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Investigation of Dayem Bridge NanoSQUIDs
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Abstract—Superconducting QUantum Interference Devices
(SQUIDs) based on nanobridge junctions have shown increas-
ing promise for single particle detection. This paper describes
the development of the fabrication of improved and reproducible
nanobridge junctions fabricated by focused ion beam (FIB) milling
from niobium thin films. Although the very low noise properties of
nanobridge SQUIDs are well known, the nature of the milling pro-
cess is little understood at the level of local superconducting prop-
erties. In this paper, we report the results for nanobridge Josephson
devices and SQUIDs, which we believe are the first to be made by
Xenon (Xe) FIB milling. Temperature-dependent current–voltage
behavior, microwave-induced Shapiro steps, and SQUID response
to magnetic fields have been measured. We make preliminary com-
parisons with nominally identical devices milled from Nb thin films
using either Xe or Ga ions.

Index Terms—Focused ion beam (FIB), microwave, nanoscale,
nanoSQUID, Superconducting QUantum Interference Devices
(SQUIDs), Xe FIB.

I. INTRODUCTION

SUPERCONDUCTING QUantum Interference Devices
(SQUIDs) are macroscopic quantum devices that are

capable of detecting and measuring a wide range of physical pa-
rameters with unequalled sensitivity [1], [2]. In addition to con-
ventional trilayer SQUIDs whose performance has shown rapid
improvements recently [3], [4], SQUIDs based on nanobridge
Josephson junctions (also known as Dayem bridges) have re-
turned to popularity in recent years, with the realization that their
low capacitance and high critical current density can provide ad-
vantages of low intrinsic noise and potentially high-frequency
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operation [5]–[8]. In addition, their small scale in all three di-
mensions makes them particularly suitable for nanoSQUIDs
[9]–[14]. The condition for low-noise operation of nanobridge
junctions requires that the length L should be shorter or compa-
rable with the temperature-dependent coherence length of the
superconductor ξ(T), i.e.,

L ≤ ζ (T ) . (1)

For pure Nb at low temperatures, ξ(T) is around 35 nm
and it proves difficult to fabricate bridges with length smaller
than this, although 50 nm dimension is accessible to both fo-
cused ion beam (FIB) milling and electron beam lithography.
ξ(T) diverges as T approaches the critical temperature Tc so
the above-mentioned condition will be satisfied if the tempera-
ture approaches Tc . However, the junctions cannot be operated
very close to Tc without compromising the Josephson coupling
energy and, thus, increasing the intrinsic noise of the device.
Thus, for the present devices, there is only a limited temperature
range over which these nanobridge SQUIDs operate optimally
[15], [16].

Until recently, Ga ion beams were the main method for
nanoscale milling. Over past years, other sources of ions (for
example, various inert gases) have become available, including
the massive atomic species Xe. Compared with Ga, Xe ions
have larger mass and should provide higher milling rates, and
the inert chemical nature of Xe may also produce less impact
on the electrical properties of the underlying unsputtered thin-
film surface. For specific comparison of the two ions, based on
Monte Carlo simulation with an energy for both of 30 keV, Ga
implanted into Nb will have a mean range of 11.6 nm and an
absolute maximum around 37 nm. The sputter yield for a sin-
gle ion with Ga is 3.9 atoms per ion on average. The threshold
dose for amorphization is 2.56 × 1014 ion/cm2. Xe at the same
energy has a mean range of 8.4 nm with a maximum of range
of 25 nm. The sputter yield is higher than for Ga at 5.7 atoms
per ion and the threshold for amorphization is a little lower at
1.75 × 1014 ions/cm2. The required dose to remove an equiva-
lent volume would be less with Xe, but in both cases the amount
of milling to produce a Dayem bridge junction is much higher
than the threshold and is expected to be sufficient to amorphize
the Nb film up to the maximum range. The Xe ions being inert
can play no role other than damage and sputtering. Implanted
ions will be present in the sample and being large and inert
are likely to stabilize the damage. The Ga will also sputter and
damage the sample, but Ga can alloy with Nb and occupy va-
cancies left behind in the damage cascade. The overall retained
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Fig. 1. SEM image of the nanoSQUID made by Xe FIB. NanoSQUID loop
size is ∼500 nm.

damage in the Ga implanted sample may be less due to this
mechanism. Beneath the damaged layer, a transition to pristine
Nb is expected and the degree of damage should be influential
on superconducting properties of the junctions [17].

