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Abstract 

This study reports the identification and characterisation of markers of Alzheimer’s disease 

(AD) in aged sheep (Ovis aries) as a preliminary step towards making a genetically modified 

large animal model of AD.  Importantly, the sequences of key proteins involved in AD 

pathogenesis are highly conserved between sheep and human. The processing of the 

amyloid-β (Aβ) protein is conserved between sheep and human, and sheep Aβ1-42 /Aβ1-40 

ratios in cerebrospinal fluid (CSF) are also very similar to human. In addition, total-tau and 

neurofilament light levels in CSF are comparable to those found in human. The presence of 

neurofibrillary tangles in aged sheep brain has previously been established; here we report 

for the first time that plaques, the other pathological hallmark of AD, are also present in the 

aged sheep brain. In summary, the biological machinery to generate the key 

neuropathological features of AD is conserved between the human and sheep, making the 

sheep a good candidate for future genetic manipulation to accelerate the condition for use 

in pathophysiological discovery and therapeutic testing.  
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1. Introduction 

Dementia is the most common neurological condition among older adults, with the majority 

of cases being attributable to Alzheimer’s disease (AD). AD is a devastating 

neurodegenerative disease that causes progressive memory loss, cognitive decline and 

finally dementia, leading to premature death and causing considerable stress to families. 

The prevalence of AD is expected to triple by 2050 due to an aging population (Alzheimers 

Ass. 2016, Alzheimers 2012) and therefore effective treatments for the disease are 

desperately needed. Mutations in three genes; amyloid precursor protein (APP), and 

presenilin 1 and 2 (PSEN1 and PSEN2) (Levy-Lahad  et al., 1995, Levy  et al., 1990, 

Sherrington  et al., 1995) are known to cause relatively rare (<1%) familial AD. Each of these 

mutations result in the enhanced production of, or imbalances favouring, the amyloidogenic 

42 amino acid long amyloid-β peptide (Aβ42) form of the APP protein. The risk of developing 

sporadic or late onset AD (LOAD) has been associated with variations in several genes 

including apolipoprotein E (APOE) (Harold  et al., 2009, Saunders  et al., 1993, Schellenberg 

and Montine 2012). These genes are also functionally linked to Aβ peptide homeostasis, 

supporting the ‘amyloid cascade hypothesis’ as an initiating mechanism for AD pathogenesis 

(Hardy and Higgins 1992).  

Due to the difficulty of making a diagnosis of AD in the earlier phases of the disease, 

patients recruited for clinical trials have typically been in the mild to moderate dementia 

stages of the disease (Blennow 2010). However it is generally agreed that the most effective 

treatment window would be early and ideally pre-symptomatic (Mangialasche  et al., 2010). 

Cerebrospinal fluid (CSF) biomarkers are increasingly being used in the diagnosis of AD and 

also in the mild cognitive impairment (MCI) phase of AD (Blennow  et al., 2010). These 



biomarkers are also central in the recent research criteria for AD (Dubois  et al., 2014) and 

preclinical AD (Dubois  et al., 2016). Late-onset neurodegenerative diseases such as AD are 

difficult to model accurately in rodents because of their short lifespans. The commonly used 

rodent models of AD have been engineered to exhibit rapid and unnatural disease 

progression (Sabbagh  et al., 2013), limiting their applications for early-stage disease 

research. Indeed, while several compounds have been beneficial in mouse models of AD, 

translation to humans has been very disappointing (Blennow K 2006, Dragunow 2008, 

McGonigle 2014). Successfully translated compounds have been those providing 

symptomatic relief rather than halting disease progression (McGonigle 2014).  

To enable safer, more effective clinical trials, and to discover the early pathogenic 

mechanisms of AD we believe there is a need for a large animal model of AD, with a 

complex brain structure (including a more developed cortex with gyri and sulci) and 

longevity, which will accurately capture the disease as it progresses, including its pre-

symptomatic phase. Dogs and non-human primates have been used as models of aging and 

show relevant AD pathology, as recently reviewed (Youssef  et al., 2016); however these 

models are expensive and fraught with ethical issues. A transgenic AD minipig has been 

produced by random integration of mutant human APP into the minipig genome, driven by 

the PDGFβ promoter to give high levels of expression (Kragh  et al., 2009, Sondergaard  et 

al., 2012). Minipigs are housed individually or in small groups, making long-term pre-clinical 

trials relatively expensive.  

