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Dopaminergic basis for signalling belief updates, but not surprise, and the link to paranoia 

 

Authors 

Matthew M Nour*1,2,3,4, Tarik Dahoun2,3,5, Philipp Schwartenbeck4,6,7,8,9, Rick A Adams10,11, Thomas HB 

FitzGerald4,6,12, Christopher Coello13, Matthew B Wall13, Raymond J Dolan4,6, Oliver D Howes*1,2,3.  

 

Author Affiliations  

1. Institute of Psychiatry, Psychology and Neuroscience (IOPPN), King’s College London, London, UK 

2. MRC London Institute of Medical Sciences (LMS), London, Hammersmith Hospital, London, UK  

3. Institute of Clinical Sciences, Imperial College London, London, UK  

4. Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College 

London, London, UK  

5. Department of Psychiatry, University of Oxford, Oxford, UK 

6. Wellcome Trust Centre for Human Neuroimaging (WCHN), University College London, London, UK  

7. Oxford Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, UK 

8. Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria 

9. Neuroscience Institute, Christian-Doppler-Klinik, Paracelsus Medical University Salzburg, Salzburg, 

Austria  

10. Institute of Cognitive Neuroscience (ICN), University College London, London, UK  

11.  Division of Psychiatry, University College London, London, UK  

12.  School of Psychology, University of East Anglia, East Anglia, UK  

13. Imanova Centre for Imaging Sciences (Invicro Ltd). Hammersmith Hospital, London, UK 

 

* Corresponding Authors 

Dr Matthew Nour, matthew.nour@kcl.ac.uk 

PO63 Level 5, IOPPN, King’s College London, 16 De Crespigny Park, London SE5 8AF 

 

Professor Oliver Howes, oliver.howes@kcl.ac.uk  

PO63 Level 5, IOPPN, King’s College London, 16 De Crespigny Park, London SE5 8AF 

 

Classification 

Biological Sciences / Neuroscience 

Social Sciences / Psychological and Cognitive Science 

 



	 2	

ABSTRACT 

Distinguishing between meaningful and meaningless sensory information is fundamental to forming 

accurate representations of the world. Dopamine is thought to play a central role in processing the 

meaningful information content of observations, which motivates an agent to update their beliefs 

about the environment. However, direct evidence for dopamine’s role in human belief updating is 

lacking. We addressed this question in healthy volunteers who performed a model-based functional 

magnetic resonance imaging (fMRI) task designed to separate the neural processing of meaningful 

and meaningless sensory information. We modelled participant behaviour using a normative Bayesian 

observer model, and used the magnitude of the model-derived belief update following an observation 

to quantify its meaningful information content. We also acquired positron emission tomography (PET) 

imaging measures of dopamine function in the same subjects. We show that the magnitude of belief 

updates about task structure (meaningful information), but not pure sensory surprise (meaningless 

information), are encoded in midbrain and ventral striatum activity. Using PET we show that the neural 

encoding of meaningful information is negatively related to dopamine-2/3 receptor availability in the 

midbrain and dexamphetamine-induced dopamine release capacity in the striatum. Trial-by-trial 

analysis of task performance indicated that subclinical paranoid ideation is negatively related to 

behavioural sensitivity to observations carrying meaningful information about the task structure. The 

findings provide direct evidence implicating dopamine in model-based belief updating in humans, and 

have implications for understating the pathophysiology of psychotic disorders where dopamine 

function is disrupted.  

 

Keywords: Bayesian surprise, information-theoretic surprise, aberrant salience, schizophrenia, 

Kullback-Leibler divergence  

 

SIGNIFICANCE STATEMENT 

To survive in changing environments animals must use sensory information to form accurate 

representations of the world. Surprising sensory information might signal that our current beliefs 

about the world are inaccurate, motivating a belief update. Here, we investigate the neuroanatomical 

and neurochemical mechanisms underlying the brain’s ability to update beliefs following informative 

sensory cues. Using multimodal brain imaging in healthy human participants, we demonstrate that 

dopamine is strongly related to neural signals encoding belief updates, and that belief updating itself 

is closely related to the expression of individual differences in paranoid ideation. Our results shed new 

light on the role of dopamine in making inferences, and are relevant for understanding psychotic 

disorders such as schizophrenia, where dopamine function is disrupted. 
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INTRODUCTION 

In order to successfully navigate the world we need to exploit sensory information to make inferences 

about the environment.1 For example, before crossing the road it is sensible to check the traffic lights 

at a pedestrian crossing to decide whether it is safe to cross or not, drawing on our cognitive model 

of what traffic lights (the observable information) tell us about the traffic flow (the partially 

observable, or hidden, environmental state). When the light changes from the ‘red man’ to the ‘green 

man’ this should cause us to update our belief about the state of the environment to infer it is now 

safe to cross. Importantly, however, it is also critical to assess the informativeness of any sensory 

input. For example, although it would be surprising to see both the green and red lights on 

simultaneously, it is not advisable to update one's beliefs about traffic flow based on this observation 

alone. Thus, adaptive behaviour depends on an ability to discriminate between observations carrying 

relevant information for the task at hand (informative or meaningful cues) and observations carrying 

irrelevant, ambiguous or no information (non-informative or meaningless cues). The former should 

induce updates in an agent’s model of the world, whereas the latter should not.2  

 

Dopamine may play a key role in the processing of meaningful sensory information. Phasic activity in 

midbrain dopamine neurons is implicated in processing unexpected and salient environmental 

stimuli,3 including those that are novel4–6 and associated with reward.7,8 More recent evidence 

suggests a role for dopamine in updating a rich internal model of the task environment, necessary for 

flexible behaviour.9–11 Specifically, phasic midbrain dopamine signals can reflect inferences about the 

identity of hidden task states12,13 and encode value-neutral prediction errors,14,15 as well as support 

stimulus-stimulus associative learning.10 Here, we test whether dopamine is associated with the 

processing of meaningful sensory information in humans, so as to allow an agent to make inferences 

on a sensory input and appropriately update their internal representations of the environment.  

 

Meaningful information can be formally quantified as the degree to which a new observation changes 

an agent’s prior belief about the current state of the world, given previous observations, to a new 

(posterior) belief. The magnitude of this belief update from a ‘prior’ belief to a ‘posterior’ belief is 

usually quantified as the Kullback-Leibler divergence (DKL), and has been termed ‘Bayesian surprise’ 

(SI Appendix Eq. 8).2,16  

 

Belief updates occur after unexpected observations, but unexpectedness alone should be insufficient 

to motivate change in an agent’s internal representations. As outlined in our example above, 

unexpected observations that are equally unlikely under all competing hypotheses about the 
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environment contain no meaningful information with respect to the hidden state. The improbability 

of an observation, given an agent’s prior expectation, is often quantified in terms of information-

theoretic surprise (IS, or ‘surprisal’), which can be thought of as ‘counter evidence’ to an agent’s 

representation of the world (SI Appendix Eq. 9). 

   

The distinction between the pure unexpectedness (information-theoretic surprise) of an observation 

and its meaningful information content (Bayesian surprise) is central to understanding how new 

information influences adaptive behaviour, and may also be of relevance for understanding psychotic 

symptoms in schizophrenia. One theoretical formulation postulates that stimulus-locked dopamine 

neural activity is important for processing salient stimuli, and that maladaptive dopaminergic activity 

in response to ambiguous, unreliable or behaviourally irrelevant (meaningless) events leads to 

aberrant attribution of salience to these same events. This in turn is thought to underpin mis-

attributional symptoms such as paranoia.17–23 Of note, the detection of behaviourally salient stimuli 

involves a number of brain circuits that modulate the firing of dopamine neurons in the midbrain. In 

particular, the anterior hippocampus has a key role in regulating midbrain dopamine neuron activity 

depending on the novelty and context of stimuli via a circuit that involves the nucleus accumbens and 

ventral pallidum.5,20,24  

 

An understanding of the mechanisms underlying belief updating is therefore critical for understanding 

both the generation of complex goal-directed behaviours, and symptoms of certain neuropsychiatric 

disorders. Recent functional magnetic resonance imaging (fMRI) studies have begun to investigate the 

neural correlates of belief updating in humans, showing that encoding of unsigned belief updates (but 

not simple unexpectedness) is present in dopamine-rich midbrain regions, specifically the ventral 

tegmental area (VTA) and substantia nigra (SN).25–27 However, to date, there is no evidence linking 

direct measures of dopamine function to belief updating in humans. 

