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Distributional Logic Programming for Bayesian

Knowledge Representation

Nicos Angelopoulosc, James Cussensd

aWelcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
bDepartment of Computer Science,University of York, York UK

We present a formalism for combining logic programming and its flavour of non-

determinism with probabilistic reasoning. In particular, we focus on representing prior

knowledge for Bayesian inference. Distributional logic programming (Dlp), is consid-

ered in the context of a class of generative probabilistic languages. A characterisation

based on probabilistic paths which can play a central role in clausal probabilistic rea-

soning is presented. We illustrate how the characterisation can be utilised to clarify

derived distributions with regards to mixing the logical and probabilistic constituents

of generative languages. We use this operational characterisation to define a class of

programs that exhibit probabilistic determinism. We show how Dlp can be used to de-

fine generative priors over statistical model spaces. For example, a single program can

generate all possible BNs havingN nodes while at the same time it defines a prior that

penalises BNs with large families. Two classes of statistical models are considered:

Bayesian networks and classification and regression trees. Finally we discuss: (1) a

Metropolis-Hastings algorithm that can take advantage of the defined priors and the

probabilistic choice points in the prior programs and (2) its application to real-world

machine learning tasks.

Preprint submitted to Elsevier July 27, 2016



Distributional Logic Programming for Bayesian

Knowledge Representation

Nicos Angelopoulosc, James Cussensd

cWelcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
dDepartment of Computer Science,University of York, York UK

1. Introduction

Bayesianism provides a powerful framework for reasoning with statistical knowl-

edge. The result of reasoning is captured by the posterior distribution. Knowledge is

captured by the prior and the evidence. The former can represent expert knowledge or

belief in a domain, while the latter can take the form of data to be analysed. The basic

Bayesian premise can be summarised as:

posterior ∝ prior × evidence

A plethora of algorithms operate on the above principle to either locate important mem-

bers of the posterior, such as the maximum a posteriori mode (MAP), or to characterise

the whole distribution. Computation in both cases is often prohibitively lengthy to

allow exact algorithms, so approximations are routinely used. These include varia-

tional methods [26] which approximate the inference on the evidence by considering a

simpler inference task while Markov chain Monte Carlo (MCMC) simulations approx-

imate the whole posterior by means of a stochastic search.

Bayesian algorithms that take into account the prior part of the above premise often

do so in a restricted form. For instance, [10] uses a conjugate prior over classification

trees and in [21] the authors use an uninformative prior over BNs. Reasons for such

restrictions include both the lack of relevant knowledge and the limited availability

of formalisms that can express the known biases and for which effective inference

procedures exist. However, in application areas such as computational biology and

bioinformatics a growing amount of formalised knowledge is becoming available. The

ability to represent complex biological knowledge would greatly benefit the application

of Bayesian methods in these areas as it can focus computational resources in parts

of the solution space that are most likely to hold the answer or of particular interest

to the biologists. On the other hand, Bayesian methods provide a convenient, clean

framework in which such knowledge can be incorporated.

The incorporation of prior knowledge is playing an increasingly important role in

bioinformatics and computational biology. A vast array of experimental data is be-

coming publicly available in unprecedented volumes. Summarising and incorporating

extracted knowledge in the analyses of new data is a route already taken by many labs.

In addition formal frameworks for representing knowledge such as Gene Ontology [37]
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and the Kyoto Encyclopedia of Genes and Genomes (KEGG, [27]) are gaining ground

in both depth and breadth of the knowledge they store.

Logic programming (LP) is an attractive formalism for representing crisp knowl-

edge. Probabilistic extensions to logic programming have been previously proposed

for the purpose of representing Bayesian priors ([13, 3, 6]). Here, we present an ex-

pressive language that extends logic clauses with probabilities which are calculated

by guards encoding arbitrary relations. We also provide a characterisation that eluci-

dates the interplay of nondeterminism in LP and probabilistic reasoning for a number

of generative languages. Additionally, we put emphasis on representing knowledge

for effective probabilistic problem solving via a number of examples that represent

knowledge over model structures and which are drawn from the literature. We de-

tail how the probabilistic aspects of our formalism enable Bayesian learning that can

exploit both the prior information and the internal probabilistic choice points to cre-

ate a search space constrained Metropolis-Hasting algorithm. This paper provides the

knowledge representation machinery for the conceptual framework of [3] and the ma-

chine learning results of [4, 5, 6, 7]. The full syntax is presented for the first time, along

with semantic considerations and a thorough discussion and mathematical framework

for probabilistic paths (Section 4). Furthermore, details on constructing effective priors

that model priors from the literature are discussed. Finally, we illustrate how the knowl-

edge representation discussed in this paper connects to already published research that

concentrated on machine learning results [4, 5, 6, 7].

2. Preliminaries

In this section we review the necessary terminology from logic programming. A

logic program L is a set of clauses of the form Head :- Body defining a number

of predicates. Head is an atom, a single positive literal constructed from a predicate

symbol and a number of term arguments. Body is a conjunction of zero or more atoms

A1, . . . An. Each term is a recursively defined structure that might be an atomic value, a

variable or a function constructed by an atomic function symbol and n term arguments.

The formHead :- Body is syntactic sugar for the disjunctionHead∨¬A1∨· · ·∨¬An

with all variables implicitly universally quantified. We follow LP conventions and have

variables starting by a capital letter (List) and atoms by a lower case letter (constant).
An example term of 4 arguments is: cart(f1, v1, L,R). It represents a classification

tree which splits some data at the top level on feature f1 and value v1, while the left

(L) and right (R) branches are as yet to be constructed and are shown here as free

variables.

A query or goal G1 is a disjunction of negative literals (¬A(1,1) ∨ . . . ∨ ¬A(1,n))
which the logic engine attempts to refute using the clauses in L. This is done by em-

ploying SLD (linear resolution of definite clauses with a selection rule). Linear resolu-

tion at step i will resolve ¬A(i,1) with the head (Hi) of the first matching clause found

(Mi) and replace it with the body of the clause thus generating a new goal. Matching

is via the unification algorithm, which when successful, provides a substitution θi such

that A(i,1)/θi = Hi/θi. Intuitively, successful unification is a method for selecting

which of the clauses in the program are applicable in answering the query while θi
possibly makes the free variables in Gi more concrete thus helping to build an answer
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to the query. A computation terminates when the current goal is the empty one or

no matching clause is found. In the former case an overall substitution is constructed

θ = (θN , . . . , θ1) where θ is the composition of the substitutions θN , . . . , θ1 with G/θ
being the computed answer.

The logic engine explores yet unexplored parts of the space, by returning to the

latest matching step and attempting to find alternative resolution clauses. In logic pro-

gramming parlance, this is a backtracking step. In the case where no matching clauses

are found, the engine will backtrack to the the second latest matching step, and thus

recursively search until an alternative can be found. Computed answers in the form

of θx substitutions done after the backtracking point are undone. The complete search

ends when all alternatives have been exhausted. In what follows we will useAi to refer

to A(i,1), that is, the literal used for the ith resolution step.

