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Abstract. The paper presents the developments of a series of methods to train a 

fabrication system for the integration of material performances in timber manu-

facturing processes, combining robotic fabrication together with different sens-

ing strategies and machine learning techniques, and their further application 

within a prototypical design to manufacturing workflow. The training cycle, 

spanning from the recording of skilled human experts to autonomous robotic ex-

plorations, aims to encapsulate different layers of instrumental knowledge into a 

design interface, giving designers the opportunity to engage with material and 

tool affordances as process driver. The training methods are evaluated in a series 

of experiments and design iterations, proving their potential in the development 

of customized design to manufacturing workflows and integration of material 

performances, with a specific focus on timber.   

Keywords: Material Behaviors, Machine Learning, Instrumental Knowledge, 

Subtractive Manufacturing. 

1 Introduction 

The paper presents the developments of a series of methods to train a fabrication system 

for the integration of material performances in timber manufacturing processes, com-

bining robotic fabrication together with different sensing strategies and machine learn-

ing techniques, and their further application within a prototypical design to manufac-

turing workflow. 

Such methods question the linear progression from the design intention to its mate-

rialization within current production practices which determines a lack of feedback be-

tween the different stages of the process. This forces designers to consider materials as 

passive receivers of a previously generated ideal form stored in a digital model 

(DeLanda 2004) and reinforces the separation between the act of designing and making 

(Carpo 2011). Consequently, design practices can only engage with a limited range of 

standard manufacturing methods and homogeneous materials. Furthermore, the ho-

mogenization of natural material results in heavy industrial processing and material 

waste.  
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The goal of the research is to develop a computational framework which allows de-

signers to engage with the properties of heterogeneous materials and the affordances of 

non-standard tools as process drivers, extending the design moment toward the fabri-

cation stage to explore novel design opportunities. One of the most pressing problems 

in working such a process is the assessment of inherent variation, represented in this 

paper by differing wood grain and chisel cuts. There is a range of possible cuts that are 

feasible, i.e. that actually remove material while not damaging either tool or wood, and 

within this there is a range that may be considered optimal, e.g. they remove the maxi-

mum amount of material in a given time. Human experts navigate and anticipate this 

range intuitively, after training and experience. It is a far greater problem for a machine. 

This paper investigates how this range and optimum can be quantified and mapped 

for use in determining appropriate cuts by a robot. The central question is: how accu-

rately are the effects of a given cut predicted based on inputs easily available to the 

robot? We also investigate whether the domain training inputs makes a significant dif-

ference, by comparing data generated by a methodical, parametric, exploration of grain 

angles and cuts by the computer against data drawn from an expert human user. Is it 

better for the machine to learn from a skilled teacher, or from its own experience? 

 

2 Context 

The methods are based on a series of training and datasets curation procedures, 

where the instrumental and material knowledge, acquired from both skilled human ex-

perts and robotic carving sessions, is captured, transferred, augmented and finally inte-

grated into an interface that makes this knowledge available to the designer. 

In this regard, one of the questions is whether is possible to encapsulate, at the least 

partially, this instrumental knowledge in the technological means for fabrication avail-

able to us, making it “easily accessible, communicable, repeatable, hackable, and 

transformable”, in the same way, for instance, as 3D modelling software encapsulates 

knowledge of calculus-based mathematics (Witt 2010). However, in the accumulation 

of human experience through making and the interaction with materials, there is a tacit 

dimension that is difficult to capture, formalize and share (Polanyi 1967). 

