- 1 Quarter-dose quadruple combination therapy for initial treatment of hypertension –
- 2 placebo-controlled crossover randomised trial and systematic review
- 3
- 4 **Clara K Chow^{1,2,11}, Alex Bennett¹, Jay Thakkar^{1,2}, **Graham Hillis,^{1,5} Michael
- 5 Burke³, **Tim Usherwood⁴, Kha Vo¹, Kris Rogers¹, Emily Atkins¹, Ruth Webster¹,
- 6 Michael Chou⁶, Hakim-Moulay Dehbi⁷, Abdul Salam¹, **Anushka Patel¹, **Bruce
- 7 Neal^{1, 7, 11, 12}, David Peiris¹, **Henry Krum⁸*, **John Chalmers¹, **Mark Nelson⁹,
- 8 **Christopher M Reid¹⁰, **Mark Woodward¹, **Sarah Hilmer⁴, **Simon Thom⁷,
- 9 **Anthony Rodgers^{1,4}

10 Affiliations

- 1. The George Institute for Global Health, University of Sydney, Australia
- 12 2. Westmead Hospital, Sydney, Australia
- 13 3. Kildare Road Medical Centre, Sydney, Australia
- 14 4. The University of Sydney, Sydney, Australia.
- 15 5. The University of Western Australia, Perth, Australia
- 16 6. Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
- 17 7. Imperial College, London, United Kingdom
- 18 8. Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
- 19 9. Menzies Institute for Medical Research, University of Tasmania, Australia
- 20 10. Curtin University, Western Australia, Australia
- 21 11. Charles Perkins Centre, University of Sydney, Australia
- 22 12. Royal Prince Alfred Hospital, Sydney, Australia
- 23 *deceased
- 24 ** Full professor
- 25 Word count: abstract 300 (max 300) text 2846 (max 3000)
- 26 Figures: 2
- 27 Tables: 2
- Appendix: appendix 1, appendix tables 4, appendix figures 2
- 29

- 30 Contact details for corresponding author: **Professor Clara Chow,** The George Institute for Global
- 31 Health, AUSTRALIA, Level 10, King George V Building, 83-117 Missenden Rd, Camperdown
- NSW 2050 Australia. Postal Address: PO Box M201, Missenden Rd, NSW 2050 Australia. T +61
- 33 2 8052 4525, F +61 2 8052 4502, E <u>cchow@georgeinstitute.org.au</u>
- 34

35 Abstract

- 36 **Background:** There is a pressing need for blood pressure control strategies with improved efficacy and
- tolerability. We examine whether using ultra-low dose quadruple combination therapy provides an
- 38 approach with greater efficacy and tolerability.
- 39 **Methods:** We conducted a systematic review of trials evaluating the efficacy and safety of quarter-
- 40 standard dose BP-lowering therapy against placebo and a randomised, placebo-controlled, double-blind,
- 41 cross-over trial of a 'quadpill': a single capsule containing four BP-lowering medicines each at quarter-
- 42 dose (irbesartan 37.5mg, amlodipine 1.25mg, hydrochlorothiazide 6.25mg and atenolol 12.5mg).
- 43 Participants with untreated hypertension received either quadpill or matching placebo for four weeks,
- 44 followed by a two-week wash-out and then the other treatment for four weeks. The primary outcome
- 45 was placebo-corrected 24-hour systolic ambulatory BP reduction after four weeks.
- 46 **Findings:** Our systematic review identified 36 trials (n=4,721) of single quarter-dose and six trials (n=312)
- 47 of dual quarter-dose therapy against placebo. The pooled placebo-corrected BP-lowering effects were
- 48 5/2mmHg and 7/5mmHg (both p<0.0001) respectively, and there were no side effects from either
- 49 regimen. The trial is complete and stopped recruiting due to inadequate funding. It randomised 20
- 50 patients, whose mean age was 60 years and mean baseline office and 24-hour systolic BP levels were
- 51 154/90 and 138/87mmHg, respectively. Two patients dropped out for administrative reasons. The
- 52 placebo-corrected reduction in systolic 24-hour BP on quadpill was 19mmHg (95%Cl 14-23) and office BP
- 53 was reduced by 22/13mmHg (p<0.001). During quadpill treatment 18/18 (100%) achieved office
- 54 BP<140/90mmHg, compared to 6/18 (33%) during placebo treatment (p=0.0013). There were no serious
- adverse events and all patients reported that the quadpill was easy to swallow.
- 56 Interpretation: This small trial in the context of previous randomised evidence indicates that the
- 57 benefits of quarter-dose therapy are additive across classes, and are likely to confer a clinically
- 58 important BP reduction. Further examination of the quadpill concept is needed to examine effectiveness
- against usual treatment options and longer term tolerability.
- Funding: National Heart Foundation, Australia (Grant number 100227), University of Sydney Bridging
 Grant and National Health and Medical Research Council of Australia program grant.
- 62
- 63 **Clinical trial registration no.** ACTRN12614001057673
- 64

65 INTRODUCTION

- 66 High blood pressure (BP) is a leading cause of preventable morbidity and mortality,¹ and the benefits of
- 67 BP lowering treatments are well established.^{2,3} Despite the plethora of BP lowering medicines available
- 68 and the fact that most patients receive some treatment, multiple large-scale population studies
- 69 demonstrate poor BP control in many patients globally.⁴
- 70 Multiple factors contribute to poor BP control including low adherence rates, complex guidelines
- 71 recommending multiple up-titration steps and treatment inertia. The majority of treated patients only
- receive monotherapy,⁴ which has low potency even at high doses.⁵ Furthermore the increasingly strong
- evidence of benefits of more intensive BP lowering^{6,7} highlights the need for new treatment strategies
- that are more efficacious, while remaining tolerable. Low-dose combination therapy holds considerable
- promise in this regard, since at low doses most side effects are avoided and most benefits are
- 76 maintained.⁸
- 77 However, there is uncertainty about effects at ultra-low doses and whether combinations can achieve
- 78 clinically relevant BP reductions. We therefore sought to assess efficacy and tolerability of ultra-low
- dose combination therapy by conducting a systematic review of quarter-dose BP lowering therapies and
- 80 a trial of a 'quadpill', containing four common BP lowering medications each at quarter-dose.

81 METHODS

82 Systematic review

83 We conducted a systematic review of all randomised trials of quarter-dose BP therapy, identifying potentially relevant studies from searches of EMBASE, MEDLINE and Cochrane Central Registry of 84 85 Controlled Trials, with each source searched from inception to June 2016; and the Food and Drug 86 Administration and European Medicines Agency websites. Medline search terms are in appendix 1. 87 Searches of trial registers were performed for any ongoing trials including World Health Organization 88 International Clinical Trials Registry Platform (WHO-ICTRP), Australia New Zealand Clinical Trial Register 89 (ANZCTR) and Clinical Trials Registry – India (CTRI). Retrieval of studies from reference lists of key clinical 90 trials, systematic reviews and published articles was also undertaken. Reference lists of eligible studies 91 and systematic reviews were also reviewed. (Appendix Figure 1) We included randomised controlled 92 trials of adult participants (≥18 years of age) examining quarter-standard dose BP-lowering drugs against 93 placebo for the following drug classes: angiotensin converting enzyme inhibitors, angiotensin receptor II 94 blockers, beta-blockers, calcium channel blockers and thiazide and thiazide-like diuretics. Quarter dose 95 was quarter of the standard dose, defined as the most frequently reported usual maintenance dose 96 recorded by the British National Formulary,⁹ Martindales and Monthly Index of Medical Specialties.¹⁰ 97 Two reviewers (AB, MC) independently extracted data using a standard extraction form. A third 98 reviewer (AR) resolved any differences. Data were analysed using Comprehensive Meta-analysis 99 Software (v3, Englewood NJ). We a fixed-effect model to estimate the effects on BP lowering and on

100 adverse events of quarter dose BP lowering against placebo. Effect on BP was assessed using the mean

- 101 change in systolic BP (SBP) and diastolic BP (DBP) from baseline to end-of-study, with standardisation to
- a baseline of 150/95mmHg.⁸ Adverse events included all that were reported by trials at follow up.

103 Clinical trial

104 Design and participants

- 105 The Quadpill study was a randomised, placebo-controlled, double-blind cross-over trial (Figure 1).
- 106 Participants were randomised (1:1) to a group receiving the quadpill for four weeks, followed by a two-
- 107 week placebo washout and then placebo for four weeks; or to a group receiving placebo, then washout,
- 108 then Quadpill for the same periods. Participants were recruited from the community, predominantly
- 109 through general practices in Western Sydney, Australia. Participants were eligible if they met the
- following inclusion criteria: 1) adults aged 18 years and over; 2) office SBP>140mmHg and/or DBP>
- 111 90mmHg on two readings on separate days; 3) baseline ambulatory SBP >135mmHg and/or DBP
- 112 >85mmHg; and 4) not taking any BP medications. Exclusion criteria included: 1) definite contraindication
- to one or more component medications in the quadpill; 2) the responsible clinician considered that a
- change in current therapy would place the patient at risk; 3) severe or accelerated hypertension; 4)
- pregnancy; 5) inability to provide informed consent; and 6) medical illness with anticipated life
- expectancy less than 3 months. The study protocol was approved by the Human Research and Ethics
- 117 committee at The University of Sydney and funded by a Vanguard Grant and Ross Hohnen prize from the
- 118 National Heart Foundation of Australia (Grant number 100227), University of Sydney Bridging Grant and
- 119 National Health and Medical Research Council of Australia program grant. Informed consent was
- 120 obtained from all participants. The study is registered with the Australian and New-Zealand Clinical Trials
- 121 Registry (ACTRN 12614001057673).