We see value in modelling AD in sheep (Ovis aries) due to the similarity of its brain structure 

and size relative to human. Sheep can live for at least 10 years, making them ideal for the 

study of later-onset diseases such as AD.  Importantly, studies have shown AD-associated 



neurofibrillary accumulation (tau pathology) in normal aged sheep (Braak  et al., 1994, 

Nelson and Saper 1995); a feature which is absent in wild type rodents and has made AD 

modelling challenging in rats and mice (Hardy and Selkoe 2002).  While the rate of naturally 

occurring dementia in sheep is unknown (as most farmed sheep are culled before reaching 

old age), sheep with cognitive deficits are studied due to natural mutations in genes causing 

Battens Disease in humans (Cook  et al., 2002, Jolly  et al., 1980, Weber and Pearce 2013) 

Sheep are readily trainable for use in tests of cognitive function (Morton and Avanzo 2011) 

and sheep suffering from a progressive neurological disease can be quantified longitudinally 

using modern methods, such as EEG  (Perentos  et al., 2015) and MRI (Sawiak  et al., 2015).   

Sheep have face recognition systems for remembering specific individuals long term 

comparable to human (Kendrick  et al., 2001). Furthermore, sheep can be kept in large 

numbers in a social environment on a farm, which is ethically more acceptable and cheaper 

than caged large laboratory animals. Genetically modified flocks can also be expanded 

relatively quickly from a few founder animals due to the JIVET reproductive technology that 

has been developed specifically in sheep (Kelly  et al., 2005). A transgenic sheep model of 

the neurodegenerative disorder, Huntington’s Disease, has been successfully established by 

our laboratory in this manner (Jacobsen  et al., 2010) and is proving to be a valuable tool in 

HD research (Handley  et al., 2016, Morton  et al., 2014, Reid  et al., 2013).  The sheep 

genome has now been published and annotated (Jiang  et al., 2014), and thus the genome 

of the sheep can now be precisely manipulated for human disease research.  

In this report, we present data on the suitability of sheep as a model for AD. We compare 

the human and sheep peptide sequences for relevant AD proteins and peptides, and 

compare types and levels of common AD biomarkers in CSF that will be relevant for tracking 



disease progression. We also looked for evidence of plaques and tangles, the hallmarks of 

human AD, in the aged sheep brain.  

2. Methods 

2.1. Human and sheep DNA sequence alignments 

Key human AD-associated reference protein sequences (as at 26th July 2016) were used in 

BLAST analysis (utilising the blastp algorithm) against all Ovis aries protein sequences.  

Where proteins have multiple isoforms, the longest recorded isoform for human was used. 

For the APP protein, cleavage sites were compared, as well as the amino acid sequence of 

the Aβ1-42 fragment. The sheep protein with the highest homology against each human 

sequence is presented in Table 1.  

2.2. Collection of tissue and CSF samples  

Samples were obtained from four eight-year-old sheep, and a single fourteen-year-old 

sheep that were being euthanized for normal animal management reasons. Animals 

were humanely euthanized followed by immediate exsanguination. CSF samples were 

immediately collected from cisterna magna of each of the eight year old sheep, 

aliquoted and frozen. After extraction from the skull, the brains from all five sheep 

were blocked into five coronal blocks, split into two hemispheres and immersion fixed 

for 48 hours in 10–20 volumes of freshly prepared 10% buffered (0.1M phosphate 

buffer pH 7.4) formalin (Scharlau, Spain) at 4°C and then transferred to 0.1M 

phosphate buffer plus 0.1% sodium azide (Sigma, Australia). Fixed blocks were then 

cryopreserved for immunohistochemical analysis using sequential sucrose immersion 



followed by freezing in dry ice powder prior to storage at -80°C as previously described 

(Waldvogel  et al., 2007). 

