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The long-wave, reduced-gravity, shallow-water equations (the semi-geostrophic equa-
tions) are used to study the outflow of a river into the ocean. While previous models
have studied dynamics driven by gradients in density, the focus here is on the effects of
potential vorticity anomaly (PVa). The river water is taken to have the same density
as a finite-depth upper layer of oceanic fluid, but the two fluids have different, uniform,
potential vorticities. Under these assumptions, the governing equations reduce to two
first-order, nonlinear PDEs which are integrated numerically for a prescribed efflux of
river water and PVa. Results are found to depend strongly on the sign of the PVa, with
all fluid turning downstream (in the direction of Kelvin wave propagation) when the river
water has positive PVa and anticyclonic flow upstream of the river mouth when the PVa
is negative. In all cases, a nonlinear Kelvin wave propagates at finite speed ahead of the
river water. Away from the river mouth, the uniformity of one set of Riemann invariants
allows for similarity solutions that describe the shape of the outflow, as well as a theory
that predicts properties of the Kelvin wave. A range of behaviours is observed, including
flows that develop shocks and flows that continue to expand offshore. The qualitative
behaviour of the outflow is strongly correlated with the value of a single dimensionless
parameter that expresses the ratio of the speed of the flow driven by the Kelvin wave to
that driven by image vorticity.

1. Introduction

The flow of river water into the ocean transports nutrients, sediment and pollutants
from the land to the sea, and as such the dynamics of coastal outflows is an active area
of study. Field observations have revealed a rich variety of behaviours, with qualitative
differences not only between different rivers but also at the same site during different
seasons (Shetye et al. 1993). It is often the case that outflows drive a coastally-trapped
current of fresh water along the right-hand shoreline (in the Northern hemisphere) fol-
lowing the direction of Kelvin wave propagation (Münchow & Garvine 1993; Simpson
& Hill 1986). A particularly striking case of this rightward flow occurred when a hydro-
electric dam was removed from the Elwha river (Washington, USA) in 2014, releasing a
large amount of silt that was clearly visible in aerial photographs (see figure 1). On the
other hand, it is known that the Chang Jiang (Yangtze) river leaves a large deposit of
brackish water to the left of the river mouth (Wensu 1988), while Shetye et al. (1993)
identify a coastal trapped current in the Bay of Bengal that flows leftward for part of the
year. Laboratory studies of buoyant outflows also observe anticyclonic gyres (or ‘bulges’)
that trap fresh water near the source region (Avicola & Huq 2003; Thomas & Linden
2007; Horner-Devine et al. 2006). This complexity and variation is due to the plethora
of influencing factors (buoyancy, rotation, local geography, tidal currents) and highlights



2 S. Jamshidi and E.R. Johnson

Figure 1: A hydroelectric dam on the Elwha river was removed in 2014, releasing a
large build up of silt into the Strait of Juan De Fuca. Image reproduced by permission
of Tom Roorda.

the importance of theoretical or numerical studies that seek to isolate the contribution
made by each of these.

Garvine (1995) presents a complete classification of river outflows based on a scaling
analysis. They identify the Kelvin number K, the ratio of the current width to the Rossby
radius LR, as the most important parameter, and categorise 12 sets of observational data
based on estimates for K. Outflows with small K are expected to exhibit strong nonlinear
behaviour including internal hydraulic jumps, and form radially-symmetric bulges around
the source mouth. They are thus little-affected by rotation, and are found to occur in
industrial discharges and narrow rivers. Large-scale discharges (K � 1) have relatively
slow flow and are in geostrophic balance. In the analysis below the current width is
scaled on LR, placing the outflow in the intermediate K = O(1) regime – although
Garvine describes examples that exhibit large-scale behaviour when K is as low as 2.

Several models have been used to understand the differences in outflow behaviours.
McCreary et al. (1997) integrate a 1 1

2 layer model with variable density and horizontal
mixing of fresh and salty water, obtaining different qualitative behaviours depending
on the Rossby number and total river transport. In particular, they find that all water
bends to the left or flows directly offshore immediately after leaving the river mouth, and
that only a portion of the total outflow recirculates to eventually propagate rightwards
(hereafter, the direction of Kelvin wave propagation in the Northern hemisphere identi-
fies ‘rightwards’ with downstream). The initial upstream flow (which they note is more
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prominent in their results than in real oceans) is driven by the geostrophic adjustment
of buoyant water.

Both Kubokawa (1991) and Johnson et al. (2017) (JSM hereafter) consider the effects
of potential vorticity anomaly (PVa) on the river outflow by using a model in which the
river water has the same density as a buoyant upper layer of oceanic fluid. If disturbances
to the layer interface are small relative to the total depth of the layer, the problem
can be formulated in terms of the quasi-geostrophic equations. If all fluid is stationary
initially, and the source is impulsively switched on at t = 0, one can interpret this quasi-
geostrophic limit as requiring an asymptotically small difference between the depth of the
river mouth and the depth of the buoyant upper layer. In Kubokawa (1991), the outflow
is split between fluids of two different PVs. Part of the outflow has the same PV as the
upper oceanic layer, and the remainder has a lower PV. Possible flows are split into three
distinct classes depending on the total volume and PV distribution of the outflow, these
being a steady coastal current, a widening current and an anticyclonic gyre mode. The
river outflow in JSM is of uniform PV, and solutions are found to depend on the sign of
the PV anomaly (PVa, the difference between the river PV and the PV of the buoyant
ocean layer). Using numerical simulations (as well as analytic results when a long-wave
assumption is imposed in addition to quasi-geostrophy) they find that all the river water
travels downstream when the oceanic layer is deeper than the source (positive PVa, vortex
stretching) while fluid travels in both directions if the oceanic layer is shallower than the
source (negative PVa, vortex squashing). This identifies two mechanisms that drive the
flow: flow driven downstream by a Kelvin wave and flow driven by image vorticity. The
vortical flow is caused by the PV jump and, depending on the sign of the PVa, can drive
fluid in either direction. In fact Johnson & McDonald (2006) showed that if the flow is
completely dominated by image vorticity, it is possible to send all the expelled fluid to
the left. In this limiting case, the vortical current has width Lv = (Q0/|Π0|Hs)

1/2, where
Q0 is the total flux from the source, Π0 is the PVa and Hs is the depth of the source.

Here, we present work that extends the uniform PV model of JSM by considering
situations where the quasi-geostrophic approximation is no longer valid. That is, the dif-
ference between the initial upper-layer depth and the PV depth of the river water can be
of arbitrary magnitude. Theoretical progress relies on invoking a long-wave assumption
– that variations in the along-shore direction occur over a larger scale than those in the
off-shore direction. This results in a semi-geostrophic (alongshore only) set of equations,
which have been used previously for studying similar problems involving uniform PV,
including hydraulic problems (Gill 1977) and coastal currents (Stern 1980; Stern et al.
1982; Kubokawa & Hanawa 1984a; Stern & Helfrich 2002). The boundary of these cur-
rents can be completely described by similarity solutions that relate the current width
to the velocity at the current edge. Similar ideas are applicable for the present set-up,
in regimes where the flow evolves to become steady. These steady flows can be matched
with unsteady coastal currents away from the source region, and thus it is possible to
develop a full theory for the flow behaviour that depends only on the non-dimensional
mass flux Q0 and the outer-layer depth H.

The model developed below is probably too simple to make quantitative comparisons
with data from real coastal outflows. In particular, it ignores density differences between
the river water and the active ambient fluid. The model is designed to highlight the
interaction between Kelvin-wave flow and vorticity dynamics, and direct application to
the outflow problem is most appropriate in cases where these are the dominant dynamical
features or in flows where entrainment is confined to the head of the current, as in the
(non-rotating) experiments of Sher & Woods (2017).

Section 2 briefly derives the semi-geostrophic model from the rotating shallow-water
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equations. Section 3 gives numerical results and a complete theory for positive PVa.
Section 4 presents numerical and theoretical results for negative PVa, and section 5 gives
a brief comparison to oceanographic observations and laboratory experiments, as well as
further discussion of the limitations of the model.

2. Semi-geostrophic theory

Consider a layer of buoyant fluid with dimensional depth H∗ lying above an infinitely
deep, inactive layer, with the whole system rotating about a vertical axis Oz at constant
angular speed f/2 > 0, where Oxyz are Cartesian axes fixed in the fluid. The fluid lies
in y > 0, with the coast at y = 0 a solid vertical boundary. At time t = 0, a coastal
source lying between −L0 < x < L0 is switched on. The fluid expelled by the source is of
the same density of the active layer, but has a different PV. A schematic of this set-up
is shown in figure 2. The active layer is taken to be sufficiently shallow to be governed
by the reduced-gravity rotating shallow-water equations, which in non-dimensional form
are:
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+ u

∂u
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∂u
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∂x
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where h is the depth of the active layer, and u and v are the along-shore and off-shore
velocities respectively. Here x has been non-dimensionalised with L0 (so that the source
lies in |x| < 1), y with the Rossby radius for the source fluid LR =

√
g′Hs/f , velocities

u and v with
√
g′Hs and

√
g′Hs(LR/L0) respectively, h with Hs (the source depth) and

t with the advective time-scale L0/
√
g′Hs, where g′ is the reduced gravity for the upper

layer.