122 Intervention and randomisation

- 123 The quadpill was a single encapsulated pill containing four common BP lowering medicines each at
- 124 quarter-standard dose (irbesartan 37.5mg, amlodipine 1.25mg, hydrochlorothiazide 6.25mg and
- 125 atenolol 12.5mg). Quarter- doses were obtained by halving half- doses using a pill splitting device,
- 126 without crushing, and were weighed to ensure accuracy of halving doses. The quarter doses were then
- 127 encapsulated using gelatine capsules (DBCaps- Capsugel).¹¹ All trial medicines were prepared and
- 128 packaged at a Therapeutic Goods Australia Certificate of Good Manufacturing Practice licensed
- 129 manufacturing facility.
- 130 Treatment allocations were at random via a computer assisted randomisation sequence and were
- blinded to both study staff and participants. The placebo capsule appeared identical and contained four
- placebo tablets of similar weight to those in the quadpill. Participants were administered a single daily
- capsule quadpill or placebo throughout the trial. Patients were instructed to take the capsules at the
- same time each day, preferably in the morning. In addition to the study drugs, all participants were
- provided education on healthy lifestyle options as recommended by then current local BP management
- 136 guidelines.¹²

- 137 Outcomes and data collection
- 138 The primary outcome was reduction in mean 24-hour SBP at 4 weeks using ambulatory BP monitoring
- 139 (ABP). The secondary outcomes included:
- 140 1) Reduction in mean 24-hour DBP and in daytime and night-time SBP and DBP at 4 weeks
- 141 2) Reduction in office SBP and DBP as measured by a standardised automated BP cuff
- 142 3) Proportion with controlled BP at 4 weeks, defined as <135/85mmHg 24-hour ABP and
- 143 <140/90mmHg office BP
- 4) Adverse events and pre-specified adverse events with laboratory-associated parameters: rise in
 transaminases (ALT/AST) more than three times the upper limit of normal or doubling if baseline
 levels known to be elevated; drop in estimated glomerular filtration rate by >20% as estimated from
 serum creatinine; change in sodium, potassium and uric acid levels
- serum creatinine; change in sodium, potassium and uAssessment of acceptability and tolerability
- 149 Patients underwent 24-hour ABP monitoring 4 times baseline (off study drug), 4 weeks (on phase 1
- 150 treatment or placebo), 6 weeks (after 2 week placebo washout) and 10 weeks (on phase 3 treatment or
- 151 placebo). The ABP units were calibrated at regular intervals by the laboratory according to the
- 152 manufacturer's specification. Office BP was recorded three times at each visit using an OMRON T9P
- 153 (HEM-759-C1). The second and the third readings were averaged for study analysis. In addition, at week
- 154 4 and week 10 blood biochemistry and a questionnaire for clinical side effects and medication
- 155 compliance were administered. At study end, drug acceptability and tolerability were assessed. We
- recorded all adverse events. In addition, we specifically asked about clinical adverse events possibly
- associated with BP lowering medications: dizziness, blurred vision, syncope/collapse, chest pain/angina,
- 158 shortness of breath, cough, wheeze, pedal oedema, skin rash, or itching. Study medications and
- 159 investigations were provided at no cost to participants and nominal amounts to cover travel and parking
- 160 costs were reimbursed.
- 161 Statistical considerations:
- 162 A sample size of 50 patients was planned to provide 90% power at α =0.05 to detect a SBP difference of
- 163 12mmHg between the intervention and control, assuming a SD of the within patient difference of
- 164 12mmHg and taking into account the possibility of a 10% loss to follow-up. The study ended at one year
- 165 at the end of the budget and staffing time allocated and the original sample size was not reached.
- 166 Analyses were conducted on an intention to treat basis. All tests were two-sided. All statistical analyses
- 167 were unadjusted for prognostic covariates. We reported compliance to the study drug using data on pills
- 168 (doses) taken and missed doses over the time period. We used a linear mixed model to estimate the
- 169 effect of the treatment on change in BP from baseline for each treatment period, according to the
- 170 Kenward and Roger approach.¹³ All available data were included in the model; no missing data were
- 171 imputed. If a patient had missing data for one period, data from the available period were used. A
- 172 sensitivity analysis was done including only patients with data available from both periods to see if the
- 173 effect of treatment was modified. We also adjusted the denominator degrees of freedom of Kenward
- and Roger $(2009)^{14}$ to optimize for the small sample size.

- 175 We tested for carry over with an unpaired t-test of the main outcome with order as an effect. Period
- effect was tested by using a paired t-test comparing the main outcome in period 1 with main outcome in
- 177 period 2 from the same patient. We also performed a sensitivity analysis using normal paired t-test to
- 178 compare primary outcome between different period (different treatment) from the same patient,
- 179 ignoring the baseline level of each period.
- 180 Continuous secondary endpoints with baseline values (e.g. daytime/ night-time ambulatory SBP/DBP)
- 181 were analysed similarly to the primary endpoint. Other continuous variables without a baseline value in
- each period were analysed with a paired t-test. We have reported counts and percentages of all
- 183 adverse events.
- 184 We tested for interaction of treatment effect with age (≤60 vs. >60 years), gender, and body mass index
- (BMI ≤30 vs. >30 kg/m²). We also carried out subgroup analyses for each variable. Trial analyses were
 conducted using SAS 9.4 (Cary, NC, USA) software.
- 187 Role of funders: The funder had no direct involvement in any of the following: data collection, analysis,
- 188 interpretation, writing of the manuscript and the decision to submit. K Vo and K Rodgers conducted the
- 189 statistical analysis for this paper and together with C Chow and A Rodgers had full access to the data. CC
- and AR were responsible for the decision to submit the manuscript.

191

192 Results

- 193 In the systematic review we identified 36 trials (4,721 participants) that reported the efficacy of single
- 194 quarter dose BP lowering compared to placebo. (Appendix table 1) Pooling the data, quarter dose BP-
- lowering drugs reduced SBP by 4.7mmHg (95% CI -5.4 to -3.9) and DBP by 2.4mmHg (95% CI -2.8 to -
- 196 1.9). (Figure 2) Further 14 of these trials (n=1,838) reported adverse events in single quarter dose
- 197 versus placebo. Overall single quarter-dose agents had no increase in adverse events compared to
- 198 placebo (Risk Ratio [RR] 1.0, 95% Cl 0.88 1.10). Six trials (n=312) also examined dual quarter dose
- against placebo and found a reduction in SBP and DBP of 6.7mmHg (95% CI -4.8 to -8.6) and 4.4mmHg
- 200 (95% CI -3.3 to -5.5) respectively and no increase in side effects compared to placebo (RR 0.93, 95% CI
- 201 0.29 2.9). No trials of triple or quadruple quarter dose therapy versus placebo were identified.
- 202 In the quadpill trial, 55 patients were screened, and 21 participants found eligible, one patient declined
- 203 prior to drug initiation. Twenty were randomised between November 2014 and December 2015 and two
- withdrew at the end of the first treatment period because of social reasons (Figure 3). Baseline
- 205 characteristics of the study population are shown in Table 1.
- 206 The difference in mean 24-hour SBP between quadpill and placebo periods was –18.7mmHg (95% CI -
- 207 23.0 to -14.3) and 24-hour DBP was –14.2mmHg (94% CI -16.9 to -11.5). Similarly the difference in office
- 208 SBP was -22.4mmHg (95% CI 16.5 to 28.3) and office DBP –13.1mmHg (95% CI 8.9 to 17.3). Daytime
- ASBP, daytime ADBP, night-time ASBP and night-time ADBP were all significantly lower with quadpill
- 210 (Table 2). All participants achieved an office SBP <140 and DBP<90mmHg on the quadpill compared to

- 6/18 (33%) while on placebo (RR 3.01, 95% Cl 1.54; 5.89; p=0.0013). ABP<135/85mmHgwas achieved by
 15/18 (83%) while on the quadpill compared to 7/18 (39%) while on placebo, (RR 2.14, 95% Cl 1.25-3.65;
- 213 p=0.0053)