In this paper, we report the first Xe FIB fabricated nanobridge
SQUIDs showing that the properties are at least comparable
with equivalent Ga milled devices, and the results are observed
with those devices. Temperature-dependent current–voltage
characteristics (IVCs) are reported along with the observation
of microwave-induced Shapiro steps. The following sections
describe fabrication, results, and future developments.

II. FABRICATION AND TEST PROCEDURE

Thin Nb films (150 nm) are first grown by sputtering on
an SiO2 (200 nm)/Si substrate and Nb tracks (with a width of
25 μm) were patterned by conventional optical lithography and
reactive ion etching to produce a 8 mm × 8 mm chip design able
to accommodate at least six SQUID devices. The SQUIDs with
different loop sizes based on the nanobridge Josephson junctions
have been milled using Xe FIB. For each device, four-terminal
connections have been fabricated on the sample chip. Recently,
for another set of devices with each of six tracks on the chip,
a set of dc nanoSQUIDs (loop diameter 500 nm) is patterned
using FIB milling, three of the devices are patterned with a
Ga beam and the other three with a Xe beam, with identical
milling patterns for each ion species. A SEM image of a Xe FIB
nanoSQUID is shown in Fig. 1.

After fabrication, having attached the SQUID chip to a 24
pin chip holder, the nanoSQUIDs are individually wired up and
the chip is cooled in a closed-cycle pulse-tube cooler having
a temperature-controlled stage variable between 2.7 and 12 K,
controlled to a precision of 1 mK or better. A variable mag-
netic field (up to 5 T) can be applied to the SQUIDs from a
superconducting solenoid that surrounds the chip.

Fig. 2. Resistance versus temperature curves for R(T) for nanoSQUIDs fabri-
cated by FIB. Dash line is for Xe nanoSQUID (deviceD30-1) and solid line is
for Ga nanoSQUID (devices D30-2).

Fig. 3. Voltage versus current as function of the temperature for Xe FIB
nanobridges SQUID. Temperature range is from 8.22 to 8.32 K.

Any one of the six devices can be measured in turn, and the
initial tests measure the four-terminal SQUID resistance as a
function of temperature from around 10 K down to a tempera-
ture of around 4 K. Typical curves for R(T) are shown in Fig. 2.
Note that most devices show a large transition over a narrow
temperature range followed by a slower smaller transition be-
ginning around 0.5 K below the higher transition. We interpret
the larger resistance drop as representing the main Nb transition
to the superconducting state, whereas the broader and lower one
is the junctions’ transitions. It is notable that the Xe and Ga
devices show rather different behaviors, especially the Xe R(T)
variation shows a more pronounced junction transition.

III. JOSEPHSON JUNCTION AND SQUID RESULTS

In addition to testing the R(T) behavior of the SQUID devices
themselves, we also measure the variation of the critical currents
of the two junctions in parallel (with zero applied magnetic
field) as a function of temperature. Fig. 3 shows the IVCs as
function of temperature for a Xe FIB SQUID. The temperature
ranging varies from 8.22 to 8.32 K resulting in a critical current
Ic variation from 50 to 100 μA. Note that the IVC shows the
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Fig. 4. Critical current versus temperature for both SQUIDs made by Xe FIB
(line with square) and Ga FIB (the line with circle).

normal resistively shunted junction behavior in this temperature
range with no hysteretic regions.

Critical currents versus temperature have been measured for
the Ga FIB SQUID for temperature in the range from 8.225 to
8.4 K. Over this range, the critical current changes from 60 to
200 μA. The SQUID junction critical currents for both methods
of fabrication are plotted in Fig. 4 as a function of the operating
temperature. The normalized slopes of the critical current with
temperature are roughly similar to Xe FIB SQUID and Ga FIB
SQUID, indicating that the bridge dimensions may be somewhat
different but underlying superconducting properties seem the
same.

The high-frequency properties of FIB milled microbridges
are also an important property in view of the increasing impor-
tance of microwave readout of Josephson and SQUID circuits
for parametric amplifiers and other inductively coupled circuits
[18]. A straightforward test of the frequency response of the
Dayem bridges employed in the SQUIDs described here is to
measure the IVC in the presence of applied microwave radiation
at a frequency f.

