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Abstract
Inorganic polyphosphate (polyP) is present in every cell and is highly conserved from primeval

times. In the mammalian cells, polyP plays multiple roles including control of cell bioenergetics

and signal transduction. In the brain, polyP mediates signaling between astrocytes via activation

of purinergic receptors, however, the mechanisms of polyP release remain unknown. Here we

report identification of polyP-containing vesicles in cortical astrocytes and the main triggers that

evoke vesicular polyP release. In cultured astrocytes, polyP was localized predominantly within

the intracellular vesicular compartments which express vesicular nucleotide transporter VNUT

(putative ATP-containing vesicles), but not within the compartments expressing vesicular gluta-

mate transporter 2 (VGLUT2). The number of lysosomes which contain polyP was dependent on

the conditions of astrocytes. Release of polyP from a proportion of lysosomes could be induced

by calcium ionophores. In contrast, polyP release from the VNUT-containing vesicles could be

triggered by various physiological stimuli, such as pH changes, polyP induced polyP release and

other stimuli which increase [Ca2+]i. These data suggest that astrocytes release polyP predomi-

nantly via exocytosis from the VNUT-containing vesicles. © 2018 Wiley Periodicals, Inc.
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1 | INTRODUCTION

A number of complex signaling systems evolved to mediate communi-

cation between cells. Cell signaling is essential to maintain function of

multicellular organisms in general, and brain information processing

and control of homeostasis in particular. Signal transduction in the

central nervous system is based on a signal from neuron to neuron or

glial cell to glia through a well-controlled system, which requires spe-

cific transmitter molecules. Astrocytes, the most numerous glial cells

of the brain, respond to neurotransmitters and may contribute to syn-

aptic information processing by releasing signaling molecules called

“gliotransmitters” (Bazargani & Attwell, 2016).

ATP is a major signaling molecule released by astrocytes that

enables communication between astrocytes and other brain cells, includ-

ing neurones (Bowser & Khakh, 2007;Lalo, Rasooli-Nejad, & Pankratov,

2014; Torres et al., 2012). Purinoceptors are expressed by astrocytes,

and readily respond to the increases in extracellular ATP concentration

(Angelova et al., 2015; Coco et al., 2003; Gourine et al., 2010). Regu-

lated exocytosis of signaling molecules by astrocytes may involve differ-

ent types of secretory organelles (synaptic-like microvesicles, dense-

core vesicles, lysosomes, exosomes, and ectosomes (Oya et al., 2013;

Verkhratsky, Matteoli, Parpura, Mothet, & Zorec, 2016).

Inorganic polyphosphate (polyP) is a polymeric molecule, consist-

ing out of a number of orthophosphate residues and is present in all
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organisms. In prokaryotes and lower eukaryotes polyP have been

found to plays multiple roles, including those similar to ATP

(Angelova, Baev, Berezhnov, & Abramov, 2016; Holmstrom et al.,

2013). In mammalian cells, polyP is involved in the mechanisms of cell

death, blood coagulation, bone formation, mitochondrial metabolism,

and calcium handling (Abramov et al., 2007; Angelova, Baev, et al.,

2016; Morrissey, Choi, & Smith, 2012; Pavlov et al., 2010).

We have previously demonstrated that polyP might act as one of

the gliotransmitters as the majority of astrocytes and a proportion

(3%) of neurons respond to polyP with increases in cytosolic calcium.

This effect is mediated through activation of P2Y1 receptors and stim-

ulation of phospholipase C activity (Holmstrom et al., 2013). The con-

centration of polyP in the mammalian brain (50 μM) is much higher

than the concentrations sufficient (10 nM–10 μM) to trigger Ca2+ sig-

nals in astrocytes (Kumble & Kornberg, 1995). This indicates that in

the brain polyP is contained inside the cells, likely to be compartmen-

talized and released in a controlled manner. Previously polyP was

found to be present in astroglial lysosomes and neuronal synapto-

somes (Holmstrom et al., 2013; Stotz et al., 2014). However, in astro-

cytes only a small number of polyP containing lysosomes fused with

the plasma membrane upon stimulation.

Recently we have developed novel highly specific probes to visu-

alize polyP in living cells: JC-D7 and JC-D8, which track localization of

polyP in living cells with high affinity (Angelova et al., 2014). In this

study we used specific polyP indicators and novel molecular tools to

determine localization of free polyP in specific cellular compartments

of astrocytes and to study the mechanisms of polyP release in

response to various stimuli.