214

- Tests for both a carryover effect (t=-0.17, p=0.868) and a period effect (t=-1.05, p=0.308) were not
- significant. There were no significant interactions by age, sex or BMI. In sensitivity analysis using a
- standard comparison (paired t-test), results were virtually identical with a difference in mean 24-hour
- SBP between the quadpill and placebo periods of -18.7mmHg (95% CI -23.1 to -14.2). Similarly, in a
- second sensitivity analysis that included only patients with complete data (n=18) from both periods,
- results were also virtually identical with the difference in mean 24-hour SBP of -18.7 (95% CI -23.2 to -
- 221 14.2).
- Treatment compliance was high with the mean number of capsules missed in the last week 0.2 (SD 0.4)
- for quadpill and 0.3 (SD 0.6) for placebo. All 18 participants who finished the study completed the end-
- of-study acceptability questionnaire, with all reporting the study medication was either very easy (n=13)
- or easy (n=5) to swallow. In addition, all 18 participants reported it was either very likely (n=10) or likely
- 226 (n=8) they would take the quadpill if available for use.
- 227 There were no serious adverse events and no patients had a pre-specified adverse events. One
- 228 participant reported dizziness while on the quadpill causing temporary discontinuation of treatment;
- one reported vertigo during the washout period on placebo; and one reported urinary frequency in
- 230 quadpill and placebo phases (see Table 3).
- 231 The mean heart rate was lower on Quadpill treatment, difference between groups of 6.5 beats per
- 232 minute (95% Cl 2.3 to 10.6). There was a difference in changes in creatinine (4.4, 95% Cl 0.9 7.8
- 233 mmol/L; p=0.02) and urate (0.03, 95% CI 0.001 0.04 mmol/L; p=0.003) in the quadpill compared to the
- placebo treatment periods, but no patient had more than a 12% increase in either variable. There were
- 235 no significant differences in ALT, AST, sodium, potassium, total cholesterol or LDL-cholesterol. (Appendix
- 236 table 3)
- 237 The results of the systematic review together with the office BP reduction in the quadpill trial are
- 238 summarised in Figure 2.

239 Discussion

- 240
- 241 This study found that a capsule containing four quarter-dose BP lowering drugs reduced 24-hour
- ambulatory BP by 19/14mmHg and achieved office BP <140/90mmHg in all participants. This BP
- 243 lowering effect is consistent with the findings of our systematic review that single quarter-dose therapy
- 244 produces a 5/2mmHg BP reduction against placebo and that dual quarter-dose therapy produces
- additional effects on BP.⁸ Together with findings from our systematic review that single or dual quarter-
- 246 dose therapy produces no increase in side effects compared to placebo, these findings indicate

considerable potential advantages for a single capsule containing multiple BP lowering drugs in ultra-lowdose.

249 There has been one prior trial of quadruple quarter-dose BP-lowering versus monotherapy, involving 250 110 untreated individuals with BP >140/90mmHg.¹⁵ That trial observed a 26/15mmHg reduction in BP 251 from a baseline of 160/96mmHg with therapy comprising amlodipine 1.25mg, atenolol 12.5mg, 252 bendroflumethiazide 0.625mg and captopril 50mg, which was significantly greater than the reduction 253 seen with each monotherapy at standard dose - compared with individual agents, the combination 254 showed a greater systolic BP reduction than amlodipine (8 mmHg, 95% Cl 1 to 14mmHg), atenolol (9, 2 255 to 16 mmHg), bendroflumethiazide (11, 4 to 18mmHg) and captopril (7, 1 to 14mmHg). The only other 256 trial to date of low-dose antihypertensive therapy with more than two agents assessed triple half-dose 257 therapy vs. placebo in a crossover trial and demonstrated a similarly large BP difference of 18/10mmHg

258 (p<0.001).¹⁶

259 The main limitations of this trial is the small sample size and short follow-up duration and the minimal

260 power it had to evaluate side effects. A major barrier to recruitment was identifying untreated

261 individuals with elevated BP within the settings in which we work. The systematic review findings and

262 previous related trials^{15,16} suggest consistency in effect sizes and supports the minimal side effects

263 observed. The strengths of this study include the randomised cross-over design maximising statistical

264 power and minimising bias.

265 Small but statistically significant increases in creatinine and urate were observed in this trial, with no

266 patient experiencing more than a 12% increase in either measure. There were no longer term follow-up

267 data and any clinical implications are uncertain. Lower systemic pressure can reduce glomerular

268 perfusion pressure and lead to longer term renal benefits for people with raised intraglomerular

269 pressure and proteinuria.^{17,18 19,20} However, trials have also observed an increase in adverse renal

270 outcomes with intensive BP lowering.^{7,21,22} To determine the clinical implications of the creatinine

271 differences observed in this study, studies with further long-term data are required.

272 Sub-optimal BP control is a global problem.^{4,23} Initiating treatment with dual combination therapy has

been advocated²⁴ as a more effective means to achieve BP control rapidly and with fewer clinical visits.²⁵

274 Our study draws on the same underlying principles but extends the concept further to initiating

treatment with multiple ultra-low dose agents in a single capsule.²⁶ In comparison to existing

approaches to BP lowering therapy, administration of a single quadruple combination capsule is likely to

achieve more BP lowering than up-titrating monotherapy, since doubling the dose for BP drugs from

half-dose to full dose provides only about 1-2mmHg further reduction in BP.⁸ In addition a quadpill

approach could address physician and patient-related treatment inertia as it reduces the need for

280 stepped titration. It also addresses the individual variation in responsiveness to different agents through

281 provision of a combination with a range of modes of action. Improved adherence is also likely as a result

282 of both decreased pill burden²⁷ and use of lower doses to minimise side effects.⁸

283 In summary, this is the first placebo-controlled trial demonstrating that quarter-dose quadruple

combination therapy is highly efficacious in lowering BP. It presents a novel approach that could achieve

- substantially greater BP control with a single pill, which may have wide-spread clinical applicability.
- 286 Further trials are required to assess the long-term efficacy and safety in a broader population, both for
- 287 initial treatment and among patients with inadequate control and/or side effects while receiving
- 288 monotherapy.

289

290 Panel: Research in context

- 291 Evidence before this study
- 292 Systematic review and meta-analysis of 354 randomised double-blind placebo-controlled trials of BP
- 293 lowering therapy⁸ identified that doubling of dose from half to full standard dose produced on average a
- 294 22% increase in BP reduction, and that the BP lowering effect of different classes of drugs were additive.
- 295 While most benefits are maintained at half-dose, most side effects were avoided. One trial
- 296 demonstrated a quadruple quarter-dose therapy achieved greater BP reduction than each component at
- 297 standard dose.¹⁵
- 298 Added value of this study
- 299 We systematically reviewed the literature on placebo controlled quarter-dose BP-lowering therapy and
- 300 found placebo-corrected BP reductions with single and dual quarter-dose BP lowering of 5/2mmHg and
- 301 7/5mmHg respectively. These reductions were not associated with any difference in side effects
- 302 compared to placebo. Our trial provides the first placebo-controlled data on a four agent quarter-dose
- 303 'quadpill' containing irbesartan 37.5mg, amlodipine 1.25mg, hydrochlorothiazide 6.25mg and atenolol
- 304 12.5mg, combined into a single capsule). We observed a BP reduction of 19/14 mmHg in 24 hour SBP
- 305 compared to placebo, and 18/18 patients achieved BP <140/90mmHg while receiving Quadpill
- 306 compared to 6/8 while receiving placebo (p<0.001).
- 307 Implications of all the available evidence
- 308 This study provides proof of concept for an innovative approach of using ultra-low-dose quadruple
- 309 combination therapy to achieve substantial BP reductions. Further studies are required to examine the
- 310 generalisability of these findings and assess the longer term effects on efficacy, safety and tolerability
- 311 compared to usual care.
- 312

313

314 Contributions

- 315 Systematic review: AB drafted the protocol and data collection forms, conducted search, data
- abstraction and data checking as first reviewer, led statistical analysis and drafted the systematic review
- paper. CC contributed to the conception of the review, revision of the protocol, review of data analyses.
- 318 MC contributed to the literature search, trial identification, data abstraction and data checking as
- 319 second reviewer; and review of data analyses. H-M D contributed to data checking as second reviewer;
- and review of data analyses. AR conceived the systematic review and supervised research staff working
- 321 on the project. RW, AS, AP, BN, DP, HK, JT, JC, MN, CR, GH, MW, SH, ST contributed to reviewing the
- 322 protocol and data analyses.
- 323 Quadpill trial: CC is the chief investigator, led the writing of the protocol and successful funding
- application, supervised JT and drafted the paper. JT is a PhD student who primarily implemented the
- 325 study protocol, AB, MB, TU supported study recruitment. KV ran all statistical analysis supervised by KR
- who was primary writer of the statistical analysis plan. CC, AR, GH contributed to study design.
- 327 AR and CC conceived the initiative. All authors contributed critical review of this manuscript
- 328

329 Acknowledgements

- 330 We would like to thank all general practitioners who referred patients to the trial (Nicholas Bennett,
- 331 Yvette Castellano and Christopher Davis), all participants, and Peter Rushton, Yvonne Stanford and other
- 332 staff at Kildare Road Medical Centre. We would also like to thank project staff, Elizabeth Knight, Helen
- 333 Monaghan, Laurent Billot (chair of DMSC), Craig Rogers (PPP company) and Stephen Bukowski
- 334 (Trialfacts).