 

We investigated a dopaminergic basis for belief updating using a model-based fMRI-task, combined 

with PET imaging of dopamine function. We used a task that separates Bayesian surprise, information-

theoretic surprise, and reward prediction errors, on a trial-by-trial basis (Fig. 1).27 In brief, during the 

task participants (n=39) need to track which of two (hidden) task states pertained at every trial, based 

on imperfectly informative observations about state identity. Specifically, they were tasked to infer 

whether visual or auditory cues were currently relevant for predicting monetary outcomes, where the 

relevant modality signalled the sign of the monetary outcome with approximately 90% cue validity. 

The identity of the relevant modality reversed (switched) periodically. Participants were not explicitly 
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informed of the validity of the relevant cue or the reversal probability, but were thoroughly trained 

on the task prior to scanning.  

 

At the start of each trial, two cues (one auditory, one visual) were presented simultaneously, and could 

either be incongruent or congruent in their monetary predictions. Following cue presentation 

participants observed a monetary outcome (either a win or a loss), and subsequently indicated their 

belief about the relevant predictive modality (current environmental state) on a rating bar (see Fig. 

1). Monetary outcomes that were unexpected under a current prior hypothesis (rendering IS > 0) could 

provide either meaningful (DKL > 0, in incongruent trials) or meaningless (DKL = 0, in congruent trials) 

information regarding the identity of the task-relevant modality. This design allows a decorrelation of 

Bayesian (DKL) and information-theoretic (IS) surprise,27,28 enabling us to identify the neural signature 

of each construct. We hypothesized that belief updates (correlating with the meaningful information 

content of an observation), but not sensory unexpectedness, would be encoded in dopamine-rich 

brain areas, namely the SN/VTA complex and ventral striatum, in line with predictions form previous 

findings.25–27 Moreover, we tested whether deviations from optimal behaviour in this task were 

related to the presence of subclinical paranoid thoughts, a key prediction of the aberrant salience 

hypothesis of schizophrenia.  

 

To test directly the role of dopamine in these processes, we used positron emission tomography (PET) 

with the dopamine-2/3 receptor (D2/3R) agonist ligand [11C]-(+)-4-propyl-9-hydroxy-naphthoxazine 

([11C]-(+)-PHNO) at baseline (n=36) and following 0.5mg/kg dexamphetamine challenge (n=17). The 

baseline [11C]-(+)-PHNO PET scan measures D2/3 autoreceptor availability in the midbrain, which are 

inhibitory receptors.29–31 We hypothesised that greater midbrain D2/3R availability, reflecting greater 

tonic inhibitory tone, would be negatively related to phasic midbrain neural response during belief 

updates.4 Following acute amphetamine challenge there is an increase in dopamine concentration in 

the striatum, consequent upon blockade of dopamine re-uptake,4,32 and also possibly due to increased 

dopamine neuron firing.33–35 Greater dexamphetamine-induced dopamine release is thought to be 

associated with more spontaneous dopamine transients in the drug-free state, indicating a lower 

signal-to-noise ratio in dopaminergic signaling.17 Consequently, we hypothesized that greater striatal 

dopamine release capacity would be associated with lower ventral striatal neural response during 

belief updates. Finally, by measuring the D2/3R availability in the striatum at baseline, we were able 

to test an hypothesised inverted-U relationship between cognitive flexibility and striatal dopamine 

function at rest.36 

 



	 6	

  

 

FIGURE 1 

fMRI task showing two example trials, one informative and one noninformative. The task contained 

two auditory and two visual cues, with one cue from each modality being predictive of a monetary 

win and the other of a monetary loss (approx. 90% validity). Trials started with the simultaneous 

presentation of one visual and one auditory cue, followed by a monetary outcome (gains or losses 

from 10-30p). For any given trial only one cue modality was relevant for predicting the outcome, and 

the identity of the relevant cue switched 5-6 times in a session of 60 trials. The goal of the task was to 

correctly track the identity of the relevant cue modality (i.e. the hidden task state) at each trial, using 

information from cue-outcome observations. At the end of each trial participants reported their belief 

about the identity of the relevant modality using a rating scale. Half of the trials were noninformative, 

in that the visual and auditory cues predicted the same (congruent) monetary outcome, whilst the 

other half were informative, in that auditory and visual cues predicted incongruent outcomes. 

Unexpected outcomes in both informative and noninformative trials had positive information-

theoretic surprise (IS), but these events were only associated with positive Bayesian surprise (DKL) in 

informative trials.  
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RESULTS 

Task behaviour, computational modelling and relationship to baseline striatal dopamine function 

We modelled individual participants’ behaviour (belief ratings) by fitting a Bayesian observer model, 

with two free parameters reflecting participants’ expectations about the cue validity (ψ) and the 

probability of state transitions (reversals) at any given trial (1 − $) (Fig. 2). Together, these parameters 

captured individual differences in trial-by-trial belief updating. Specifically, the magnitude of a belief 

update following an unexpected and informative observation is proportional to participants’ 

expectations about cue validity (ψ), whilst their estimate of the state transition probability on a given 

trial (1 − $) governs belief uncertainty with each time step. This computational model allowed us to 

quantify trial-by-trial belief updates as the Kullback-Leibler divergence from ‘prior’ beliefs to 

‘posterior’ beliefs (SI Appendix Eq. 8) (Bayesian surprise), as well as the information-theoretic surprise 

(surprisal) of an observation (SI Appendix Eq. 9) at the monetary outcome stage of each trial. 

 

Our fitted model had high accuracy in explaining participants’ behaviour (R2  = .67, 95% confidence 

intervals = [.60, .73]). Moreover, we found a strong positive correlation between participants’ ratings 

and those predicted by an ideal Bayesian observer model (an instantiation of our computational 

model using the true parameters of the task) (r = .75, [.69, .80]), supporting the idea that participants 

performed the task adequately, and that their behaviour was closely approximated by a simple 

Bayesian observer model (Fig. 3a). There was no significant correlation between the two free 

parameter estimates (averaged over task blocks) within participants (r = .07 [-.25, .38], P = 0.65. Mean 

[SD] for ψ  and $  were 0.90 [0.09] and 0.92 [0.08], respectively), indicating that each captured 

different aspects of task performance (see SI Appendix Table S1 for individual participant parameter 

estimates). 

 

We analysed both overall behavioural performance and trial-by-trial belief updating. We 

operationalized overall performance as the correlation between participant belief ratings and those 

of an ideal Bayesian observer (i.e. approximation to normative Bayesian behaviour), whilst our 

primary measure of trial-by-trial behaviour was the mean difference in reported belief update on 

informative vs. non-informative trials (i.e. behavioural sensitivity to meaningful information). These 

measures of behaviour were directly correlated (rho = .56 [.29, .75], P < 0.001) (Fig. 3c). Closer 

inspection uncovered that poor overall performance was specifically related to the absolute 

magnitude of reported belief shifts on non-informative trials (rho = -.60 [-.77, -.34], P < 0.001), rather 

than informative trials (rho = -.10 [-.41, .23], P = 0.53). This indicates that participants who showed 
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poor overall performance had reduced behavioural sensitivity to the meaningful information content 

of cues, and tended to update their beliefs following non-informative observations.  

 

 

FIGURE 2 

Behavioural modelling A Bayesian model with two free parameters (ψ and $) was fitted to individual 

participant belief ratings. The model assumes that beliefs about the relevant cue modality 

(environmental state at time t), '( , are updated after making a cue-outcome observation )( , in 

accordance with Bayes’ theorem (1), where *()(|'() is the likelihood of the cue-outcome observation 

given a particular environmental state '(  (visual or auditory cues relevant). This likelihood is 

determined by the participant’s estimate of cue validity,	ψ. *('(|)-:(/-) is the prior belief about the 

relevant cue modality at the start of trial t, and *('(|)-:() is the posterior belief after observation )(. 
For each subsequent trial (e.g. t+1), the prior belief about the relevant modality is dependent on the 

posterior belief from the previous trial, *('(|)-:(), and the participant’s belief about the probability 

of state transitions, *('(0-|'(), reflected by the parameter δ (2). See SI Appendix for further details. 
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FIGURE 3 

Behavioural results (a) Behavioural performance of two exemplar participants in two sessions. 