As an illustrating example program, consider the following two clauses defining

the member/2 predicate:

member(H, [H |T ]). (C1)

member(El, [H |T ]) :− (C2)

member(El, T ).

The first clause, (C1), states that the head of a list is its first element, while the second

clause states that element El is a member of the list, if it is a member of the tail

(T ) of the list. Lists are convenient recursive term structures commonly used in logic

programming to hold a collection of data objects. Posed with a query of the form

?−member(X, [a, b, c]) (which is syntactic sugar for¬member(X, [a, b, c])) the logic

programming engine uses SLD resolution which scans the query left to right and the

program top to bottom as to provide all possible answers in the form of values for X .

In our example these are the alternative values a, b, and c which are formally written

as θ = {X = a}, θ = {X = b} and θ = {X = c}.

2.1. Probability Theory and Logic Programming

Logic programming implements a complete search of a nondeterministic space. We

review the difficulties of mixing such spaces with probabilistic ones and present one

way to achieve this. The formalism we propose here assigns probabilities to clauses

defining a single probabilistic space based on a clear distribution over computed an-

swers G/θ. Furthermore, the thesis we propose is that for a class of generative logic

programming formalisms that treat probabilities as top-level constructs the definition

of a single probabilistic space with a clear distribution over computed answers G/θ is

a key concept.

Current probabilistic formalisms include those that completely replace nondeter-

minism with a probabilistic operator. Such approaches limit nondeterminism. In this

category, SLPs [29] under the semantics presented in [13] replace the SLD with sam-

pling over pure programs, which only contain stochastic clauses. An example of a

formalism that subjugates probabilities within logical inference is that of PRISM [35].

It was introduced for parameter learning in the context of Probabilistic Context Free

Grammars (PCFGs) and hidden Markov models (HMMs). PRISM provides a single
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probabilistic construct that instantiates an unbound variable from the elements of a list

according to the probability values attached to each element. Dlp is closely related to

PRISM and to SLPs; we will explain the similarities and differences in Section 4.1.

Another language is ProbLog [28]. This generalises the concept of assigning probabil-

ities to a list of values by removing the requirement for independence between random

variables.

PCLP [33] and clp(pfd(Y)) [1] employ constraint programming to create, in dis-

tinct ways, two separate spaces. Nondeterminism is expressed via clausal syntax while

the probabilistic is constructed in the constraint store with the constraint solver used to

reason/infer from this information. A crucial point in understanding the differences of

nondeterminism to probabilistic reasoning as discussed here, is that of a single substi-

tution (θ) appearing twice. In terms of standard logic programming, the repetition of

an already seen solution is immaterial, as the second appearance adds nothing new in

terms of logical consequence with the possible exception of explanation-based interpre-

tations. On the other hand, multiple probabilistic derivations of the same consequences

are intrinsically important as they alter the probability attached to each θ.

2.2. Statistical relational learning

Related research areas include that of statistical relational learning with important

recent contributions such as: probabilistic relational models (PRMs, [20]), Markov

logic networks (MLNs, [19]) and ProPPR [39]. These approaches use relations and

logic for representing knowledge. Inference is layered on top by the statistical ma-

chinery. ProPPR has been presented as an extension to SLPs which locally grounded

and was introduced with the specific aim of a efficient alternative for implementing

the personalised PageRank algorithm [11]. In comparison, distributional logic pro-

gramming (Dlp) focuses on logic programming as a general purpose AI language by

extending logical reasoning with probabilistic knowledge. The statistical machinery is

built in confluence with the underlying logic inference. Figaro [30] is a powerful object

oriented probabilistic programming language also coupled to a Metropolis-Hastings

(MH). It is more general in that it allows objects to have constraints and relationships

to other objects. In contrast, Dlp is based on logic programming which makes programs

readily amenable to mathematical analysis and program transformations.

It is worth noting that probabilistic programming has seen an increase in research

interest, with a number of formalisms from other paradigms. Two such systems are

Church [23] and Anglican [41] that extend functional programming with probabilistic

constructs.

3. Syntax

We extend LP’s clausal syntax with probabilistic guards that associate a resolution

step using a particular clause with a probability whose value is computed on-the-fly.

The computed value can then be used as the probability with which the clause is se-

lected for resolution. The main intuition is that in addition to the logical relation a

clause defines over the objects that appear as arguments in its head, it also defines a

probability distribution over aspects of this relation.
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Definition 1. Let H :−B be a syntactically correct Prolog clause and φ(H) =
functor(H)/arity(H) be the structure denoting the functor and arity of H . Let

VGφ(H)
be a list of variables and EGφ(H)

an arithmetic expression involving the vari-

ables in VGφ(H)
and no other variables. A probabilistic predicate Pφ(H) is associated

with a single guard Gφ(H) and consists of clauses of the form:

EGφ(H)
:: VGφ(H)

:: H :- B (C3)

We will refer to EGφ(H)
as the probabilistic expression of the clause and to VGφ(H)

as the probability measure variables or simply measure variables of the clause. The

probabilistic expression of a specific clause will be evaluated at resolution time to a

number: the probability label of the resolved clause. The evaluation is preceded by the

matching of VGφ(H)
to a list of ground arithmetic values generated by the guardGφ(H)

associated with Pφ(H). Note that all clauses belonging to the same predicate should

share equal length probability measure variable lists (VGφ(H)
), as they will be matched

to a list of numbers generated by a single guard. The computation of the associated

guard Gφ(H) occurs deterministically and if it fails or if it does not instantiate VGφ(H)

to a list of numbers, the computation halts.

Definition 2. Let Aφ(H) be a goal, VAφ(H)
a list of variables in Aφ(H) and Pφ(H) a

probabilistic predicate as defined in Definition 1. Let Hǫ be a form of Pφ(H)’s head

(H) with all its arguments replaced by variables and ΛHǫ be a list of some of these

variables. The single guard Gφ(H) associated with Pφ(H) is defined by:

VAφ(H)
:: Aφ(H) ∼ ΛHǫ :: Hǫ (G1)

The list of variables VAφ(H)
constitutes the measure variables of the guard, and its

length should match the length of the measure variables list in the clauses of Pφ(H),

VGφ(H)
in (C3), as they will be matched to them at run-time. Hǫ will typically share

variables with Aφ(H). These shared variables are the measure defining variables of the

guard, and are distinct to those in ΛHǫ , which are the distributional or probabilistic

variables of the guard and associated predicate. Having a single guard means that

the probabilistic dependencies of the data objects present as arguments to a predicate

definition, can be defined in one place, capturing the probabilistic relation of the data

and allowing the distillation onto the measure variables which in turn are used in the

evaluation of the run-time probability expressions.

The intuitive reading of the measure variables in VAφ(H)
of (G1) is that the proba-

bility by which data corresponding to the ΛHǫ variables (by extension Pφ(H) too) are

generated, depends on the data in the shared variables of Hǫ and Aφ(H). The magni-

tude of the dependency is defined byAφ(H)- an arbitrary logic goal, called at run-time.