The zero-beat frequency between the internally generated
Josephson current frequency fJ and the nth harmonic of the
applied microwave signal gives rise to flat “Shapiro step” at a
voltage nfh/2e, where n is an integer, h is the Planck constant,
and e is the electronic charge. High-voltage (or equivalently high
harmonic) steps are observed as the applied microwave power
is increased, up to at least 100 μV. A measurement of the at-
tenuation of the high-harmonic step amplitudes with increasing
voltage gives an indication of the upper frequency limit for the
Josephson effect generated microwave currents at which these
junctions respond.

We have measured the high-frequency properties of
nanobridge-based Josephson junctions fabricated by Xe FIB.
As the 6 GHz applied microwave radiation power increases,
higher harmonic steps appear in the characteristic. At an operat-
ing temperature of 8.35 K, the IVCs for four different microwave
powers from 0.05 to 0.15 Vrms are shown in Fig. 5.

The measured circuit parameters for this device at the operat-
ing temperature yield a critical current Ic of 82 μA and a normal
state resistance R of 1.1 Ω predicts an upper frequency cutoff

Fig. 5. Observed Shapiro steps for Xe nanobridge Josephson junction for
different microwave power levels at fixed frequency 6 GHz and operating tem-
perature 8.35 K.

Fig. 6. SQUID voltage as a function of applied perpendicular magnetic field
for Xe FIB SQUID at operating temperature T = 8.22 K.

fc for the Josephson frequency of around RIc/Φ0 , correspond-
ing in this case to fc = 45 GHz so it seems clear that these
microbridge junctions show conventional Josephson behavior.

Finally, to test the equality of the individual junctions’ critical
current in a SQUID, we measured the dc output voltage response
to magnetic field V(Φ) of each SQUID when it is biased with a
fixed dc bias current (slightly greater than the zero field critical
current) as the applied magnetic flux is swept over a range of
several flux quanta (see Fig. 6).

The maximum slope of the V(Φ) plot is a useful figure of
merit for the gain of the SQUID device and is a measure of
the minimum detectable flux or magnetization change that the
SQUID can detect. The results shown here for a Xe milled
SQUID show a flux-modulated voltage amplitude exceeding
45 μV and a maximum slope of the voltage versus flux response
of dV/dΦ achieves a level as high as 0.65 mV/Φo , at least as
good as we observe with typical Ga milled Nb nanoSQUIDs.
An additional advantage of microbridge SQUIDs over some
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other types is that the stability of the voltage appearing across
the direct current biased device is extremely high, perhaps due
to the expected lack of two-level fluctuators. In this paper, the
noise is dominated by the room temperature amplifier noise level
(6 nV/(Hz)1/2) so the intrinsic noise is not measurable. Else-
where, in [10], we have shown that using a cooled preamplifier,
sub μΦ0 /(Hz)1/2 flux noise is achieved with similar devices.

IV. FUTURE WORK AND CONCLUSIONS

Having demonstrated that FIB milling with a Xe ion beam is
capable of producing microbridge junctions with similar prop-
erties to those previously reported using a Ga beam, we plan to
further investigate these devices. The observed similarity sug-
gests that the chemical influence of implanted Ga ions on Nb
films is small. Comparison of a larger set of devices milled by
the different ion beams side by side on the same chip will allow
us to more accurately assess the advantages and disadvantages
of each process, while also providing better statistics on their re-
producibility. Conventional Josephson analysis seems to apply
to these junctions, even at operating temperatures within 1 K
of the Nb superconductor Tc , reflected by the high-frequency
response. We are particularly interested in determining the up-
per limit to frequency response of these nanoSQUIDs and have
begun to model the Shapiro step amplitudes of the IVCs as
a function of power, temperature, and applied magnetic field.
Comparison of the observed and modeled thermal noise round-
ing of the IVCs provides a powerful method to estimate the
upper frequency response of Josephson currents in these struc-
tures while also enabling us to estimate the effective noise tem-
peratures of the junctions. We are also developing mechanisms
in the fabrication of these milled SQUIDs to extend the useful
operating temperature, particularly by inducing additional dam-
age and/or doping to the nanobridge regions, combined with
reducing film thickness [19].
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