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Abstract. Locating vessels during surgery is critical for avoiding inad-
vertent damage, yet vasculature can be difficult to identify. Video motion
magnification can potentially highlight vessels by exaggerating subtle
motion embedded within the video to become perceivable to the surgeon.
In this paper, we explore a physiological model of artery distension to ex-
tend motion magnification to incorporate higher orders of motion, lever-
aging the difference in acceleration over time (jerk) in pulsatile motion to
highlight the vascular pulse wave. Our method is compared to first and
second order motion based Eulerian video magnification algorithms. Us-
ing data from a surgical video retrieved during a robotic prostatectomy,
we show that our method can accentuate cardio-physiological features
and produce a more succinct and clearer video for motion magnification,
with more similarities in areas without motion to the source video at
large magnifications. We validate the approach with a Structure Similar-
ity (SSIM) and Peak Signal to Noise Ratio (PSNR) assessment of three
videos at an increasing working distance, using three different levels of
optical magnification. Spatio-temporal cross sections are presented to
show the effectiveness of our proposal and video samples are provided to
demonstrates qualitatively our results.
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1 Introduction

One of the most common surgical complications is due to inadvertent damage
to blood vessels. Avoiding vascular structures is particularly challenging in min-
imally invasive surgery (MIS) and robotic MIS (RMIS) where the tactile senses
are inhibited and cannot be used to detect pulsatile motion. Vessels can be de-
tected by using interventional imaging modalities like fluorescence or ultrasound
(US) but these do not always produce a sufficient signal, or are difficult to use
in practice [1]. Using video information directly is appealing because it is in-
herently available, but processing is required to reveal any vessel information
hidden within the video and is not apparent to the surgeon, as can be seen in
the right image of Fig.1.



Fig. 1: (Left): The vessel distension-displacement from the pulse wave, with
the higher order derivatives along with annotation of the corresponding cardio-
physiological stages. Down sampled to 30 data points to reflect endoscope frame
rate acquisition. (1-D Virtual Model of arterial behaviour [2]) (Right): Endo-
scopic video image stack. The blue box surrounds an artery with no perceivable
motion, shown by the vertical white line in the cross section

The cardiovascular system creates a pressure wave that propagates through
the entire body and causes an equivalent distension-displacement profile in the
arteries and veins [3]. This periodic motion has intricate characteristics, shown in
Fig. 1 (left), that can be highlighted by differentiating the distension-displacement
signal. The second order derivative outlines where the systolic uptake is located,
whilst the third derivative highlights the end diastolic phase and the dicrotic
notch. This information can be present as spatio-temporal variation between
image frames and amplified using Eulerian video magnification (EVM). EVM
could be applied to endoscopic video for vessel localisation by using an adapta-
tion of an EVM algorithm and showing the output video directly to the surgeon
[4]. Similarly, EVM can aid vessel segmentation for registration and overlay of
pre-operative data [5], as existing linear based forms of the raw magnified video
can be abstract and noisy to use directly within a dynamic scene. Magnifying
the underlying video motion can exacerbate unwanted artifacts and unsought
motions, and in this case regarding surgical video, of those which are not the
blood vessels but due to respiration, endoscope motion or other physiological
movement within the scene.

In this paper, we propose to utilise features that are apparent in the cardiac
pulse wave, particularly the non-linear motion components that are emphasised
by the third order of displacement, known as jerk (Green plot Fig. 1, left).
We devise a custom temporal filter and use an existing technique for spatial
decomposition of complex steerable pyramids [6]. The result is a more coherent
magnified video compared to existing lower order of motion approaches [7,8],
as the high magnitudes of jerk are prominently exclusive to the pulse wave in
the surgical scene, as our method avoids amplification of residual motions due to
respiration or other periodic scene activities. Quantitative results are difficult for



such approaches but we report a comparison to previous work using Structure
Similarity [9] and Peak Signal to Noise Ratio (PSNR) of three robotic assisted
surgical videos at separate optical zoom. We provide a qualitative example of how
our method achieves isolation of two cardio-physiological features over existing
methods. A supplementary video of the magnifications is provided that further
illustrates the results.

2 Methods

Building on previous work in video motion magnification [8] [7] [10] we set out
to highlight the third order motion characteristics created by the cardiac cycle.
In an Eulerian frame of reference, the input image signal function is taken as
I(x, t) at position x (x = (x, y)) and at time t [10]. With the linear magnification
methods, δ(t) is taken as a displacement function with respect to time, giving
the expression I(x, t) = f(x + δ(t)) and is equivalent to the first-order term in
the Taylor expansion:

I(x, t) ≈ f(x) + δ(t)
∂f(x)

∂x
(1)

This Taylor series expansion appropriation can be continued into higher orders
of motion, as shown in [8]. Taking it to the third order, where Î(x, t) is the
magnified pixel at point x and time t in the video.