Grey/white epochs represent periods when auditory/visual cues are relevant, respectively. The blue 

solid line displays observed belief ratings at each trial (varying between complete certainty that 

auditory cues are relevant, P(a)=1, and complete certainty that visual cues are relevant, P(v)=1). The 

orange broken line displays predicted behaviour from the fitted model (participant model parameters 

given above the plots). (b) There was a negative relationship between participants’ self-reported 

paranoia scores (measured with the Green Paranoid Thoughts Scale37) and the degree to which their 

behaviour correlated with the predictions of an ideal Bayesian observer (I.B.O). (c) There was a direct 

correlation between overall behavioural performance (correlation with I.B.O) and behavioural 

sensitivity to meaningful information (mean difference in belief shift on informative vs. non-

informative trials). (d) There was an inverted-U relationship between striatal dopamine 2/3 receptor 

availability and behavioural sensitivity to meaningful information (mean difference in belief shift on 

informative vs. non-informative trials) (see SI Appendix Table 2 for parameters of the quadratic 

model).  Broken trendlines (b-d) represent 95% confidence bounds.  
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Interestingly, we found a negative correlation between participants’ subclinical paranoia scores 

(Green Paranoid Thoughts Scale37 total) and both overall behavioural performance (rho = -.60 [-.77, -

.34], P < 0.001) and the magnitude of belief shifts on informative vs. non-informative trials (rho = -.32 

[-.59, <.001], P = 0.04) (Fig. 3b). In other words, participants with elevated subclinical paranoid 

thoughts showed reduced behavioural sensitivity to the meaningful information content of 

observations. Crucially, we found no significant relationship between overall performance and 

working memory capacity, measured with digit span assessment (rho = -.03 [-.30, .35], P = 0.85), 

indicating that a lower capacity to retain information per se does not account for our findings. For 

additional trial-by-trial behavioural results see SI Appendix. 

 

Next, we investigated the relationship between baseline striatal dopamine function and task 

performance. Previous work has established that there is an inverted-U relationship between resting 

striatal dopamine levels and cognitive flexibility, thought to be mediated by tonic stimulation of 

striatal D2/3 receptors.36 Consistent with this hypothesis, we found that baseline D2/3R availability in 

the whole striatum predicted trial-by-trial sensitivity to meaningful information (mean belief shift on 

informative vs. non-informative trials) with an inverted quadratic relationship in a simple regression 

model including linear and quadratic terms for [11C]-(+)-PHNO 1234 (Model 1: F2,33 = 3.42, adjusted 

R2 = .12, model P = 0.04. P-value for linear and negative quadratic term coefficients = 0.26 and 0.04, 

respectively). As age and body mass index influence striatal baseline [11C]-(+)-PHNO 1234,38,39 we 

repeated this analysis including these as covariates in case they were influencing our findings. The 

inverted quadratic relationship remained significant in this adjusted model (Model 2: F4,31 = 3.40, 

adjusted R2 = .22, model P = 0.02. P-value for [11C]-(+)-PHNO 1234 linear and negative quadratic term 

coefficients = 0.10 and 0.01, respectively) (Fig. 3d and SI Appendix Table S2). Importantly, the linear 

models relating behavioural performance to striatal baseline D2/3R availability (i.e. omitting the 

quadratic term) were not significant compared to the null model (P > 0.18). Furthermore, the simple 

linear and quadratic regression models describing the two free parameters (ψ and $) as a function of 

striatal D2/3R availability were also not significant compared to the null model (all P > 0.25). 

 

Belief updates are encoded in the midbrain and ventral striatum  

In the region of interest (ROI) fMRI analysis we found effects for model-derived trial-by-trial estimates 

of Bayesian surprise (meaningful information) in the bilateral substantia nigra / ventral tegmental area 

(SN/VTA) complex and ventral striatum (Fig. 4a), whereas no such effect was evident for information-

theoretic surprise (meaningless information), consistent with previous reports.26,27 A formal 

comparison of regions preferentially encoding Bayesian surprise vs. information-theoretic surprise 
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(DKL > Is) showed significantly greater activation for Bayesian surprise in the SN/VTA and ventral 

striatum bilaterally (significant activation differences at Ppeak < 0.05, with small volume correction for 

SN/VTA and ventral striatum ROI, SI Appendix Fig. S1). Importantly, neural encoding of Bayesian 

surprise in the midbrain and ventral striatum (quantified as the principle eigenvariate of the contrast 

parameter estimates within each region) did not correlate with individual participant model R2 or the 

free parameters of the model (all P > 0.25), indicating that variation in fMRI parameter estimates in 

these regions is not driven by differences in model fit.  

 

At the whole brain level, we also found effects for Bayesian surprise in the pre-supplementary motor 

area (pre-SMA), dorsal anterior cingulate cortex, posterior parietal cortex (e.g. supramarginal gyrus) 

and lateral prefrontal cortex (e.g. middle frontal gyrus) (Fig. 4b, SI Appendix Fig. S2 and Table S3). 

Information-theoretic surprise at monetary outcome was encoded in a network of brain regions 

including the pre-SMA, anterior insula, middle frontal gyrus, angular gyrus, and precuneus, significant 

at whole brain Pcluster < 0.05 (SI Appendix Fig. S3a & Table S4). There was no significant hippocampal 

activation encoding Bayesian or information-theoretic surprise at monetary outcome, and no 

activation at cue onset, in a whole brain analysis.  

 

We found no significant correlation between task performance, model parameters or paranoia scores 

and the effect size of the signal encoding Bayesian surprise in the SN/VTA complex or ventral striatum 

(all P > 0.25), although there was a positive correlation between overall task performance and neural 

effect size within the pre-SMA encoding information-theoretic surprise (rho = .35 [.03, .61], P = 0.03) 

(SI Appendix Fig. S3b).  

 

Beyond neural encoding of Bayesian and information-theoretic surprise, there was no evidence for 

signed reward prediction error in the SN/VTA complex or the ventral striatum in the ROI analysis, nor 

at whole brain cluster level at the conventional voxel-level cut-off of P < 0.001 (uncorrected). When 

this cut-off was reduced to a very liberal threshold of P < 0.05 (uncorrected), we found a single large 

cluster involving the left striatum (pallidum, caudate and putamen) significant at whole brain level (SI 

Appendix Fig. S4). 

 

Finally, belief uncertainty at cue presentation (prior uncertainty) was encoded in a widespread 

network involving dorsolateral prefrontal cortex, medial prefrontal cortex and occipitoparietal cortex. 

These brain regions were implicated in encoding belief uncertainty both when prior uncertainty was 

defined from the rating bar report on the previous trial (‘subjective uncertainty’), and when it was 
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defined as the entropy over the distribution of model-derived prior beliefs on the current trial (‘model-

derived uncertainty’, SI Appendix Eq. 10) (SI Appendix Fig. S5 and Table S5). The recruitment of a 

widespread frontoparietal network to encode the uncertainty (entropy) of internal models may reflect 

the necessity to consider competing hypotheses in working memory.40 

 

FIGURE 4  

fMRI neural activity encoding belief updates (Bayesian Surprise) (a) Region of Interest (ROI) analysis 

revealed significant bilateral activation peaks in SN/VTA (right peak Montreal Neurological Institute 

(MNI) coordinates, 10 -26 -12, Ppeak = 0.003, Tpeak = 4.94, and left peak MNI, -9 -26 -12, Ppeak = 0.006, 

Tpeak = 4.69) and ventral striatum (left peak MNI, -14 15 -4, Ppeak < 0.001, Tpeak = 6.88, and right peak 

MNI, 8 14 0, Ppeak = 0.001, Tpeak = 5.62) after applying small volume correction for SN/VTA and ventral 

striatum. Image thresholded at P<0.005 (uncorrected) with a cluster extent threshold of 25 and an 

inclusive mask (SN/VTA and ventral striatum) for illustration purposes only. (b) Significant clusters of 

activation encoding Bayesian surprise across the whole brain (family-wise error (FWE) correction at 

Pcluster < 0.05. Voxel cut-off P < 0.001 (uncorrected), critical cluster threshold= 290), including ventral 

midbrain, pre-supplementary motor area and dorsal anterior cingulate cortex (see SI Appendix Table 

S3 and Fig. S2). Colour bars represent t-values.  
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Dopaminergic basis for neural signals encoding belief updates in midbrain and ventral striatum 

Having found evidence consistent with belief update (Bayesian surprise) encoding in midbrain and 

ventral striatum, we next determined whether this neural encoding was related to in vivo 

measurements of dopamine acquired in the same participants, using [11C]-(+)-PHNO PET. Baseline 

dopamine-2/3 receptor (D2/3R) availability (measured as the [11C]-(+)-PHNO non-displaceable binding 

potential, 1234 ) was calculated for the SN/VTA complex, where this measure indexes midbrain 

dopamine autoreceptor availability. In the midbrain, baseline D2/3R availability was negatively related 

to fMRI-measured neural activation encoding Bayesian surprise (rho = -.43 [-.67, -.11], P = 0.009) (Fig. 