Taking the limit LR/L0 → 0 gives the semi-geostrophic or long-wave equations, and
requires that the flow is slowly varying in the x direction, or that the river mouth is wide
relative to the Rossby radius. The semi-geostrophic equations can in fact still be valid
when variations in x are fast (for example, in the region of a shock) provided the off-
shore velocity v � u (Kubokawa & Hanawa 1984b). The long-wave assumption requires
further justification in the source region, especially at early times when v and u are of
the same order, and the x and y scales are similar. Strong support for the use of this
scaling comes from JSM, where they find excellent agreement between their long-wave
theory and contour-dynamic simulations of the full QG problem, even in simulations
where fluid is expelled from a point source (their figures 11-13). Discrepancies do exist in
the source region, but it appears that the long-wave scaling does not affect the qualitative
behaviour of the outflow, including the strength of the upstream propagation in outflows
with negative PVa.

A standard manipulation of equations (2.1) - (2.3) shows that the PV

q =
1− ∂u/∂y + (LR/L0)2∂v/∂x

h
(2.4)

is conserved by fluid parcels (Stern 1980). Taking the limit LR/L0 → 0 and substituting
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Figure 2: Fluid is expelled from a coastal source of depth Hs located at |x| < L0, y = 0.
The oceanic fluid in y > 0 initially consists of a lighter layer (with the same density as
the expelled fluid) of dimensional depth H∗ lying over a deep, denser, inactive layer.

(2.2) gives the field equation for h,

∂2h

∂y2
− qh+ 1 = 0. (2.5)

The ambient outer layer begins at rest with non-dimensional depth H and so has PV
qout = 1/H and, by scaling h with the depth of the river mouth Hs, the expelled fluid
has PV qin = 1. Thus H > 1 corresponds to positive PVa, and H < 1 to negative PVa.
In the scenario described here, where a source of uniform depth is turned on at t = 0,
the choice of uniform PV would seem to be completely natural. This restriction on the
river mouth geometry is not necessary for the outflow to have uniform PV. One could
instead consider flow from a wide, deep upstream reservoir as in Gill (1977) where Hs

is the potential vorticity depth of the river water. In either case, the use of piecewise-
constant PV is a necessary simplification required to solve (2.5) and make analytical
progress. Although real outflows probably have non-constant PV, uniform models have
been used to provide a theoretical framework for understanding large-scale ocean flows
(Stern 1980; Kubokawa 1991; Helfrich et al. 1999, for example) and this simplification
has also been used successfully to describe laboratory experiments that simulate coastal
outflows (Thomas & Linden 2007; Gregorio et al. 2011).

The Rossby number of the flow can be defined, following Clarke & Johnson (1999), as

Ro =

∣∣∣∣H∗ −Hs

Hs

∣∣∣∣ = |H − 1|, (2.6)

that is, the ratio of the PVa and background PV. Note that this is also the fractional
depth change between the outflow and the ambient layer, and thus the limit Ro → 0
recovers quasi-geostrophic flow.

Provided it does not overturn, the boundary of the expelled fluid can be described as
a single-valued function y = w(x, t) and the field equation (2.5) can be solved separately
in the river water and the ambient to obtain

h =

{
H +

√
HUe(w−y)/

√
H y > w(x, t)

1 +
(
H − 1 +

√
HU

)
cosh (w − y) + U sinh (w − y) 0 < y < w(x, t).

(2.7)

The solutions (2.7) are constructed so that h and u are continuous at y = w, which is
equivalent to requiring a continuous pressure in the fluid and enforcing the kinematic
boundary condition. The problem is now reduced to finding w(x, t), along with the speed



6 S. Jamshidi and E.R. Johnson

at the current edge U(x, t) = u(x,w, t), from which the full velocity and depth profiles
can be reconstructed.

Other quantities that appear in the calculations below are the layer depths at the wall
and the current edge, and the fluid velocity at the wall. These are given by:

hW = h(x, 0, t) = 1 + (H − 1 +
√
HU) cosh (w) + U sinh (w), (2.8)

he = h(x,w, t) = H +
√
HU, (2.9)

uW = u(x, 0, t) = U cosh (w) + (H +
√
HU − 1) sinh (w). (2.10)

The mass flux of oceanic fluid at a station x is given by∫ ∞
w

uh dy =
h2

2

∣∣∣∣w
∞

=
h2e
2
− H2

2
, (2.11)

so that the flux of ocean fluid is downstream only if he > H which, by (2.9), is only true
if U > 0. It is shown below that all outflows have U ≥ 0, and so if there is net transport
of oceanic fluid this is always from upstream of the source to downstream. Along with
(2.7), this also implies that all currents in the oceanic fluid are unidirectional.

Stern (1980) notes that, from (2.3), the y-derivative of the alongshore momentum
equation (2.1) vanishes, and so the latter needs to be satisfied at one y-value only. For
the outflow problem here, U and w can thus be found by solving (2.1) at the current
edge subject to an integrated form of mass conservation (2.3), i.e.

∂U

∂t
+ U

∂U

∂x
+
√
H
∂U

∂x
− ∂w

∂t
= 0 (2.12)

∂

∂t

∫ w

0

h dy +H

(
∂U

∂t
− ∂w

∂t

)
+ hW

∂hW

∂x
= Q′(x) (2.13)

where∫ w

0

h dy = (H − 1) sinh (w) + w + U
(
−1 + cosh (w) +

√
H sinh (w)

)
. (2.14)

Here, Q(x) is a monotonic-increasing function that gives the (steady) cumulative vol-
ume flux from the river mouth for t > 0 through∫ x

−1
vh|y=0 dx′ = Q(x) (2.15)

so that the total mass flux from the source is Q0 = Q(1) which, along with H, is a key
physical parameter for the flow. The no-flux boundary condition at the coast can be
applied by extending Q(x) to take values zero and Q0 in x < −1 and x > 1 respectively.
The long-term evolution of the current away from the source region is found below to
depend on Q(x) only through the total mass flux Q0, and so for simplicity all examples
presented here use the linear profile Q(x) = (Q0/2)(x+ 1) in |x| < 1. The theory below
classifies the qualitative behaviour of the outflow in terms of the two parameters Q0

and H, and so applies to any steady volume flux profile Q(x), including those resulting
from a critically controlled outflow. Results presented here can also be easily extended
to unsteady outflows, and an analysis of such changes is explored in more detail for the
quasi-geostrophic limit in Southwick et al. (2017).

2.1. Constants of motion

Benjamin & Lighthill (1954) describe trains of steadily-translating long gravity waves
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using three constants of motion: volume flux, alongshore momentum flux, and total en-
ergy. The volume flux of river water is simply the parameter Q0, and similar expressions
for the momentum flux and total energy can also be derived.

Multiplying the x-momentum equation (2.1) by h, the mass conservation equation
(2.3) by u, taking the sum of these and integrating from y = 0 to y =∞ gives

∂

∂t

∫ ∞
0

uh dy +
∂

∂x

∫ ∞
0

(
hu2 +

h2

2

)
dy − uWhWvW =

∫ ∞
0

vh dy. (2.16)

(Note that these terms are bounded because the fluid is stagnant as y →∞.) The right
hand side of (2.16) can be computed by multiplying (2.3) by y and integrating:∫ ∞

0

vh dy =
∂

∂t

∫ ∞
0

yh dy +
∂

∂x

∫ ∞
0

yuh dy (2.17)

so that (2.16) becomes

∂I

∂t
+
∂S

∂x
= uWhWvW, (2.18)

where

I =

∫ ∞
0

(u− y)h dy, S =

∫ ∞
0

(
hu(u− y) +

h2

2

)
dy (2.19)

are the along-wall impulse and the flow force respectively. The quantity uWhWvW is the
downstream momentum input at the wall, and vanishes away from the source region.
The total downstream momentum added across the source in steady flow is thus

S0 =

∫ 1

−1
uWQ

′(x) dx =

∫ Q0

0

uW dQ, (2.20)

giving a second constant of the motion. The momentum input term is discussed in greater
deal for QG flow in Southwick et al. (2017), where its presence is shown to resolve the
momentum imbalance paradox of Pichevin & Nof (1997).

