Supplemental Material for

" Topological phase transitions driven by strains in monolayer tellurium"

Wei Zhang,^{1,2,3} Quansheng Wu,^{4,5} Oleg V. Yazyev,^{4,5} Hongming Weng,^{*,6,7} Zhengxiao Guo,⁸ Wen-Dan Cheng,² and Guo-Liang Chai^{†,2}

 ¹Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
²State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China
³Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen, 361005, China
⁴Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
⁵National Center for Computational Design and Discovery of Novel Materials MARVEL, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
⁶Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
⁷Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China
⁸Department of Chemistry, University College London, London WC1H 0AJ, UK The SOC energy bands for structures with different strains in BS phase I are shown

below.

Fig. S1 Energy bands for structures with different strains in BS phase I, when considering SOC interaction. (a) When Δ = -5%, the band gap is 0.016 eV. (b) When Δ = -6%, the band gap is 0.048 eV. (c) When Δ = -7%, the band gap is 0.08 eV.

In equation (1), $H(k) = Ak_x + Bk_y + (ak_x + ck_y)\sigma_y + (bk_x + dk_y)\sigma_x + m\sigma_z$,

m is the mass term which opens the band gap. Other parameters near the crossing points are listed below.

Table S1: Parameters used in equation (1) for BS structures with different strains and BS

Strain	A (10⁵ m/s)	B (10⁵	$\sqrt{a^2+b^2}$ (10 ⁵ m/s)	$\sqrt{c^2 + d^2}$ (10 ⁵
		m/s)		m/s)
-4.5%	8.30	8.27	1.06	1.16
-5%	8.36	8.39	0.96	1.05
-6%	8.42	8.41	0.85	0.93
-7%	8.50	8.50	0.73	0.77
BS Te/SrTiO ₃	7.98	7.96	0.99	1.03

Te/SrTiO₃, respectively.

To esimate the accuracy of the parameters, the parameters are fit to the first-principles energy bands of BS structures with various strains and BS Te/SrTiO₃. The red dots are parameter fitting bands, while black lines are energy bands from first-principles calculations.

Fig. S2 (a) Δ = -4.5%, (b) Δ = -5%, (c) Δ = -6%, (d) Δ = -7%, (e) BS Te/SrTiO₃