335 Disclosures

- 336 CC is supported by a NHMRC Career Development Fellowship co-funded by a National Heart Foundation
- Future Leader Fellowship and the Sydney Medical Foundation. BN is supported by a NHMRC Principal
- 338 Research Fellowship.
- The Quadpill study was supported by a Vanguard Grant and Ross Hohnen prize from the National Heart
- Foundation of Australia (Grant number 100227), University of Sydney Bridging Grant and National
- Health and Medical Research Council of Australia program grant.
- George Health Enterprises, the social enterprise arm of The George Institute for Global Health, has
 received investment to develop fixed-dose combinations containing aspirin, statin and BP lowering
 drugs.

345

Table 1 Baseline characteristics of trial participants

Characteristics	
Mean age, years (SD)	58 (11)
24-hour SBP/ DBP (mmHg)	140 (9)/ 87 (8)
Office BP (mmHg)	154 (14) / 90 (11)
Mean months since diagnosis of hypertension (SD)	4.2 (5.4)
Female, n (%)	11 (52%)
University education	9 (43%)
Diabetes	2 (10%)
Hyperlipidaemia	5 (24%)
Previous myocardial infarction	0 (0%)
Coronary artery revascularisation	0 (0%)
Cerebrovascular disease	0 (0%)
Previous depression	4 (19%)
Current smoker	5 (46%)

SD: standard deviation; SBP: systolic blood pressure; DBP: diastolic blood pressure; BP: blood pressure

	Quadpill tre	atment period	Placebo trea	atment period		
Parameter	Baseline (week 0 or week 6)	End of treatment (week 4 or week 10)	Baseline (week 0 or week 6)	End of treatment (week 4 or week 10)	Difference in change between Quadpill and Placebo period in mmHg (95% CI) *	p-value *
Mean BP le	evels (mmHg)					
Mean 24hr SBP	138.4	119.6	137.1	138.2	-18.7 (-23.2; -14.2)	<0.0001
Daytime ASBP	141.7	121.4	140.3	143.7	-22.3 (-26.9; -17.7)	<.0001
Daytime ADBP	89.9	75.7	87.9	91.1	-15.3 (-18.1; -12.6)	<.0001
Night-time ASBP	128.8	114.4	126.2	125.4	-10.4 (-18.3; -2.6)	0.0128
Night-time ADBP	77.7	66.8	77.8	79.4	-12.5 (-17.1; -7.9)	<.0001
Mean 24hr DBP	86.7	73.3	85.1	87.6	-14.2 (-16.9; -11.5)	<.0001
Office SBP	149.9	122.1	145.8	144.6	-22.4 (-28.3; -16.5)	<.0001
Office DBP	87.4	71.8	86.1	84.8	-13.1 (-17.3; -8.8)	<.0001

Table 2 Effects of quadpill and placebo on blood pressure parameters

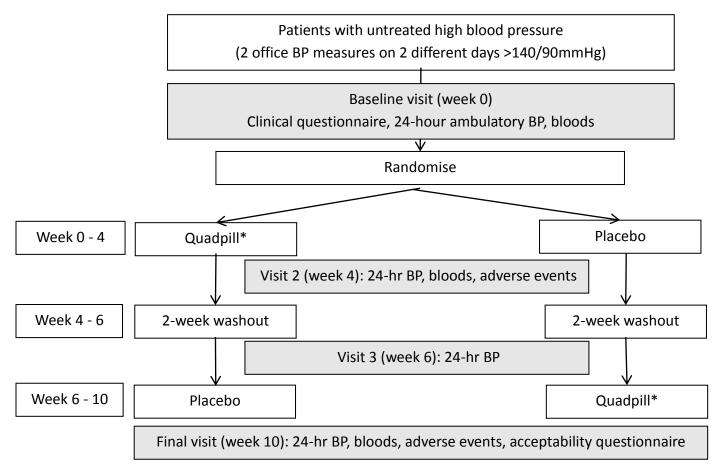

BP: blood pressure; SBP: systolic blood pressure; ASBP: ambulatory systolic blood pressure; ADBP: ambulatory diastolic blood pressure; DBP diastolic blood pressure; ABP: ambulatory blood pressure; CI: confidence interval; N/A: not applicable

Table 3 – Adverse events

Event	Study drug allocated when occurred	Treatment period when occurred	Severity	Action Taken	Outcome	Relationship
Gastro Illness	Quadpill	1 st	Mild	None	Resolved	Not Related
Headache	Quadpill	1 st	Mild	None	Resolved	Not Related
Dry Nose	Placebo	2 nd	Mild	None	Resolved	Not Related
Vertigo	Neither	Between 1 st & 2 nd	Mild	None	Resolved	Not Related
Dizziness	Quadpill	1st	Mild	Temporarily discontinued study drug	Resolved	Related
Urinary Frequency*	Quadpill	1 st	Mild	None	Resolved	Possibly Related
Urinary Frequency*	Placebo	2 nd	Mild	None	Resolved	Possibly Related
Respiratory Tract Infection	Quadpill	2 nd	Mild	None	Resolved	Not Related

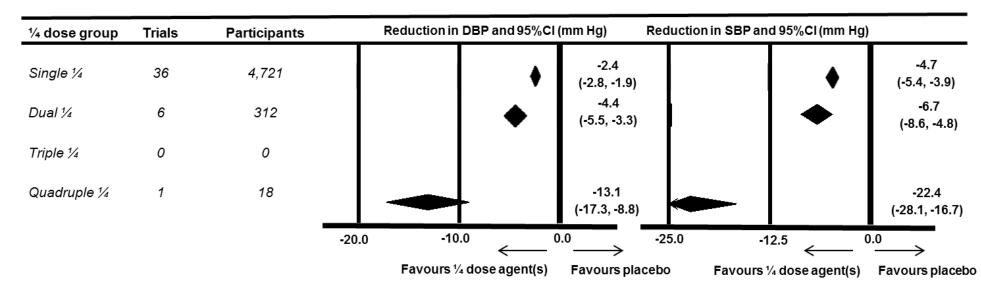

* Urine Frequency was reported by one male patient during the intervention phase and same patient in the placebo phase. He was instructed to consult local doctor for urologic assessment.

Figure 1 Study design for randomised trial

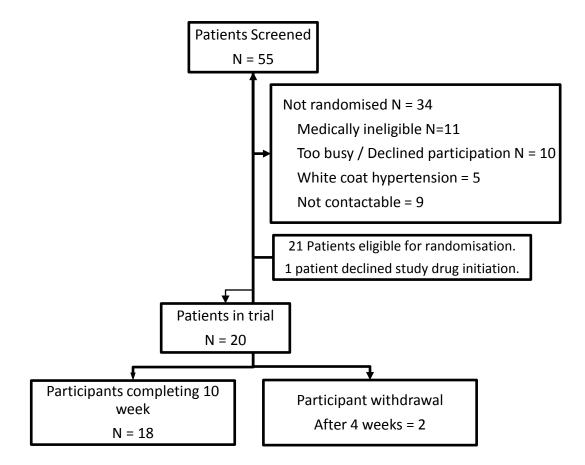

*quadpill = irbesartan 37.5mg, amlodipine 1.25mg, hydrochlorothiazide 6.25mg, atenolol 12.5mg; BP: blood pressure

Figure 2 Efficacy of single, dual and quadruple quarter-dose therapy on blood pressure lowering, compared to placebo

Data on single quarter and dual quarter dose are from the systematic review. Data on quadruple quarter dose is from the Quadpill trial described in this paper.

Figure 3 Study flow diagram

Appendix

Appendix 1: Medline Search and eligible trials

- 1. Hypertension/ or hypertension.mp.
- 2. high blood pressure.mp. or Hypertension/
- 3. resistant hypertension.mp.
- 4. severe hypertension.mp.
- 5. persistent high blood pressure.mp.
- 6. persistent hypertension.mp.
- 7. sustained high blood pressure.mp.
- 8. sustained hypertension.mp.
- 9. raised blood pressure.mp.
- 10. elevated blood pressure.mp.
- 11. hypertensive.mp.
- 12. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11
- 13. very low dos\$.mp.
- 14. ultra low dose\$.mp.
- 15. quarter dose\$.mp.
- 16. one quarter dose\$.mp.
- 17. very low fixed dose\$.mp.
- 18. very low dose combination\$.mp.
- 19. very low fixed dose combination\$.mp.
- 20. Dose-Response Relationship, Drug/ or dose response relationship\$.mp.
- 21. dose finding.mp.
- 22. factorial\$.mp.
- 23. factorial design.mp.
- 24. Antihypertensive agent\$.mp. or Antihypertensive Agents/
- 25. angiotensin converting enzyme inhibitor\$.mp. or Angiotensin-Converting Enzyme Inhibitors/
- 26. Angiotensin Receptor Antagonists/ or angiotensin II receptor 1 antagonist\$.mp.
- 27. dose rang\$.mp.
- 28. 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 27
- 29. angiotensin receptor blocker\$.mp.
- 30. calcium channel blocker\$.mp. or Calcium Channel Blockers/
- 31. Adrenergic beta-Antagonists/ or beta-blocker\$.mp.
- 32. ACEI.mp.
- 33. ACE inhibitor.mp.
- 34. diuretic\$.mp. or Diuretics/
- 35. ARB.mp.
- 36. 24 or 25 or 26 or 29 or 30 or 31 or 32 or 33 or 34 or 35
- 37. controlled clinical trial.pt.
- 38. randomized.ab.
- 39. placebo.ab.
- 40. drug therapy.fs.
- 41. randomly.ab.
- 42. trial.ab.
- 43. groups.ab.
- 44. exp animals/ not humans.sh.
- 45. Randomized controlled trial.pt.
- 46. 37 or 38 or 39 or 40 or 41 or 42 or 43 or 45
- 47. 46 not 44
- 48. Pediatrics/
- 49. Adult/
- 50. 49 not 48
- 51. 12 and 28 and 36 and 47 and 50