In steady flow, (2.3) allows a volume-flux streamfunction ψ to be defined such that
vh = ψx and uh = −ψy. The x-momentum equation (2.1) can be integrated once in x to
give

u2

2
− ψ + h = R. (2.21)

Since the y-derivative of (2.1) vanishes, R is constant throughout the flow, providing a
third constant of motion for steady flow that can be found by evaluating (2.21) at the
wall, where ψ = Q.

2.2. Vortical and Kelvin-wave driven flow

There are two principal mechanisms that drive the outflow, and it is instructive to see
how their relative strengths affect the behaviour of solutions.

The first of these mechanisms is flow driven by a Kelvin wave, which propagates faster
than the river water and thus transports both river and oceanic fluid (Helfrich et al.
1999; Helfrich 2006). To isolate the effects of this wave, consider the zero-PVa problem
(that is, with H = 1). The expression for the layer depth is now

h = 1 +B(x, t)e−y (2.22)

where B satisfies the x-momentum equation (2.1) at the wall,

∂B

∂t
+ (1 +B)

∂B

∂x
= Q′(x). (2.23)
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This is the forced Hopf equation, which can be solved explicitly using the method of
characteristics, and gives rise to a current that expands offshore and heads downstream,
moving with speed uKW = −1 +

√
(1 + 2Q0) at the wall. This is referred to hereafter

as the Kelvin-wave flow. Non-trivial solutions of the homogeneous Hopf equation always
develop shocks, which occur in the present problem in the oceanic (rather than river)
water at the leading edge of the Kelvin-wave flow. These shocks are discussed in greater
detail in §3.5.

The other effect that drives the flow is image vorticity. Vortical columns expelled by
the source stretch or squash as they adjust to match the depth of the oceanic layer, and
this drives a change in relative vorticity, which in turn acts to send fluid downstream
(vortex stretching, positive PVa) or upstream (vortex squashing, negative PVa). This
effect can be isolated by considering the limiting case of rotating fluid ejected into a non-
rotating background, and it is shown in Johnson & McDonald (2006) that the velocity
of the current at the wall is uV = ±

√
(Q0|H − 1|/H) where the sign depends on the sign

of the PVa. Thus, for positive PVa both the vortical and Kelvin-wave effects drive fluid
downstream, and the dynamics are reinforcing, while for negative PVa the dynamics are
opposing.

The relative strengths of these two effects can be measured by the ratio between the
two speeds:

a =
|uV|
uKW

=

√
Q0|H − 1|

−
√
H +

√
H(1 + 2Q0)

. (2.24)

When the jump in PV is small, and the flow is quasi-geostrophic, JSM found that solu-
tions can be fully characterised by the value of a and the sign of the PVa, and one of
the main goals of the present work is to assess to what extent a can be used to cate-
gorise solutions to the semi-geostrophic problem at larger values of Ro. It is expected,
and shown below, that the results here reduce to those of JSM in the limit Ro→ 0 and
Q0 → 0, with a ∼

√
(Ro/Q0) fixed. In this limit, a can also be identified as the ratio

of the Rossby radius LR to the vortical width LV =
√

(Q0H/|H − 1|) (the width of the
vortical current). The two interpretations are interchangeable in the quasi-geostrophic
limit, but for Ro = O(1) the definition (2.24) in terms of speed is more instructive.

Note that the choice of LR for horizontal length scales ensures that the length over
which the Kelvin wave decays is O(1), while vortical currents can be of arbitrary width.
On the other hand, JSM scale horizontal lengths on LV, thus keeping the vortical current
width at O(1) and allowing the Kelvin wave decay scale to be arbitrarily small as a→ 0.
Anticipating the importance of a in determining the behaviour of the flow, we will briefly
outline some results from the quasi-geostrophic limit.

When a < 1, the Kelvin wave-driven flow is dominant: |uV| < uKW and LR < LV. For
positive PVa, the Kelvin wave pulls ahead of the vortical flow, vortical turning is weak
at the nose of the fluid and the outflow boundary joins smoothly to the coast. Depth
perturbations decay quickly away from the wall before vortical effects can take hold.
For negative PVa, the weak vortical flow is not sufficient to counteract the Kelvin wave,
and the solution expands indefinitely away from the coast, with fluid spreading up and
downstream.

When a > 1, vorticity dynamics dominate the outflow: |uV| > uKW and LR > LV.
For positive PVa, vortex turning affects fluid closer to the wall, causing the current to
overturn and a shock to form. As a increases further, this happens over a shorter and
shorter scale until, for a = am ≈ 1.868, the vortical current manages to adjust to the
far-field condition within the expelled fluid and there is no disturbance in the oceanic
fluid y > w. In this case, the solution downstream is a current of constant width and
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no transport around the edge. For negative PVa, the relatively stronger vortical flow
balances the Kelvin wave and the flow is steady in the source region.

3. Outflows with positive PVa

3.1. Numerical results

Having now reduced the problem to two nonlinear PDEs (2.12) and (2.13) in x and t,
solutions can be obtained numerically. Starting from the initial conditions U = w = 0,
the equations are integrated away from t = 0 using the Lax-Wendroff method with a
nonlinear smoothing filter (Engquist et al. 1989) to prevent overshoot in the region of a
shock. To ensure that the numerical scheme explicitly preserves mass and momentum,
the equations are solved in conservation form, i.e

∂

∂t

(
φ1
φ2

)
+
∂

∂x

(
U2/2 +

√
HU

h2W/2

)
=

(
0

Q′(x)

)
, (3.1)

where

φ1 = U − w, φ2 =

∫ w

0

h dy +H(U − w). (3.2)

This presents some difficulty, since the flux functions in (3.1) cannot be written explicitly
in terms of φ1 and φ2, and so U and w must be extracted at each grid-point and each
time step. This is done via Newton’s method, using as an initial guess the values of the
solution at the previous time-step. Applying homogenous Neumann boundary conditions
at the upstream end of the spatial domain increases stability. Runs are conducted with
grid spaces of ∆t = 0.01 or 0.005, and ∆x ≈ 0.03 as increasing the resolution further
made no noticeable difference.

Figure 3 shows numerically computed w for two different sets of parameters, with
each subplot showing the solution at several times. Figure 4 shows w, U and contours of
h−H for a third set of parameters. In all plots, the source region is marked by vertical
dotted lines, and theoretical results derived below below are shown dashed. From the two
functions w and U , the depth and velocity profile at any point can be computed using
(2.7).

In all solutions with positive PVa, a steady current forms across the source region. This
current width increases monotonically across the source, and the fluid at the current edge
has zero velocity, so the outer layer is undisturbed in regions where the flow is steady.
Numerical results agree excellently with the theory (heavy dashed curve, red online)
presented in §3.2. Once the steady solution reaches all the way across the source, a
steady current of constant width propagates downstream.

Downstream of the steady region, the current narrows and the velocity around the
edge increases according to a similarity solution discussed in §3.3. The parameters are
chosen to illustrate the range of possible behaviours and, as in JSM, these correlate with
the value of the speed ratio a. For small a, as in figure 3(a), the flow is dominated by
the Kelvin wave and the downstream current joins smoothly to the wall. For larger a,
as in figures 3(b) and 4(a), vorticity is stronger and the current terminates in a shock.
The width of the shock increases monotonically, until it reaches a maximum value that
is set by the flow parameters. If a is large enough, and vortical effects are strongly
dominant, this maximum value can be the same as the width of the steady current at
the downstream edge of the source region, in which case there is no rarefaction and the
solution after a finite time is a ‘blunt-headed current’ (c.f. Figure 3(b)).

In regions where w = 0, the governing equations are still valid but U is now to be
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Figure 3: The off-shore extent of the expelled fluid, y = w(x, t), for flows with positive
PV anomaly. (a) Q0 = 1, Ro = 0.3 and hence a = 0.66 (Kelvin-wave dominated flow) at
t = 5, 10, 25, 40. (b) Q0 = 0.4, Ro = 1 and a = 1.31 (vortically-dominated flow) at
t = 5, 10, 40, 60. Vertical dotted lines mark the source region, and the dashed curve (red
online) is the steady profile wsp computed in §3.2.

interpreted as the velocity at the wall, and the layer depth decays exponentially away
from the coast like U exp (−y/

√
H). At all times and for all parameters, a nonlinear

Kelvin wave propagates ahead of the expelled fluid. That is, U > 0 in some region where
w = 0. The effects of this are most clearly seen in the contour plot of figure 4(c) – the
river water (shaded) has reached x = 4, but the wall depth is increased by 0.25 over the
region 4 < x < 16, an interfacial disturbance travelling in the oceanic fluid ahead of the
river water. In the quasi-geostrophic limit, the Kelvin wave travels at infinite speed in
the outer layer and so is not seen explicitly in the solutions – although it still induces a
flow of finite velocity in the river water. Moving away from the quasi-geostrophic limit
and permitting arbitrary values of H changes the scale to one where the Kelvin wave is
clearly visible, and information propagates at finite speed in both the river fluid and the
oceanic layer. This Kelvin wave is discussed in detail in §3.5.