Aφ(H) should be a pure logic goal, with no internal calls to probabilistic predicates.

Communicating the results from the guard to the clauses is done via matching the po-

sitioning of the variables in VGφ(H)
to those of VAφ(H)

. Concrete probabilistic labels

for each clause can then be calculated by clausal, probabilistic expressions (EGφ(H)
).
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For example the following guard:

[L] :: length(List, L) ∼ [El] :: umember(El, List) (G2)

declares that the length L of the predicate’s umember/2 input list List is the numeri-

cal information needed to define a distribution over selecting an element from the input.

Furthermore, in the case where VAφ(H)
and ΛHǫ are lists of one element we simplify

the notation by dropping the surrounding square brackets and writing (G2) as

L :: length(List, L) ∼ El :: umember(El, List) (G3)

The complete program corresponding to the umember/2 example guard shown in

(G2) is:

L :: length(List, L) ∼ El :: umember(El, List)

1

L
:: L :: umember(El, [El|Tail]). (C4)

1−
1

L
:: L :: umember(El, [H |Tail]) :− (C5)

umember(El, Tail).

The above program defines a uniform distribution over element selection for an

input list irrespective of the length of this list. However, its execution according to what

described so far, is computationally wasteful when consecutively calling the guard for

umember/2 (Gumember/2) via the recursive call of (C5). For each application of the

recursive clause (C5) the length of the remaining list needs to be recalculated as to

provide the measure variables of umember/2. In order to address this inefficiency we

introduce new syntax in the form of probabilistic goals.

Definition 3. Let F be a standard logic goal, H :−B a logic clause C or the logic

part of a probabilistic clause, with B a conjunction of atoms A1, . . . , An (Section 2).

Let VC be a list combining variables in C and numeric values, with its length being

equal to VAφ(F )
(Defn. 2). For Ai calling the probabilistic predicate Pφ(F ), we refer to

Ai as a probabilistic goal if and only if it is of the form

VC :: F (G4)

VC are the measure variables of the goal. The intuition behind probabilistic goals

is that when calling F in the context of C, we might already have the necessary infor-

mation regarding the relevant guard’s measure variables. So there will be no need to

re-evaluateGφ(F )
. A typical category of predicates for which this is the case, is that of

recursive predicates. When a probabilistic predicate recurses, it might be possible to

generate the guard measure values incrementally. This is an efficiency consideration,
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and as before, if VC is not instantiated to a list of arithmetic values the computation

stops. In terms of correctness, one could have a special execution mode which ensures

that for a given query the values in VC of a probabilistic goal as shown in (G4) are

equal to those calculated by the guard in VGφ(A)
of Definition 2.

The example program can now be written as:

L :: length(List, L) ∼ El :: umember(El, List) (G5)

1

L
:: L :: umember(El, [El|Tail]). (C6)

1−
1

L
:: L :: umember(El, [H |Tail]) :− (C7)

K is L− 1,

K :: umember(El, Tail).

The probabilistic expressions of clauses (C6,C7) will be computed at resolution time.

Clause (C6) is labelled by 1
L where L is the length of the input list (as defined by stan-

dard predicate length/2). L is computed at run-time by calling ? − length(List, L)
which when called with a free variable L and a list of values List instantiates L to

the length of the list. Clause (C7) claims the residual probability (1 − 1
L ). The re-

cursive call has a label which carries forward the length of Tail, the tail of the in-

put list. This is one less than that of list [H |Tail]. By adding K as the label to

the goal K :: umember(El, Tail), we avoid recomputing the guard. For the query

? − umember(X,List) where List is a known list, the above program defines a uni-

form distribution over all the possible element selections from this list. The probabili-

ties for the three possible selections (substitutions) for query

?− umember(X, [a, b, c]). (Q1)

are all equal to 1
3 and are computed by 1

3 ,
2
3 ×

1
2 , and 2

3 ×
1
2 × 1 forX = a,X = b and

X = c respectively.

A distributional logic programR is the union of a set of definite clauses L and a set

of probabilistic clauses D. Both sets define the logical semantics of R in unison while

D also defines a distribution over the substitution of the logical queries posed against

R.

4. Probabilistic paths

Recall the description of SLD-resolution given in Section 2. For query goal A let

Ai be the selected goal for resolution at step i and Mi a matching probabilistic clause.

We define I the index of Mi in R, such that Mi = RI (where RI is the Ith clause in

R). Ei the probabilistic expression of Mi, Gi the guard of Mi (Gi is short for Gφ(Mi)

as defined in Defn. 1) and θ′Gi
to be a complete substitution that grounds all the input

variables in Gi (VAφ(Mi)
in Defn. 1). Let ⊢ be the normal derives operator defined on
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the logical parts of R and eval(E) a function that evaluates arithmetic expression E.

The refutation choice πi, that is the selection of which clause was used for the ith step

can be captured by

πi =

{

(I, eval(Ei/θ
′
Ui
)) if Mi∈D ∧R ⊢ Ui/θ

′
Ui

I if Mi∈ L

The intuition is that a choice point can be abstracted to the identity of the clause

used and the value of the label (probability) at run-time. Each refutation that involves a

probabilistic clause produces answers of the formA/θπ where π = (π1, . . . , πN ) is the

path of the refutation along with the probabilities attached to each choice. Similarly

for iteration i we define π(Ai) = (π1, . . . , πi−1), the partial path to that point. The

procedure described above does not specify which literal ¬A in the current goal is

chosen for the next resolution step as our analysis is independent of this choice.

For query A we define ΛA to be the set of probabilistic variables in A. V ∈ ΛA if

and only if it is a variable in A and it will be matched during refutation to the output

variables of a guard (V ∈ ΛHǫ as per Defn. 1). We restrict the class of allowable com-

binations of programs and queries (A) so that each V can only be further instantiated

by unifications to the same predicate. In the umember/2 example (G5,C6,C7) and for

query ? − umember(X, [a, b, c]), X is a probabilistic variable and it only gets instan-

tiated by the first argument of umember/2 which belongs to Λumember/2 (see, (G5)

and Defn. 2). Similarly, the probabilistic variables of a clause are those identified by

the predicate guard, thus, Λφ(Mi) are the probabilistic variables of Mi.

We define π∼(Ai) as the list of choice points (clause indices) in the path that have

so far involved unification of the probabilistic variables of Mi. For example at the

end of deriving ? − umember(X, [a, b, c]). for X = c against the program in clauses

(G5,C6,C7), we have π∼(member(X, [a, b, c])X=c) = {C7,C7,C6}, that is the prob-

abilistic variable was passed through twice the recursive clause (C7) and once through

the base, terminating, clause (C6). In this example, π(member(X, [a, b, c])X=c) =
{(C7,2/3),(C7,1/2),(C6,1)}. In general, π∼(Ai) is a subset of the choice points that

appear in π(Ai). Choice points that are in π(·) but not π∼(·) are either missing due to

probabilistic goals that do not involve the probabilistic variables in the query, or due to

refutations of non-probabilistic goals.