List of eligible trials

#866-09 (2001), Drugs@FDA: FDA Approved Drug Products, Drug approval package: Olmesartan (Benicar), Medical Review, Part 5 pages 174-183. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/21286_Benicar_medr_P5.pdf

#866-10 (1999), Drugs@FDA: FDA Approved Drug Products, Drug approval package: Olmesartan (Benicar), Medical Review, Part 3-4 pages 108-129. <u>http://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/21286_Benicar_medr_P3.pdf</u>

#866-204, Drugs@FDA: FDA Approved Drug Products, Drug approval package: Olmesartan(Benicar),MedicalReview,Part2-3pages51-69.http://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/21286_Benicar_medr_P2.pdf

#866-305 (1999), Drugs@FDA: FDA Approved Drug Products, Drug approval package: Olmesartan (Benicar), Medical Review, Part 3 pages 70-83. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2002/21286_Benicar_medr_P2.pdf

Bergstrand, R., H. Herlitz, S. Johansson, G. Berglund, A. Vedin, C. Wilhelmsson, H. J. Gomez, V. J. Cirillo and J. A. Bolognese (1985). "Effective dose range of enalapril in mild to moderate essential hypertension." <u>British journal of clinical pharmacology</u> **19**(5): 605-611.

Canter, D., G. J. Frank, L. E. Knapp, M. Phelps, M. Quade and M. Texter (1994). "Quinapril and hydrochlorothiazide combination for control of hypertension: assessment by factorial design. Quinapril Investigator Group." Journal of human hypertension **8**(3): 155-162.

Casadei, B., J. Conway, A. J. Coats and R. Bird (1992). "Antihypertensive effect of carvedilol: a preliminary dose-response study." <u>Clinical investigator</u> **70**(1).

Chrysant, S. G., T. Fagan, R. Glazer and A. Kriegman (1996). "Effects of benazepril and hydrochlorothiazide, given alone and in low- and high-dose combinations, on blood pressure in patients with hypertension." <u>Archives of family medicine</u> **5**(1): 17-24; discussion 25.

De Bruijn, J. H., B. A. Orofiamma and N. C. Pauly "Efficacy and tolerance of trandolapril (0.5-2 mg) administered for 4 weeks in patients with mild-to-moderate hypertension. Investigator Study Group." Journal of Cardiovascular Pharmacology **23 Suppl 4**: S60-64.

DeQuattro, V. and D. Lee (1997). "Fixed-dose combination therapy with trandolapril and verapamil SR is effective in primary hypertension. Trandolapril Study Group." <u>American journal of hypertension</u> **10**(7 Pt 2): 138S-145S.

EC009 (1994), Drugs@FDA: FDA Approved Drug Products, Drug approval package: Candesartan (Atacand), Medical Review, Part 2 pages 84-88. <u>http://www.accessdata.fda.gov/drugsatfda_docs/nda/98/20838_ATACAND_medr_P2.pdf</u> EC403 (1996), Drugs@FDA: FDA Approved Drug Products, Drug approval package: Candesartan (Atacand), Medical Review, Part 4-5 pages 210-222. http://www.accessdata.fda.gov/drugsatfda_docs/nda/98/20838_ATACAND_medr_P4.pdf

Frick, M. H., D. McGibney and H. M. Tyler (1989). "A dose-response study of amlodipine in mild to moderate hypertension." Journal of internal medicine **225**(2): 101-105.

Frishman, W. H., B. S. Bryzinski, L. R. Coulson, V. L. DeQuattro, N. D. Vlachakis, W. J. Mroczek, G. Dukart, J. D. Goldberg, D. Alemayehu and K. Koury (1994). "A multifactorial trial design to assess combination therapy in hypertension. Treatment with bisoprolol and hydrochlorothiazide." <u>Arch Intern Med</u> **154**(13): 1461-1468.

Frishman, W. H., J. W. Hainer, J. Sugg and M. F. S. Group (2006). "A factorial study of combination hypertension treatment with metoprolol succinate extended release and felodipine extended release results of the Metoprolol Succinate-Felodipine Antihypertension Combination Trial (M-FACT)." <u>American journal of hypertension</u> **19**(4): 388-395.

Gomez, H. J., V. J. Cirillo, J. A. Sromovsky, E. S. Otterbein, W. C. Shaw, J. E. Rush, S. G. Chrysant, A. H. Gradman, A. S. Leon and E. P. MacCarthy (1989). "Lisinopril dose-response relationship in essential hypertension." <u>British journal of clinical pharmacology</u> **28**(4): 415-420.

Gradman, A. H., N. R. Cutler, P. J. Davis, J. A. Robbins, R. J. Weiss, B. C. Wood and E. L. Michelson (1998). "Long-term efficacy, tolerability, and safety of the combination of enalapril and felodipine ER in the treatment of hypertension. Enalapril-Felodipine ER Factorial Study Group." <u>Clinical therapeutics</u> **20**(3): 527-538.

Jounela, A. J., M. Lilja, J. Lumme, C. Morlin, A. Hoyem, T. Wessel-Aas and N. J. Borrild (1994). "Relation between low dose of hydrochlorothiazide, antihypertensive effect and adverse effects." <u>Blood pressure</u> **3**(4): 231-235.

Kochar, M., R. Guthrie, J. Triscari, K. Kassler-Taub and R. A. Reeves (1999). "Matrix study of irbesartan with hydrochlorothiazide in mild-to-moderate hypertension." <u>Am J Hypertens</u> **12**(8 Pt 1): 797-805.

McGill, J. B. and P. A. Reilly (2001). "Telmisartan plus hydrochlorothiazide versus telmisartan or hydrochlorothiazide monotherapy in patients with mild to moderate hypertension: a multicenter, randomized, double-blind, placebo-controlled, parallel-group trial." <u>Clinical therapeutics</u> **23**(6): 833-850.

McMahon, F. G. and R. F. Reder (1989). "The relationship of dose to the antihypertensive response of verapamil-sustained release in patients with mild to moderate essential hypertension. The Verapamil-SR Study Group." J Clin Pharmacol **29**(11): 1003-1007.

Mehta, J. L., L. M. Lopez, N. D. Vlachakis, A. H. Gradman, D. T. Nash, M. T. O'Connell, W. T. Garland and B. I. Pickering (1993). "Double-blind evaluation of the dose-response relationship of amlodipine in essential hypertension." <u>American heart journal</u> **125**(6): 1704-1710.

Meineke, I., H. Feltkamp, A. Hogemann and U. Gundert-Remy (1997). "Pharmacokinetics and pharmacodynamics of candesartan after administration of its pro-drug candesartan cilexetil in patients with mild to moderate essential hypertension--a population analysis." <u>European journal of clinical pharmacology</u> **53**(3-4): 221-228.

Mitrovic, V., R. Willenbrock, M. Miric, P. Seferovic, J. Spinar, M. Dabrowski, W. Kiowski, D. S. Marks, E. Alegria, A. Dukat, K. Lenz and H. A. Arens (2003). "Acute and 3-month treatment effects of candesartan cilexetil on hemodynamics, neurohormones, and clinical symptoms in patients with congestive heart failure." <u>Am Heart J</u> **145**(3): E14.

Moser, M., P. A. Abraham, W. M. Bennett, N. Brachfeld, R. P. Goodman, J. M. McKenney, J. W. Hollifield, W. M. Kirkendall, K. C. Lasseter and A. S. Leon (1991). "The effects of benazepril, a new angiotensin-converting enzyme inhibitor, in mild to moderate essential hypertension: a multicenter study." <u>Clinical pharmacology and therapeutics</u> **49**(3): 322-329.

NEB-302 (2003), FDA Approved Drug Products, Drug approval package: Nebivolol (Bystolic),MedicalReview,Part11pages112-136.http://www.accessdata.fda.gov/drugsatfda_docs/nda/2007/021742s000_MedR_P11.pdf

Neutel, J., M. Weber, J. Pool, D. Smith, S. Fitzsimmons, Y. T. Chiang and M. Gatlin (1997). "Valsartan, a new angiotensin II antagonist: antihypertensive effects over 24 hours." <u>Clin Ther</u> **19**(3): 447-458; discussion 367-448.

Omboni, S. and A. Zanchetti (1998). "Antihypertensive efficacy of lercanidipine at 2.5, 5 and 10 mg in mild to moderate essential hypertensives assessed by clinic and ambulatory blood pressure measurements. Multicenter Study Investigators." <u>J Hypertens</u> **16**(12 Pt 1): 1831-1838.