 

2.3. Fluid biomarkers in sheep CSF 

2.3.1. Hybrid immunoaffinity-mass spectrometry for A  

To identify Aβ fragments, we used CSF taken from each of the eight year old sheep. 

Immunoaffinity capture of A was combined with mass spectrometry (MS) for analysis and 

study of the A peptide pattern in sheep CSF as previously described (Portelius  et al., 2007). 

In brief, the anti-Aβ antibodies 6E10 and 4G8 were separately coupled to magnetic beads. 

After washing of the beads, the 4G8 and 6E10 coated beads were used in combination for 

immunoprecipitation. After elution, the immune-purified A peptides were identified using 

an UltraFlextreme matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) 

MS instrument (Bruker Daltonics, Bremen, Germany). 

 

2.3.2. Total tau and phospo-tau181 concentrations 

Total tau concentration in CSF was measured using using a sandwich enzyme-linked 

immunosorbent assay (ELISA) (INNOTEST hTAU-Ag; Fujirebio, Ghent, Belgium) that uses 

antibodies against the mid-domain of tau, thus measuring all tau isoforms irrespective of 

phosphorylation state. Phospho-tau181 concentration in CSF was measured using a 

sandwich ELISA (INNOTEST Phospho-tau[181P]; Fujirebio, Ghent, Belgium) that includes one 

antibody specific for the phospho-epitope at threonine 181 in combination with a mid-



domain anti-tau antibody. Intra-assay coefficients of variation were below 10% and all 

samples measured within the linear range of the standard curve. 

   

2.3.3. Neurofilament light concentration 

Neurofilament light concentration in CSF was measured using the NF-light ELISA as 

described by the manufacturer (UmanDiagnostics, Umeå, Sweden). The assay uses two 

monoclonal antibodies directed against the rod domain of the protein. The lower limit of 

quantification is 50 ng/L with intra-assay coefficients of variation <10%. 

 

2.4 Tangles and plaques in the sheep brain 

Coronal brain sections at the level of mid temporal gyrus and hippocampus were cut on a 

freezing sledge microtome and stored in phosphate buffered saline (PBS) plus 0.1% (w/v) 

azide (Sigma, Australia) at 4◦C until use. For immunohistochemistry, free floating 50μm-

thick sections were initially washed in a solution of 50% methanol (Scharlau, Spain) and 1% 

H2O2 to expose binding sites and block endogenous peroxidase activity. Sections were 

washed in PBST (PBS with 0.2% triton X-100 (BDH, NZ)) prior to incubation in primary 

antiserum diluted in immunobuffer, (1% Normal Goat Serum in PBS,0.2% Triton-X100 and 

0.4 g Methiolate, (Waldvogel  et al., 2007) for 48 hours at 4◦C. To visualise tangles, we used a 

polyclonal rabbit anti-Tau antibody (DAKO #A0024 diluted 1:15,000) generated against the 

C-terminus of human Tau (amino acids 243-445). Plaques were visualised using a 

monoclonal mouse anti-Aβ antibody (clone 4G8, Chemicon #MAB1561, diluted 1:1200) 

raised to amino acids 17-24 of Aβ, with the epitope between aa18-22. Sections were 

subsequently washed in PBST at room temperature and incubated for 24 hours at room 



temperature in the appropriate biotinylated goat anti-mouse or goat anti-rabbit secondary 

antibody (Sigma, Australia), diluted to 1:1000 in immunobuffer. Subsequently, sections 

were washed with PBST and incubated for four hours at room temperature in extravidin 

peroxidase complex (Sigma, E2886, Australia), diluted to 1:1000 in immunobuffer. Sections 

had a further three 10 minute washes in PBST prior to visualisation. For visualisation, each 

series of sections was incubated in 0.05% diaminobenzidine tetrahydrochloride (DAB, 

Sigma, Australia) in phosphate buffer with the addition of 0.01% H2O2 (BDH, NZ) to 

visualize the tertiary complex. Subsequently, sections were mounted onto slides with 

gelatine, dried overnight and then dehydrated in a graded ethanol and xylene series. 