3.2. Analysis across the source region

Since the PVa is positive, the image vorticity and the Kelvin wave both drive the flow
downstream. System (2.12), (2.13) has two eigenvalues, λR and λC, with λR ≤ λC always
(see Appendix A for more details). Kubokawa & Hanawa (1984a) note that λC is a
nonlinear coastal wave, and that λR is associated with disturbances at the current edge
– across which the density jump from their model has been replaced by a PV jump in
the present work.

When w = U = 0, one can show that λR = 0 and λC =
√
H. Thus, characteristics

λR that start in x < −1 are unable to reach the source region. Further, it is impossible
to satisfy λC = 0 or λR = 0 when U > 0 and H > 1 and so the flow is supercritical
everywhere in x > −1, with no information able to propagate upstream.
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Figure 4: Outflow with positive PVa, Q0 = 0.4, Ro = 0.5 and hence a = 1.07. (a) The
current width w and (b) the edge velocity U are shown at times t = 4, 9, 12, 40. The
thick dashed curve (red online) in (a) gives the steady profile wsp, and thin dashed lines
correspond to predictions from the theory of §§3.3-3.5. (c) Contours of h−H,
perturbations to the depth of the upper layer at t = 12. The thick curve gives w at the
same time, thus the shaded region is the extent of the expelled fluid.

Since the characteristic speed λR vanishes at x = −1 and long-wave disturbances are
stationary here, this is the control point for the steady flow that forms across the source
region. The flow matches smoothly to the undisturbed outer layer at x = −1, where
w = U = 0.

Solving the steady versions of (2.12) and (2.13) gives

U = c1,

hW =
√

2Q(x) + c2, (3.3)

where c1 and c2 are constants of integration determined by the requirement that U and
hW are continuous at x = −1 to be 0 and H2 respectively. Downstream, the dimensional
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Figure 5: The width of the steady current wD downstream of the source, as a function
of the total mass flux Q0, for various values of the Rossby number Ro.

depth of the current at the wall is therefore

h∗ =

√
2Q∗f

g′
+H∗2 (3.4)

where Q∗ and H∗ are the (dimensional) mass flux and outer-layer depth respectively.
The relationship (3.4) can be derived from a simple quasi-geostrophic scaling argument
when H = 0 (Chant 2011, p. 218).

Solving (2.8) for w provides the steady solution

wsp(Q) = acosh

(√
2Q+H2 − 1

H − 1

)
, (3.5)

which is valid exactly when H > 1. The steady solution wsp is shown as a dashed curve
(red online) in figure 3 and 4(a). Agreement with the numerical results is excellent in all
cases. The steady current depends on x only parametrically through Q, and hence the
downstream current width wD = wsp(Q0) does not depend on the specific form of the
outflow velocity. In the quasi-geostrophic limit, Ro → 0 and Q0 → 0 with a2 = Ro/Q0

fixed,

wD ∼ log
(

1 + 1/a2 +
√

1/a4 + 2/a2
)

+O(Ro) as Ro→ 0, (3.6)

as in (3.9) of JSM, up to the use of LV, the vortex width, as the characteristic length for
y.

The downstream width of the steady solution wD is shown as a function of Q0 and
H in figure 5. Since the steady solution always has U = 0, the river water completely
adjusts to the upper layer depth over the vortex scale LV in the source region. Large Q0

– which corresponds to small a and large LV – thus gives rise to a wider current (growing
logarithmically as Q0 →∞), while large Ro gives small LV and a narrow current as the
vortical turning happens closer to the wall. Because w is scaled by the Rossby radius
LR, the non-dimensional width of the steady current is equal to the Kelvin number K,
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Figure 6: Momentum added by the source, S0, as a function of Q0 and Ro for positive
PVa.

following Garvine (1995). Figure 5 shows that K > 1 in most flows and so and the
outflow behaviour is of the ‘large scale’ type, i.e. significantly affected by rotation and
geostrophically balanced.

The downstream constants of momentum and energy S0 and R can also be computed
for steady solutions. From (2.20) and (2.10):

S0 =

∫ Q0

0

(H − 1)
√
θ2 − 1 dQ, (3.7)

where θ = cosh (wsp) so that, from (3.5),

(H − 1)
√
θ2 − 1 =

√
2
√

(H +Q−
√

(H2 + 2Q)) = uW. (3.8)

Analysis of the integral in (3.7) shows that S0 grows like Q
3/2
0 as Q0 →∞. Curves of S0

for various parameter values are plotted in figure 6.
The total energy budget R in the steady current is, from (2.21) and (3.8),

R =
u2W
2
−Q+ hW = H, (3.9)

as expected to match with the outer layer at x = −1.

3.3. Downstream solution

Away from the source region the governing equations are unforced, and hence possess
two Riemann invariants, i.e. there exist functions RC/R(w,U) such that

d

dt
RC/R(w,U) = 0 on

dx

dt
= λC/R. (3.10)

Thus RC/R are constant on each characteristic, with that constant determined by the
values of w and U at the time when a given characteristic leaves the source region.
For this system, the Riemann invariants cannot be found analytically and are obtained
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instead by solving the equivalent problem

dU

dw
= αC/R(w,U) on

dx

dt
= λC/R (3.11)

as in Helfrich (2006). The functions αC/R are found by diagonalising the system (2.12)-
(2.13), and are given explicitly in Appendix A. The initial conditions for integrating
(3.11) along a particular characteristic are given by the values of w and U at the point
when that characteristic leaves the source region. In particular, once the steady solution
reaches the downstream edge of the source region, the values of w and U are fixed and
so all integrations start with the same conditions – the Riemann invariants are uniform.

The uniformity of one Riemann invariant is used in Stern & Helfrich (2002) to build
similarity solutions U(w) and describe the propagation of a coastal current with negative
PVa. The same approach is applied here, whilst noting that uniform Riemann invariants
only occur once the steady solution has been completely set up, and so the similarity
solution is only valid after a finite time.

Immediately downstream of x = 1 both Riemann invariants are uniform. Here, there
are two universal relationships RC/R(w,U) = mC/R and so the only continuous solution
has w = wD and U = 0 (visible at late times in figures 3 and 4). The region of two
uniform invariants is led by the slower characteristic λR, and so the speed at which the
constant-width current spreads can be calculated by setting w = wD and U = 0 in λR.
Downstream of this constant-width region, only the λC characteristic is determined by
the steady values of w and U and so only the RC invariant is uniform. The similarity
solution U(w) can thus be found by integrating (3.11) away from the initial conditions
U = 0, w = wD until the point w = 0, where we define U(w = 0) = Unose. Similarity
solutions for various source fluxes are shown for Ro = 0.5 and Ro = 2 in figure 7. The
solutions are all rarefactions (also called wedge intrusions or expansion waves) since they
all have the property that U increases as w decreases. Rarefaction solutions have been
previously described for coastal currents driven by PV jumps in Helfrich (2006) and JSM.

3.3.1. Termination of the rarefaction

In regions where the similarity solution applies, the slope of the λR characteristics –
those on which the Riemann invariant RR is not uniform – can be computed as a function
of w only. This is done for various parameter values in figure 8.

Since the solution grows monotonically in the source region, characteristics with larger
values of w leave the source later. Shocks form after a finite time if λR is not a monotonic
decreasing function of w, since characteristics with larger dx/dt catch those with smaller
dx/dt. Differentiating the characteristic speed with respect to w and evaluating at the
wall gives

dλR
dw

∣∣∣∣
w=0

=
∂λR
∂w

+
∂λR
∂U

dU

dw

∣∣∣∣
w=0

= H − 1 +
H − 2√
H

Unose (3.12)

A shock develops if (3.12) is positive. This occurs either if H ≥ 2, or if

Unose <

√
H(H − 1)

2−H
(3.13)

and 1 < H < 2. For large Rossby number (H > 2) a shock always forms, while for
moderate or small Rossby number a shock forms only if the vortical current overturns
at the wall and the nose velocity is sufficiently small. From the plots of Unose shown in
figure 10, a slow nose velocity corresponds to smaller Q0 (and bigger a) and so, as in the
quasi-geostrophic limit, vortically dominated flows are more likely to develop a shock.
The dashed curve in figure 8(a)(iv) is the only one presented that does not develop a



Outflows into a layer of arbitrary depth 15

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

Q
0 =
0.3,a =

1.19

Q
0 =
0.6,a
=
0.93

Q
0
=
1,a
=
0.79

w

U

0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

Q
0 =
0.3,a =

1.68

Q
0 =
0.6,a
=
1.31

Q
0
=
1,a
=
1.12

w

(a) Ro= 0.5 (b) Ro= 2

Figure 7: The velocity U at the edge of the expelled fluid, as a function of the width w,
in the unsteady downstream rarefactions that lead the outflow. (a) Ro = 0.5, (b)
Ro = 2. These relationships are valid once the steady solution has been been set up
across the source region.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

(i)

(ii)
(iii)

(iv)

w
0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

(i)
(ii) (iii)

(iv)

w

�F

(a) Ro= 0.3

(i) Q0 = 0.01, a = 4.83

(ii) Q0 = 0.2, a = 1.17

(iii) Q0 = 5, a = 0.82

(iv) Q0 = 1, a = 0.67

(b) Ro= 1

(i) Q0 = 0.2, a = 1.73

(ii) Q0 = 0.5, a = 1.20

(iii) Q0 = 1, a = 0.97

(iv) Q0 = 2, a = 0.81
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without a marker develop shocks that increase in width until w = wD (a ‘blunt
current’).
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shock – note that it has the smallest a of all solutions shown. The values of Q0 beneath
which a shock forms are marked on curves with 1 < H < 2 in figure 10 below.

