC3 and p62, ↓mHtt and ↑cell 

viability94 
- 

Resveratrol 
Polyphenol found in grapes 
etc (dietary supplement). 

Clinical evaluation in AD, MCI 

CaMKK2 potentiator, upstream of 
AMPK; Upstream inducer of Sirtuin-1 

N2a: ↑AMPK91; ↓Ab(APP695)97;  
Cortical neurones: ↓Ab(J20)97 

C. elegans: ↓polyglutamine(HttQ128)98; 
Mice: ↓Ab (APP/PS1)97 

Metformin Antidiabetic. 
Clinical evaluation for MCI AMPK activator SH-SY5Y: ↓a-syn93; ↓tau 

phosphorylation100, ↓Ab toxicity101 
Mice: ↓TH neuronal loss, ↑motor 

function (MPTP)102 

Trehalose Disaccharide. Abiotic stress 
protectant. Food-additive 

Glucose transporter inhibitor, 
↑AMP/AMPK activation 

PC12 : ↓a-syn(A30P/A53T) / 
Htt(Q74)104;  

Cortical neurones: ↓tau 
(TauRDΔK280)105 

Mice: SOD1(SOD1G93A)103 ; ↓Htt (R6/2- 
Htt150Q)107, ↓tauopathy (PS19-

MAPTP301S)108, ↓Ab (APP/PS1)106 

Lithium Mood stabiliser, anti-epileptic 
Evaluated in FTD and ALS 

↓Inositol monophosphate/IP3  
AMPK activator? SK-N-SH: ↓Htt (HttQ74)109 

Mice: ↑Survival(SOD1G93A)111; 
↓tau/filaments, ↑motor function, 

↑autophagy(JNPL3)110 

Methylene blue 

Dye. Treatment of 
methemoglobinemia. 

Development for AD/FTD 
(various formulations) 

AMPK activator, ↑beclin 1 
(also inhibitor of tau aggregation) 

HT-22: ↑AMPK, ↓cell death (serum 
deprivation)85;  

 Organoypic Hippocampal 
Slice/Neurones: ↓tau(JNPL3, 

MAPTP301L)84 

Mice: ↓tau(JNPL3)84 
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Calcitriol 
 (Vitamin D 
metabolite) 

Treatment of  Ca2++ 
deficiency. 

CaMKK2 potentiator upstream of 
AMPK _ Mice: ↓neurodegeneration 

(C57BL/6/MPTP)112 

mTOR1 Inhibition Macrolide. 
Immunosuppressant (organ 

transplants). Potential 
chemotherapy 

mTOR1 inhibitor 

PC12: ↓a-syn (MPTP)113, 
↓Htt(HttQ74)114 

Cortical neurones: ↓FUS stress 
granule(FUSR521C)115 

Drosophila: ↓Htt,↓neurodegeneration 
(HttQ74)116; 

 Mice: ↓Ab/tau(3XTgAD)119, 
↓TDP43/p62 (FTLD-U/TDP43)117 and 

neuronal loss (MPTP)118 
Rapamycin 

Temsirolimus Renal cell carcinoma mTOR1/2 inhibitor SH-SY5Y: ↓hyperphosphorylated tau  
(okadaic acid)120 

Mice : ↓tau(MAPTP301S)120, ↓a-syn/ 
neuroprotection(MPTP)121, ↓Ataxin3 
(Ataxin3Q70)122;↓Htt/ ↑motor skills 

(R6/2)116 

Curcumin 
Tumeric extract. Food colour. 

Dietary supplement. 
Clinically evaluated in MCI 

Indirect mTOR1 repressor, 
p300 inhibition causing Atg 

deactylation 

SH-SY5Y: ↓a-syn aggregation(SynA53T) 
125,126;  

DA neurones: ↑neuroprotection 
(rotenone)124 

Mice: ↓Ab aggregation(Tg2576)129, 
↓tau dimers(hTau)128,  

↓a-syn(GFP-Syn)127 

Fisetin Plant polyphenol.  
Anti-oxidant mTOR1-dependent activator of TFEB Cortical Neurones: ↓phospho-tau132 Mice: ↓Ab(APP/PS1)133 

Nilotinib 
Resistant chronic 

myelogenous leukemia. 
Clinically evaluated in PD 

C-Abl kinase inhibitor, 
upstream recruitment of mTOR1 M17: ↓TDP43(GFP-TDP43)137 Mice: ↓a-syn, ↑motor 

function(SynA53T)136, ↓TDP43(TDP43)137 

Sirtuin1 facilitation Vitaminin in food. Treatment 
of niacin deficiency. 