Sections were cover-slipped with DPX Mountant solution (Merck, Australia) prior to 

visualization. Negative control sections were processed to determine nonspecific staining 

using the same immunohistochemical procedures as detailed above, except that the 

primary or secondary antibodies were omitted from the procedure. Positive human 

controls were used for each antibody for comparison. Sections were Nissl stained with 

cresyl violet (Sigma, Australia) according to standard techniques (0.5% w/v), to assist in 

identifying the plane of cells relative to plaques and tangles, and to assist in identification 

of cell layers.  

Tangles and plaques were visualised on a Leica DC 500 light microscope with Analysis LS 

Research 2.3 software, and the total number of tangles and plaques in the entire cortical 

region and hippocampus per slide were counted. The number per location (gyrus) was 

noted for each sheep, and nissl-stained nuclei enabled assessment with respect to cortical 

layers.  As sample sizes were small and because of some inter-animal variability of the 

specific hippocampal region sections examined, a relative rather than absolute count was 



generated for each animal (marked with a + sign; Table 3). Tangle densities, representative 

of all 5 sheep, were mapped on a MSU atlas image of the sheep brain (section 1240 from 

the Michigan State University Sheep Brain Atlas(Johnson  et al., ).  The hippocampal level 

seen in this MSU atlas image in Figure 3 differs between the left and right hemispheres, 

representing the range of sections examined in this study and also reflecting the difficulty in 

collecting comparative coronal sections from the hippocampal formation.  

Thioflavin T staining (Sigma) was undertaken on 20μm sections which were mounted, 

dehydrated and then stained for eight minutes in 0.05% thioflavin solution followed by 

three washes in PBS solution. After adding coverslips the slides were viewed via 

fluorescence microscopy under a Leica DC 500 microscope with Analysis LS Research 2.3 

software. Human sections were processed in parallel as positive control comparisons. 

  



3. Results 

3.1. Homology of Key AD proteins between human and sheep 

The amino acid sequences of the key AD-related proteins show high homology between 

human and sheep, several close to 100% (Table 1). As seen in humans, sheep have multiple 

isoforms of APP. There were 6 predicted sheep isoforms for APP, ranging from 677 - 770 

amino acid residues. There are 23 amino acid differences within the full length APP protein 

compared, however none of these are close to the C-terminal cleavage sites. The sheep Aβ1-

42 mRNA region has 6 nucleotide differences when compared to human, but results in a 

peptide sequence which is 100% homologous. BACE1, the β-cleavage enzyme which 

contributes to formation of the disease-associated Aβ1-42 fragment, is 98.4% homologous 

between human and sheep. Presenilin 1 and Presenilin 2; components of the gamma-

cleavage complex, also show high homology. Ovine NF-L homology to human is 95.3%.  A 10 

amino acid insertion in the sheep sequence interrupts an otherwise 97.1% homology. The 

sheep ApoE protein had the lowest homology to humans overall (70%), however it does 

possess the same amino acids in the key positions (112 and 158) that define the human 

APOE ε4 allele. 

 

3.2. Aβ and Tau levels in sheep CSF 

 3.2.1. Aβ levels in sheep CSF 

All of the main fragments of APP that are found in humans were detectable in sheep CSF, 

including Aβ1-42 (Figure 1). As seen in humans (Figure 1E), the Aβ1-17 and Aβ1-40 peptides 

were the most abundant cleavage products. The ratio of Aβ1-42 over Aβ1-40 averaged at 0.113 



for the sheep, which is very similar to the human ratio of Aβ1-42 over Aβ1-40  (Hansson  et al., 

2007), indicating the utility of sheep CSF as a tool for following AD progression.  