If no shock forms then the rarefaction is propagated by the λR characteristic, which
reduce to λR = U when w = 0. The expelled fluid thus travels along the wall with
velocity Unose and the fluid velocity is equal to the propagation velocity. If, on the other
hand, a shock does form then, applying conservation of mass moving at the shock speed
V gives ∫ w

0

(u− V )h dy = 0 (3.14)

or

V =

(
1 + (−1 +H +

√
HU) coshw + U sinhw

)2
− (H +

√
HU)2

2(w − U + U coshw + (−1 +H +
√
HU) sinhw)

(3.15)

where U and w are evaluated just behind the shock.

Because shocks form after a finite time, jumps in w and U are initially small and
increase in magnitude until one of two things happens. If the shock velocity V becomes
equal to the characteristic speed λR, then at this point the shock and characteristic are
tangential in the (x, t) plane and no more information can enter the shock. That is, there
exists some value wM such that λR(wM , U(wM )) = V (wM , U(wM )). The solution is thus
a rarefaction terminating in a shock, where the width of the shock approaches wM as
t → ∞. The circular markers on characteristic curves in figure 8 indicate the value of
wM for that particular Q0 and H. An example of such a solution is displayed in figure
4(a), where the value of wM is marked as a horizontal dashed line. Alternatively, the
characteristic speed λR can be greater than V for all 0 < w < wD. In this case, the
shock keeps expanding until the maximum width of the current is reached, as seen in
figure 3(b) where at late times the solution is simply a blunt current of width wD. This
situation occurs when vortical effects are dominant and a is large, as in the unmarked
solid curves of figure 8. Note that a full-width shock will only develop if λR(wD) is greater
than V (wD, 0), so the qualitative behaviour of the solution as t→∞ can be determined
by comparing these two values.

3.4. Interpretation in terms of the speed ratio a

From §3.3, the qualitative behaviour of outflows can be categorised according to the
form of the downstream current as: a rarefaction joining smoothly to the wall, a rarefac-
tion terminating in a shock, or a blunt current. The space of parameters (Q0, H) can
be divided into three regions, the boundaries of which can be computed efficiently by
integrating the Riemann ODE (3.11) and then applying the two tests described above to
determine whether a shock forms and, if it does, whether the maximum jump magnitude
is less than wD.

Figure 9 compares the numerically-determined boundaries of these regions (numbered
one, two and three respectively) with contours of a, to illustrate the extent to which
the flow behaviour depends on Q0 and H independently or whether, as in the quasi-
geostrophic limit, the value of a alone is sufficient to categorise the solution. In the
quasi-geostrophic limit (inset) the region boundaries coincide precisely with the contours
a = 1 and a = am ≈ 1.87 given in JSM. For larger Ro and Q0, however, the region
boundaries deviate from these values of a, although the progression from no shock to
partial-width shock and full-width shock with increasing a remains.
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Figure 9: For positive PVa, the (Q0, Ro) parameter space is divided into three regions
(marked by thick lines, red online). Solution type one joins smoothly to the wall,
solution type two is a rarefaction terminating in a shock, and solution type three is a
full-width shock. Also shown are contours of the speed ratio a. The inset details the
behaviour in the quasi-geostrophic limit.

3.5. Disturbance in the oceanic fluid

On the long-wave scale, the solution depends on x through U and w alone. Information
from the expelled fluid travels directly offshore into the oceanic fluid. This is at odds
with, for example, the shallow-water numerical results of Helfrich (2006) (their figure
10) which shows waves that break ‘backwards’, and is a limitation of the long-wave
assumption made here. From (2.7), this also means that regions where U = 0 do not
disturb the oceanic fluid – as shown in figure 4(c).
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Figure 10: Nose speed for various Ro as a function of the source mass flux Q0. The
‘nose speed’ refers to the along-wall velocity of fluid in the Kelvin wave that propagates
ahead of the river water. Circles mark the value of Q0 below which a shock forms in the
expelled fluid, and curves without circles always form a shock. Also shown (dashed) is
the wall velocity of the zero PVa solution.

The similarity solutions obtained by integrating (3.11) give Unose – the value of U at
the point where w = 0, i.e. the fluid velocity at the leading edge of the expelled fluid. The
horizontal dashed line in figure 4(b) marks the predicted value of Unose, and the figure
also indicates that U = Unose in front of the expelled fluid, and thus that Unose is the
coastal velocity of the Kelvin wave that travels ahead of the river water. This follows by
noting that the similarity solution is valid anywhere that the RC Riemann invariant is
uniform – that is, at any point in the (x, t)-plane occupied by a λC characteristic that left
the source region after the steady solution was set up. In particular, this region extends
beyond the nose of the river water and into the oceanic fluid. As discussed below, this
then creates a shock in the oceanic fluid (the Kelvin wave shock) and so all remnants
of the initial conditions are erased with, at late times, RC uniform everywhere that the
fluid is disturbed. Note also that in vorticity-dominated flows where a shock develops in
the river water, this is through the collision of λR characteristics and so RC is conserved
across the shock (El 2005). The similarity solution thus remains valid at the nose of river
water, and U = Unose ahead of the expelled fluid. Curves showing Unose as a function of
the total mass flux are presented in figure 10 for various Ro, along with the speed of the
Kelvin wave-driven flow uKW (dashed).

The motion in the oceanic fluid ahead of the river fluid is governed by (2.12) with
w = 0,

∂U

∂t
+ (U +

√
H)

∂U

∂x
= 0 (3.16)

(c.f. the zero-PVa equation (2.23)). The propagation speed ahead of the river water is
therefore the sum of

√
H, the non-dimensional speed of the linear Kelvin wave, and a

nonlinear advection at speed U . For a fixed volume flux Q0 increasing the oceanic layer
depth, and so increasing Ro, corresponds to lower fluid velocity U . This decrease in U
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dominates the increase in H, causing the nose speed Unose to decrease as seen in figure
10.

Solutions to (3.16) always develop a shock when U is a decreasing function of x, as
seen in the development of figure 4(b). Once a shock forms, the jump height increases
until U = Unose and the shock propagates into the resting fluid at a speed determined
by the relevant Rankine-Hugoniot condition to be

VKW =
Unose

2
+
√
H. (3.17)

The horizontal vertical lines on figure 4(b) are separated by 3VKW, and match well with
the solutions at t = 9, 12 even though U has not quite reached Unose. A full 3-dimensional
model of such shocks is considered in Fedorov & Melville (1996), and the propagation
speed here agrees with their relation (7.20).

4. Outflows with negative PVa

When the expelled fluid has negative PV anomaly (H < 1), the image vorticity opposes
the Kelvin wave-driven flow, and fluid travels both upstream and downstream. JSM show
that steady flow only occurs if the outflow is vortically dominated (a > 1); otherwise the
current expands indefinitely in the source region. These two behaviours correspond to the
gyre mode and the widening coastal mode described in Kubokawa (1991). For the positive
PVa outflows of §3, fluid travels downstream only and the oceanic layer is undisturbed
in x < −1. This matching condition leads to a full description of the steady current in
the source region, which then provides initial conditions for integrating (3.11) and the
theory that describes the rarefaction solution. For outflows with negative PVa, fluid is
disturbed both upstream and downstream and so analogous matching conditions do not
exist. For outflows that evolve to become steady across the source region, an asymptotic
theory based on properties of the steady quasi-geostrophic solution can be derived, and
this is shown to agree well with numerical results even at moderate Ro.