 Clinically evaluated in AD 

NAD+ precursor/Sirtuin1 promoter, 
Atg deacetylation, FOXO activation 

Cortical Neurones: ↓Ab toxicity  
(Ab25-35/1-42)141 

Mice: ↓Ab and tau (3XTgAD)142 Nicotinamide 
 

Cilostazol 
Treatment of intermittent 

claudication. Platelet 
aggregation inhibitor. 

Phosphodiesterase 3 inhibitor, 
Upstream recruiter of Sirtuin-1 

N2a: ↓Ab(APPSWE)146; 
N2a:  ↑AMPK, ↓mTOR1, 

↑Autophagosomes, ↑cathepsin B91 

Mice: ↓Ab, ↓phospho and  
acetylated-tau 

(icv Aβ25-35)145   

Spermidine Natural polyamine. Potential 
promoter of longevity  

p300 HAT Inhibitor, Atg and Histone 
H3 deacetylator, ↑Beclin 1 

Cortical Neurones/PC12: ↑survival, 
↓toxicity(staurosporine)150 

Drosophila: ↑motor function (a-syn) 152; 
C. elegans: ↓a-syn toxicity (UAS-GAL4-

a-syn)152;  
Mice: ↓Ab(Tg19959)155,  

↓TDP-43(FTLD-U)151 
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Autophagy activators: Enhanced autophagosome formation 

Isorhynchophylline Plant alkaloid.  
Investigational compound ↑beclin 1 DA Neurones/N2a: ↓a-syn(SynWT, 

SynA53T, SynA30P)157 - 

Auten-99 Investigational compound ↑ PtdnIns3P activity (via Jumpy 
phosphatase inhibition) SH-SY5Y: ↑survival(H2O2)163 Drosophila: ↓neurodegeneration, 

↓p62(ParkinR275W)163 

Enhancers of autophagosome fusion/transport 

Paclitaxel, 
 Epothilone D 

Chemotherapy of several 
cancers (Paclitaxel). 

Potential treatment for 
cancer (Epothilone) 

↑Cytoskeletal/microtubule  
transport of autophagosomes  

SH-SY5Y: ↓Ab-mediated  cytoskeletal 
destabilization and ER stress(Ab25-

35)165 
Mice: ↓tau (PS19, TauP301S)166 

Enhancers of lysosomal digestion 

2-Hydroxypropyl-β-
cyclodextrin 

Investigational compound. 
(binds cholesterol) 

TFEB inducer; ↓endolysosomal 
cholesterol; ↓lysosomal pH; ↑ABCB1 

transporters (astrocytes) 

H4: ↓a-syn aggregates(α-syn-GFP)176; 
N2a: ↓Ab (APPSWE)155 

Mice: ↓tau, ↓Ab plaques, ↑memory 
(Tg19959/CRND8)155 

Clioquinol Anti-fungal,  
anti-protozoal drug 

Zinc (and iron) chelator; 
 Increased lysosomal acidification. 

Fibroblasts: ↓a-syn(ATP13a2/PARK9 
knockdown)180 Mice: ↓Ab(Tg2576)178 

GZ/667161, 
GZ/SAR402671 

Investigational compounds, 
Clinically evaluated in PD 

Inhibitors of glucosylceramide 
synthesis, substrate reducers - 

Mice: ↓α-syn/ubiquitin/tau, 
↑memory(GBAD409V)181 

Miglustat Gaucher’s disease,  
Niemann-Pick Type C1 disease 

Inhibitor of  glucosylceramide 
synthesis 

substrate reducer 

Mesencephalic Neurones: ↓lipid 
accumulation in lysosome 

(MPTP+CBE)64 

Mice: ↓substrate storage, 
↑longevity(MPTP)64 

Ambroxol 
Secretolytic for respiratory 

diseases. Clinically evaluated 
in PD and Gaucher’s disease 

Chaperone:  
aids GBA transport to lysosome 

DA Neurones: 
↓a-syn(GBAN370S)182 

Drosophila: ↓ER stress(GBAN370S,L444P)183;  
Mice:↓a-syn (SNCAXSNCAKOtm1Nbm)184 
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NCGC607 Salicyclic acid derivative. 
Investigational compound 

Chaperone: aids transport of GBA to 
lysosome - no catalytic inhibition 

DA neurones from GD patients: 
↓glycolipids, ↓a-syn (GBAN370S+/+, 

GBAN370S/c.84dupG)185 
- 

HEP14 Investigational compound PKC-mediated TFEB activation 
and possibly ZKSCAN3 inhibition - Mice: ↓Ab(APP/PS1)134 