Oparil, S., S. Dyke, F. Harris, J. Kief, D. James, A. Hester and S. Fitzsimmons (1996). "The efficacy and safety of valsartan compared with placebo in the treatment of patients with essential hypertension." <u>Clinical therapeutics</u> **18**(5): 797-810.

Papademetriou, V., J. W. Hainer, J. Sugg, D. Munzer and A. S. Group (2006). "Factorial antihypertensive study of an extended-release metoprolol and hydrochlorothiazide combination." <u>American journal of hypertension</u> **19**(12): 1217-1225.

Pool, J. L., W. C. Cushman, R. K. Saini, C. E. Nwachuku and J. P. Battikha (1997). "Use of the factorial design and quadratic response surface models to evaluate the fosinopril and hydrochlorothiazide combination therapy in hypertension." <u>American journal of hypertension</u> **10**(1): 117-123.

Reif, M., W. B. White, T. C. Fagan, S. Oparil, T. L. Flanagan, D. T. Edwards, D. J. Cushing and E. L. Michelson (1998). "Effects of candesartan cilexetil in patients with systemic hypertension. Candesartan Cilexetil Study Investigators." <u>American journal of cardiology</u> **82**(8): 961-965.

Roca-Cusachs, A., F. Torres, M. Horas, J. Rios, G. Calvo, J. Delgadillo, M. Teran and G. Spanish Nitrendipine/Enalapril Collaborative Study (2001). "Nitrendipine and enalapril combination therapy in mild to moderate hypertension: assessment of dose-response relationship by a clinical trial of factorial design." <u>Journal of cardiovascular pharmacology</u> **38**(6): 840-849.

Schoenberger, J. A. (1989). "Usefulness of penbutolol for systemic hypertension. Penbutolol Research Group." <u>Am J Cardiol</u> **63**(18): 1339-1342.

Sedman, A. J. and E. Posvar (1989). "Clinical pharmacology of quinapril in healthy volunteers and in patients with hypertension and congestive heart failure." <u>Angiology</u> **40**(4 Pt 2): 360-369.

Study 01-05 (2006), FDA Approved Drug Products, Drug approval package: Azilsartan (Edarbi),MedicalReview,http://www.accessdata.fda.gov/drugsatfdadocs/nda/2011/200796Orig1s000MedR.pdf

Villamil, A., S. G. Chrysant, D. Calhoun, B. Schober, H. Hsu, L. Matrisciano-Dimichino and J. Zhang (2007). "Renin inhibition with aliskiren provides additive antihypertensive efficacy when used in combination with hydrochlorothiazide." <u>J Hypertens</u> **25**(1): 217-226.

Williams, R. L., K. K. Goyle, T. S. Herman, B. A. Rofman, G. E. Ruoff and L. B. Hogan (1992). "Dose-dependent effects of betaxolol in hypertension: a double-blind, multicenter study." <u>J Clin</u> <u>Pharmacol</u> **32**(4): 360-367.

Web table 1. Baseline characteristics of included trials

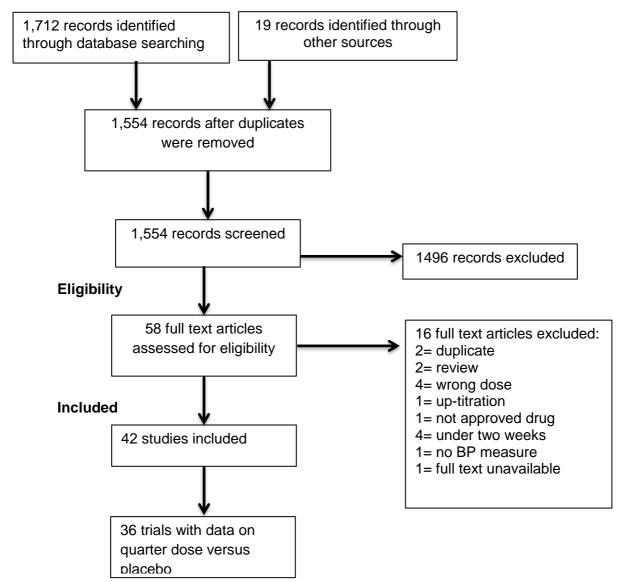
Trial	Origin	Design	Study treatments	Sample size [n, ITT]	Mean age (yrs)	% female	Disease criteria	BP measure	BP eligibility (mmHg)	Mean baseline SBP/DBP (mmHg)	Relevant reported outcomes	Interventi on (weeks)	% lost to follow-up
#866-09, 2001	EU	double blind, 6 groups, parallel	Olmesartan (¼ ½, 1, 2, 4) vs. placebo	790	56	-	Mild-moderate essential hypertension	in office, sitting	100 <dbp<115< td=""><td>164/NA</td><td>DBP, SBP, treatment discontinuation</td><td>12</td><td>7%</td></dbp<115<>	164/NA	DBP, SBP, treatment discontinuation	12	7%
#866-10, 1999	EU	double blind, 4 groups, parallel	Olmesartan (¼ ½, 1) vs. placebo	600	59	-	-	in office, sitting	95 <dbp<110< td=""><td>164/105</td><td>DBP, SBP</td><td>12</td><td>-</td></dbp<110<>	164/105	DBP, SBP	12	-
#866-204	USA	double blind, 7 groups, parallel	Olmesartan (od & bid: ¼, 1, 4) vs. placebo	299	-	-	Essential hypertension	in office, supine	100 <dbp<115< td=""><td>155/104</td><td>DBP, SBP, treatment discontinuation</td><td>8</td><td>-</td></dbp<115<>	155/104	DBP, SBP, treatment discontinuation	8	-
#866-305, 1999	USA	double blind, 6 groups, parallel	Olmesartan (¼, ½, 1, 2, 4) vs. placebo	517	55	-	Essential hypertension	in office, sitting	100 <dbp<115< td=""><td>154/103</td><td>DBP, SBP</td><td>8</td><td>-</td></dbp<115<>	154/103	DBP, SBP	8	-
Bergstrand, 1985	Swede n	double blind, 6 group, incomplete- block	Enalapril (1/8, ¼ ½, 1, 2) vs. placebo	91	56	37%	Mild-moderate hypertension	in office, sitting	90 <dbp<116< td=""><td>159/97</td><td>DBP, SBP</td><td>3</td><td>0%</td></dbp<116<>	159/97	DBP, SBP	3	0%
anter, 1994	USA	double blind, 4 x 4 factorial	HCTZ (¼, ½, 1) quinapril (1/8, ½, 2) vs. placebo	458	53	37%	Hypertension	in office, sitting	100 <dbp<115< td=""><td>162/105</td><td>DBP, SBP, potassium</td><td>4</td><td>0%</td></dbp<115<>	162/105	DBP, SBP, potassium	4	0%
Casadei, 1992	UK	double-blind, cross-over	Carvedilol (¼ ½, 1) vs. placebo	20	27	-	Untreated hypertension	ABP monitor	90 <dbp< td=""><td>151/100</td><td>DBP, SBP</td><td>4</td><td>13%</td></dbp<>	151/100	DBP, SBP	4	13%
Chrysant, 1996	USA	double blind, incomplete 4 x 4 factorial	Benazepril (¼, ½, 1) HCTZ (¼, ½, 1) vs. placebo	334	53	37%	Uncomplicate d essential hypertension	in office, sitting	95 <dbp<115< td=""><td>-</td><td>DBP, SBP, adverse events, treatment discontinuation, potassium</td><td>6</td><td>10%</td></dbp<115<>	-	DBP, SBP, adverse events, treatment discontinuation, potassium	6	10%
De Bruijn, 1994	Netherl ands	double blind, 4 groups, parallel	Trandolapril (¼ ½, 1) vs. placebo	170	-	-	Mild-moderate hypertension	in office, supine	95 <dbp<115< td=""><td>161/100</td><td>DBP, SBP</td><td>4</td><td>-</td></dbp<115<>	161/100	DBP, SBP	4	-
DeQuattro, 1997	USA	double blind, 5 x 4 factorial	Trandolapril (¼, 1, 4) verapamil (½, 3/4, 1) vs. placebo	726	55	37%	Stage I-III diastolic primary hypertension	in office, sitting, trough	95 <dbp<114< td=""><td>153/101</td><td>DBP, SBP, adverse events</td><td>6</td><td>7%</td></dbp<114<>	153/101	DBP, SBP, adverse events	6	7%
EC009, 1994	Germa ny	double blind, 5 group, parallel	Candesartan (¼ ½, 1, 2) vs. placebo	232	-	-	Hypertension	-	95 <dbp<114< td=""><td>-</td><td>DBP, SBP, adverse events</td><td>4</td><td>3%</td></dbp<114<>	-	DBP, SBP, adverse events	4	3%
EC403, 1996	Germa ny	double blind, 4 x 2 factorial	Candesartan (¼, ½, 1, 2) HCTZ (½, 1) vs. placebo	1,038	-	-	Mild-moderate hypertension	-	95 <dbp<110< td=""><td>NA/101</td><td>DBP, SBP, treatment discontinuation, uric acid</td><td>6</td><td>-</td></dbp<110<>	NA/101	DBP, SBP, treatment discontinuation, uric acid	6	-
Frick, 1988	Finland	single blind, parallel	Amlodipine (¼, ½, 1) vs. placebo	205	50	-	Mild-moderate hypertension	in office, supine	90 <dbp<115< td=""><td>161/102</td><td>DBP, SBP, adverse events, treatment discontinuation</td><td>4</td><td>-</td></dbp<115<>	161/102	DBP, SBP, adverse events, treatment discontinuation	4	-
Frishman, 1994	USA	double blind, 4 x 3 factorial	Bisoprolol (¼, 1, 4) HCTZ (¼, 1) vs. placebo	465	53	29%	Mild-moderate essential hypertension	in office, sitting	95 <dbp<114< td=""><td>151/101</td><td>DBP, SBP, uric acid, potassium</td><td>12</td><td>21%</td></dbp<114<>	151/101	DBP, SBP, uric acid, potassium	12	21%
Frishman, 2006	USA	double blind, unbalanced 4 x 4 factorial	Metoprolol (¼, 1, 4) felodipine (½, 2, 4) vs. placebo	1,087	54	43%	Essential hypertension	in office, sitting	95 <dbp<114< td=""><td>153/100</td><td>DBP, SBP, treatment discontinuation</td><td>9</td><td>17%</td></dbp<114<>	153/100	DBP, SBP, treatment discontinuation	9	17%
Gomez, 1989	USA & Swede n	double blind, 4 groups, parallel	Lisinopril (¼, 1, 4) vs. placebo	216	-	10%	Mild- moderate, uncomplicated	in office, supine	95 <dbp<115< td=""><td>159/101</td><td>DBP, SBP, adverse events, treatment discontinuation, potassium</td><td>6</td><td>11%</td></dbp<115<>	159/101	DBP, SBP, adverse events, treatment discontinuation, potassium	6	11%