3.2.2. Tau and phosho-tau181 processing in sheep CSF 

Levels of total tau were variable within the three sheep CSF samples assessed (Table 2), but 

were comparable with human samples, and average 319.3 ng/L, which is within the normal 

range for humans (Sjögren  et al., 2001). Levels of phospho-tau181 in sheep CSF were very 

low, the mean level in normal humans is around 45 ng/L (Vanderstichele  et al., 2006), and 

all three sheep samples were within 15.1 - 15.4 ng/L, which was close to the lower limit of 

quantification for the assay.  

3.2.3. Neurofilament light in sheep CSF 

Levels of neurofilament light were between 600 and 1200 ng/L in all sheep samples (Table 

2) which is within the normal range seen in humans (Zetterberg  et al., 2016).  

 

3.3. Plaques in the sheep brain 

Aβ immunopositive plaques were identified in all animals and were visualised as large dense 

structures many times larger than a single neuron as shown in Figure 2A-C, as well as 

abundant smaller structures about the size of a single neuronal nucleus (Figure 2A, arrow). 

Quantification of plaques was limited to large dense structures and excluded the smaller 

structures which were very numerous, particularly in supragranular cortical layers. Plaques 

were found in both supragranular and infragranular layers within each of the sheep and in 

all cortical regions, including the hippocampus. The plaques observed within each sheep 



were present at similar densities in all cortical areas, and the average number of plaques per 

slide in each sheep ranged between 60 and 109, equating to an average of 24-44 plaques 

per cm2 of cortical tissue. Most of the plaques were diffuse, although a few resembled the 

dense-core plaques seen in the positive human control.  Thioflavin-T stained structures were 

seen in all of the sheep (Figure 2D), although at considerably lower abundance than of those 

seen with immunostaining. The human positive control sections contained large numbers 

(>500) immuno-stained plaques, with adjacent sections revealing many (>100) thioflavin 

positive structures similar to those seen in the sheep.  

 

3.4. Tangles in the sheep brain 

Tangles were identified in fixed brain tissue from the five aged sheep using Tau antibodies.  

A range of tau immunopositive structures were detected in all of the sheep assessed, and 

included small neuropil threads to the larger classical tangles shown in Figure 3A and B. 

There was some evidence for dystrophic neurites, based on thickened neurites seen within 

tau labelled sections (Figure 3C), although as we did not double stain the sections we cannot 

confirm their association with plaques. The tangle structures were almost exclusively within 

the upper middle layers (layer II – IV) of the sheep cortex and most abundant in the 

temporal lobe and entorhinal cortex of all sheep than elsewhere in the section (Figure 3D). 

Tangle-like structures were not identified in the hippocampus of the fourteen-year-old 

sheep, but were detected in 3 of the 4 eight-year old sheep.  All sheep had tangles within 

entorhinal cortex. Quantification of tangles was limited to the larger neuronal tangles, 

excluding neuropil threads, which were very numerous. The average number of tangles per 

slide for each sheep ranged between 3 and 58.  



 

4. Discussion 

The aim of this study was to assess the suitability of sheep for future genetic manipulation 

to produce a large animal model of AD. We examined the similarities between key human 

and sheep proteins known to be involved in AD, and measured CSF levels of proteins and 

peptides that are known to be associated with the disease. Additionally, we report evidence 

of plaques and tangles; the neuropathological hallmarks of the disease, in the aged sheep 

brain.  

Aged sheep naturally develop the PHF-tau positive tangles associated with AD, as seen in 

our and previous studies (Braak  et al., 1994, Nelson and Saper 1995). Our identification of 

tangle structures in entorhinal cortex from all animals and within hippocampus of three of 

the five animals is consistent with the progression of tangles in human brain described in 

Serono Pozo et al (2011) and Braak and Braak (2006). Levels of CSF total tau in normal sheep 

are shown here to be comparable to that found in humans. In contrast, phospho-tau181 

concentrations were below the limit of quantification in sheep CSF. The amino acid 

threonine that is phosphorylated at this position is present in the sheep peptide, but the 

flanking region in the sheep tau amino acid sequence differs from human tau. This sequence 

divergence may mean that phosphorylation at tau181 cannot take place, or alternatively, 

that the AT270 antibody used, with a minimal epitope of P176PAPKT(p)P182 (Vanmechelen  et 

al., 2000), does not react with sheep tau phosphorylated at this position. Either way, the 

ratio of total tau to phospho-tau181 cannot be used as a biomarker or indicator of disease 

progression in sheep. However, the human tau protein can potentially be phosphorylated at 