Î(x, t) ≈ f(x)+(1+β)δ(t)
∂f(x)

∂x
+(1+β)2δ(t)2
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In a similar vein to [8], we equate a component of the expansion to an order of
motion and isolate these by subtraction of the lower orders

I(x, t)− I(x, t)non−linear(2ndorder) − I(x, t)linear ≈ (1 + β)3δ(t)3
1

6

∂3f(x)

∂3x
(3)

assuming (1+β)3= α, α > 0.

D(x, t) = δ(t)3
1

6

∂3f(x)

∂3x
(4)

Înon−linear(3ndorder)(x, t) = I(x, t) + αD(x, t) (5)

This produces an approximation for for the input signal and a term that can be
attenuated in order to present an augmented reality (AR) view of the original
video.

2.1 Temporal Filtering

As jerk is the third temporal derivative of the signal Î(x, t), a filter has to be
derived to reflect this. To achieve acceleration magnification, the Difference of
Gaussian (DoG) filter was used [8]. This allowed for a temporal bandpass to be



assigned, by subtracting two Gaussian filters, using σ = r
4ω
√
2
[11] to calculate

the standard deviations of them both, where r is the frame rate of the video and
ω is the frequency under investigation. Taking the derivative of the second order
DoG we create an approximation of the third order, which follows Hermitian
polynominals [12]. Due to the linearity of the operators, the relationship between
the the jerk in the signal and the third order DoG as:

∂3I(x, t)

∂t3
⊗Gσ(t) = I(x, t)⊗ ∂3Gσ(t)

∂t3
(6)

2.2 Phase-based Magnification

In the classical EVM approach, the intensity change over time is used in a pixel-
wise manner [10] where a second order IIR filter detects the intensity change
caused by the human pulse. An extension of this uses the difference in phase
w.r.t spatial frequency [7] for linear motion, as subtle difference in phase can
be detected between frames where minute motion is present. Recently, phase-
based acceleration magnification has been proposed [8]. It is this methodology
we utilise and amend for jerk magnification. By describing motion as phase shift,
a decomposition of the signal f(x) with displacement δ(t) at time t, the sum of
all frequencies (ω) can be shown as:

f(x+ δ(t)) =

∞∑
ω=−∞

Aωe
iω(x+δ(t)) (7)

where the global phase for frequency ω for displacement δ(t) is φω = ω(x+δ(t)).
It has been shown that spatially localised phase information of a series of

image over time is related to local motion [13] and has been leveraged for linear
magnification [7]. This is performed by using complex steerable pyramids [14]
to separate the image signal into multi-frequency bands and orientations. These
pyramids contain a set of filters Ψωs,θ at multiple scales, ωs and orientations θ.
The local phase information of a single 2D image I(x) is

(I(x))⊗ Ψωs,θ(x) = Aω,θ(x)e
iφωs,θ(x) (8)

Where Aω,θ(x) is the amplitude at frequency ω and orientation θ, and where
φωs,θ is the corresponding phase at scale (pyramid level) ωs. The phase informa-
tion is extracted (φωs,θ(x, t)) at a given frequency ω, orientation θ and frame t.
The jerk constituent part of the motion is filtered out with our third order Gaus-
sian filter and can then be magnified and reinstated into the video (φ̂ω,θ(x, t))
to accentuate the desired state changes in the cardiac cycle, such as the dicrotic
notch and end diastolic point, shown in Fig. 1 (left).

Dσ(φω,θ(x, t)) = φω,θ(x, t)⊗
∂3Gσ(t)

∂t3
(9)

φ̂ω,θ(x, t) = φω,θ(x, t) + αDσφω,θ(x, t) (10)

Phase unwrapping is applied as with the acceleration methodology in order to
create the full composite signal [8][15].



3 Results

To demonstrate the proposed approach, endoscopic video was captured from
robotic prostatectomy using the da Vinci surgical system (Intuitive Surgical Inc,
CA), where a partially occluded obturator artery could be seen. Despite being
identified by the surgical team the vessel produced little perceivable motion in
the video. This footage was captured at 1080p resolution at 30Hz. For processing
ease, the video was cropped to a third of the original width, which contained
the motion of interest, yet still retains the spatial resolution of the endoscope.
The video was motion magnified using the phase-based complex steerable pyra-
mid technique described in [7] for first order motion and the video acceleration
magnification described in [8] offline for comparison. Our method appended the
video acceleration magnification method. All processes use a four level pyramid
and half octave pyramid type. For the temporal processing, a bandpass was set
at 1Hz +/- 0.1 to account for a pulse around 54 to 66 bpm. From the patient’s
ECG reading, their pulse was stable at 60 bpm during video acquisition. This
was done at three magnification factors (x2, x5, x10). Spatio-temporal slices were
then taken of a site along the obturator artery for visual comparison of each tem-
poral filter type. For a quantitative comparison, the Peak Noise to Signal Ratio
(PNSR) and Structural Similarity (SSIM) index [9] was calculated on a hundred
frame sample, comparing the magnified videos to their original equivalent frame.