2 | MATERIALS AND METHODS

2.1 | Cell culture

Primary cell cocultures of neurons and astrocytes were prepared as

described in detail previously (Angelova, Ludtmann, et al., 2016; Tur-

ovsky et al., 2016) with modifications, from the midbrains and cerebral

cortices of Sprague-Dawley P3 rat pups or wildtype and LRRK2

knockout C57BL/6 mice (UCL breeding colony). Experimental proce-

dures were performed in compliance with the United Kingdom Ani-

mals (Scientific Procedures) Act of 1986. After trypsinization of the

tissue, the cells were plated on poly-d-lysine-coated coverslips,

according to the protocols described in (Deas et al., 2016) for 12 DIV.

The cultures were transduced with either of the adenoviral vectors

(AVV) AVV-sGFAP-mVNUT, AVV-sGFAP-VGLUT2-EGFP, AVV-

sGFAP-mKate-CD63 or lentiviral vector (LVV) LVV-EF1a-TMPAP-

EGFP. Experiments were performed after 7–10 days of incubation

with the virus.

2.2 | Transduction

sGFAP is a transcriptionally enhanced, bidirectional, shortened glial

fibrillary acidic protein promoter which drives transgene expression in

astrocytes (Figueiredo et al., 2011; Gourine et al., 2010; Liu, Paton, &

Kasparov, 2008). Fusions with EGFP or mKate2.7 allow detection of

transgene expression via green or red fluorescence, respectively. The

VGLUT2 (vesicular glutamate transporter; NM0534271; kind gift from

P. Bezzi, Lausanne (Bezzi et al., 2004) is targeted to glutamatergic ves-

icles in astrocytes, while the mVNUT (vesicular nucleotide transporter;

kind gift from T. Miyaji, Japan) delineates putative ATP-containing

vesicles (Sawada et al., 2008). CD63 is a lysosomal membrane protein

which localizes to lysosome-derived exocytotic vesicle-like structures

in astrocytes (CD63 clone BC063173 obtained from ImaGenes, Berlin

(Metzelaar et al., 1991). LVV-EF1a-TMPAP-EGFP drives expression of

a fluorescently tagged plasma-membrane-anchored phosphatase

(transmembrane prostatic acid phosphatase, TMPAP) which is

designed to break down ATP within vesicles and extracellularly

(Marina et al., 2013; Wells et al., 2015).

2.3 | Fluorescent markers and live cell imaging

For identification of the colocalization of the vesicular/lysosomal com-

partments with polyP cell cultures, transduced to express VGLUT2–

eGFP, VNUT–eGFP, TMPAP–eGFP, or CD63-mKate were loaded

with either DAPI (1 μM) or JC-D7 (5 μM) or JC-D8 (5 μM) for 30 min

at room temperature in a HEPES-buffered salt solution (HBSS) com-

posed (mM): 156 NaCl, 3 KCl, 2 MgSO4, 1.25 KH2PO4, 2 CaCl2, 10 glu-

cose, and 10 HEPES, pH 7.35.

Confocal images were obtained using Zeiss 710 CLSM micro-

scope equipped with a META detection system and a 40 × oil immer-

sion objective. JC-D7/JC-D8 fluorescence was determined with

excitation at 405 nm and emission above 450 nm. For images in

experiments comparing levels of fluorescence in different cells, the

imaging setting were kept at the same level. The DAPI-polyP (which

was separated from DAPI–DNA/RNA) fluorescence was detected

with excitation 405 nm and emission between 480 and 520 nm

according to (Aschar-Sobbi et al., 2008). Mitochondrial localization

was identified using potential sensitive indicator tetramethylrhoda-

mine (TMRM; Angelova et al., 2018). Cells were loaded for 40 min at

room temperature and superfused with 20 nM TMRM, excited at

565 nm and imaged with a 580 nm emission filter as previously

described. Measurements of fluorescence in astrocytes determined

using different z-tacks. Illumination intensity was kept to a minimum

(at 0.1–0.2% of laser output) to avoid phototoxicity and the pinhole

set to give an optical slice of �2 μm.