19 sites or more (Augustinack  et al., 2002), and because tau tangles do form in the sheep 



brain, phosphorylation of other sites may be more suitably used to track disease 

progression, such as phospho-tau231 (Hampel  et al., 2010). Neurofilament light levels in 

human CSF can also potentially be used as a biomarker of AD progression (Zetterberg  et al., 

2016), and our results show that neurofilament light can be detected and measured in 

sheep, and is found at levels comparable to that of humans.  

The Aβ fragments detected in CSF from the four eight-year-old sheep show that sheep 

utilise the same mechanisms for degrading APP and Aβ peptide as humans, which is a major 

part of the amyloid cascade hypothesis. Importantly, we have identified that sheep produce 

the disease associated Aβ1-42 fragment, suggesting they will be a good model for testing the 

amyloid cascade hypothesis of AD. The Aβ1-42 peptide sequence is completely conserved 

between humans and sheep. Mice and rats show a three amino acid difference in the Aβ1-42 

peptide sequence (Johnstone  et al., 1991), suggesting that sheep may make a more 

comparable model to humans than rodent models. Our results show that the α-, β- and γ-

secretase cleavage sites, and processing pathways, in the APP protein are most likely 

identical between sheep and humans (Portelius  et al., 2011). This evidence, taken together, 

suggests that sheep should be able to form the amyloid plaques that define AD, indeed, 

here we report for the first time the presence of plaques in sheep brain tissue, detected by 

Aβ immunohistochemistry. Although the sample size in this study was limited, the fourteen-

year-old sheep showed more plaques than any of the four eight-year-old sheep (Table 3), 

suggesting that plaques are likely to accumulate in an age-dependant manner in sheep as 

they do in humans. The relatively low thioflavin staining in sheep compared to human may 

be due to most of the plaques in sheep being diffuse rather than dense-cored plaques, as it 



was the dense centres that showed the strongest thioflavin staining in human positive 

control sections.  

All of the key proteins implicated in human AD are found in sheep and show high homology. 

Interestingly, the ApoE amino acid sequence in sheep contains two amino acids at the 112 

and 158 positions, which correspond with the APOE ε4 allele in humans that is known to 

increase the chances of developing AD.  

The evidence presented here suggests that the amyloid pathway has been highly conserved 

between humans and sheep, and that the pathological mechanisms for human AD are likely 

also found in sheep. Sheep are not known to develop AD naturally, although this is likely due 

to their shorter lifespan relative to humans. Most sheep in typical farming conditions are 

culled once past their useful lifespan for the farmer, and so do not die of age related 

disorders.  

Our findings demonstrate that sheep are a clinically translatable model, displaying the 

pathological hallmarks of AD, and are thus a good species for consideration of genetic 

manipulation to generate a large animal model of AD. Because of the conservation of the 

key constituents of the amyloid generating pathway an approach would be to  introduce a 

mutation through gene editing in APP, PSEN1 or 2 that results in early onset human disease. 

As the typical AD pathogenic markers are present in aged wild-type sheep our expectation is 

that a model made in this way without overexpression of transgenes or using multiple 

mutations will develop early AD changes. The indication that prodromal disease status could 

be monitored via CSF testing dramatically improves the potential utility of a sheep AD 

model. Moreover, the ability to keep sheep in large cohorts in standard paddocking 



arrangements will enable research and drug testing at lower cost, hopefully bringing the 

field of AD research closer to finding an effective cure. 
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Tables 

Table 1: Percentage identity between key human AD-related proteins and the sheep 

reference sequence or closest sheep sequence hit on BLAST, showing that high homology 

exists between human and sheep. 