In the history of automation, there have been previous attempts towards this direc-

tion, such as the “Record/Playback” system to generate machine operations, developed 

in the 1940s by General Electric. Within this system, a machinist was able to operate a 

modified machine tool to produce an artefact and get the totality of his motions recorded 

on a magnetic tape which could be automatically reproduced later by the machine. In 

those recorded motion was captured not only the gears’ mechanical displacement but 

also the machinist’s intelligence, skills and tacit knowledge (Noble 1984, Callicot 

2003). More recently, similar methods, focusing on the value of human’s action analy-

sis to inform robotic fabrication tasks, have been successfully applied for robotic repro-

duction of traditional stone surfacing techniques (Steinhagen et al. 2016) and to recon-

struct ancient technical gestures associated with the use of tools and the development 

of the related cognitive functions (Pfleging et al. 2015).  
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The encapsulation of instrumental knowledge based on sensor measurements of ma-

chine operations, rather than human demonstration, finds precedence in a series of in-

dustrial manufacturing applications where machine learning techniques, such as Artifi-

cial Neural Networks (ANN), have been utilized in a series of machining operation for 

the optimization of fabrication parameters (e.g. surface roughness, tool wear) and cost 

reduction (Al-Zubaidi et al. 2011). Recently, CITA presented a similar approach to 

increase the accuracy of robotic incremental sheet forming through the acquisition of 

scan data and supervised learning (Zwierzycki et al. 2017).  

The research proposition integrates both approaches for instrumental knowledge en-

capsulation and combine them in a two-stages robotic training process for the develop-

ment of custom design to manufacturing workflows, with a specific focus on timber. 

3 Robotic Training Methods 

This paper tests the accuracy of predictions derived from machine learning on prior 

example chisel cuts, which are intended in practice to fit into a larger overall workflow 

(Fig. 1). This consists of a series of training methods which combines the recording of 

skilled human experts performing subtractive operations with a set of traditional carv-

ing tools, such as chisels and gouges, on wooden boards together with autonomous 

robotic carving sessions.  

 

Fig. 1. The robotic training methods are structured around three main stages: 1) Recording fab-

rication parameters and material outcomes into datasets 2) Encapsulating instrumental 

knowledge through the training of an Artificial Neural Network 3) Using the trained network to 

inform a robotic fabrication task. 
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3.1 Training Tools 

For each recording session, the combination of different sensing strategies, such as mo-

tion capture cameras and force-feedback sensor, allows collecting fabrication data sim-

ultaneously with the performing of the carving operation and compiled it into an ongo-

ing dataset.  

Motion-capture cameras are used to track the position and orientation (with a preci-

sion of ~0.2 mm) of 3D-printed custom markers applied on the carving tools and work-

piece. This allows to stream and reconstruct in real-time in the digital design environ-

ment (Rhino3D/Grasshopper) the carving operations and toolpath sequence that gener-

ated them (Fig.2). 

 

Fig. 2. A system of motion-capture cameras allows to track with high-degree of precision the 

position and orientation of the fabrication tools and stream this information directly into the de-

sign environment. 

Following the session, a photogrammetric reconstruction of the training boards is per-

formed to store a precise 3D model of the material outcomes and extract relevant fea-

tures for the training (Fig.3). 
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Fig. 3. After the recording session, a photogrammetric reconstruction of each training board is 

performed to extract relevant features for the training process. In the image, a selection of boards 

analyzing the outcome of different toolpath carved across the wood grain main direction. 

The collected sensor dataset is used within a supervised machine learning procedure, 

an Artificial Neural Network (ANN) with backpropagation-based learning, whose 

learning objective is to predict the simulation of a subtractive operation from a user-

defined toolpath and a series of fabrication parameters, or conversely, generate a robotic 

toolpath out of a carved geometry. The training procedure utilizes Tensorflow (GPU 

version) as machine learning framework combined with the integration of Keras and 

Scikit-Learn libraries to respectively generate the ANN architecture and measure the 

performances of the system. 

The input parameters are the tool/workpiece angle, tool/grain direction angle, force 

feedback, feed rate, target cut depth, target cut length. The recorded material outputs 

are: depth, length and width of the cut. Both the recorded and robotic toolpath are com-

posed of a sequence of target frames, each storing the local parameters and fabrication 

outcome information and recorded as a single entry of the total dataset. 