2.4 | The images were analyzed using Zeiss ZEN
software

To determine the percentage of lysosomes, mitochondria, VNUT or

VGLUT vesicles that contain polyP, and the percentage of polyP local-

ized within organelles or vesicles, colocalization analysis was per-

formed on whole astrocytes. The analysis was based on the baseline

of time-scale experiments, to get the best representation. The Man-

der's overlap coefficients Mx and My were used for analysis, as Mx

gives the percentage overlap of TMRM. Lysotracker Red of VNUT-,

CD63 or VGLUT with JC-D8, and My gives the percentage overlap of

JC-D8 with organelles or vesicles, and disregards the absolute inten-

sity (Dunn, Kamocka, & McDonald, 2011).
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2.5 | TIRF imaging

An Olympus total internal reflection fluorescence (TIRF) microscope

was used to detect vesicular fusion events in astrocytes expressing

VNUT–eGFP or CD63-mKate, as described in detail previously

(Angelova et al., 2015; Kasymov et al., 2013). Fluorescence was

excited at 488 nm and collected at 500–530 nm for eGFP and excited

at 488 nm and collected at 600–660 nm for mKate. The imaging

setup was equipped with a high-NA oil-immersion objective (60×,

1.65 NA), an Olympus IX71 inverted microscope and a Hamamatsu

CCD camera. Images were acquired using Olympus Cellt̂ool software

FIGURE 1 Localization of inorganic polyphosphate to mitochondria and lysosomes. (a) inorganic polyphosphate is found in mitochondria (polyP, JC-D8,

blue; mitochondria, TMRM, red). (b) Highly specific polyP signal (JC-D7, blue) is colocalized with lysosomal (CD63-mKate, red) signal. (c) DAPI-polyP can
also be used to track the localization of inorganic polyphosphate in lysosomes. d, Bar charts summarizing the quantification of colocalization (Mander's
coefficient) of polyP signals with fluorescence signal out of mitochondria and lysosomes [Color figure can be viewed at wileyonlinelibrary.com]
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(Olympus) and later converted and analyzed with Zeiss Zen software

(Zeiss).

2.6 | Data analysis and statistics

Data and statistical analysis were performed using OriginPro

(OriginLab, Northampton, USA) and GraphPad Prism (GraphPad Soft-

ware, San Diego, USA) software. Data are presented as means

expressed ± standard error of the mean (SEM).

3 | RESULTS

3.1 | Localization of polyP in astrocytes

3.1.1 | PolyP in mitochondria

PolyP in the mitochondria has its functional role; it plays an important

role in energy metabolism and calcium handling (Baev, Negoda, &

Abramov, 2017; Pavlov et al., 2010). In agreement with our previous

report, we found that in cultured astrocytes the specific polyP indica-

tor has higher intensity in the mitochondrial area (Angelova et al.,

2014) (Figure 1a). Simultaneous measurement of mitochondrial

(TMRM) and polyP (JC-D8) signals showed that �40% of cellular

polyP resides in mitochondria (here and below coefficient of colocali-

zation is a Mander's X; 0.39 ± 0.08, n = 204 cells; Figure 1a,d). As we

reported previously, the level of polyP in mitochondria is dependent

on the energy state of mitochondria and can be modified within sec-

onds (Pavlov et al., 2010).

3.1.2 | PolyP in lysosomes

We have previously reported that in cultured astrocytes DAPI-polyP

staining partially colocalizes with lysosomes labeled with LysoTracker

Red (Holmstrom et al., 2013). We next labeled polyP with either

DAPI-polyP or JC-D8 and genetically labeled lysosomes using a fusion

FIGURE 2 Localization of inorganic polyphosphate in healthy and stressed astrocytes. (a) Wildtype healthy astrocyte, labeled for lysosomal tetraspanin

CD63 (LAMP-3), fused with red fluorescent probe mKate and labeled for polyP with the JC-D7 indicator. (Ai) colocalization profile of CD63-mKate and
JC-D7. (b) Stressed wildtype astrocyte, expressing CD63-mKate and labeled for polyP with DAPI-polyP. Note the redistribution of the lysosomal signal.
Colocalization of polyP (JC-D8, blue) and lysosomes (LysoTracker Red, red) in cultured astrocytes from Parkinson's disease model LRRK2 knockout,
known to have impaired lysosomal morphology and function, (c,d) histogram depicting the distribution of polyP in lysosomes from wildtype healthy
(black bar), wildtype stressed (red bar) and LRRK2 knockout (blue bar) astrocytes. **p < .001 [Color figure can be viewed at wileyonlinelibrary.com]
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of lysosomal LAMP3 protein with an adenoviral vector AVV-sGFAP-

CD63-mKate.