essential hypertension

Gradman, 1998	USA	double blind, 3 x 4, factorial	Enalapril (¼, 1) felodipine (½, 1, 2) vs. placebo	705	53	35%	Essential hypertension	in office, sitting	95 <dbp<115< td=""><td>155/102</td><td>DBP, SBP</td><td>8</td><td>9%</td></dbp<115<>	155/102	DBP, SBP	8	9%
Jounela, 1994	Scandi navia	Double blind, 5 groups, parallel	HCTZ (1/8, ¼, ½, 1) vs. placebo	111	48	-	Mild-moderate essential hypertension	in office, supine	95 <dbp<115< td=""><td>152/99</td><td>DBP, SBP, adverse events, mediation discontinuation</td><td>6</td><td>3%</td></dbp<115<>	152/99	DBP, SBP, adverse events, mediation discontinuation	6	3%
Kochar, 1999	USA	double blind, 4 x 4 factorial	Irbesartan (¼, 2/3, 2) HCTZ (¼, ½, 1) vs. placebo	683	55	15%	Mild-moderate hypertension	in office, sitting	95 <dbp< td=""><td>151/100</td><td>DBP, SBP, uric acid</td><td>8</td><td>8%</td></dbp<>	151/100	DBP, SBP, uric acid	8	8%
McGill, 2001	USA	double blind, 4 x 5 factorial	HCTZ (¼, ½, 1) telmisartan (½, 1, 2, 4) vs. placebo	749	53	40%	Mild-moderate hypertension	in office, supine	140 <sbp<200< td=""><td>154/101</td><td>DBP, SBP, Potassium</td><td>8</td><td>7%</td></sbp<200<>	154/101	DBP, SBP, Potassium	8	7%
McMahon, 1989	USA	double blind, 5 groups, parallel	Verapamil (¼, ½, 1, 2) vs. placebo	213	55	43%	Mild-moderate essential hypertension	in office, supine	95 <dbp<115< td=""><td>156/101</td><td>DBP, SBP, adverse events, treatment discontinuation</td><td>6</td><td>9%</td></dbp<115<>	156/101	DBP, SBP, adverse events, treatment discontinuation	6	9%
Mehta, 1993	USA	double blind, 5 groups, parallel	Amlodipine (¼, ½, 1, 2) vs. placebo	203	53	46%	Mild-moderate essential hypertension	in office, supine	95 <dbp<115< td=""><td>152100</td><td>DBP, SBP, treatment discontinuation</td><td>4</td><td>3%</td></dbp<115<>	152100	DBP, SBP, treatment discontinuation	4	3%
Meineke, 1997	Germa ny	double blind, 6 groups, parallel	Candesartan (¼, ½, 1, 2, 4) vs. placebo)	232	53	56%	Mild-moderate arterial hypertension	in office, sitting	95 <dbp<115< td=""><td>150/98</td><td>DBP, SBP</td><td>4</td><td>-</td></dbp<115<>	150/98	DBP, SBP	4	-
Mitrovic, 2003	EU and RSA	double blind, 5 groups, parallel	Candesartan (¼, ½, 1, 2) vs. placebo	218	54	15%	Heart failure (NYHA class II or III)	right heart catheter	-	-	adverse events, treatment discontinuation, uric acid, potassium	12	-
Moser, 1991	USA	double blind, 7 groups, parallel	Benazepril (1/10, ¼, ½, 1) HCTZ (1) vs. placebo	206	50	34%	Mild-moderate hypertension	in office, supine	95 <dbp<115< td=""><td>153/102</td><td>DBP, adverse events, treatment discontinuation</td><td>4</td><td>14%</td></dbp<115<>	153/102	DBP, adverse events, treatment discontinuation	4	14%
NEB-302, 2003	USA	double blind, 6 groups, parallel	Nebivolol (¼, ½, 1, 2, 4) vs. placebo	909	55	43%	Mild- moderate, uncomplicated hypertension	in office, sitting, trough	95 <dbp<110< td=""><td>153/100</td><td>SBP, DBP, treatment discontinuation</td><td>-</td><td>-</td></dbp<110<>	153/100	SBP, DBP, treatment discontinuation	-	-
Neutel, 1997	USA	double blind, 6 groups, parallel	Valsartan (¼, 1, 2, 4) vs. placebo	216	-	25%	Uncomplicate d essential hypertension	in office, supine	95 <dbp<115< td=""><td>148/91</td><td>DBP, SBP</td><td>8</td><td>0%</td></dbp<115<>	148/91	DBP, SBP	8	0%
Omboni, 1989	Italy	double blind, 4 groups, parallel	Lercanidipine (¼, ½, 1) vs. placebo	243	51	34%	Mild-moderate essential hypertension	in office, sitting	90 <dbp<110< td=""><td>155/99</td><td>DBP, SBP, adverse events, treatment discontinuation</td><td>4</td><td>5%</td></dbp<110<>	155/99	DBP, SBP, adverse events, treatment discontinuation	4	5%
Oparil, 1996	USA	double blind, 5 groups, parallel	Valsartan (¼, 1, 2, 4) vs. placebo	729	53	34%	Uncomplicate d essential hypertension	in office, supine	95 <dbp<115< td=""><td>151/101</td><td>DBP, SBP, adverse events, treatment discontinuation</td><td>8</td><td>8%</td></dbp<115<>	151/101	DBP, SBP, adverse events, treatment discontinuation	8	8%
Papademetriou, 2006	USA	double blind, 5 x 4 factorial	Metoprolol (¼, ½, 1, 2) HCTZ (¼, ½, 1) vs. placebo	1559	53	50%	Hypertension	in office, sitting	95 <dbp<115 SBP<180</dbp<115 	151/100	DBP, SBP	10	11%
Pool, 1997	USA	double blind, 4 x 4 factorial	Fosinopril (¼, 1, 2, 4) HCTZ ((¼, ½, 1.5) vs. placebo	548	52	39%	Mild-moderate essential hypertension	in office, sitting	95 <dbp<110< td=""><td>150/100</td><td>DBP, SBP</td><td>8</td><td>-</td></dbp<110<>	150/100	DBP, SBP	8	-
Reif, 1996	USA	double blind, 6 groups, parallel	Candesartan (¼, ½, 1, 2, 4) vs. placebo	360	55	34%	Systemic hypertension	in office, sitting, trough	95 <dbp<115< td=""><td>153/100</td><td>DBP, SBP, adverse events, treatment discontinuation</td><td>8</td><td>9%</td></dbp<115<>	153/100	DBP, SBP, adverse events, treatment discontinuation	8	9%