More formally, π∼(Ai) = (J ·(J,Xj) ∈ π(Ai)∧T ∈ Λφ(Mj)∧V ∈ ΛAj
∧V/θj ≺

T ), where V/θj ≺ T is true if and only if θj is a non empty substitution and V/θj = T .

That is, V is not a variable renaming equivalent term to T . Recall that θj is the j step

unification substitution within π(Ai). Function uniq(θ, π, i) is defined to be true if

and only if π∼(Ai) is unique for each distinct A/{θ1, θ2, . . . , θi−1}. Let π⊳(Ai) be

the sum of probabilities for clauses that lead to at least one refutation when they are

resolved against Ai given that the choices leading to Ai are (π1, . . . , πi−1).

Definition 4. For program R, goal A and substitution θ we define the following prob-

ability distribution:

PR(A/θ) =
∑

π·R⊢A/θπ

∏

i·uniq(θ,π,i)

eval(Ei)

π⊳(Ai)
(1)

The formulation of PR(A/θ) allows R to contain both probabilistic and logical

predicates. However, only programs that can guarantee the uniqueness constraint,

9



uniq(·) have well-defined distributions. The constraint states that each A/{θ1, θ2, . . . ,
θn−1} should correspond to a unique probabilistic path π∼(Ai) thus ensuring that a

well-defined probabilistic space is considered.

The denominator in (1) normalises each choice ensuring that
∑

θ PR(G/θ) = 1.

In the naive case calculating π⊳(Ai) is a prohibitively expensive operation, as at least

one derivation for each possible continuation needs to be found. However, there are

two interesting special cases. The first is when R can be shown to have no probability

mass loss in which case π⊳(Ai) = 1 ⇒
∑

θ∈Θ P (G/θ) = 1 and the second when

all unifiable clauses for Ai (u(Ai)) lead to at least one θ, then π⊳(Ai) is replaced by
∑

a∈u(Ai)
eval(Ea). Both properties may hold even in the case of infinite i and are

static properties of a program with regard to a class of queries. The main intuition

behind Definition 4 is that the narrowing or instantiation of probabilistic variables in G
can be traced via the probabilistic variables in clauses used in resolution. Unification

operations involving these variables are of particular interest as they define a single

probabilistic space. Programs and associated queries for which nondeterministic and

probabilistic predicates that incur no direct manipulation to the query probabilistic vari-

ables produce a single π∼(Ai) for each probabilistic Ai define a unique probabilistic

space that provides a sound platform for doing inference. This is certainly the case in

the context of the inference we describe later in this paper, but likely to also hold for

other types of probabilistic inference. In terms of the relation between π(·) and π∼(·)
these well behaved programs are characterised by the fact that there is an one-to-one

mapping between π(·) and π∼()̇ . This is a property of the program, and not a test of

admissibility for the inference described herein. We will term such programs and as-

sociated queries as exhibiting ”probabilistic determinism”. In general, π∼(·) provides

an abstract operational means for describing probabilistic aspects of probabilistic logic

programs.

4.1. Paths in generative languages

The distribution we defined over substitutions has similarities with both the distri-

butions over observables by [18] in PCCP and yields by [15] in pure normalised SLPs.

However, both these formalisms steer clear of mixing probabilistic reasoning and non-

determinism. PCCP replaces the nondeterministic operator of CCP by a probabilistic

one and thus it does not allow any nondeterminism. This corresponds to programs

where non probabilistic predicates are defined by single clauses. Clearly the unique-

ness constraint is satisfied in this case. Furthermore, as PCCP is not concerned with

failures, the sum of matching eval(Ei) can be used instead of π⊳(Ai).
A stochastic clause in SLPs is a clause labelled by a number. [13] presented log-

linear semantics for pure normalised SLPs. This is a program that only contains la-

belled clauses. Following standard statistical practice, their semantics normalise over

the partition function (Z), which for an SLP is equal to the sum of probabilities over

∪θ. A pure normalised SLP corresponds to a Dlp program that has just numbers as ex-

pressions, guards are the true goal having no guard variables and all head variables in

a clause are considered probabilistic. When there is no probability mass loss in the Ci

values then the SLP semantics and those presented here are equivalent since both nor-

malising factors (Z and π⊳(Ai)) are equal to 1. It is straightforward to see that any pure
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normalised SLP can be mapped to a valid Dlp program. However, the opposite is not

true. For instance, there is no intuitive way to code the umember/2 program defined

by clauses (C6-C7). The semantic arguments we have put forward in this paper can be

viewed as an operational extension to the semantics given by Cussens [15]. Probabilis-

tic paths provide a constructive history of the proof that can be used to pinpoint classes

of programs and queries with desirable properties. In particular, we have argued that

the desirable behaviour of pure, normalised SLPs can be seen as one manifestation of

the general property of probabilistic determinism.

The logical-statistical programming language PRISM [35] provides a single primi-

tive, msw/3, which implements a switch: a selection of an element from a list accord-

ing to an explicit fixed distribution over the list elements. This primitive is a fact, that is

a clause with an empty body. In order for a query to have correct distributional seman-

tics, each θ should have a one-to-one correspondence with possible switch outcomes.

PRISM presents an appealing primitive abstract machine for mixing logic program-

ming and probabilistic reasoning. It has been used in efficient parameter estimation

[34].

SLPs, PRISM and the much earlier formalism the Independent Choice Logic (ICL)

[31, 32] have been shown to be very closely related. In each case a simple ‘base’ joint

probability distribution is defined as a product of independent random variables. This

is then extended to a more complex probability distribution using a logic program. In

SLPs, the base distribution is over the choice of clause. In PRISM the base distribution

is defined by the switches. In ICL the base distribution is defined using alternatives:

sets of logical atoms exactly one of which can be true. Details can be found in [16].

Dlp extends this approach in one crucial way: the probabilities defining the ‘base’

distribution are not fixed. In contrast to SLPs, PRISM and ICL, Dlp probabilities can

be computed ‘on the fly’. They can be functions of the current goal. As explained

above Dlp is most easily understood as an extension of SLPs that allow for dynamic

computation of clause selection probabilities. Since Dlp allows both probabilistic and

non-probabilistic clauses it is, more precisely, an extension of impure SLPs [14]. Im-

pure SLPs have both fixed-probability-labelled and unlabelled clauses, a combination

which is necessary for an SLP to represent a PRISM program (which can have clauses

with or without switches).

5. Priors over statistical models

We have shown previously [13] how graphical models can be represented as logic

programming terms. For instance, the structure of a BN with nodes 1, 2 and 3, and

two parent edges: 1 → 3 and 2 → 3 is mapped to term [1 − [3], 2 − [3], 3 − []].
Logic programs can be written to define the space of all models (e.g. all BNs with N
nodes). The theoretically sound properties of logic programs can provide a suitable

platform for representing domain knowledge. Further, Dlp ascribes probabilities to

each possible statistical model. We show how Dlp can define effective priors over two

model spaces: classification trees and BNs.
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Figure 1: Classification tree: ovals are decisions on a single feature with an associated splitting value. Leaf

nodes present a distribution over classes.