5a). There was no significant correlation between SN/VTA baseline D2/3R availability and fMRI 

activation encoding Bayesian surprise within the ventral striatum (rho = -.12 [-.44, .23], P = 0.49).  

 

We next assessed dexamphetamine-induced dopamine release capacity, calculated as the percentage 

reduction in 1234  from baseline scan to dexamphetamine scan within the whole striatum. This 

measure is hypothesised to reflect the dopamine system’s tendency towards spontaneous transients 

at rest, which reduces the signal-to-noise ratio of stimulus-locked dopamine bursts.17 We found a 

negative correlation between dexamphetamine-induced striatal dopamine release capacity and 

neural activation within the ventral striatum encoding Bayesian surprise (rho = -.71 [-.89, -.34], P = 

0.002) (Fig. 5b). This negative relationship was also present when considering dopamine release 

capacity within the ventral striatum only (rho = -.66 [-.87, -.24], P = 0.005). Dexamphetamine-induced 

dopamine release capacity in the whole striatum did not correlate with neural activity encoding 

Bayesian surprise in the SN/VTA (rho = -.10 [-.56, .41], P = 0.71). 

 

There was no significant relationship between whole striatal D2/3R availability at baseline and either 

midbrain or ventral striatal fMRI activation encoding Bayesian surprise (rho = -.10 [-.43, .24], P = 0.54 

and rho = -.05 [-.38, .30], P = 0.79, respectively).   

 

Testing the specificity of the dopamine-fMRI correlation  

Both Bayesian and information-theoretic surprise were encoded in an overlapping medial prefrontal 

cortex cluster (at whole brain corrected Ppeak < 0.05, see Fig. 4b and SI Appendix Fig. S3b), yet there 

was no significant relationship between the neural activation in the significant voxels for either 

contrast and midbrain D2/3R availability (rho = -.05 [-.38, .30], P = 0.79 for Bayesian surprise and rho 

= -.27 [-.56, .07], P = 0.11 for information-theoretic surprise),  whole striatal dopamine release capacity 

(rho = .22 [-.31, .64], P = 0.40 for Bayesian surprise and rho = -.45 [-.77, .05], P = 0.07 for information-
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theoretic surprise), or whole striatum D2/3R availability (rho = -.06 [-.39, .28], P = 0.73 for Bayesian 

surprise and rho = .09 [-.25, .42], P = 0.57 for information-theoretic surprise).  

 

Finally, we conducted four whole brain analyses, testing the negative linear relationship between both 

midbrain D2/3R availability or whole striatum dopamine release capacity, and neural activation 

encoding either Bayesian or information-theoretic surprise. These analyses confirmed that neural 

encoding of Bayesian surprise in the left ventral striatum is negatively correlated with striatal 

dopamine release capacity (surviving small volume correction at Ppeak < 0.05, using SN/VTA and ventral 

striatum ROI, SI Appendix Fig. S6). There were no other voxels that showed a significant relationship 

between neural activation and dopamine measures in any of the four fMRI-PET whole brain analyses, 

either at whole brain or small volume corrected P < 0.05. 

 

 

FIGURE 5 

Correlation between dopaminergic measures (PET) and neural activity encoding belief updates 

(fMRI). (a) Negative relationship between effect size of activation encoding of belief updates (principle 

eigenvariate of parameter estimates for Bayesian surprise contrast) and baseline D2/3R availability 

([11C]-(+)-PHNO non-displaceable binding potential, 1234 ) in the midbrain (substantia nigra and 

ventral tegmental area complex).  (b) Negative relationship between ventral striatum activation 

encoding belief updates and dexamphetamine-induced dopamine (DA) release (percent decrease in 

[11C]-(+)-PHNO non-displaceable binding potential, %	∆1234 ) in the whole striatum. Broken 

trendlines represent 95% confidence interval bounds. Brain masks represent regions of interest used 

for analysis.  
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DISCUSSION 

Controlling for the effects of signed reward prediction errors, we show that the substantia 

nigra/ventral tegmental area (SN/VTA) and ventral striatum encode meaningful information content 

in sensory observations. This encoding reflected solely the magnitude of belief updates regarding the 

current environmental state (Bayesian surprise from prior beliefs to posterior beliefs), but not the 

simple unexpectedness of an observation (information-theoretic surprise). Using in vivo PET imaging 

of dopamine we also demonstrate that neural activity encoding belief updates is negatively related to 

dopamine-2/3 receptor (D2/3R) availability in the midbrain, and dopamine release capacity in the 

striatum. These results provide a direct link between belief updating and dopaminergic function, 

extending observations from previous fMRI studies that implicate SN/VTA in encoding the magnitude 

of belief update signals on the one hand,25–27 and the assumed role of dopamine in an implementation 

of probabilistic inference on the other.41,42 Additionally, we show that participants’ trial-by-trial 

sensitivity to the meaningful information content of observations has an inverted-U relationship with 

striatal baseline D2/3R availability, in line with evidence that striatal D2/3R signalling has an inverted-

U relationship with cognitive flexibility.36 Our results therefore shed light on the neurochemical basis 

of belief updating in humans using in vivo quantification of dopamine function.  

 

The [11C]-(+)-PHNO signal in the SN/VTA primarily indexes D3 autoreceptor availability30,43,44 and the 

signal here is less sensitive to tonic synaptic dopamine levels compared with the striatum.45 D2/3R 

availability was negatively related to neural activity encoding belief updates in the SN/VTA complex, 

consistent with evidence that midbrain D3Rs have an inhibitory effect on dopaminergic neurons,29,31 

and in line with the notion that tonic dopamine signalling may regulate the amplitude of stimulus-

locked phasic dopamine neuron activity.4 For example, D3R knockout mice have elevated extracellular 

dopamine levels in the nucleus accumbens,46 whilst mice treated with D3R-preferring agonists show 

reduced dopamine concentration in the accumbens.47 In a recent fMRI study, selective antagonism of 

the D3R enhanced midbrain and ventral striatal fMRI activation during anticipation of monetary 

reward, providing indirect evidence for an inhibitory role for midbrain D3Rs in humans.48 The 

behavioural significance of elevated midbrain D2/3R availability has also recently been investigated in 

rats, where nigral [11C]-(+)-PHNO 1234 correlated with impaired reversal learning in a probabilistic 

reward task.49 Our findings extend this work by showing that natural variation in human midbrain 

D2/3R availability is associated with altered midbrain activation during belief updating, with lower 

levels associated with relatively greater activation. Moreover, our task design allowed us to 

investigate the specific role of dopamine in encoding the meaningful information content of an 

observation, decorrelating this construct from simple unexpectedness and reward prediction error.  
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We found that a belief update signal in the ventral striatum was negatively correlated with 

dexamphetamine-induced striatal dopamine release capacity, providing in vivo human evidence that 

this signal is related to dopamine function. This complements findings from a recent optogenetic fMRI 

study in rats, which demonstrated that striatal BOLD activations may be driven by mesolimbic 

dopamine neuron firing.50 It has been proposed that greater amphetamine-induced dopamine release 

capacity in vivo corresponds to a greater tendency towards spontaneous dopamine neuron firing in 

the drug-free (baseline) state, which decreases the signal-to-noise ratio of stimulus-locked dopamine 

bursts.17 Our finding that striatal dopamine release capacity is negatively correlated with the striatal 

BOLD response encoding belief updates is therefore consistent with current hypotheses regarding the 

relationship between amphetamine-induced dopamine release capacity and mesostriatal 

dopaminergic function at rest. Moreover, this finding extends our understanding by showing a 

negative relationship between the natural variation in dopamine release capacity in humans, and 

adaptive neural activation in the ventral striatum. However, it is important to note that the 

relationship between spontaneous dopamine neuron firing and amphetamine-induced dopamine 

release has yet to be tested, and that, whilst some studies report that amphetamine’s action is 

dependent on neuronal firing within the VTA,33,34 acute amphetamine administration has generally 

been found to reduce dopamine neuron firing,51–53 as well as having other actions to increase striatal 

dopamine levels.4,32,54 Thus, preclinical studies that combine PET and dopamine neuron recordings 

would be useful to test the hypothesis that spontaneous dopamine neuron firing in the amphetamine-

free state is directly associated with dopamine release induced by amphetamine.   