4.1. Numerical results

An example of an unsteady, widening current is shown in figure 11 where Ro = 0.4,
Q0 = 0.7 and so a = 1.24. Since a > 1 the outflow is vortically dominated and the
corresponding quasi-geostrophic flow would evolve to become steady across the source
region. Here, however, Ro is sufficiently large that the current width continues to grow.
Some expelled fluid travels downstream, joining smoothly to the wall in a rarefaction with,
as for positive PVa, a Kelvin wave travelling ahead in the outer layer. The rest of the
expelled fluid travels upstream. The boundary between fluid moving upstream and fluid
moving downstream, where u = −hy = 0 (and so the outflow depth is at a maximum)
is denoted y = w̃(x, t) and shown dotted (blue online) in figure 11(a). Fluid thus travels
upstream along the wall, before turning and heading downstream around the edge of the
current, taking oceanic water with it as U > 0. Thus one important difference between
solutions with positive and negative PVa is that outflows with negative PVa transport
oceanic fluid from upstream of the source region to downstream. Computation of the
off-shore velocity v reveals that fluid travels at infinite velocity around the upstream
boundary of the outflow before heading downstream. This failure of the semi-geostrophic
equations is due to the short length-scales in the shock region, as noted by Helfrich
(2006).

Figure 12 shows an example of a steady current where Ro = 0.5, Q0 = 0.2 and a = 2.44.
In steady solutions, the curve y = w̃ (dotted, blue online) touches the wall at x = 1, thus
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Figure 11: An outflow with negative PVa, Ro = 0.4, Q0 = 0.7 and a = 1.24 at times
t = 20, 30, 40. (a) The current width w, which continues increasing across the source
region (marked by vertical dotted lines). The dotted curve (blue online) gives the curve
y = w̃ along which u = 0 (at t = 40). (b) The edge velocity U at t = 20, 30, 40.

uW = 0 here and all the outflow first heads upstream before a portion recirculates to form
the downstream current, which again is a rarefaction. In all solutions with negative PVa,
condition (3.13) cannot be satisfied with U > 0 and so the downstream rarefaction joins
smoothly to the wall, demonstrating the importance of vortical flow in the formation of
leading shocks. The steady solution is very similar to that of McCreary et al. (1997) (their
figure 9) where upstream flows are driven by geostrophic adjustment of a density front.
The upstream solution here is similar to the downstream solution for positive PVa; a
constant-width region near the source, then a rarefaction terminating in a leading shock.
Figure 12(b) shows the edge velocity U , and the ripples visible at late times are the result
of numerical dispersion. Figure 12(c) shows contours of the layer-depth perturbation h−H
at t = 40. The river fluid is shaded, with the region where u < 0 shaded darker. The
Kelvin wave is again seen to travel ahead of the river water and disturb the oceanic fluid.
The contour closest to the coast has a negative value: the outflow has caused a shallowing
of the layer upstream of the source.

4.2. Steady solutions across the source region

Since the oceanic layer is disturbed both upstream and downstream of the source, there
are no matching conditions to determine the constants of integration and obtain a steady
solution as in §3.2. Instead, specifying the constants requires two additional relations,
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Figure 12: Solutions to the outflow problem with negative PVa, Ro = 0.5, Q0 = 0.2 and
a = 2.44 at times t = 20, 40, 120. (a) The current width w, which is steady across the
source region (marked by vertical dotted lines). The (green) dashed line at x ≈ −6
indicates the location of the transect used to compare with experimental solutions in
§5. (b) The velocity U at the current edge. The thick dashed curves (red online) are the
steady solutions wsn and Uc from §4.2, the blue dotted line is y = w̃, and the black
dashed lines are derived from the theory of §4.3 and discussed there. (c) Contours of
the depth perturbation h−H at t = 40, where the shaded region indicates the expelled
fluid.

which are based on quasi-geostrophic theory and later verified against numerical results
to the initial-value problem.

First, note that one family of characteristic slopes λC are always positive (see Appendix
A), while the other set λR vanishes whenever uW = 0, i.e. U = Uc, say, where

Uc =
1−H

coth (w) +
√
H
. (4.1)

Now Uc < 0 when H > 1 but Uc > 0 when H < 1, allowing λR to send information
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upstream if the PVa is negative, and thus the λR characteristic is associated with the
vortical flow, and λC with the Kelvin wave-driven flow, as noted for the special case
H = 0 in Kubokawa & Hanawa (1984a).

As in outflows with positive PVa, steady currents are controlled at the edge of the
source region. In particular there exists a separatrix, i.e. a characteristic λR that has
a turning point at x = 1. Characteristics that start to the right of the separatrix end
up downstream of the source, and those that start to the left go upstream. There is
thus a region in the wake of the turning point of the separatrix where characteristics
that originate at t = 0 cannot penetrate, and characteristics instead propagate out from
the turning point, where (4.1) is satisfied. The steady solution thus spreads upstream
across the source region, starting at the downstream edge where it is controlled by the
λR characteristic. Physically, this sets uW = 0 at the downstream edge of the source
region and shows that, for steady solutions, all of the outflow must first head upstream
driven by image vorticity, as seen in figure 12(c). There are, however, an infinite number
of steady solutions that satisfy this control condition, and a further equation is needed
to close the system.

Note that the curve y = w̃, on which u = 0, can be computed from (2.7) as

w̃ = w − log

(√
H − 1− U +

√
HU√

H − 1 + U +
√
HU

)
(4.2)

so that w − w̃ is constant for steady solutions. Using (4.2), the system can be closed
with one further relationship between w and w̃. This is equation (21) in McCreary et al.
(1997),

w̃∞ =
1

2
log (2ew∞ − 1), (4.3)

where the subscript refers to values evaluated far upstream at late times, after a steady
current has completely developed. In McCreary et al. (1997), (4.3) is derived by taking
the first term in an asymptotic expansion of a mass-balance equation similar to (3.14),
which effectively requires that the coastal depth change is small relative to H. As such,
(4.3) is also the relationship between w and w̃ in the quasi-geostrophic solutions of JSM
and so must hold for small Ro and Q0 in the semi-geostrophic problem. We thus develop
here a theory assuming that (4.3) holds for all values of Q0 and Ro, and then verify
numerically that this asymptotic approximation captures the qualitative behaviour of
the outflow even at moderate Q0 and Ro.

Given the conditions (4.1)-(4.3), the relevant solution to the steady equations (3.3)
can be most succinctly described as

wsn(Q) = log

(
r(Q) +

√
r(Q)2 + k2 − 1

1 + k

)
(4.4)

where

k =
U

H − 1 +
√
HU

, r(Q) =

√
2(Q+ c)− 1

H − 1 +
√
HU

and c and U are determined by applying (4.1)-(4.3). The heavy dashed curves (red online)
in figure 12 give wsn and Uc, both of which give good agreement with the numerical results
even at Ro = 0.5.

Figure 13 shows the downstream width of the steady current wsn(Q0) = wD. As for
positive PVa, for a given Ro the downstream current width increases with increasing
mass flux. For fixed Q0, the width dos not increase monotonically with Ro. As the
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Figure 13: The steady solution width at the downstream edge, wD, as a function of the
flux Q0. The largest Q0 for which a steady solution exists at a given Ro is marked by a
dot.

magnitude of the PVa is increased, the current first contracts (in line with the results
for positive PVa) before expanding again after Ro ≈ 0.6. Numerical computations show
that for a given Ro there is a maximum flux Q0 for which both (4.1) and (4.3) can be
solved simultaneously, and thus an upper bound on the mass flux that supports a steady
solution (marked by a dot in figure 13). The limited capacity of coastal currents to
transport fluid with negative PVa was remarked on in Kubokawa (1991) and observed in
laboratory experiments in Horner-Devine et al. (2006). Figure 14(a) shows this maximum
flux, which is not a monotonic function of Ro – a result discussed in more detail in §4.4.
Also marked (dashed) in figure 14(a) is the line Q0 = Ro, which is the maximum flux
that supports a steady solution in the quasi-geostrophic limit.

In addition to the upper bound on Q0 at fixed Ro, there is an absolute maximum
of Q0 over all Ro that supports a steady current. For real solutions, (4.4) requires that
r is positive. Expression (4.1) shows that U < 1 −

√
H and so the denominator of r is

negative, and so therefore the numerator must also be negative, giving Q+c < 1/2. As Q
and c are non-negative, they must both individually be less than 1/2. Thus no controlled
steady solution exists when Q0 > 1/2, as in the similar relation obtained in Whitehead
& Salzig (2001) for flow out of a wide basin.

For negative PVa, only a portion of the outflow recirculates and so the downstream
flux Qd, given by

Qd =

∫ wD

0

uh dy =
h2

2

∣∣∣∣y=0

y=wD

, (4.5)

is less than the total flux Q0. Profiles of Qd as a function of Q0 are shown for various Ro
in figure 14(b). The curve for Ro = 0.6 lies above that for Ro = 0.5, in accord with the
non-monotonic behaviour of the total flux shown in (a).