The number of labeled lysosomes and the localization of polyP in

these organelles were found to be dependent on the cell state and

condition. In cortical astrocytes under normal conditions the number

of lysosomes containing polyP varied between �40% (0.42 ± 0.14,

n = 54 cells for DAPI-polyP/CD63-mKate; Figure 1b) and �20%

(0.19 ± 0.06; n = 62 cells; Figure 1c,d for JC-D7 and CD63-mKate).

We found that the number of labeled vesicles and the appearance

of polyP in lysosomes were dependent on the health (Figure 2a,b1)

and the age of the cells. Aged and starved (see Methods section) corti-

cal astrocytes contained higher number of lysosomes with the same

percentage of them showing colocalization of CD63-mKate with

polyP signal (Figure 2b,c).

Mutations in leucine-rich repeat kinase 2 (LRRK2) are associated

with a familial form of Parkinson's disease. This mutation manifests

with defects in the autophagy/lysosomal degradation pathway

(Hockey et al., 2015; Manzoni & Lewis, 2013). We found that in

LRRK2 knockout mouse cortical astrocytes the percentage of polyP-

containing lysosomes was significantly decreased (Figure 2c,d;

0.19 ± 0.01, n = 51 for wildtype compared to 0.13 ± 0.02, n = 54 for

LRRK2 knockout cultures; p < .001).

3.1.3 | PolyP in glutamate-containing vesicles

It is thought that astrocytes may release glutamate via exocytosis of

VGLUT2-containing vesicles. Transfection of cortical astrocytes with

VGLUT2-eGFP identified VGLUT2-expressing vesicles (Figure 3a–c)

but there was no colocalization of eGFP with either DAPI-polyP or

JC-D7 (n = 113 and n = 143 cells, respectively; Figure 3a–d). These

results indicate that astroglial vesicles which express VGLUT2 do not

contain polyP.

3.1.4 | PolyP in ATP-containing vesicles

PolyP may mediate signaling between astrocytes through activation

of metabotropic P2Y1 receptors (Holmstrom et al., 2013). We next

identified putative ATP-containing vesicles, by transducing astrocytes

to express eGFP-tagged vesicular nucleotide transporter (VNUT)

(eGFP–VNUT) and determined colocalization of eGFP fluorescence

with the polyP marker JC-D8 (Figure 4a). VNUT-containing vesicles

showed high degree of colocalization with JC-D8-polyP signal

(0.9962 ± 0.0038, n = 141 cells; Figure 4a,c). DAPI-polyP fluores-

cence also showed almost complete colocalization with VNUT–eGFP

signal (0.9924 ± 0.0756, n = 151 cells; Figure 4 B, C) suggesting that

in cultured astrocytes most of the VNUT-containing vesicles contain

polyP. Since eGFP fused with VGLUT2 show no colocalization with

both polyP indicators (Figure 3), DAPI-polyP or JC-D8 signals are not

contaminated by eGFP fluorescence.

JC-D8 and DAPI specifically label free polyP and have no selectiv-

ity towards purines, including ATP or ADP (Angelova et al., 2014;

Aschar-Sobbi et al., 2008). To study the functional roles of ATP or

ADP as signaling molecules, enzymatic depletion of ATP or ADP by

phosphatases has been used in a number of studies (Wells et al.,

2015). We have previously demonstrated that transmembrane pros-

tatic acid phosphatase (TMPAP) prevents accumulation of ATP within

the intracellular vesicular compartments (Wells et al., 2015). TMPAP

should in theory also break down polyP and polyP degradation by

TMPAP should be facilitated by the vesicular acidic environment.

Astrocytes transduced to express TMPAP were found to be

FIGURE 3 Lack of localization of polyP to glutamate-containing vesicles (VGLUT2) in astrocytes from mixed primary culture. (a) Fluorescent

image of an astrocyte, transduced to express eGFP–VGLUT2 and labeled with JC-D8. (b) Colocalization image depicting the intensities of
enhanced eGFP–VGLUT2 (green) and polyP indicator JC-D7 (blue). Note lack of colocalization of the two signals. (c) Bar chart quantifying the
colocalization coefficient (Mander's) of polyP and VGLUT signals [Color figure can be viewed at wileyonlinelibrary.com]
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completely devoid of polyP not only within the vesicular compart-

ments but also from mitochondria (Figure 4d,e).