 

Consistent with a previous study using the same task,27 information-theoretic surprise was encoded 

in frontal brain areas including pre-SMA. We also replicated the finding that the effect size of this 

activation positively correlated with task performance, suggesting that surprising events may be 

imbued with higher salience in participants with a better model of the task (resulting in better 

performance).27 Importantly, there was no relationship between the effect size of the neural response 

in this region and any PET measure of dopamine function, favouring a more specific role for dopamine 

in encoding meaningful information. 

 

An influential model proposes that the anterior hippocampus regulates midbrain dopamine neuron 

firing depending on the novelty and context of stimuli through the descending arm of a hippocampal-

VTA loop. Activity in projections from the VTA to the hippocampus, constituting the ascending arm of 

the loop, in turn facilitate the updating of memory by enhancing long-term potentiation in the 
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hippocampus.5,20 However, we found no evidence for increased hippocampal activity at cue onset, 

and there was no positive correlation between hippocampal activation and either meaningful 

(Bayesian) or meaningless (information-theoretic) surprise at monetary outcome. It should be noted, 

however, that our task was not optimised to detect event-related hippocampal activity relating to 

novelty processing or learning, as participants had been thoroughly trained on the task stimuli and 

structure prior to scanning. Nevertheless, further studies are required to investigate the relationship 

between prediction error signals (e.g. in the midbrain and orbitofrontal cortex) and hippocampal 

representations, given the proposed role of the hippocampus in the learning and re-mapping of 

internal models (‘cognitive maps’).11,26,55–57 

 

It has also been suggested that a connection from the medial prefrontal cortex to the dopaminergic 

midbrain may convey information relating to inference about the environment (specifically, inference 

over possible hidden states of a task).12 In line with this finding we found that belief updates were 

encoded in the medial frontal cortex, including dorsal anterior cingulate. This observation is consistent 

with previous human and nonhuman primate studies26–28,58,59 as well as with suggestions that anterior 

cingulate cortex is active in novel or volatile environments wherein agents need to refine their internal 

models in light of new observations.28,60 Moreover, we also detected activation encoding belief 

updates in lateral prefrontal and posterior parietal cortical regions, which have been implicated in 

inference on the nature of the causal relationships between observations (hidden causal structures),61 

and in encoding state prediction errors that support learning an internal model of a task (state-action-

state transition probabilities).62 

 

The ventral striatum and SN/VTA are implicated in encoding signed reward prediction errors that 

update action and state values.7,63,64 Ventral striatal encoding of these model-free reward prediction 

errors may be negatively related to ventral striatal dopamine synthesis capacity.65,66 Consistent with 

previous studies using similar task designs,27,67 we did not find strong evidence for effects within these 

regions for signed reward prediction errors. Previous studies have shown that the processing of 

reward anticipation and prediction error in the mesolimbic dopamine circuit is sensitive to current 

task demands, including action planning.68–70 In our task participants were not attempting to maximize 

reward, and the observation of monetary gains vs. losses was not indicative of task performance. 

Furthermore, unexpected outcomes were equally informative about changes in relevant cue modality, 

regardless of whether they took the form of a monetary gain or loss. Thus, the important contribution 

of our results is to highlight dopamine’s role in signalling belief updates beyond its role in signalling 

signed reward prediction errors, an observation that hints at a role for dopamine in probabilistic 
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inference and structural learning. Consistent with this interpretation, a recent study employing 

electrophysiological recordings in behaving rats demonstrated that midbrain dopamine neurons that 

signal classical signed reward prediction errors also signal value-neutral sensory prediction errors.14 

Moreover, in humans the magnitude of value-neutral ‘stimulus identity’ prediction errors in the 

midbrain is related to updates in state representation in the orbitofrontal cortex.71 The implication 

here is that dopamine has a wide range of functions that extends to updating a predictive associative 

model of the world, suggesting phasic dopamine activity signals a more general error signal, where 

value-errors are a special case.10,14  

 

The findings of our study are highly relevant for dopaminergic and neurocomputational theories of 

schizophrenia.59,72 The aberrant salience hypothesis proposes that symptoms such as paranoia arise 

when unwarranted meaning and behavioural salience is attributed to ambiguous, irrelevant or 

unreliable stimuli.17,18,20–23 This is suggested to reflect maladaptive phasic dopamine signalling in a 

mesostriatal circuit, activity that underpins learning of cue values and associations under normal 

circumstances.7,10,14 Our results speak to this hypothesis in two ways. Firstly, subclinical paranoia was 

negatively related to behavioural sensitivity to the meaningful information content of an observation, 

and also to the degree to which a participant’s performance correlated with that of an ideal Bayesian 

observer. This suggests that maladaptive belief updating (i.e. updating one’s beliefs following 

ambiguous or meaningless observations) may contribute to the formation of subclinical paranoid 

beliefs. Secondly, by dissociating the meaningful information content of an observation from its simple 

unexpectedness, and showing a dopaminergic relationship with the former, our findings point to the 

possibility of advances that might accrue from reformulating constructs such as ‘salience’ in a more 

mathematically rigorous fashion. In fact, one hypothesis from our findings is that the central feature 

of ‘aberrant salience’ in psychotic disorders is a failure to dissociate between meaningful (task-

relevant) and meaningless (task-irrelevant) information, resulting in belief updating arising out of 

merely surprising inputs.59 

 

Conclusions 

Using model-based fMRI we demonstrate that activity within both the midbrain and ventral striatum 

correlates with the magnitude of a belief shift following an observation, indicating that these 

structures encode the meaningful information content of a stimulus, as opposed to its simple 

unexpectedness (surprise).  Moreover, using PET we demonstrate a potential dopaminergic basis for 

these neural signals. Specifically, neural encoding in the midbrain was negatively related to midbrain 

D2/3R availability, whilst encoding in the striatum was negatively related to striatal dopamine release 
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capacity. Finally, we show that participants who displayed the least sensitivity to the meaningful 

content of observations also reported greater subclinical paranoid ideation. Together, our results 

suggest that the role of phasic mesolimbic dopamine activity extends beyond its well-established role 

in signalling signed reward prediction errors, and includes updating a rich internal model of the word 

capable of supporting flexible behaviour. Furthermore, our findings have relevance for understanding 

the pathophysiology of psychotic disorders such as schizophrenia, which are characterised by 

mesostriatal dopamine abnormalities and symptoms arising from aberrant inferences about the 

world, as manifest in delusions.  

 

MATERIALS AND METHODS 

Subjects 

The study was approved by the local NHS Research Ethics Committee and the Administration of 

Radioactive Substances Advisory Committee (ARSAC). Thirty-nine healthy volunteers (17 females, 

mean age 26.2 yrs [SD 7.0]) were included in the fMRI analysis. Thirty-six subjects also received a 

baseline [11C]-(+)-4-propyl-9-hydroxy-naphthoxazine ([11C]-(+)-PHNO) scan to quantify dopamine 2/3 

receptor (D2/3R) availability in the midbrain. Seventeen subjects additionally received a second [11C]-

(+)-PHNO PET scan, timed to start 3hrs after oral administration of dexamphetamine (0.5mg/kg), to 

quantify dexamphetamine-induced dopamine release in the striatum. See SI Appendix for further 

details.  

 

Task 

We used a validated task that de-correlated information-theoretic and Bayesian surprise.27 Subjects 

performed 3 sessions of the task (60 trials per session) during fMRI after at least 1 hr of training on 

the task prior to the scan, in which they learned about the task structure and cue valences. For full 

task details see Fig. 1 and SI Appendix. 