5.1. Classification and regression trees

Classification and regression trees [17] use a number of decisions on features to

classify each element to one of a number of possible classes (classification) or fit a

distribution over a range (regression). An example is shown in Fig. 1. A classification

tree (similarly read for regression tree), splits a dataset on a number of features as to

make decisions on which class does specific data-points belong to. Internal nodes are

decisions, where those data with a value above a threshold on a specific feature go

to the right branch and those with values below are placed to the left branch of the

decision. Leaf nodes present a distribution over classes that is proportional to the ratio

of class data-points at the leaf node. The feature of the root node of the tree in Fig. 1 is

f1 and the threshold value is 1. In the rightmost leaf node, 4 examples belong to class

0 and 9 examples belong to class 1. Having learned such a tree from training data, it

can be used to provide predictions of class for data in which the class is unknown. [12]

uses a prior over the set of trees T that depends on the probability of splitting individual

nodes:

ψη = α(1 + eη)
−β (2)

p(T ) =
∏

η∈HI

ψη

∏

η∈HL

1− ψη (3)

where eη is the depth of node η, α and β are user defined parameters controlling the

size of the trees, HI is the set of internal nodes for T and HL is its set of leaf nodes.

p(T ) is the prior probability of tree T and ψη is the probability of splitting node η.

In what follows we present a Dlp program for this prior. The operator ‘is’ assigns

an arithmetic value to a free variable. Note that logic programming does not support

destructive assignment. The corresponding Dlp program, from which we first shown a

fragment in [4, Fig. 4], is:
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(A0) cart(D,Cart) : −
parameters(ψ0, β),

ψ0:: split(0, D,Cart).

(A1) ψH :: ψH :: split(EH , DH , c(F, V al, L,R)) : −
parameters(α, β),
EH1 is EH + 1,

ψH1 is α ∗ E−β
H1

,

r select(F, V al,DH , DL, DR),
ψH1 :: split(EH1 , DL, L),
ψH1 :: split(EH1 , DR, R).

(A2) 1− ψH :: ψH :: split(EH , DH , l(DH)).

(A3) parameters(α, β).

Note that the above program does not contain any guards as the probability labels

are calculated within the clauses and are passed via the recursive call via probabilis-

tic clauses as defined in Definition 3. Clause (A0) is non-stochastic and serves as a

convenient entry point. It is called once at the very start of each invocation and it de-

clares that Cart is a valid representation of a tree with prior probability as defined in

(3). For each split at depth EH the leaf nodes are considered in turn with a decision

made for each of them as to whether a node is to be split or not. Clauses (A1) and

(A2) correspond to the two possibilities. The node will either become an internal one

(A1) or a leaf (A2). Note that although the data D is part of the input to the program,

this is purely for populating the tree and has no effect on the probability for each split

decision which defines the shape of the tree and the associated prior value.

Clause (A1) states that a sub-tree is initiated at node H by randomly selecting

(r select/5) a feature F and an associated splitting value V al and using those to par-

tition the data DH into two distinct parts DL and DR. It then increases the depth by

one, computes ψH1 and recursively calls itself on DL and DR producing the left (L)

and right (R) sub-trees. Clause (A2) constructs a leaf node at level EH which it pop-

ulates with all data partitioned to this branch. Each time a split is considered (A1) is

selected with probability ψH and (A2) with the complementary probability 1 − ψH .

For instance, at H = 0 it is the case that ψH = α. The parameters are recorded in

(A3). The Dlp program captures the essence of the prior in an elegant and abstract

way. SLPs cannot model such a generic prior as they only allow fixed values as labels.

The recursive way in which nodes are split has the attractive property that as far

as it can go on splitting for ever, the sum of the, infinite, prior is equal to 1. In terms

of the paths introduced previously this is a case where π⊳(Ai) = 1. When applying

the prior, however, it is often the case that a lower limit is imposed to the number of

data in each leaf. Too few data points lead to over-fitting. From the prior’s perspective,

trees that do not meet the condition have zero probability leading to a probability mass

loss (Z < 1). Note that the MH algorithm presented in this paper only requires the

ratio of priors, so the value of Z is immaterial. In cases where we need to redress the
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probability loss the Dlp program can be changed to perform a one step look-ahead and

redistribute the lost mass.

5.2. Bayesian Networks

One approach to constructing the acyclic directed graph for a BN is by recursively

choosing parents for each of its nodes as we have shown in [6, Fig. 2]. Care must be

taken however as to avoid introducing cycles in the graph. This method is well suited

to situations where prior information regarding edges in the graph is available. The top

level, non-stochastic part of the selection expressed in logic programming is:

(B1) bn(Nds,BN) : −
bn(Nds,Nds,BN),
no cycles(BN).

(B2) bn([ ], Nds, [ ]).
(B3) bn([Nd|Nds], AllNds,BN) : −

parents of(Nd,AllNds, Pa),
BN = [Nd− Pa|TBN ],
bn(Nds,AllNds, TBN).

Given a list of nodes, Nds, for which we wish to construct a Bayesian network,

BN, predicate bn/2 constructs a candidate graph and then checks that the graph is

acyclic. Predicate bn/3 traverses the nodes selecting parents for each one of them.

When an ordering is known for the variables in the BN, its construction can proceed

without checking for cycles. The ordering constraint [21] specifies that the order of

nodes (Nds) is significant and that each node can only have parents from the section

of the ordering that follows it.

(B4) bn(Nds,BN) : −
bn(Nds, [ ], BN).

(B5) bn([ ], AllNds, [ ]).
(B6) bn([Nd|Nds], PossPa,BN) : −

parents of(Nd, PossPa, Pa),
BN = [Nd− Pa|TBN ],
bn(Nds, [Nd|PossPa], TBN).

Clauses (B4 − B6) provide a compact implementation of the ordering constraint.

The program is also robust in relation to the probabilistic paths associated with the

model instances they generate. Each model has a unique non-probabilistic part with

regard to this program segment and it never leads to a failure. On the contrary clauses

(B1 − B3) lead to failure and loss of probability mass when a cycle is introduced.

This can only be detected after some probability is assigned to the failed path. Clause

(B6) selects parents for a node from the set of possible parents rather than the set of

all nodes. Also, when the ordering is not known (program B1 − B3) there is no good
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reason why child variables should be selected in order. The following program merges

these two ideas:

(B7) bn(Nds,BN) : −
bn(Nds,Nds, [ ], BN).

(B8) bn([ ], All, BN,BN).
(B9) bn(Nds,All, BnSoFar,BN) : −

p member(Nds,Nd,RemNds),
poss pa(Nd,BnSoFar,All, PossPa),
parents of(Nd, PossPa, Pa),
add(Nd− Pa,BnSoFar,NextBnSF ),
bn(RemNds,All,NextBnSF,BN).