Facilitators of UPS and/or CMA degradation 

Arimoclomol 
Niemann-Pick Type C1 

disease. 
Clinical evaluation for ALS 

HSF1 stabiliser, 
HSP70 chaperone production 

Motor Neurones: 
↑survival(staurosporine, H2O2)193 

Mice: ↓SOD1, ↓motor loss, 
↑longevity(SOD1G93A)194 

IU1/IU1-47 Investigational compounds USP14 (deubiquitinase) inhibitors 
Cortical Neurones: ↓tau, Ub-proteins 

(toxic prostaglandin J2)197; ↑tau 
degradation and ↑ALN flux198 

- 

Geldanamycin 

 
Antibiotic. 

 Potential anti-tumorigenic 
 

Hsp90 inhibitor 
HSP70 chaperone activity 

M17: ¯tau(tau transfected)200; H4: ¯α-
syn(α-syn-YFP complementation)201 

Drosophila: ¯ α-syn (a-synA306/504) 202 
Drosophila: ¯insoluble (HttQ93)203;  

Mice: ¯tau (JNPL3)200 

17-AAG Investigational compound. 
Potential anti-tumerogenic 

Hsp90 inhibitor (improved brain 
entry), HSP70 chaperone activity 

H4: ¯α-syn oligomers 
(α-syn-YFP complementation)201 

Drosophila: ↓TDP43(androgen 
receptor/CAG repeats)207;  
Mice: ¯ Ab and ¯synaptic 

toxicity/memory impairment 
(Tg2576)204,205, ¯tau(JNP3L)205 

HSP990 Investigational compound Hsp90 inhibitor, HSF1 promoter, 
HSP70 chaperone activity - 

Mice: ¯Htt aggregates, motor 
performance (R6/2)206 

Rolipram 
Investigational compound. 

Potential use in auto-immune 
disorders 

PDE inhibitor, PKA-mediated 
proteasome phosphorylation 

Cortical Neurones:  
¯Ab/α-syn synaptic damage 

(human brain extract)209 

Mice: ¯tau, ¯ubiquitin, improved 
cognition(rTg4510, JNPL3)210 

PD169316 Investigational compound p38 MAPK inhibitor, ¯p38 MAPK 
proteasome phosphorylation  

Cortical Neurones:  
¯α-syn (wild-type protein)214 - 
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Suppl Table 1: Clinical trials undertaken in Neurodegenerative Disorders of Aging with drugs that experimentally modify the clearance of 
neurotoxic proteins. 

The Table depicts those drugs affecting autophagic-lysosomal or ubiquitin-proteosomal clearance that have been, or are being, clinically evaluated for the 
treatment of Neurodegenerative Disorders of Aging. The clinical trial identifier is shown together with the phase of testing, doses under study (oral) and primary 
measures/readouts used. These drugs were not specifically developed as modulators of neurotoxic protein clearance but, based on experimental data, are known 
to modulate it. While resveratrol did not reduce brain volume loss in the overall trial in AD and MCI,4,5 analysis of a small patient subset with CSF levels of A�1-42 
less than 600 ng/ml, provided evidence for a favourable influence on the Blood-Brain Barrier (blocked leakage due to decreased levels of Matrix Metalloprotease 
9, see main text), a reduction in immune-inflammatory markers, and a less marked decline in cognition and functional performance5. TRx0237 (LMTX or LMTM) is 
a new formulation of methylene blue (methylthioninium chloride) and a successor of Trx014 (RemberTM). Further analysis of the AD trial suggested that it may 
indeed have beneficial effects, notably on brain atrophy1, though another randomized trial would be needed to verify this post-hoc interpretation. Further, the 
focus is now largely on the anti-aggregation properties of Trx0237, so it is unclear to what extent induction of autophagy is involved in its clinical actions. For all 
drugs, with the exception of edaravone, drugs promote ALN activity in experimental models. Ironically, then, the only drug to have received FDA authorization is 
edaravone. As discussed in Supplementary Box 3, edaravone may reduce ALN activity, but this remains controversial and it has other therapeutically-useful actions 
like anti-oxidant properties. In addition to studies indicated in the Table, an open label study with rilmenidine was recently undertaken with a view of evaluating 
its efficacy in the treatment of Huntington’s disease2. Abbreviations not in main text: ADAS-Cog, Alzheimer Disease Assessment Scale; ALSDRS-R, ALS Functional 
Rating Scale-Revised; CGIC, Clinician's Global Impression of Change; FDDNP-PET 2-(1-(6-[(2-[fluorine-18]fluoroethyl)(methyl)amino]-2-naphthyl)-
ethylidene)malononitrile - Positron Emission Tomography; GBA, b-Glucocerebrosidase; MCI, Mild cognitive impairment; MOCA, Montreal Cognitive Score; MRI, 
Magnetic Resonance Imaging; NPI, Neuropsychiatric inventory; TBD, to be determined and UPDRS, Unified Parkinson’s Disease Rating Scale. 
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Drug Disorder Clinical Trial Phase Dose Primary Outcome Measures  Status 