During the training, the performance of the network is evaluated following a K-fold 

cross validation (with k=5) procedure, where the dataset is split in k subsets, called 

folds, and the algorithm is trained on k-1 folds, with each time one of the folds left out 

to be used to test the system with “unseen” data. The k performance scores obtained at 

the end of the validation are summarized in the measure of the Mean Absolute Error 

(MAE) of the prediction and its Standard Deviation (SD). 

Starting the robotic training process with the human demonstration allows collecting 

quickly and efficiently information on how to operate a tool with a specific material, 

mediated by human experience acquired throughout the years and provide a strong 

foundation to inform robotic fabrication tasks with a similar set of non-standard fabri-

cation tools and wood species.  

The trained network, based on human experts, is used to provide guidance for au-

tonomous robotic training sessions, efficiently narrowing down the search space 
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through the definition of domain boundaries in the selected features rather than arbitrary 

defining  an operational range or relying on a reinforcement learning procedure that 

would have to learn from a series of potentially dangerous “mistakes” during the fabri-

cation training. 

The definition of the search space through human demonstration presents to design-

ers a curatorial approach toward the design of the fabrication process: rather than envi-

sioning a universal machine able to operate any tool on any material, the idea is to tune 

the system to a very specific set of fabrication affordances and design intentions. 

 Therefore, the initial dataset is extended through the robotic production of a series 

of cuts where the parameters investigated are finely interpolated across the training 

board and the obtained data used for the training of the network informing the actual 

robotic fabrication task (Fig.4).  

 

Fig. 4. The robotic training sessions allow to perform an in-depth exploration of selected param-

eters domain through a collection of finely interpolated cuts. 

3.2 Design to Fabrication Workflows 

The aim of encapsulating instrumental knowledge is its integration into a design in-

terface which makes it accessible to designers and present them the opportunity of using 

materials behavior into their design workflow as process drivers. Once the network has 

been trained and the correlations between fabrication parameters and carved geometries 

are established, it’s possible to translate back and forth between the two sets and cus-

tomize the network topology to a specific design application (Fig.5).  
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Fig. 5. The instrumental knowledge encapsulated in the trained network is integrated into a de-

sign to fabrication workflow based on the opportunity of translating back and forth between ro-

botic toolpaths and carved geometries. 

The three main modes of applications explored in the experiments are: 

• From robotic toolpath to simulation of the carved geometry. While conventional 

digital Boolean operations result insufficient in calculating the outcome of subtrac-

tive operations with non-standard tools on heterogeneous materials, the trained net-

work provides a more accurate simulation based on actual material properties and 

tool affordances. Designers can directly test how individual fabrication parameters 

affect the operation result and evaluate how these could be tuned to match their de-

sign intention. The prediction could be applied to multiple cuts at the same time, 

each with different parameters, and used to generate the overall appearance of the 

cutting pattern. 

• Individual Parameters Optimization. Utilizing the same set of training inputs and 

outputs is possible to create labels (or Boolean flags) to predict a series of event 

thresholds based on sets of fabrication parameters, such as the successful removal of 

material or the correct extraction of the tool from the workpiece. Moreover, addi-

tional labels could be created by the designer to describe formal preferences (e.g. 

surface roughness, edges definition), curating the training dataset along a specific 

design direction. The event threshold is predicted using a ANN for binary classifi-

cation and the prediction accuracy is evaluated with the same cross validation 

method previously described. 

• From carved geometry to robotic toolpath. Extracting fabrication data out of the 

scanned model of a previously carved workpiece to reconstruct the robotic toolpath 

that has generated it. Alternatively, the same method could be applied starting from 

a digital geometry obtained through a subtractive Boolean operation as a way of 

matching a formal design intention in the fabrication stage. 
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4 Experiments and Results Discussion 

As part of their development, the training methods have been iteratively tested to inform 

the robotic fabrication of a series of carved panels using different wood species and 

carving tools (Fig. 6). 