 

  

 

Sheep vs Human % 

Identity 

Human Sequence 

(Length) Sheep Sequence (Length) 

Coverage 

% 

     

APP770 97% NP_000475.1 (770) XP_004002849.1 (770) 100 

Aβ1-40 100% NP_000475.1 (770) XP_004002849.1 (770) 100 

Aβ1-42 100% NP_000475.1 (770) XP_004002849.1 (770) 100 

α-cleavage site 100% NP_000475.1 (770) XP_004002849.1 (770) 100 

β-cleavage site 100% NP_000475.1 (770) XP_004002849.1 (770) 100 

γ-cleavage sites 100% NP_000475.1 (770) XP_004002849.1 (770) 100 

     

BACE1 99% NP_036236.1 (501) XP_004016104.1 (501) 100 

PSN1 91% NP_000012 (467) 
 

XP_012037385.1 (468) 100 

PSN2 96% NP_000438.2 (448) XP_014954666.1 (445) 100 

     

APOE 69% NP_000032.1 (317) XP_011950465.1 (342) 100 

APOE4 (112 position) 100% NP_000032.1 (317) XP_011950465.1 (342) 100 

APOE4 (158 position) 100% NP_000032.1 (317) XP_011950465.1 (342) 100 

     

Tau isoform 1 (758aa) 87% NP_058519.3 (758) XP_012004971.1 (601) 80 

NF-L 98% NP_006149.2 (543) XP_014948576.1 (536) 75 



 

Table 2: CSF levels of three protein fragments associated with AD. Total tau and 

neurofilament light levels were measurable in sheep and comparable to human levels, while 

levels of Phospho-tau 181 were not much higher than the lower level quantification limits of 

the test. 

  Total Tau (ng/L) 

Phospho-Tau181 

(ng/L) 

Neurofilament 

Light (ng/L) 

    

Sheep 1 594 15.1 800 

Sheep 2 73 15.4 615 

Sheep 3 291 15.1 1185 

        

 

 

 

  



Figure Legends (images as separate TIFF files) 

Figure 1: Amyloid-beta CSF profiles, showing that all of the cleaved fragments of the APP 

protein present in humans appear in similar levels in sheep, including the Aβ1-42 fragment. A-

D represent the four eight year old sheep samples, with E as a human control for 

comparison. 

 

Figure 2: Plaques are present in aged sheep brain.  A. Large amyloid immuno-positive 

structures are observed in the entorhinal cortex of the 14 year old sheep along with smaller 

structures indicated by the arrow. B. High magnification image of the largest plaque seen in 

A. C. Two plaques adjacent to granule cells of dentate gyrus within the hippocampus from 8 

year old sheep 3. DAB is the chromogen used in A, B and C. D. A thioflavin-positive structure 

from the 14 year old sheep cortex is shown. Scale bars are 50μm in length.  

 

 

Figure 3: Tangles are present in the aged sheep brain.  A. A neuronal tangle found in the 

entorhinal cortex of the 14 year old sheep. B. A tangle within the temporal lobe of 8 year old 

Sheep 2. C. Possible dystrophic neurites in the 14 year old sheep observed as a cluster of 

thickened neurites within entorhinal cortex. DAB is the chromogen used in A, B and C. D. 

Section 1240 from the Michigan State University Sheep Brain Atlas is representative of the 

coronal level of hippocampus examined in this study showing relative densities of tangles in 

different regions of the cortex. Red circles represent high density; yellow represents 

moderate density, and green is low density. Scale bars are 50μm in length. 



 

 

 

 

 

 

Table 3: Relative numbers of tangles and plaques observed in the cortex and hippocampus 

of the 5 sheep in this study, showing that the fourteen year old sheep had more tangles and 

plaques than the eight year old sheep. One + equates to approximately 5 plaques or tangles. 

 

  

Average No. of Tangles per 50µm 

Section Average No. of Plaques per 50µm Section 

   

8yo Sheep 1 + ++++++++++++ 

8yo Sheep 2 ++++ ++++++++++++++++ 

8yo Sheep 3 + ++++++++++++ 

8yo Sheep 4 + +++++++++++++++ 

14yo Sheep ++++++++++++ ++++++++++++++++++++++ 
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