The parent node is selected with relative probability (p member/3) from the nodes

available. Clause (B9) utilises an auxiliary structureBnSoFar which accumulates the

graph of the BN at the current level. This is used by poss pa/4 to eliminate cycle-

introducing parents which is taken care by add/3. Clause (B8) terminates the recursion

and unifies the auxiliary structure to the BN model. A number of distributions from the

literature can be fitted over the edge selection that connects children in the BN to their

parents. [24] introduced p(BN) ∝ κδ where κ is a user defined parameter and δ is the

number of differing edges/arcs between BN and a ‘prior network’ which encapsulates

the user’s prior belief about the network structure. [9] suggested a generalisation of

the above that allows for arbitrary weights for each missing edge: p(BN) ∝
∑

ij κij
where i and j refer to the end nodes of an edge. AssumingWs is a list of pairs matching

nodes to weights for parents for this node (Ws = [Nd1 −W1, . . . Ndn −Wn] with

Wi = [Wi,1, . . . ,Wi,n] ) and KnownPai is the list of parents of the ith child in the

prior network, then we have:

(B10) bn([ ], All, Ws, KnownBn,BN,BN).
(B11) bn(Nds,All,Ws,KnownBn,BnSoFar,BN) : −

p member(Nds,Nd,RemNds),
poss pa(Nd,BnSoFar,All, PossPa),
member(Nd−NWs,Ws),
member(Nd−KnownPa,KnownBn),
parents of(PossPa,KnownPa,NWs, Pa),
add(Nd− Pa,BnSoFar,NextBnSF ),
bn(RemNds,All,Ws,KnownBn,NextBnSF,BN).

(B12) parents of([ ], KnownPa, NWs, [ ]) .

(B13) parents of([PP |PPs],KnownPa,NWs, Pa) : −
member(PP,KnownPa),
parents of(PPs,KnownPa,NWs, Pa).
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(B14) parents of([PP |PPs],KnownPa, [Wij |NWs], Pa) : −
not(member(PP,KnownPa)),

Wij :: parent edge(PP, Pa, TPa),
parents of(PPs,KnownPa,NWs, TPa).

(B15) W ::W :: parent edge(PP, [PP |TPa], TPa).
(B16) 1−W ::W :: parent edge(PP, TPa, TPa).

Clause (B14) utilises probabilistic goal calling by attaching W (Wij ) to the goal

parent edge/2. As far as the Wijs sum up to 1 for a single value of i the program

leads to no probability loss. This can be enforced by the use of a simple guard that first

sums the weights, making sure the add up to 1, and then simply selects the j item from

i’s list. In the context of learning from expression array data [40] constructed tabular

priors over the existence of some edges. This is complementary to penalising missing

edges. A very similar program to that presented above can capture such knowledge.

Other constraints such as the one proposed in [21] where the number of parents is

limited can be naturally encoded in our language.

5.3. Likelihood based learning

Bayesian learning methods either look in the posterior distribution for single mod-

els that maximise some measure or seek to approximate the whole posterior. The poste-

rior over models given some data P (M |D) is proportional to the prior and a likelihood

function, P (M |D) ∝ p(M)P (D|M). Since the space of all possible models is, in all

but trivial examples, too large to enumerate, various approximate methods have been

introduced. Variational methods [26] approximate the inference on the evidence by

considering a simpler inference task while Markov chain Monte Carlo algorithms sam-

ple from the posterior indirectly. In this section we discuss the use of the described

priors in a Bayesian model averaging scenario and how this general framework can be

used in machine learning tasks on biological datasets.

5.3.1. Metropolis-Hastings

Metropolis-Hastings (MH) algorithms approximate the posterior distribution by

making stochastic moves through the model-space. A chain of visited models is con-

structed. At each iteration the last model added to the chain, the current model M ,

is used as a base from where a new model M ′ is proposed. M ′ is stochastically ac-

cepted or rejected. The distribution with which M ′ is reached from M is the proposal

q(M,M ′) and the acceptance probability is given by

∝
p(M ′)P (M ′|D)q(M,M ′)

p(M)P (M |D)q(M ′,M)
(4)

To our knowledge all MH algorithms in the literature have distinct functions for

computing the prior and the proposal. Standard MH requires two separate computa-

tions. The first is the prior over models: p(M), and the second is a distribution for

proposing a new model M ′ from current model M . The proposed model is accepted

with probability that is propositional to the ratio given above which also includes the
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marginal likelihood of the model (measure of goodness of fit to the data P (M |D)).
This often leads to restricting the choices of either the prior [21] or the proposal [12].

Furthermore writing two programs that manipulate the same model-space means that

the algorithms are hard to extend to other spaces. The MH algorithm over Dlp requires

the construction of a single program, that of the prior.

Our MH scheme follows that of SLPs, which was briefly sketched in [13] and

which we then formally introduced in [3]. The main idea is to use the choices in the

probabilistic path as points from which alternative models can be sampled. In effect,

the resulting MH is a search space constrained algorithm with the proposal reduced to

choosing a backtracking strategy rather than defining operations on growing and reduc-

ing model structures. Proposals are thus tightly coupled to the prior and take the form

of a function f such that πM
j = f(πM ) where πM is the path produced for deriving

model M . πj is the point from which M ′ will be sampled. A consequence of defin-

ing the proposal q in terms of the prior p is that, due to ‘cancelling out’, the quantity
p(M ′)q(M,M ′)
p(M)q(M ′,M) is easy to compute. The acceptance probability (4) is just

p(M ′)q(M,M ′)
p(M)q(M ′,M)

multiplied by the likelihood ratio
P (M ′|D)
P (M|D) , so as long as we can compute the likelihood

ratio we have an effective MH method which can use any prior defined using Dlp. We

will see how likelihoods (and thus likelihood ratios) can be computed for C&RT s and

BNs in Sections 5.4 and 5.5 respectively.

Dlp provides a clear connection between computed instantiations and probabilistic

choices. The Metropolis-Hasting algorithm can then operate over the priors defined by

these programs. Dlp is a powerful probabilistic representation that marries work from

the AI community with Bayesian statistics.

5.4. Marginal likelihood for C&RT

Given a particular C&RT classification tree T , let Θ = {θi}i be the parameters of

the tree, where θi is the distribution over classes in leaf i of the tree. Let (X,Y ) be

the data, where Y is to be classified into one of K possible classes based on predictor

variables X . The likelihood we need for our MH algorithm is the marginal likelihood

P (Y |X,T ), which requires Θ to be integrated out of the full likelihoodP (Y |X,Θ, T ).
This integration is with respect to the structure-conditional parameter priorP (Θ|T,X),
which we define in the standard way. Firstly, we choose to define the prior to be

independent of X so that P (Θ|T,X) = P (Θ|T ). Secondly, we assume independence

between the θi in Θ, so that P (Θ|T ) =
∏b

i=1 P (θi|T ) where I is the number of leaves

in T . θi is (pi1, . . . piK): a class probability distribution in T , with pik being the

probability of a sample being of the kth class given that it is placed in the ith leaf of

tree T . For all i, we set P (θi|T ) to the same distribution: a Dirichlet distribution with

parameters (α1, . . . , αK), for some user-defined choice of αk (1 ≤ k ≤ K).