 

 

Fig. 6. In the robotic fabrication stage, the trained network is used to inform the robotic toolpath 

to carve the previously simulated geometries. 

One of the key things evaluated has been how the integration of human instrumental 

knowledge compares to the robotic training process. To perform this evaluation, two 

different training cycles have been set up, one starting with the recording of skilled 

human expert manually performing carving operations on a series of boards, the other 

directly with the industrial robotic arm (ABB IRB1600) generating a collection of cuts 

within an arbitrarily defined range of fabrication parameters. 

In the first experiment, extending the findings of previously published work by the 

authors (Brugnaro and Hanna, 2017), the craftsman created an initial collection of 50 

carving operation on a series of European Lime wood boards using a traditional carving 

gouge (Stubai 9/20). The dataset has been generated concurrently with the carving itself 

following the methods previously described. The human expert, thanks to his experi-

ence, has been able to avoid operations where the tool was not actually cutting the ma-

terial or, on the opposite, digging too much into it and consequently forcing to stop the 

operation. Moreover, once individuated a preferred carved result, the cutting goal has 

been adjusted through human judgement to achieve a similar qualitative result in dif-

ferent lengths, depths and wood grain directions.  

In the second stage of the experiment, the initial human-based dataset has been used 

to narrow-down the parameters domain and systematically explore it with the industrial 

robot through a collection of 215 cuts.  

While the final prediction goal of the training cycle is the simulation of a carved 

geometry according to a set of given fabrication parameters, the first stage, based on 
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human expert data, is aimed toward the generation of robotic toolpaths for additional 

subtractive operations that would extend the initially acquired dataset.  

In the specific, the dataset of the first stage has been used to: 1) Analyze how the 

domain boundaries of the key parameters of tool/surface angle variation and “depth” 

profile of the toolpath changes according to different cut lengths, widths and wood grain 

directions. 2) Train a network and use it to predict such fabrication parameters to gen-

erate the robotic toolpath for the 215 operations within the dataset defined boundaries. 

The prediction error for the toolpath generation stage was the following: Depth: MAE 

= 0.56 mm, SD = 0.12mm; Tool Angle: MAE = 2.12°, SD = 0.35°.  

In the second experiment, counting the same number of cuts and using the same type 

of wood and carving gouge to compare it to the previous, the range of the fabrication 

parameters to explore has been defined without the guidance of a human expert inter-

acting with the materials and tools but directly with the robotic operations stage. The 

focus of the training session has been on the variation of the material outcomes in re-

spect of the angle between tool, workpiece surface and grain direction applied to dif-

ferent length of the cuts.  

It’s important to note that in the second experiment, the user applied his undirect 

intuition and understanding of the task in the programming of the robotic actuation, 

while for the first experiment direct real-world fabrication data have been used to in-

form it. 

The output of the experiments are two networks trained with datasets counting the 

same number of cuts but different prediction boundaries. As a consequence, they per-

form differently in the prediction of the material outputs (length, depth and width rela-

tive to each individual target frame) necessary to simulate the fabrication outcome of 

the chosen operation. 

In the specific, the two-stages (human+robot) network has been trained toward a 

specific design intention and performs better within its narrowed-down fabrication pa-

rameters domain (Depth: MAE = 0.35 mm, SD = 0.04 mm; Width: MAE = 0.83 mm, 

SD = 0.13; Length: MAE = 0.28mm, SD = 0.05mm).  

The single stage experiment (robot only), while in general performing worse than 

the former (Depth: MAE = 0.53 mm, SD = 0.12mm; Width: MAE = 1.02 mm, SD = 

0.32; Length: MAE = 0.78mm, SD = 0.32) and resulting less efficient for some opera-

tions described below, is able to cover a more extended and generic range of parameters 

prediction and could result more useful in those cases when the design task is not strictly 

defined from the training stage. 