 

Computational modelling 

We used a simple Hidden Markov Model that captures trial-by-trial belief updating using iterative 

application of Bayes’ rule (SI Appendix Eq. 6).27 The model was fitted to individual subject behaviour 

by varying two free parameters using constrained maximum likelihood estimation: (1) cue-validity (ψ) 

and (2) the state transition probability (1 − $). See SI Appendix for further details. 
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Image acquisition  

Structural and functional magnetic resonance (MR) images were acquired using a Siemens 

MAGNETOM Verio 3-T MR scanner. Functional images were acquired with a multiband sequence 

based on the multiband EPI WIP v012b provided by the University of Minnesota,73–76 using a multiband 

acceleration factor of 2. We acquired a whole brain volume consisting of 72 interleaved slices (2mm 

thickness), with a repetition time of 2000 ms, echo time of 30 ms, an in-plane resolution of 3 x 3 mm, 

flip angle of 62°, and bandwidth of 1906 Hz/pixel. In each task session 402 volumes were acquired 

(duration = 13 minutes, 24 seconds), totalling 1206 volumes over three task sessions. An MR-

compatible button box recorded right index and middle finger presses to move the cursor on the rating 

bar. Auditory cues were presented using MR-compatible headphones.  

 

Positron emission tomography (PET) images were acquired using a Siemens Biograph HiRez XVI PET 

scanner. PET acquisition started with the injection of a single intravenous bolus of 0.020-0.029 

micrograms/kg [11C]-(+)-PHNO.77 For dexamphetamine PET scans 0.5mg/kg dexamphetamine was 

administered orally 3hrs before [11C]-(+)-PHNO administration, so that scan acquisition coincided with 

the expected time of peak action.78 Across all PET scans the mean [11C]-(+)-PHNO mass administered 

was 1.5 micrograms (SD 0.31) and mean injected activity was 177.5 MBq (SD 50.0). After the 

administration of the radiotracer, dynamic emission data were acquired continuously for 90 minutes. 

For further details of MR and PET image acquisition see SI Appendix. 

 

fMRI analysis  

fMRI analysis was performed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm), and employed 

standard image preprocessing procedures (outlined in SI Appendix). For first-level analysis we used a 

mass-univariate approach, using a general linear model (GLM) with separate stick function events for 

the onset of fixation crosses, cues, monetary outcome presentation and rating bars.27 At monetary 

outcome we included parametric regressors defining: (1) information-theoretic surprise (IS, z-scored, 

SI Appendix Eq. 9), (2) Bayesian surprise (Kullback-Leibler divergence, DKL, z-scored, SI Appendix Eq. 

8), (3) the difference between reported belief shifts (derived from observed changes on the rating bar) 

and estimated shifts in beliefs from the fitted model (z-scored), (4) monetary outcome (+1 for win, -1 

for loss), and (5) signed reward prediction errors (observed reward minus expected reward, where 

expected reward is defined as the sum of the valence of the observed auditory and visual cues, 

weighted by the prior beliefs about their relevance).  
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To control for possible confounds we included the following parametric regressors at cue onset: (1) 

current reported beliefs about relevant modality, (2) subjective uncertainty about these beliefs 

(derived from the rating bar report on the previous trial), (3) expected relevant outcome value 

(defined above), and (4) expected irrelevant outcome value (sum of the valence of observed cues 

weighted by the subject’s prior beliefs about their irrelevance). We included the number of button 

presses as a parametric regressor at rating bar onset. Regressors were not serially orthogonalised, to 

remove shared variance. The GLM described here (GLM1) was used for the main analysis, including 

the ‘subjective uncertainty’ fMRI analysis. We defined a second model (GLM2) for the ‘model derived 

uncertainty’ fMRI analysis. See SI Appendix for further details regarding both GLM1 and GLM2.  

 

A standard summary statistic approach was used to test for second level effects of Bayesian surprise 

(DKL) and information-theoretic surprise (Is) at monetary outcome using one-sample t-tests on the 

estimated responses for the first level analysis, and a t-contrast of DKL > Is to identify brain regions that 

showed preferential activation for belief updates compared with sensory unexpectedness. Random 

field theory was used to correct for multiple comparisons.  

 

Our fMRI analysis focused on an a priori region of interest (ROI) comprising the bilateral midbrain 

SN/VTA complex (manually delineated using the mean structural image from an independent sample 

of healthy participants27,79), and the bilateral ventral (limbic) striatum (nucleus accumbens, ventral 

caudate rostral to the anterior commissure and ventral putamen rostral to the anterior commissure),80 

given these regions are implicated in model-free (habit) and model-based (goal directed) 

learning.7,10,14,15,25–27,63 We combined these two regions into a single ROI mask, defined in MNI space, 

to ensure that statistical results were corrected for the total number of voxels across both areas (see 

SI Appendix Fig. S7 for an illustration of the ROI).  

 

ROI activations were considered statistically significant at peak-level P < 0.05 family-wise error 

corrected using a small volume correction. For PET-fMRI correlations we extracted the principal 

eigenvariate of BOLD response from the relevant ROI sub-region (bilateral SN/VTA or ventral 

striatum). This measure reflects the ‘typical’ parameter estimate for a given contrast within a region, 

and is more robust to intra-regional heterogeneity of parameter estimates compared with the mean 

(using the mean parameter did not change the nature of the results). For whole brain analyses, we 

report BOLD activations that survive family-wise error correction at P < 0.05 at the cluster level (with 

cluster forming threshold set to P < 0.001 (unc.), to ensure a well behaved family error control).81,82 
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PET analysis 

We employed an automatic pipeline to obtain an individual parcellation of the brain into the studied 

regions of interest, implemented in MIAKAT release 4.2.6 (http://www.miakat.org),83 SPM12 and FSL 

(version 5.0.9)  (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). The simplified reference tissue model was used 

to derive the non-displaceable binding potential (1234) of [11C]-(+)-PHNO 1234  from the regional 

time activity curves (SI Appendix Eq. 11),84,85 with cerebellar grey matter as the reference region. For 

each ROI we estimated baseline dopamine-2/3 receptor availability (1234) and dexamphetamine-

induced dopamine release ( ∆1234 , the percentage reduction in 1234  from the baseline to 

dexamphetamine scan, SI Appendix Eq. 12). See SI Appendix for further details.  

 

Statistical analysis of PET-fMRI relationship 

We tested for the hypothesised PET-fMRI correlations both using an a priori ROI analysis (SN/VTA and 

ventral striatum) and at the whole brain voxel level (see SI Appendix for further details). PET outcome 

measures were 1234  and dexamphetamine-induced ∆1234. The fMRI outcome measure was the 

contrast parameter estimate for Bayesian or information-theoretic surprise (voxel parameter 

estimate for whole brain analysis; principle eigenvariate of the parameter estimate for ROI analysis). 

For PET-fMRI ROI correlations we used Spearman’s rank correlation coefficient, as we did not assume 

linear monotonic relationships (correlations remain significant when using Pearson’s correlation 

coefficient).  
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SUPPLEMENTARY MATERIALS AND METHODS  

Subjects 

The study was conducted at Imanova Centre for Imaging Sciences, London. 41 healthy volunteer subjects 

were initially recruited through local media and university advertisements. Subjects had no history of 

neuropsychiatric disorder, a negative urine drug screen prior to scanning, and provided written informed 

consent to take part in the experiment. Two subjects were excluded from fMRI analysis. One subject did not 

receive adequate training in the task prior to scanning owing to technical problems, and a second was unable 

to perform the task beyond chance level (correlation between subject performance and that of an ‘ideal 

Bayesian observer’ was r = .04, and this subject was the only one for whom this measure of performance was 

more than 3 standard deviations less than the group mean). Thirty-nine subjects were therefore included in 

the fMRI analysis.  

 

Task Details 

The task and training procedures were identical to a previously published study.1 During training, subjects 

were familiarized with two visual and two auditory cues, and learned that for each sensory modality (visual 

and auditory) one cue could be considered ‘good’ (in that it predicted monetary gains with approx. 90% 

validity) and one was ‘bad’ (in that it predicted monetary losses with approx. 90% validity). Subjects were 

informed (correctly) that these identities would remain stable throughout the experiment. Training also 

familiarized subjects with the task structure (state transition probabilities and cue validity). 

 

In the task itself, for any given trial subjects were simultaneously presented with one visual and one auditory 

cue, followed by a monetary outcome (gains or losses from 10-30p). They were informed that for any given 

trial only one cue modality (visual or auditory) was relevant for predicting the monetary outcome, and that 

the identity of the relevant (predictive) cue modality would remain stable for a short period of time, but 

would periodically switch (5-6 times) in a session of 60 trials. The goal of the task was to correctly track the 

identity of the relevant cue modality (i.e. the current task state) at each trial, using information from cue-

outcome observations. At the end of each trial participants reported their belief regarding the current 

informative modality using an 11-point rating bar. 