With such a parameter prior there is a closed form for P (Y |X,T ) as noted by

[12]. Let ni denote the number of examples at leaf i in tree T . Let nik be the number

of examples of class k reaching leaf i, (so that ni =
∑

k nik). Then the marginal

likelihood is:

p(Y |X,T ) =

(

Γ(
∑

k αk)
∏

k Γ(αk)

) b
∏

i=1

∏

k Γ(nik + αk)

Γ(ni +
∑

k αk)
(5)
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5.5. Marginal likelihood for BNs

As for C&RT models, we require the marginal likelihood for Bayesian networks

(BNs), and so again have to integrate away the parameters. In the case of BNs these

parameters are conditional probabilities and we have to define a prior distribution for

each of them. We adopt the entirely standard approach of requiring these to be Dirich-

let distributions. For the details of this approach see [25]. If various independence

assumptions are made about the joint distribution over parameters we have previously

shown in the context of Dlp [6, Eq. 5] that for any BN G and observed data X :

p(X |G) =

n
∏

i=1

qi
∏

j=1

Γ(αij)

Γ(nij + αij)

ri
∏

k=1

Γ(nijk + αijk)

Γ(αijk)
(6)

where i ranges over the n nodes in the BN, j is a joint instantiation of the parents

of such a node in G and k is a value of the node. nijk is the data count of node

i having value k when its parents have configuration j. αijk is the corresponding

Dirichlet parameter. Finally, nij =
∑ri

k=1 nijk and αij =
∑ri

k=1 αijk where ri is

the number of values for the ith BN variable. In our past experiments we have set

αijk = N/(riqi), ∀i, j, k whereN is the prior precision) parameter. In the experiments

we reported in [6, Section 4.2] we used N = 1 and N = 10.

5.6. Priors and MH

Using priors for learning statistical models effectively, depends on the structural

complexity of the models and the amount of probabilistic bias we wish to impart via

the prior. Increased model complexity leads to nondeterministic programs having non-

unique probabilistic paths. For instance, the classification trees shown previously are

simple recursive structures, the generation of which can be done in a straightforward

manner as there are no structural dependencies between the left and right branches of

a split node. Thus, the prior program provided was very succinct and it was easy to

calculate the probabilities of nodes and leaves. On the other hand, Bayesian networks

are more complex as simple programs encoding priors might introduce cycles. As we

have shown, guarding against such contextual dependencies leads to more complex

programs which are harder to compute with.

Techniques such as using auxiliary arguments can help with unravelling the MH

space. Here, we elucidate the effect of priors on MH and explore the difficulties arising

in more complex settings.

5.6.1. Classification and regression trees

As detailed above, our approach comprises: a prior, in the form of a Dlp program,

an integrated backtracking strategy that proposes new models from old ones and a

likelihood which guides the choice between the current and the proposed models. By

using a fake likelihood that always returns 1 as the ratio of the two models, we can

investigate the effect of priors on the proposed models.

Classification trees have a recursive structure where a node is either a leaf or an in-

ternal branching point holding two branches each of which is a tree. The prior detailed

above, (Section 5.1), focuses on trees of certain depth and number of leaves. The depth
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Figure 2: Classification trees prior parameters’ effect on models. Left panel: mean depth. Right panel: mean

number of leaves.

of a tree is defined as the length of the longest path from a leaf to the root. The higher

the two parameters, α and β the deeper the trees and the larger the number of their

leaves.

We ran 3 chains of length 10, 000 while varying α and β. The range for the two

parameters is 0.75− 1.2 with a step increment of 0.05. We then count average depth

for the trees visited and number of leaves. Having isolated the effect of likelihood, the

shape metrics for the trees solely reflect the effect of prior on the chain construction.

Figure 2 shows that increasing values for the two parameters increase the depth and

number of leaves for the visited trees.

The Dlp described in clauses (A0−A3) succinctly encodes the desired effect from

the mathematical description (2 and 3). Furthermore, the probabilistic and logical parts

work recursively in tandem. The probabilistic path that pertains to the decisions of

constructing the right branch of an internal node is unperturbed by any decision in the

left branch. In the terms of (1), if GP , GL and GR are the goals for the parent, left and

right tree respectively,

PR(GP /θP ) = PR(GL/θL) ∗ PR(GR/θR)

Importantly, θL ⊥⊥ θR and π⊳(Ai) = 1. The latter states that within each branch the

sum of probabilities for all possible choices is equal to 1 thus making the probability

of a derivation the exact prior probability of the derived model.

5.6.2. Bayesian networks

Bayesian networks comprise an acyclic directed graph and accompanying condi-

tional tables. Here we focus on learning the structure of BNs. Structurally BNs are

more complex than classification trees, as the nodes can be connected to each other

arbitrarily. Furthermore, the constraint for acyclicity introduces a contextual interpre-

tation, in which certain edges lead to invalid models.

As shown above, a strategy for programmatically constructing BNs is by working

through the list of possible nodes and selecting parents for each node. This recursive
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Figure 3: Bayesian networks prior parameters’ effect on models. Left panel: cyclic versus deterministic

removal of edges. Right panel: cyclic versus prior using current partial network.

logic fits logic programming well and local probabilistic preferences such as control-

ling the average size of (BN) families. Problems arise from the fact that the choice of

parents for one node cannot be done without reference to the complete BN structure.

Logic for excluding invalid edges can be added either progressively via auxiliary ar-

guments that hold the part of the network which has been already constructed, or by

removing enough conflicting edges at the end, as to produce a legal BN structure. It

both cases though, it becomes difficult to keep the prior probabilities to simple, well

understood constructs that map intuitively to the logical components.

To explore the discrepancy between intended prior distribution and actual model

metrics we use a naive prior that uses the Γ distribution described by a mean, µ, and

skewness parameter κ. The construction proceeds unconcerned by any cycles intro-

duced. Those are removed in a deterministic manner by removing edges until an acyclic

structure is derived (not shown).

(G2) P :: Γ(µ, κ,X), length(Nodes, L), P is (L − 1)/X
∼Pa :: family(Nodes, µ, κ, Pa).

(D1) cyclic bn([], , , , []).

(D2) cyclic bn([H |T ], µ, κ,Nodes, [H − Pa|TCy]) : −
select(H,Nodes, PotPa),
family(PotPa, µ, κ, Pa),
cyclic bn(T, µ, κ,Nodes, TCy).

(D3) P :: P :: family([H |T ], µ, κ, [H |TPa]) : −
P :: family(T, µ, κ, TPa).