Roca-Cusachs, 2001	Spain	double blind, 4 x 4 factorial	Enalapril (¼, ½, 1) nitrendipine (¼, ½, 1) vs. placebo	378	56	60%	Mild-moderate essential hypertension	in office, sitting	90 <dbp<110< th=""><th>158/99</th><th>DBP, SBP</th><th>6</th><th>9%</th></dbp<110<>	158/99	DBP, SBP	6	9%
Schoenberger, 1989	USA	double blind, 4 groups, parallel	Penbutolol (¼, ½, 1) vs. placebo	302	51	47%	Systemic hypertension	in office, supine	95 <dbp<115< td=""><td>152/100</td><td>DBP, SBP, adverse events</td><td>6</td><td>12%</td></dbp<115<>	152/100	DBP, SBP, adverse events	6	12%
Sedman, 1989	USA	double blind, 4 groups, parallel	Quinapril (¼, ½, 1) vs. placebo	247	-	-	Uncomplicate d mild hypertension	in office, sitting, trough	95 <dbp<115< td=""><td>156/103</td><td>DBP, SBP</td><td>6</td><td>8%</td></dbp<115<>	156/103	DBP, SBP	6	8%
Study 01-05, 2006	USA, SA	double blind, 5 groups, parallel	Azilsartan (¼, ½, 1, 2) olmesartan (1) vs. placebo	404	-	-	Mild- moderate, uncomplicated hypertension	in office, sitting	95 <dbp<115< td=""><td>151/100</td><td>DBP, SBP, adverse events</td><td>8</td><td>10%</td></dbp<115<>	151/100	DBP, SBP, adverse events	8	10%
Thakkar, 2016	AUS	Double blind, 2 groups, crossover	Amlodipine (¼), atenolol (¼), HCTZ (¼), irbesartan (¼) vs. placebo	20	58	52%	Hypertension	In office, sitting	90 <dbp or<br="">140<sbp< td=""><td>148/87</td><td>DBP, SBP, adverse events, treatment discontinuation, potassium, uric acid</td><td>4</td><td>10%</td></sbp<></dbp>	148/87	DBP, SBP, adverse events, treatment discontinuation, potassium, uric acid	4	10%
Villamil, 2007	USA	Double blind, factorial 4 x 4 factorial	Aliskiren (½,1, 2) HCTZ (¼, ½, 1) vs. placebo	2,752	55	45%	Mild-moderate hypertension	in office, sitting, trough	95 <dbp<110< td=""><td>153/99</td><td>DBP, SBP, Adverse events, treatment discontinuation</td><td>8</td><td>-</td></dbp<110<>	153/99	DBP, SBP, Adverse events, treatment discontinuation	8	-
Williams, 1992	USA	double blind, 4 groups, parallel	Betaxolol (¼, ½, 1) vs. placebo	317	-	38%	Mild-moderate hypertension	in office, supine	95 <dbp< td=""><td>150/100</td><td>DBP, SBP, treatment discontinuation</td><td>4</td><td>9%</td></dbp<>	150/100	DBP, SBP, treatment discontinuation	4	9%

	Treatme	nt period	
Treatment sequence	1	2	Within-individual difference: Quadpill - Placebo
Quadpill then Placebo			
Mean (SD)	-21.1 (6.8)	5.3 (6.6)	-26.7 (9.2)
Sample size	10	9	9
Placebo then Quadpill			
Mean (SD)	-3.0 (17.9)	-16.4 (7.5)	-13.4 (22.9)
Sample size	9	9	9
Treatment effect			
Mean (SD)			-18.7 (2.1) & (95% CI-23.0; -14.3
p-value			<.0001
Sample size			19


Web Table 2 Effects on 24-hour mean SBP, by treatment period and sequence allocation (mmHg)

Web Tab	le 3 –	Biochemical	changes
---------	--------	-------------	---------

	Difference of changes in quadpill treatment period	
	versus placebo treatment period (95% CI)	p-value *
Creatinine (µmol/L)	4.4 (0.9; 7.8)	0.017
ALT (µmol/L)	3.1 (-4.3; 10.5)	0.38
AST (µmol/L)	-7.3 (-24.1; 9.5)	0.37
Sodium (mmol/L)	-0.6 (-1.8; 0.6)	0.32
Potassium (mmol/L)	-0.04 (-0.2; 0.1)	0.62
Urate (mmol/L)	0.03 (0.01; 0.04)	0.003
Total Cholesterol	0.2 (-0.2; 0.6)	0.27
LDL Cholesterol (mmol/L)	0.2 (-0.2; 0.5)	0.31

Web Figure 1 PRISMA Flow Diagram

Identification

References

1. Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. *Lancet* 2012; **380**(9859): 2224-60.

 Turnbull F. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. *Lancet* 2003; **362**(9395): 1527-35.

3. Staessen JA, Wang JG, Thijs L. Cardiovascular protection and blood pressure reduction: a metaanalysis. *Lancet* 2001; **358**(9290): 1305-15.

4. Chow CK, Teo KK, Rangarajan S, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. *Jama* 2013; **310**(9): 959-68.

5. Wald DS, Law M, Morris JK, Bestwick JP, Wald NJ. Combination therapy versus monotherapy in reducing blood pressure: meta-analysis on 11,000 participants from 42 trials. *American Journal of Medicine* 2009; **122**(3): 290-300.

6. Xie X, Atkins E, Lv J, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. *Lancet* 2016; **387**(10017): 435-43. doi: 10.1016/S0140-6736(15)00805-3. Epub 2015 Nov 7.

7. Wright JT, Jr., Williamson JD, Whelton PK, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. *N Engl J Med* 2015; **373**(22): 2103-16. doi: 10.1056/NEJMoa1511939. Epub 2015 Nov 9.

8. Law MR, Wald NJ, Morris JK, Jordan RE. Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials. *BMJ (Clinical research ed)* 2003; **326**(7404): 1427.

9. NICE. British National Formulary. 17/11/2016 2016. <u>https://www.nice.org.uk/about/what-we-do/evidence-services/british-national-formulary2016</u>).

10. MIMS. Monthly Index of Medical Specialties. 2016.

http://www.mims.com/resources/portal/common/document/mims/mimsau.htm (accessed 17/11/2016.

11. Capsugel. <u>http://wwwcapsugelcom/ihc/dbcaps</u>.

12. Guideline for the diagnosis and management of hypertension in adults. Melbourne, Australia, 2016.

13. Kenward MG, Roger JH. The use of baseline covariates in crossover studies. *Biostatistics* 2010; **11**(1): 1-17. doi: 0.1093/biostatistics/kxp046. Epub 2009 Nov 13.

14. Kenward MG, Roger JH. An improved approximation to the precision of fixed effects from restricted maximum likelihood. *Computational Statistics & Data Analysis* 2009; **53**(7): 2583-95.

15. Mahmud A, Feely J. Low-dose quadruple antihypertensive combination: more efficacious than individual agents--a preliminary report. *Hypertension* 2007; **49**(2): 272-5. Epub 2006 Dec 18.

16. Wald DS, Morris JK, Wald NJ. Randomized Polypill crossover trial in people aged 50 and over. *PLoS One* 2012; **7**(7): e41297.

17. Wright JT, Jr., Bakris G, Greene T, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. *JAMA* 2002; **288**(19): 2421-31.

18. Hunsicker LG, Adler S, Caggiula A, et al. Predictors of the progression of renal disease in the Modification of Diet in Renal Disease Study. *Kidney Int* 1997; **51**(6): 1908-19.

19. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. *N Engl J Med* 2001; **345**(12): 851-60.

20. Keane WF, Brenner BM, de Zeeuw D, et al. The risk of developing end-stage renal disease in patients with type 2 diabetes and nephropathy: the RENAAL study. *Kidney Int* 2003; **63**(4): 1499-507.

21. Peralta CA, McClure LA, Scherzer R, et al. Effect of Intensive Versus Usual Blood Pressure Control on Kidney Function Among Individuals With Prior Lacunar Stroke: A Post Hoc Analysis of the Secondary Prevention of Small Subcortical Strokes (SPS3) Randomized Trial. *Circulation* 2016; **133**(6): 584-91. doi: 10.1161/CIRCULATIONAHA.115.019657. Epub 2016 Jan 13.

22. Cushman WC, Evans GW, Byington RP, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. *N Engl J Med* 2010; **362**(17): 1575-85. doi: 10.056/NEJMoa1001286. Epub 2010 Mar 14.

23. Sever PS, Messerli FH. Hypertension management 2011: optimal combination therapy. *European heart journal* 2011; **32**(20): 2499-506.

24. Byrd JB, Zeng C, Tavel HM, et al. Combination therapy as initial treatment for newly diagnosed hypertension. *American heart journal* 2011; **162**(2): 340-6.

25. Feldman RD, Zou GY, Vandervoort MK, Wong CJ, Nelson SA, Feagan BG. A simplified approach to the treatment of uncomplicated hypertension: a cluster randomized, controlled trial. *Hypertension* 2009; **53**(4): 646-53. doi: 10.1161/HYPERTENSIONAHA.108.123455. Epub 2009 Feb 23.

26. Salam A, Webster R, Singh K, et al. TRIple pill vs Usual care Management for Patients with mildto-moderate Hypertension (TRIUMPH): Study protocol. *Am Heart J* 2014; **167**(2): 127-32. doi: 10.1016/j.ahj.2013.10.020. Epub Nov 6.

27. Webster R, Patel A, Selak V, et al. Effectiveness of fixed dose combination medication ('polypills') compared with usual care in patients with cardiovascular disease or at high risk: A prospective, individual patient data meta-analysis of 3140 patients in six countries. *Int J Cardiol* 2016; 205:147-56.(doi): 10.1016/j.ijcard.2015.12.015. Epub Dec 14.