Lithium FTD NCT02862210 II 150-600 mg/d 
Neuropsychiatric Inventory Scale;  

BDNF serum levels and changes in NPI score 
Recruiting, 

 negative in ALS3 
Metformin Aging NCT02432287 IV 1700 mg/d Gene expression, insulin sensitivity Ongoing4 

Metformin MCI NCT00620191 II 1000 mg/2x/d 
Memory recall, ADAS-cog, 2-deoxy-2-fluoro-D-glucose 

positron emission tomography  
Completed, minor cognitive 

benefit; other markers negative5 
Resveratrol AD, MCI NCT00678431 II Grape juice ADAS-cog, CGIC Completed, unsuccessful 

Resveratrol AD NCT01504854 II 
500-1000 
mg/2x/d 

Ab-amyloid 1-42 levels, Brain MRI; 
 Innate immune/inflammatory biomarkers; 

 Cognitive and functional decline  

Completed, no change in brain 
volume; positive signals in 

patient subset (see legend)4,5 

Resveratrol HD NCT02336633 III 40 mg/2x/d 

Caudate atrophy; Unified Huntington Disease Rating 
Scale; Total Functional Capacity; inorganic 

phosphate/phosphocreatine levels Recruiting 
Nicotinamide AD NCT00580931 I 1500 mg/2x/d ADAS-cog Completed, no report 

TRx0237 
(LMTX/M) AD NCT0162639 II 100 mg/2x/d 

Safety and Tolerability with Acetylcholinesterase Inhibitor 
or Memantine co-administration 

Terminated6; Post-hoc analysis 
positive (see legend) 

TRx0237 
(LMTX/M) FTD NCT01626378 III 100 mg/2x/d 

Whole brain volume (MRI); Addenbrooke’s Cognitive 
Exam; Functional Activities questionnaire; 

Frontotemporal Dementia Rating Scale; Modified CGIC 
Completed,  
unsuccessful 

Curcumin MCI NCT01383161 II 465 mg/6x/d 
Cognitive testing, inflammation markers;  

Ab-amyloid 1-42 levels; FDDNP-PET Ongoing 

Ambroxol PD NCT02941822 II 
Escalating doses 

60-420 mg/d 
Glucosylceramide and ambroxol levels in CSF; GCase 

activity; Montreal Cognitive Assessment; UPDRS  Ongoing 

Ambroxol PD NCT02914366 III 525,1050 mg/d 
ADAS-cog; CGIC; MOCA;  

CSF (a-syn; tau; Ab); MRI (atrophy) Recruiting 

Arimoclomol ALS NCT00706147 II/III 200 mg/3x/d Rate of decline on ALSFRS-R, safety and tolerability 

Tolerated; low adverse effects; 
possible increased survival; 
slower ALSFRS-R decline7 

Arimoclomol ALS NCT00244244 II 75-300mg/3x/d 
Safety, tolerability, pharmacokinetics; rate of decline on 

ALSFRS-R  

Tolerated, low adverse effects; 
slower ALSFRS-R decline with 

Arimoclomol8 

GZ/SAR402671 PD  NCT02906020 II 
Escalating doses 

TBD 
UPDRS, Parkinson's Disease Cognitive Rating Scale;  

Hoehn and Yahr score Recruiting 

Nilotinib PD NCT02281474 I 150, 300 mg/d 
Safety, tolerability, pharmacokinetics and biomarkers  

(homovanillic acid  in CSF) 
Completed, potential benefits to 

confirm9 

Nilotinib PD NCT02954978 II 150, 300 mg/d 
Safety, tolerability, pharmacokinetics and biomarkers  

(homovanillic acid  in CSF) Recruiting 
Nilotinib AD NCT02947893 II 150, 300 mg/d Safety, Biomarkers and Clinical Outcomes Recruiting 

 

ALS NCT01492686 III 60 mg/d ALSFRS-R; time of death; health changes over time 
Successful (ALSFRS-R)10; 

FDA approved Edaravone 
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