 

For each trial, cues were presented for 2 s, followed by a gap jittered between 2 and 8 s. The monetary 

outcome was then shown for 2 s. Subsequently, a rating bar appeared for 4 s, at which time subjects indicated 

their beliefs about the relevant (predictive) cue modality using an MRI-compatible button box, by moving a 

cursor on the rating bar from 1 (left extreme, indicating complete certainty that one cue modality was 

relevant) to 11 (right extreme, indicating complete certainty that the other cue modality was relevant). The 

identities of the left and right extremes of the rating bar were alternated for each session, and the cursor 
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was positioned randomly at either the left or right extreme of the rating bar at the appearance of the rating 

bar on each trial. The next trial started after an inter-trial interval (fixation cross) jittered between 1 and 3 s.  

 

Subjects’ ratings at the end of each trial were assumed to result from their belief about the relevant modality 

before seeing the monetary outcome (prior belief), and their estimation of the likelihood of the observed 

cue-outcome pairing under the two competing hypotheses about the identity of the task-relevant modality. 

Importantly, in half of the trials the visual and auditory cue had the same valence (i.e. both were ‘good’ or 

both were ‘bad’). The monetary outcome of these trials was therefore not informative about the identity of 

the relevant cue modality. Crucially, however, ‘noninformative’ trials could still lead to an unexpected 

(surprising) observation in the (approximately 10% of) trials where the monetary outcome was improbable 

under both auditory and visual cues (leading to positive information-theoretic surprise, but zero Bayesian 

surprise). The remaining trials were ‘informative’, in that the visual and auditory cues predicted different 

outcomes. On these trials the observed monetary outcome would differentially favour one hypothesis about 

the relevant modality more than the other. Unexpected observations on these trials (i.e. monetary outcomes 

that were improbable under the participant’s prior belief about the relevant modality) indicated a potential 

switch in the relevant modality. These observations were therefore associated with both positive information 

theoretic surprise and positive Bayesian surprise. Thus, the task de-correlated information-theoretic and 

Bayesian surprise. Mean winnings in the 39 subjects across 3 sessions of the fMRI task were £24.30 (SD 

£3.68). 

 

Computational Modelling  

To capture behaviour we used a simple Hidden Markov Model (HMM), identical to that used in a previous 

study using this task.1 

 

Here, across a session of length ! trials, the system moves though hidden states "#:% ∈ {1,2} (‘auditory cues 

relevant’ corresponds to ", = 1, ‘visual cues relevant’ corresponds to ", = 2), which must be inferred from 

monetary outcomes .#:% ∈ {1,2} (wins correspond to ., = 1, and losses to ., = 2), auditory cues /#:% ∈

{1,2}, and visual cues	1#:% ∈ {1,2} (win-predicting ‘good’ cues correspond to /, = 1 and 1, = 1, and loss-

predicting ‘bad’ cues to to /, = 2 and 1, = 2), all of which are directly observed (t indicates the current trial). 

For clarity of notation, we additionally define 2, = [.,	/,	1,]	as the specific combination of monetary 

outcome, auditory and visual cues observed on each trial. Transition probabilities between hidden states are 

encoded in a 2 x 2 matrix 5 such that  

 

5 = 6 7 1 − 7
1 − 7 7 9 Eq. 1 
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:(", = <|",># = ?) = ABC Eq. 2 

 

where 1 − 7 specifies the probability of a switch (reversal) between states (i.e. a change in the identity of 

the relevant modality). Observation probabilities under each state were encoded in a 2 x 2 matrix D where 

 

D = E ψ 1 − ψ
1 −ψ ψ G Eq. 3  

 

:(2, = [?	<	H]|", = 1) = /BC Eq. 4 

 

:(2, = [?	<	H]|", = 2) = /BI Eq. 5 

 

Here, the cue validity parameter ψ governs how reliably the relevant cue modality predicts the monetary 

outcome. Thus, good cues (of the relevant modality) predict a win with probability ψ, and a loss with 

probability 1 − ψ, and bad cues the converse. Initial state probabilities :("#) are assumed to be uniform.  

 

Given the conditional independence properties of the HMM, trial-by-trial belief updating can be performed 

by iterative applications of Bayes rule: 

 

:(",|2#:,, D, 5) =
:(2,|",,D, 5):(",|2#:,>#, D, 5)

:(2,|2#:,>#, D, 5)
 

Eq. 6 

 

 

, where for all trials t>1, a subject’s posterior belief about the task-relevant modality after observing the cue-

outcome pair, :(",|2#:,, D, 5), is proportional to the product of their estimate of the likelihood of observing 

the cue-outcome pair under each hypothesis, :(2,|",, D, 5) (captured by the free parameter ψ) and their 

prior belief about the task-relevant modality, :(",|2#:,>#, D, 5). The prior belief is dependent on the 

posterior belief from the previous trial, :(",>#|2#:,>#, D, 5), and the participant’s belief about the probability 

of states remaining stable from one trial to the next, :(",|",>#, D, 5), captured by the free parameter 7.  

 

:(",|2#:,>#, D, 5) = :(",|",>#, D, 5)	:(",>#|2#:,>#, D, 5). Eq. 7 

 

For brevity we ignore the dependence on model K, but this is implied. 

 

We estimated the two free parameters (ψ and 7) using constrained maximum-likelihood estimation (both 

parameters constrained between 0.5 and 1.0, inclusive).  To identify optimal parameter settings for each 

subject, the fitting algorithm (instantiated in the Matlab-routine fmincon) was specified to maximize the 
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explained variance (R2) in a linear model in which observed behaviour (belief rating about relevant cue 

modality) was predicted by the Bayesian model’s predicted belief about the relevant modality.  

 

For our subsequent imaging analysis (both GLM1 and GLM2), we defined the following trial-by-trial 

regressors based on the fitted model for each subject:  

 

L, = MNOP:(",|2#:,, D, 5)	||	:(",|2#:,>#, D, 5)Q	

=R(:(", = ?|2#:,, D, 5)
S

BT#

ln
:(", = ?|2#:,, D, 5)
:(", = ?|2#:,>#, D, 5)

	) 

 

Eq. 8 

 

corresponding to the Bayesian surprise (DKL from prior to posterior beliefs at each trial), and  

 

W, = − ln :(2,|2#:,>#, D, 5)	

= − lnRP:(2,|", = ?, D, 5):(", = ?|2#:,>#, D, 5)Q,
S

BT#

 

 

Eq. 9 

 

corresponding to the information-theoretic surprise (IS) of an observation, given the prior belief. For GLM2 

we also defined the entropy over prior beliefs at cue presentation (‘model-derived uncertainty’) as the 

following: 

 

X, = −R(:(", = ?|2#:,>#, D, 5)
S

BT#

ln :(", = ?|2#:,>#, D, 5)) 
Eq. 10 

 

 

MR Image Acquisition and Analysis  

MR images were acquired using a Siemens MAGNETOM Verio 3-T MR scanner and a 32-channel phased-array 

head-coil. We acquired one high-resolution T1-weighted structural volume for the purpose of fMRI and PET 

coregistration, and B0 fieldmaps in order to unwarp EPI images during spatial pre-processing. The T1-

weighted volume was acquired using a Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence 

using parameters from the Alzheimer’s Disease Research Network (ADNI-GO; 160 slices x 240 x 256, TR = 

2300 ms, TE = 2.98 ms, flip angle = 9°, 1 mm isotropic voxels, bandwidth = 240Hz/pixel, parallel imaging (PI) 

factor =2).2 B0 fieldmaps were acquired using a dual-echo gradient-echo sequence (TR = 599 ms, TE 1 = 5.19 

ms, TE 2 = 7.65 ms, flip angle = 60°, 3 mm isotropic voxels, 55 axial slices, bandwidth = 260 Hz/pixel). 

 

Each scanning session started with a ‘sound test’ to ensure that subjects could distinguish the task auditory 

cues confidently against background scanner noise. Foam head-restraint pads were used to minimize head 
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movement. Respiratory and cardiac activities were measured using a respiration band and finger pulse 

oximeter to allow for physiological noise correction in the imaging analysis.3  

 

During pre-processing, fMRI time series were realigned to the mean image and unwarped using the B0 

fieldmaps generated by the Fieldmap toolbox.4 Image normalization to MNI space was accomplished using 

the DARTEL toolbox,5 with 6mm full-width at half-maximum (FWHM) Gaussian kernel smoothing.  