The momentum and energy constants S0 and R can also be computed for steady
solutions. Since uW < 0 throughout the source region, the momentum input (2.20) across
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Figure 14: Mass flux for steady solutions with negative PVa. (a) The maximum mass
flux supported by a given Ro. (b) The downstream mass flux Qd as a function of total
mass flux Q0, for various Ro.

the source is negative:

S0 = −
√

2

∫ Q0

0

√(
Q−Q0 +

√
2(Q0 + c)−

√
2(Q+ c)

)
dQ. (4.6)

The energy constant R can be determined by evaluating (2.21) at the point x = 1, y = 0.
Here u = 0 and ψ = Q0, so

R =
√

2(Q0 + c)−Q0. (4.7)

Figure 15 shows both S0 and R for various steady solutions. For small Ro or Q0, R ≈ H,
replicating the result for positive PVa. The momentum flux |S0| increases with the volume
flux Q0, with larger Ro corresponding to larger momentum flux.

4.3. Downstream rarefaction

Once the steady solution has been determined, analysis via Riemann invariants can be
applied by integrating (3.11) away from the point U(wD) = Uc. In particular, figure 16
shows Unose as a function of Q0 for various Ro, allowing direct comparison with figure
10. As with positive PVa, increasing the mass flux for a fixed Ro increases the nose
speed. However, in contrast to figure 10, fixing Q0 and increasing Ro now increases the
nose speed. That is, the fluid speed in the nonlinear Kelvin wave becomes slower and
slower as the outer layer depth is decreased, irrespective of the sign of the PVa. A similar
relationship between Unose and layer depth is shown in figure 2 of Stern & Helfrich
(2002), and in figure 3 of Martin et al. (2005). The thin dashed horizontal line in figure
12(b) shows the value of Unose predicted from the analysis of the Riemann invariants,
and is in good agreement with the numerical solution. When the current width vanishes,
i.e. w = 0, the characteristic speed λR reduces to U and so, since the rarefaction joins
smoothly to the coast, Unose is also the propagation velocity of the expelled fluid at the
farthest downstream edge. This is confirmed by the two vertical lines in figure 12(a),
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Figure 15: Constants of motion for steady solutions with negative PVa. (a) The
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Figure 16: The nose speed Unose for a controlled rarefaction, as a function of Q0. The
dashed line shows the wall velocity of the zero PVa solution.

which are separated by 20Unose corresponding to the interval between solutions at t = 20
and t = 40.

The upstream rarefaction for steady solutions with negative PVa can also be described
by Riemann invariants, although in this case it is RR that is uniform. Applying a similar
test to (3.12) shows that a shock always forms upstream for negative PVa, and the same
ideas about matching shock and characteristic velocities can be used to determine the
maximum width of this, which increases as vortical effects become more important.
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4.4. Range of behaviours for negative PVa

For negative PVa, solutions can be categorised according to whether they are steady in
the source region. In the quasi-geostrophic limit, JSM found that the speed ratio a was
again of crucial importance; with a > 1 being necessary for a steady solution to form.
Figure 17 shows the type of solution that occurs in semi-geostrophic flow based on the
values of the two physical parameters Ro and Q0. The solution type was determined
by attempting to compute a steady solution that satisfies both (4.1) and (4.3). If, for a
given Q0 and Ro, such a solution is possible, then these values permit a steady solution
(region two). A fine sweep of the quasi-geostrophic limit of small Q0 and Ro shows that
the boundary between flows that are steady and those that grow (region one) aligns with
the contour a = 1 as expected. In addition to this test, which is based on the asymptotic
theory of §4.2, the initial-value problem was solved over the full parameter range, using
a grid that was refined close to the apparent boundaries between regions. Although there
were some quantitative differences between theoretical and numerical results (these being
larger far away from the QG limit) the test based on (4.3) and (4.1) was found to correctly
describe the qualitative behaviour of all solutions.

As for positive PVa, away from the quasi-geostrophic limit region boundaries can differ
from contours of a, and so the system depends on Q0 and Ro independently, although it
is still the case that solutions with small a (Kelvin wave dominated) are of the growing
type. The shape of region two reflects the results of figure 14(a), where increasing Ro
allows a larger flux to be supported by steady solutions until, at some cut-off point around
Ro = 0.6, the maximum permitted flux starts to decrease again. Increasing Ro past this
point is associated with a rapid increase in the value of a – for flows that are strongly
dominated by vorticity, steady solutions occur only at small fluxes.

Parameter values in the region marked three on figure 17 give rise to complex solutions
to (4.1) and (4.3). It appears that as the current width grows, the coastal layer depth hW

decreases to zero and the expelled fluid separates from the coast. For negative u, ∂h/∂y
is positive and the expelled fluid is shallower at the coast than immediately offshore. If
the initial outer layer depth is small (large Ro) and the magnitude of the wall velocity
is sufficiently large, this suggests that the layer depth shrinks to zero and the expelled
fluid is no longer attached to the coast upstream of the source.

Separation is explicitly excluded from the model presented here by the assumption
that the expelled fluid lies in 0 < y < w. Preliminary results from adapting the model
to remove this restriction suggest that the fluid tries separates in the source region, as
discussed for separated flow out of a basin in, for example, Helfrich et al. (1999) and
Gill (1977), as well as for laboratory experiments in Horner-Devine et al. (2006). For the
present model, separation in the source region modifies the outflow profile Q(x) and thus
alters the problem beyond the scope considered here.

If for a given Q0 and Ro the solution starts to separate (hW = 0), the initial-value
problem is halted and the parameter pair is included in region three. It appears that the
boundary between solutions which grow and those which separate is sharp in terms of
Ro – if the Rossby number is increased beyond some critical value of Ro ≈ 0.4 then all
unsteady flows eventually separate from the wall.

5. Discussion

Numerical and theoretical results for coastal outflows have been discussed using a
semi-geostrophic model that allows for large variations in Rossby number by adjusting
the depth of the outer buoyant ocean layer. For positive PVa (when the depth of the
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Figure 17: Solution type for negative PVa, compared with curves of constant speed
ratio a. Solution type one grows indefinitely in the source region, solution type two is
steady and solution type three is believed to separate from the wall. The inset shows
that the boundary between regions one and two aligns with the curve a = 1 in the
quasi-geostrophic limit.

buoyant layer is greater than the potential vorticity depth of the river water) a full
theory has been developed based on numerically computed Riemann invariants, while
for negative PVa an asymptotic theory for solutions that are steady across the source
region is derived. The speed ratio a, which measures the relative strengths of Kelvin wave-
flow and image vorticity, is a useful guide to determining the behaviour of the outflow.
However, for moderate and larger Rossby number, solutions depend on both Ro and the
total mass flux Q0 independently. Diagrams describing the behaviour of the solutions for
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a given Q0 and Ro are presented for positive PVa in figure 9, and for negative PVa in
figure 17.

For positive PVa, the range of possible behaviours is the same as in the quasi-geostrophic
limit of JSM. All currents flow exclusively downstream, are steady across the source re-
gion, and are led by a rarefaction that either joins smoothly to the wall or develops a
shock in finite time. The key feature here, however, is that the Kelvin wave that propa-
gates ahead of the expelled fluid does so at a finite speed. The speed of the fluid within
the Kelvin wave, Unose, is found to be greater when the depth of the outer layer is shal-
lower. The propagation speed of the Kelvin wave is given as VKW in (3.17), while the
propagation speed of the expelled fluid can be computed from (3.15) using the maximum
values of w and U just behind the shock. The ability to measure the fluid and propaga-
tion speeds of these two waves separately is a key feature of this work, and the way that
these quantities vary with the parameters, along with the range of behaviours observed,
highlights the importance of vortical turning in determining how the outflow behaves. It
is also important to note that most experiments on outflows use colouring to identify the
expelled fluid, and thus tend to report on disturbances only within this coloured region,
leaving laboratory investigation of the nonlinear Kelvin wave in the outflow problem as
an avenue for future work.

For negative PVa, steady and growing solutions exist as in the quasi-geostrophic limit,
with steady solutions occurring in cases where the vortical flow is stronger than the
Kelvin wave-driven flow. However, for large Ro (shallow oceanic layers) sufficiently strong
forcing can cause the flow to separate away from the wall – a phenomenon that has
been previously noticed when studying related flows and one that remains to be explored
further in the present context. The steady solutions obtained here are critically controlled
at the downstream edge of the source: the phase-speed of all long-wave disturbances is
positive in x > 1, so the flow here is supercritical, while in x < 1 long-wave disturbances
can propagate in either direction and the flow is subcritical. All fluid first heads upstream
along the wall, before a portion of it recirculates and re-crosses the source region. This
creates an anti-cyclonic circulation within and upstream of the river mouth, as in the
density driven solutions of McCreary et al. (1997), the numerical results of Isobe (2005)
and the laboratory experiments of Thomas & Linden (2007) and Avicola & Huq (2003).
That similar qualitative behaviours are observed here as in the experiments supports
an analogy between PV jumps and density fronts previously alluded to in McCreary
et al. (1997), and possibly suggests that both mechanisms contribute to offshore plumes
observed in the oceans.