3.2 | Release stimuli for inorganic polyphosphate

3.2.1 | Release of polyP from lysosomes

We next recorded fusion of CD63-expressing lysosomes in cultured

cortical astrocytes using TIRF and confocal microscopy. To avoid

changes in intensity of indicators due to the movement of vesicles

inside the astrocytes but not because of release, in experiments with

confocal microscopy, Z-stacks with detection of polyP and vesicular

indicators were performed. Previously we reported that application of

the calcium ionophore ionomycin induces the release of polyP from

polyP-containing vesicles (Holmstrom et al., 2013). In agreement with

our previous results, application of 5 μM ionomycin induced fusion of

3.5 ± 3.2% of CD63-labeled lysosomes (n = 197 cells; Figure 5a,d).

Considering the strong increase of [Ca2+]i by ionomycin which can

reflect rather pathological conditions, we next applied “mild” electro-

genic calcium ionophore ferutinin (Abramov & Duchen, 2003; Abra-

mov, Zamaraeva, Hagelgans, Azimov, & Krasilnikov, 2001; Zamaraeva

et al., 1997). Ferutinin (30 μM) induced fusion of �25.3 ± 3.6% of

CD63-expressing intracellular compartments (n = 150 cells;

Figure 5d). It should be noted that ferutinin can induce mitochondrial

calcium overload and activate mitochondrial permeability transition

pore, where polyP also play an important role (Abramov & Duchen,

2003; Abramov et al., 2007). Changes of intracellular pH induced by

FIGURE 4 Localization of inorganic polyphosphate to ATP-containing vesicles (expressing VNUT). (a,b) JC-D8 and DAPI-polyP fully colocalize

with eGFP–VNUT signals in cultured astrocytes see summary in (c). (Bi) Colocalization profile of DAPI-polyP and eGFP–VNUT. (d,e) JC-D7 and
DAPI-polyP do not colocalize with the eGFP–TMPAP signal in rat astrocytes [Color figure can be viewed at wileyonlinelibrary.com]
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application of NH4Cl also triggered fusion of a significant proportion

(32.1 ± 5.8%, n = 194 cells) of polyP-containing lysosomes (Figure 5b,

d). In order to further confirm lysosomal localization of polyP we next

applied glycyl-l-phenylalanine-β-naphthylamide (GPN)—a substrate for

lysosomal cathepsin C that can coordinately collapse the lysosomes.

Application of GPN triggered release of polyP into the cytosol that

was recorded as an increase of polyP-JC-D8 fluorescence

(90.5 ± 7.5% n = 244 cells, Figure 5c,d). These data suggest that in

FIGURE 5 Total internal reflection microscopy (TIRF) imaging of lysosomal vesicle polyP release. Representative images (a) and traces (measurement

of polyP in individual vesicles) (A1) depicting partial release of polyP from lysosomes upon application of calcium ionophore ionomycin (1 μM). Partial
lysosomal polyP release upon acidification of the cytosol with NH4Cl (b,b1). (c,c1) Application of glycyl-l-phenylalanine-β-naphthylamide (GPN, 100 μM)
results in the collapse of lysosomes and release of polyP to the cytoplasm (see increase of DAPI-polyP fluorescence (blue) in cytosol). (d) Summary data
showing release of polyP from the lysosomes upon different stimuli [Color figure can be viewed at wileyonlinelibrary.com]
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astrocytes polyP is localized in lysosomes, but only a proportion of

these compartments undergo exocytosis in response to the increases

in intracellular Ca2+.

3.2.2 | Release of polyP from VNUT-containing vesicles

We next determined whether polyP containing VNUT-expressing ves-

icles undergo exocytosis in response to various stimuli. Fast pH

changes induced by application of NH4Cl (alkalization) and washing it

out (acidification) triggered fusion of 88.3 ± 3.9% of polyP-containing

VNUT vesicles (n = 163 cells, Figure 6a,e). Applications of the calcium

ionophores ionomycin (1 μM; n = 251 cells) or ferutinin (30 μM;

n = 215 cells) triggered fusion of almost the entire pool of polyP-

containing VNUT-expressing vesicles (91.7 ± 3.4 and 84.8 ± 8.5%,

respectively, Figure 6b,c,e).