Fig. 2: Volumetric image stacks of an endoscopic scene under different types of
magnification.

Fig. 2 shows an apprehensible overview of our video magnification investiga-
tion. The pulse from the external iliac artery can be seen in the right corner and
the obturator artery on the front face. Large distortion and blur can be observed
on the linear magnification example, particularly in the front right corner, where
as this is not present on the non-linear example, as change in velocity is exagger-
ated, where as any velocity is exaggerated in the linear case. Figure 3 displays
a magnification comparison of spatio-temporal slices taken from three different
for mentioned magnification methods. E and G in this figure, demonstrates the
improvement in pulse wave motion granularity using jerk has in temporal pro-
cessing, compared to the lower orders. The magenta in E shows a periodic saw



Fig. 3: Motion Magnification of the obturator artery (x10). (a) Unmagnified
spatio-temporal slice (STS); (b) Linear magnification [7]; (c) Acceleration mag-
nification [8]; (d) Jerk Magnification (our proposal); (e),(g) Comparative STS,
blue box from (d) (jerk) in green, with (b) in magenta in (e) and (c) in magenta
in (g); (f) Sample site (zoomed); (h) Overview of the surgical scene.

Fig. 4: 1D distension-displacement pulse wave signal amplification, using virtual
data [2]. The jerk magnification shown in green creates two distinct peaks that
is not present in the other two methods of lower order.

wave, with no discerning features relating to the underlying pulse wave signal.
The magenta in G that depicts the use of acceleration shows a more bipolar
triangle wave. The green in both E and G shows a consistent periodic twin peak,
with the second being more diminished, which suggests that our hypothesis of a
jerk temporal filter being able to detect the dicrotic notch as correct and com-
parable to our model analysis shown in Fig. 4. Table 1 shows a comparison of
a surgical scene at three separate working distances. This was arranged to di-
minish the spatial resolution with the same objective in the endoscope. All three
aforementioned magnification algorithms were used on each at three different
motion magnification (α) factors (x2, x5, x10).

As a comparative metric, SSIM and PSNR are used as a quantitative metric,
with PSNR being based on mathematical model and SSIM taking into account
characteristics of the human visual system [9]. SSIM and PSNR allow for objec-



Scene Level 1 Scene Level 2 Scene Level 3

α Assessment Linear Acc. Jerk Linear Acc. Jerk Linear Acc. Jerk

x2
PSNR

SSIM

34.95

0.94

34.7

0.95

35.65

0.96

33.87

0.93

34.33

0.94

35.31

0.96

34.41

0.95

35.02

0.96

35.31

0.96

x5
PSNR

SSIM

30.6

0.88

31.5

0.9

33.18

0.93

28.98

0.85

31.05

0.89

33

0.92

30.32

0.9

31.88

0.92

33

0.92

x10
PSNR

SSIM

27.76

0.82

28.94

0.85

30.56

0.88

25.92

0.78

28.41

0.83

30.43

0.87

27.75

0.85

29.36

0.86

30.43

0.88

Table 1: Results from SSIM analysis and PSNR for our surgical videos at three
levels of magnification across the different temporal processing approaches.

tive comparisons of a processed image to a reference source, whilst it is expected
that a magnified video to be altered, the residual noise generation by the process
can be seen by these proposed methods. SSIM is measured in decibels (db), where
the higher the number the better the quality is. PSNR is a percentile reading,
with 1 being the best possible correspondence to the reference frame. For the
all surgical scene, our proposed temporal process of using jerk out performs the
other low order motion magnification methods across all magnifications for SSIM
and equals or outperforms the acceleration technique, particularly at α= 10.

4 Conclusion

We have demonstrated that the use of higher order motion magnification can
bring out subtle motion features that are exclusive to the pulse wave in arteries.
This limits the amplification of residual signals present in surgical scenes. Our
method particularly relies on the definitive cardiovascular signature character-
ized by the twin peaks of the end diastolic point and the dicrotic notch. Ad-
ditionally, we have shown objective evidence that less noise is generated when
used within laparoscopic surgery compared to other magnification technique,
however, a wider sample and case specific examples would be needed to verify
this claim. Further work will look at a real-time implementation of this approach
as well as methods of both ground truth validation and subjective comparison
within a clinical setting. Practical clinical use cases are also needed to verify the
validity of using such techniques in practice and to identify the bottlenecks to
translation.
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