The dataset generated in the second experiments presents some set of parameters 

which does not generate any material removal on the board or damage the tool not 

allowing to complete the operation. In this case, an important step has been introducing 

two different labels for the definition of event thresholds: 1) “Tool Damaging” and 2) 

“Material Removal”. Once these labels have been assigned, it’s been possible to train 

the network for a binary classification process of the two event states (Fig. 7). The 

accuracy of the prediction for the two labels were respectively of 92.45% (Standard 

Deviation: 4.96%) and 84.58% (Standard Deviation: 3.20%). Combining the binary 

classification prediction with the trained network of the second experiment has been 
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possible to efficiently tune the individual parameters and filter out dangerous or ineffi-

cient robotic operations (Fig. 8). The prediction of the range of successful cuts allows 

to explore its boundaries with confidence and optimize individual parameters to achieve 

a specific material outcome or increase the efficiency of the process, maximizing, for 

instance, the removal volume (Fig. 9). 

 

Fig. 7. “Tool Damaging” and “Material Removal” event thresholds are predicted with an ANN 

for binary classification and allow to optimize individual fabrication parameters to avoid poten-

tially dangerous or inefficient operations. 

 

Fig. 8. The event threshold for “successful” cuts is predicted combining the previous event labels, 

defining the range of optimal cuts. A normalized confusion matrix shows the prediction rate for 

the “Successful” and “Not Successful” labels, with an accuracy of 83% and 93% respectively. 
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Fig. 9. The tool/surface angle value at the beginning of the cut affects significantly the successful 

result of the operation. Such parameter could be optimized toward a specific material outcome, 

such as maximizing the depth and width of the cut to increase the efficiency of the subtractive 

process. 

Finally, the dataset generated during the robotic training have been used to reverse the 

network topology of the previous experiments and predict the tool/workpiece angle pa-

rameter and input cutting length necessary to reconstruct a toolpath used to generate a 

carved geometry. The prediction error was respectively 1.69° (SD = 0.42°) and 3.37 

mm (SD = 1.23 mm) and the overall process performs slightly worse in the reconstruc-

tion of the toolpath than the network trained in the opposite direction for geometry 

simulation, probably due to hardware noise and imprecisions in the physical measure-

ments, confirming what already pointed out by Zwierzycki et al. (2016) in their re-

search.  

 

5 Conclusions 

Focusing on robotic subtractive fabrication with timber as the main case study, the pa-

per presents the potential of machine-learning strategies for design to manufacturing 

applications, as a way to explore novel design opportunities through the integration of 

actual material properties and tool affordances for simulation purposes (Fig. 10, Fig. 

11).  

The prediction rates of the trained networks presented in the experiments discussion 

suggest that it’s possible to accurately simulate the results of subtractive operations 

based on a given set of fabrication parameters and use the encapsulation of such instru-

mental knowledge to translate back and forth between robotic toolpath data and geom-

etry prediction. 

The experiments focused on two different workflows for the generation of fabrica-

tion datasets and curation of the training process, examining whether is better for the 
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robotic system to learn from a skilled human expert or autonomous training sessions. 

The lower prediction error of the network based on the combination of human and ro-

botic training should be attributed to the steering action of the human expert, operating 

within a narrowed down parameters range, which excluded inefficient or dangerous 

cuts, and leading the robotic training sessions to gather data only within an optimal 

fabrication range. The more systematic and wider range of the second experiment 

doesn’t allow to have the same resolution in the more relevant areas of “successful” 

cuts, resulting in lower prediction performances. 

To conclude, the manipulation of knowledge across distinctly operating domains 

such as human making and industrial robotic manufacturing presented the opportunity 

to develop an approach for human-machine interaction which questions current indus-

trial method of knowledge transfer and will be further explored in future steps of the 

research. 

 

Fig. 10. The training process allows to tune the fabrication system to a specific set of tools and 

type of wood to explore design opportunities that would become evident only in the fabrication 

stage. 
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Fig. 11. Combining together prediction of cuts with different fabrication parameters, it’s possible 

to simulate the final carved geometry in several pattern configurations.  
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