Previously we reported that application of polyP to cortical astro-

cytes induces the release of polyP into the medium (Holmstrom et al.,

2013). Here we found that polyP is released by exocytosis of the

VNUT-containing vesicles (Figure 6b,e) in response to application of

FIGURE 6 Release of polyphosphate from ATP-containing (expressing VNUT) vesicles. TIRF microscopy reveals that various stimuli trigger fusion

of VNUT-expressing vesicles: (a) changes of the intracellular pH upon application of ammonium chloride (NH4Cl induced drop of polyP signal in
vesicles; (b) exogenously applied medium-chain polyphosphate (polyP M); (c,d) ferutinin, an electrogenic calcium ionophore (30 μM).
(e) Quantification histogram depicting release of polyP from the VNUT-containing vesicles upon different stimuli; (f ) release of polyP from VNUT
vesicles in response to short episode of hypoxia [Color figure can be viewed at wileyonlinelibrary.com]
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medium length polyP (20 μM). Application of polyP led to a decrease

in the intensity of the polyP-JC-D8 signal and triggered fusion of

94.3 ± 5.3% of VNUT-containing vesicles (n = 209, Figure 6e). Thus,

in astrocytes VNUT-expressing vesicles represent the main pool of

releasable polyP which participates in signal transduction.

Previously we found that even a short exposure of astrocytes to

hypoxia results in an increase in intracellular calcium (Angelova et al.,

2015). In the present study, a short episode of hypoxia induces the

release of polyP by fusion of VNUT-containing vesicles (n = 39,

Figure 6f ) suggesting that release of polyP from astrocytes may play a

certain role in mediating the physiological response to brain hypoxia.

4 | DISCUSSION

PolyP has been previously shown to be involved in a number of cellu-

lar processes (Angelova, Baev, et al., 2016; Morrissey et al., 2012;

Schroder, Lorenz, Kurz, & Muller, 1999). Accumulation of polyP in cel-

lular organelles and vesicles can indicate a specific signaling function.

In this study, we found that �39% of the total pool of intracellular

polyP in astrocytes is located in mitochondria (Figure 1) where it plays

a role in bioenergetics (Angelova, Baev, et al., 2016; Pavlov et al.,

2010) and calcium handling (Abramov et al., 2007; Baev et al., 2017;

Elustondo et al., 2016). The level of polyP in mitochondria has been

previously shown to be dependent on the metabolic state and the age

of the cells (Pavlov et al., 2010). Astrocytes play a role of metabolic

sensing and metabolic signaling (Marina et al., 2018) and the level of

polyP may play important role in this process as signaling or/and met-

abolic molecule.

Although polyP is localized in 20-40% of astroglial lysosomes

(Figure 2), only a small percentage of these lysosomes undergo exocyto-

sis in response to various stimuli. Lysosomes can elongate the polyP

chain in human fibroblasts and granulocytes (Cowling & Birnboim,

1994; Manzoni & Lewis, 2013; Pisoni & Lindley, 1992). PolyP has been

shown to play an important role in acidocalcisomes (Docampo & Mor-

eno, 2011). Although the presence of these vesicles is in astrocytes is

disputable, eukaryotic acidocalcisomes belong to the group of

lysosome-related organelles. They have a variety of functions, from the

storage of cations and phosphorus to calcium signaling, autophagy,

osmoregulation, blood coagulation, and inflammation (Docampo &

Huang, 2016; Lander, Cordeiro, Huang, & Docampo, 2016)—all pro-

cesses which can be regulating by lysosomal polyP in astrocytes.

The vesicular nucleotide transporter (VNUT) is a secretory vesicle

protein which is responsible for the vesicular packaging of ATP

(Sawada et al., 2008). Previously we and others reported that polyP

could activate metabotropic P2Y1 nucleotide receptors (Dinarvand

et al., 2014; Holmstrom et al., 2013). Here we detected not only

fusion of the VNUT-containing vesicles in response to various stimuli

(Ca2+, pH, and activation of purinoceptors) but, importantly, release of

polyP by exocytosis of these secretory vesicles. PolyP appears to play

a role similar to that of ATP (as energy and signaling molecule), and

here we found that in astrocytes these molecules could be potentially

colocalized within the same intracellular vesicular compartments. At

the moment we are not able to separate the functions which are spe-

cific to polyP and ATP but on the basis of indicator specificity and the

effects induced by application of exogenous polyP can prove polyP

induced polyP release—the signaling cascade which is typical for

astrocytes. In summary, VNUT-containing vesicles appear to be the

prime source of the releasable pool of polyP.

Considering involvement of the interaction of astrocytes and neu-

rons in neurodegenerative, neuropsychiatric, and other neurological

disorders (Angelova & Abramov, 2014; Chiou, Lucassen, Sather, Kal-

lianpur, & Connor, 2018; Liu, Teschemacher, & Kasparov, 2017),

changes in polyP signaling may potentially be involved in the mecha-

nism of pathology in CNS.
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