One factor that has not been discussed here is the role played by a sloping coastline,
which allows for the possibility of buoyant outflows that remain attached to the sea
floor (‘bottom-advected plumes’). According to Yankovsky & Chapman (1997), surface-
advected plumes (those which do not touch the bottom) occur when 2L0v0f/g

′ < h0,
where L0 and h0 are the width and depth of the river mouth, and v0 is the velocity
of fluid as it enters the ocean. The model developed above has a vertical coast and so
excludes bottom-advection, but it seems plausible that a surface-advected plume above
a sloping coastline behaves similarly to a plume against a vertical coastline.

The photograph of the Elwha river after dam removal (figure 1) bears a striking simi-
larity to solutions with positive PVa (figures 3, 4). Although the outflow after the dam
was dismantled involved the expulsion of sediment-laden river water (and so differs from
the homogeneous-density model considered here) it is evident from figure 1 that there was
a strong downstream transport of river water, with a qualitatively similar shape to the
positive PVa solutions of §3. Juan De Fuca – the strait into which the Elwha river runs
– is an important shipping route, and as such there is much data available that explores
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Figure 18: Comparison between numerical results from the present model with H = 0.4,
Q0 = 0.53 (dashed curve, red online) and laboratory experiment VB6 from
Horner-Devine et al. (2006) (solid curve, black online). The dimensional along-shore
velocity u∗ is shown as a function of the off-shore co-ordinate y∗. The transect is taken
at the mid-point between the downstream edge of the source and the upstream edge of
the expelled fluid, and so intersects the centre of the bulge, at the time t = 30. The
horizontal dashed line gives w at this value of x and t.

the oceanography of the region. A comprehensive survey conducted between 1975-1980
(well before the dam was removed) shows that most of the time the prevailing currents
and tides carry surface fluid towards the sea, which is leftward to an observer facing
the ocean (Cannon 1978; Holbrook et al. 1980; Holbrook & Halpern 1982). Although
up-strait flow does occur, it is comparatively rare and weak and is thus unlikely to be the
sole cause of the rightward turning in figure 1. Finally, technical data from Curran et al.
(2008) suggests that the outflow after dam removal satisfies the condition of Yankovsky
& Chapman (1997) and so should not be strongly affected by bottom-advection.

The present model focuses on the role of PVa in the outflow problem by assuming that
the expelled fluid and the buoyant ocean layer have the same density. This is rarely, if
ever, true in an ocean setting where horizontal buoyancy gradients also play a role in the
formation and propagation of coastal currents, and so direct applicability of the model
to a real ocean is limited. On the other hand, the two mechanisms of vortex stretching
and Kelvin-wave driven flow described in this work are still present, and in the limit of
weak horizontal stratification it is possible that they are the dominant dynamical factors.
It is also plausible that buoyancy effects are restricted to a region around the density
front (Sher & Woods 2017) (see figure 18 and discussion below). Further theoretical
exploration of how buoyancy interacts with the two effects considered here remains an
important avenue for future work.

Horner-Devine et al. (2006) studied the injection of fluid (assumed to have zero PV)
into a rotating annulus of uniform, denser fluid, and their results are therefore most
comparable to our model with small H (large negative PVa). Indeed, they find a bulge
in the source region and a thinning current that propagates downstream. Figure 18
makes a quantitative comparison of dimensional u∗ from our model with that from their
experiments, in an off-shore transect that intersects the bulge centre (the green dashed
line in figure 12(a)). Non-dimensionalising their experimental values gives a mass flux
Q0 = 0.53, and so our model predicts unsteady flow in the source region for all H.
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JSM show that in the QG limit, the growth of the current width ∂w/∂t is proportional
to 1/t for unsteady solutions, and so the flow is approximately steady at large t. The
best comparison between our theory and the results of Horner-Devine et al. (2006) is
therefore made by taking the smallest H for which the flow remains attached to the
coast sufficiently long to become approximately steady. The choice of H = 0.4 allows the
IVP to run until t = 80, and tests with other values of H show that the quantitative
behaviour is remarkably unaffected. The flow within the bulge is bi-directional, with fluid
closer to the wall travelling upstream under the influence of image vorticity – something
that is only possible when the source fluid has lower PV than the oceanic fluid. There
is excellent agreement between the wall velocity of the model and the near-wall velocity
observed in the experiment, and both the predicted and the observed velocities increase
until they reach a maximum value at a similar off-shore co-ordinate (which occurs at
the PV jump in our results, and the edge of the bulge in the laboratory experiment)
before decaying back to zero. As H → 0, a → ∞ and the vortical length-scale Lv → 0,
so we expect that vortical effects will only be felt close to the wall. Indeed the agreement
between the numerical results and the experiment is best closer to the coast and the
largest discrepancies occur further offshore, where the differences in set-up between the
experiment and the model are more significant.

Appendix A. Eigenvalues and Riemann invariants

A.1. Expressions for λ and αC/R

The governing equations (2.12) and (2.13) are diagonalised and hence recast in the form

∂

∂t

(
U

w

)
+

1

a+ b

c+ b
(
U +

√
H
)

d

c− a
(
U +

√
H
)

d

 ∂

∂x

(
U

w

)
=
Q′(x)

a+ b

(
1

1

)
(A 1)

where

a = −1 +H + coshw +
√
H sinhw,

b = (H − 1) (−1 + coshw) +
(√

H coshw + sinhw
)
U,

c =
(√

H coshw + sinhw
)(

1 + U sinhw + coshw
(
−1 +H +

√
HU

))
,

d =
(

(H − 1) sinhw + U
(

coshw +
√
H sinhw

))(
1 + U sinhw + coshw

(
−1 +H +

√
HU

))
,

which leads to the eigenvalues

λ± =
1

2(a+ b)

(
c+ d+ b(U +

√
H)±

√
(−4d(a+ b)(U +

√
H) + (c+ d+ b(U +

√
H))2)

)
.

(A 2)

Outside of the source region, the right side of (A 1) is homogenous and so there exist
left eigenvectors k± such that

kT
±

(
∂

∂t

(
U

w

)
+ λ±

∂

∂x

(
U

w

))
= 0, (A 3)

or,

k±,1
dU

dt
+ k±,2

dw

dt
= 0 on

dx

dt
= λ±, (A 4)
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or
dU

dw
= −k±,2

k±,1
on

dx

dt
= λ±. (A 5)

These are the ODEs that determine the Riemann invariants as described in (3.10). The
eigenvectors k can always be chosen so that k±,2 = 1, in which case

dU

dw
= − d

λ±(a+ b)

(
µ± + d

µ± − d

)
= αC/R,

µ± = c+ b(U +
√
H)±

√
(−4d(a+ b)(U +

√
H) + (c+ d+ b(U +

√
H))2) (A 6)

A.2. Values of λ in various limits

Note that

a+ b = (
√
H coshw + sinhw)(

√
H + U) (A 7)

which is positive, subject to the observation that w and U are non-negative in all solutions
here. Thus, from (A 2), we can define λC = λ+ and λR = λ− with λC ≥ λR always, and
from now on it is only necessary to consider the numerator when checking the sign of
λC/R.

Further, taking w = 0 gives the following:

[a, b, c, d] = [H,
√
HU,H(U +

√
H),
√
HU(U +

√
H)] (A 8)

so that the numerator in (A 2) simplifies to

(2U +
√
H)(U +

√
H)±H(

√
H + U) = (2U +

√
H ±H)(

√
H + U),

which gives λR = U and λC = U +
√
H. Thus when additionally U = 0, λR = 0 and

λC =
√
H.

The repetition of terms in the numerator of λC/R shows that λC/R = 0 only when

−4d(a+ b)(U +
√
H) = 0 (A 9)

with λR = 0 if c+ d+ b(U +
√
H) > 0 and λC = 0 otherwise. Equation (A 9) is satisfied

only if d = 0, or equivalently if one of

(H − 1 +
√
HU) sinhw + U coshw = 0,

(H − 1 +
√
HU) coshw + U sinhw = −1,

holds. But, from (2.8) and (2.10) this requires that either uW = 0 or hW = 0. The latter
is forbidden in the model used here, and setting uW = 0 gives

c+ d+ b(U +
√
H) = (

√
H coshw + sinhw)(U +

√
H)2

which is always positive. Hence λC is never zero, and since λC is positive when t = 0 it
must remain so for t > 0. Further, λR = 0 for t > 0 is equivalent to uW = 0, a constraint
which is physical only if H < 1. Thus, λR cannot change sign in outflows with positive
PVa. Expanding for small w and U gives

λR ∼ U + (H − 1)w as U → 0, w → 0 (A 10)

so that λR > 0 initially, and hence always, when H > 1.
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