(D4) 1− P :: P :: family([ H |T ], µ, κ, TPa) : −

P :: family(T, µ, κ, TPa).
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We ran 3 chains of length 10, 000 while varying µ and κ. The ranges for the µ
and κ parameters are 1− 4 and 2 − 20 with step increments of 1 and 6 respectively.

The average family size for the structures visited is then calculated. We first ran the

program as shown in clauses (D1 − D4), experiments c02 − c20 in Figure 3 which

produce cyclic structures. The prior was used to construct 8-node BNs. We then ran

experiments where edges were removed deterministically until a valid BN is reached.

The left panel of Figure 3 shows the differential in average family size between the

cyclic structures, which faithfully produce networks having average family size equal

to the mean of the prior. In contrast, the removal step in the acyclic experiments reduce

the average family size. The higher the prior mean the higher the proportion of edges

removed as the networks become denser.

We repeated the experiments with an alternative prior in which an auxiliary vari-

able held the partial network already constructed. Only candidate edges that do not

introduce cycles are considered. For small values of the mean (µ) this prior follows

the cyclic distribution closely (Figure 3, right panel). However, as µ comes closer to

the number of nodes in the net and the networks become denser, the prior encounters

smaller candidate sets from which to chose parental edges that would not introduce a

cycle. Thus, the overall objective of a family size of µ cannot be fulfilled.

Writing prior programs for Bayesian network structure is a much harder task than

that of composing priors for classification trees. In the cases where cycles are removed

from full cyclic networks, the precise probability of a single model is hard to determine

as there are multiple paths leading to the same mode. As has been shown experimen-

tally the precision of even simple priors on the graphs suffer. When auxiliary arguments

are used, the results can be better particularly for reasonably sparse networks. In addi-

tion, each structure has a single derivation path.

Although BN priors are complex to characterise mathematically, in practice experi-

mentation with unit likelihoods which set the likelihood of every mode to 1 can provide

close enough approximations that can be effectively used for experimenting with con-

structing BNs in a specific domain and evaluate the effect of the prior by factoring out

the effect of the likelihood.

6. Practical MH

Although Bayesian reasoning is a conceptually simple framework, in practice a

number of hurdles have to be cleared before one can use this framework for effective

inference. These include expedience of calculations and visiting representative sec-

tions of the posterior within a reasonable number of iterations. Improvements in the

literature include parallel tempering [22] and fast likelihood calculations. Tempering

is a mixing promoting technique, where a number of chains are run in parallel with

swapping moves between chains occurring stochastically. Each parallel chain runs at a

different likelihood temperature, a parameter that controls the smoothness of the like-

lihood space as to, in turn, control fluidity of chain movement.

Bayesian reasoning over model structures defined by Dlp priors has to address

much the same issues as other approaches of MH inference. Dlp benefits from the

fact that it needs no proposal and in particular it does not need to calculate the proposal

probabilities for proposing M ′ from M and vice versa 4. Instead, the probabilistic
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choices in the derivation of M are used as possible backtrack points from which the

computation for M ′ can be embarked on as an alternative probabilistic path. Selecting

these points uniformly can lead to unbiased exploration of the space. As all instanti-

ations done for M below the chosen point are undone these type of backtracking can

lead to inefficient sampling. Interestingly, the independence of branches in classifica-

tion trees with regard to θ can also be exploited to provide more efficient backtracking.

Returning to consider the construction of a branch in a tree should leave choices for the

other branch unaffected. Executing in a naive fashion would mean that backtracking to

a choice in the left branch would remove all choices for the right branch.

A system implementing the main MH algorithm over Dlp priors of model struc-

tures as well as advanced features such as declaration of independent paths have been

implemented in the Bims system [2]. The system supports expression of Dlp priors,

implements a number of in-built likelihoods as well as providing a simple interface

for expressing additional likelihoods. The system produces chains of visited models

and provides a number of functions for extracting information from such chains. Here

we present summaries from two publications that have used priors similar to those

presented here.

6.1. Ligand discovery with classification trees

[7] has shown that MH over Dlp scales well and does at least as well as other ma-

chine learning algorithms in a cross validation experiment over a large feature space.

[7] employed the language and algorithm presented here, to learn the binding affinity of

molecules to the pyruvate protein (PYK). Their data were constructed from molecules

with known binding affinities from a large NIH funded screening programme. The

datasets used contained 582 molecules from each of the two classes: binders and non-

binders to PYK. A high dimensional learning space was constructed by associating

each molecule with a large number of features (1572). The study established, by means

of a ten-fold cross-validation, that the MH algorithm performed at least as well if not

better, in terms of overall accurate prediction of positives, than Support Vector Ma-

chines and Feed-Forward Neural Networks. [7] also describes advanced tempering

techniques in the context of their experiments.

6.2. Bayesian networks for binding assays

MH over Dlp-defined BN priors was used in [8] to build Bayesian networks (BNs)

from binding affinity data on 43 chromatin proteins. A gamma distribution over par-

ents was used with a mean value of 1.2 for the average family. The dataset comprised

4380 measurements and was discretised by setting the strongest 5% of protein mea-

surements to 1 and setting the rest to 0. The dataset was originally presented in [38]

and was analysed using bootstrapping of simulated annealing searches as implemented

in the Banjo software for learning BNs [36]. [38] built a consensus network at the 80%
of edge presence. The networks built using Dlp were also summarised with the same

criterion on the posterior and the resulting network was compared to the original. The

two networks agreed to a large extent, with 40 common edges and 9 edges appearing

in only the first network and 6 only in the second network. These experiments demon-

strated that Dlp can digest substantial datasets and learn core interactions that are in

agreement with other algorithms.
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7. Conclusions

This paper introduced a general programming language for combining nondeter-

minism and probabilistic reasoning in logic programming specially for the purpose of

defining prior Bayesian knowledge. The language syntax is presented along with the

mathematical concept of probabilistic path that can be used to give semantics in such

languages. Furthermore, we focused discussion on how to represent knowledge from

the literature.

The paper also presented a characterisation that can be useful in the context of

deriving probabilistic information in the form of distributions over variables. This

characterisation is of relevance not only to Dlp but also to other generative formalisms

that combine logic and probability. We have argued that for certain classes of programs

the kind of knowledge that can be represented is substantially expanded. Furthermore,

we illustrated via examples on how to write correct and efficient programs that capture

knowledge from the Bayesian learning literature.

The main challenges ahead lie in the use of static analysis and program transforma-

tions to create programs that exhibit the desirable properties that have been described

here, from more arbitrary ones.

We have highlighted that the theoretical framework can compete in producing prac-

tical results against standard, well established machine learning approaches. The abil-

ity to express prior knowledge can give this approach extra leverage in domains where

such knowledge is available.

Availability

The programming language and reasoning techniques described in this paper are

implemented in the Bims system which is written in Prolog and freely available from

http://stoics.org.uk/˜nicos/sware/bims. It can be easily installed and

used in two Prolog system: SWI-Prolog and Y AP .
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