 

For the first level general linear model (GLM) described in the main text, we used model-derived participant-

specific estimates for Bayesian surprise and information-theoretic surprise as the trial-by-trial regressors of 

interest at outcome presentation. This means that we can have a high degree of confidence that the resulting 

fMRI findings are closely related to individual participant belief updating behaviour. The pairwise correlations 

between the parametric regressors at outcome presentation are shown in SI Appendix Table S6 and are 

numerically similar to those reported in a previous study using the same model.1 As nuisance regressors, first 

level GLMs included 6 realignment parameters and 18 physiological noise parameters, derived via 

RETROICOR using Fourier expansions for the estimated phases of cardiac pulsation, respiration and cardio-

respiratory interactions (3rd, 4th and 1st order, respectively),6–8 implemented in the PhysIO toolbox 

(https://www.tnu.ethz.ch/en/home.html3). Temporal derivatives were included to account for slice-timing 

effects.  An AR(1) model was used to account for serial autocorrelations, and we applied a 128s high-pass 

filter. 

 

In addition to the GLM used in the main analysis (referred to as GLM1, and outlined in the main text), we 

conducted a second analysis (GLM2) in which the ‘subjective uncertainty’ parametric regressor at cue onset 

was replaced with an estimate of entropy over prior beliefs derived from the participant-specific fitted model 

(‘model-derived uncertainty’, H, SI Appendix Eq. 10). The correlation between subjective uncertainty (in 

GLM1) and model-derived uncertainty (in GLM2) across all subjects was r = .46 [.39, .52]. Results from GLM2 

are only reported for the analysis of belief uncertainty at cue onset (in comparison with GLM1), however all 

GLM2 results for neural encoding of Bayesian and information-theoretic surprise, and the significant PET-

fMRI correlations, are quantitatively similar to those from GLM1. One additional participant was excluded 

from the GLM2 analysis, as the behavioural responses of this participant resulted in a rank deficient design 

matrix (δ = 0.5 in participant number 23, resulting in a uniform H). 

 

fMRI activation maps are displayed as overlays on the SPM default 152-subject T1-weighted average volume. 

Projections onto the inflated cortical surface are created using bspmview 

(http://www.bobspunt.com/bspmview/). 
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PET Image Acquisition and Analysis 

Prior to injection of the radiotracer and starting the PET acquisition, each subject first received a low-dose 

computed tomography scan for attenuation and model-based scatter correction. Dynamic PET images were 

reconstructed using a filtered back-projection algorithm into 31 frames (8 x 15 seconds, 3 x 60 seconds, 5 x 

120 seconds, 15 x 300 seconds) with a 128 matrix, a zoom of 2.6 and a transaxial Gaussian filter of 5mm. 

 

Structural MR images were segmented using SPM functions to obtain grey matter masks used for the 

definition of the reference region during the kinetic analysis. The ICBM152 template was non-linearly warped 

to each subject’s structural MRI, and the derived deformation parameters were applied to our 

neuroanatomical atlas, to obtain a parcellation of each subject’s brain into the studied ROIs (bilateral whole 

striatum9 and SN/VTA1,10). The MRI, associated individual parcellation and associated grey matter masks were 

then downsampled to the PET resolution (2mm). Dynamic PET images were corrected for motion using a 

frame-by-frame registration process with a mutual information cost function. For each subject the averaged 

PET image from the entire scan duration was registered to the downsampled structural MRI scan with rigid-

body registration. The rigid body matrix was subsequently applied to the motion corrected dynamic PET. 

Regional time activity curves (TAC) were obtained by applying the downsampled individual anatomical 

parcellations to the motion corrected dynamic PET image. 

The non-displaceable binding potential (BPND) of [11C]-(+)-PHNO is defined as follows:  

 

YZ[\ =
][\Y^_`(1 − a)

b\
 

Eq. 11 

 

 

where fND the non-displaceable free fraction of PHNO in the brain, Bmax is the total D2/3R density, a is the 

fraction of receptors bound by endogenous dopamine, and 1/KD is the affinity of radioligand for the target. 

The simplified reference tissue model (SRTM) was used to derive BPND from the regional TACs.11,12 We used 

cerebellar grey matter as the reference region, defined as the intersection of the warped cerebellum atlas13 

and individual subject grey matter mask.  

 

The magnitude of dexamphetamine-induced dopamine release for each subject was quantified as the 

percentage reduction in BPND in the dexamphetamine condition compared to the baseline (no 

dexamphetamine) condition.    

 

∆	YZ[\ = 	100 ∙ 	
YZ[\	(f_ghiBjh)	–	YZ[\	(lh`_^mnh,_^Bjh)

YZ[\	(f_ghiBjh)
% Eq. 12  
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Statistical Analysis 

Whole brain PET-fMRI analysis 

In addition to ROI-level PET-fMRI correlations, we also investigated the PET-fMRI relationships of interest in 

a series of second level whole brain fMRI analyses. Specifically, we conducted two regression analysis on the 

estimated responses for Bayesian surprise from the first-level analysis. The first regression model included 

midbrain YZ[\ as a regressor, and the second included whole striatum ∆	YZ[\  as a regressor. We then 

repeated this procedure on the estimated responses for information-theoretic surprise from the first-level 

analysis. In all four models we tested the negative linear relationship between fMRI and PET measures across 

all voxels showing group level significant activation for the original fMRI contrast (Bayesian or information-

theoretic surprise) at whole brain cluster level. We used identical criteria for establishing statistical 

significance in these whole brain fMRI-PET analyses as in the fMRI activation analysis (i.e. P < 0.05, family-

wise error corrected either at whole brain cluster level or using a small volume correction with the SN/VTA 

and ventral striatum ROI).  

 

Behaviour-PET Statistical Analysis 

Based on the existing literature we hypothesised that there would be an inverted-U relationship between 

the ability to flexibility update internal representations (measured as trial-by-trial behavioural sensitivity to 

meaningful information, i.e. the mean difference in reported belief update between informative and non-

informative trials) and baseline D2/3R signalling in the striatum (indexed by the fraction of total D2/3Rs under 

tonic stimulation by endogenous dopamine, a).14 Striatal [11C]-(+)-PHNO BPND is sensitive to inter-individual 

differences in synaptic dopamine concentration,15,16 such that it is proportional not only to the total density 

of D2/3Rs (Bmax), but also to the fraction of available D2/3Rs that are not bound by endogenous dopamine 

(1 − a) (see SI Appendix Eq. 11).15 If cognitive flexibility shows an inverted-U relationship with the fraction 

of D2/3Rs tonically occupied by endogenous dopamine (a), then it can be shown algebraically that cognitive 

flexibility will also show an inverted-U relationship with BPND.  

 

Throughout, we consider P < 0.05 as statistically significant. All statistical analyses were conducted using 

MATLAB Version 2015b.  
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SUPPLEMENTARY RESULTS  
 

Behavioural Analysis 

As outlined in the primary results, poor overall performance was positively correlated with the absolute 

magnitude of reported belief shifts on non-informative trials. This might reflect a tendency to increase belief 

uncertainty on non-informative trials (i.e. moving from one extremity of the rating bar, towards the middle 

indifference point, which may be adaptive), or a tendency to switch belief about the relevant modality from 

one hypothesis to a competing hypothesis (i.e. moving from one extremity of the rating bar to the other 

extremity, which is always maladaptive for non-informative trials). In support of the latter hypothesis, belief 

shifts on non-informative trials directly correlated with the mean number of times participants changed their 

belief about the relevant modality from one hypothesis to a competing hypothesis (termed a ‘belief switch’) 

on these trials (rho = .72 [.52, .85], P < 0.001), but not with mean increase in reported belief uncertainty (rho 

= .21 [-.12, .50], P = 0.20). Moreover, overall behavioural performance was negatively related to the mean 

number of belief switches in non-informative trials (rho = -.63 [-.79, -.38], P < 0.001), but not informative 

trials (rho = -.19 [-.49, .14], P = 0.24). In line with our findings that paranoia is related to maladaptive task 

performance, there was a positive correlation between paranoia and belief switches on non-informative 

trials (rho = .43 [.13, .66], P = 0.006). 
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Fig. S1  

 
 

Brain regions showing significantly greater fMRI activation encoding Bayesian Surprise vs information 

theoretic Surprise (DKL > IS t-contrast). (a): Small volume correction indicates that bilateral regions of the 

SN/VTA and ventral striatum encode DKL to a significantly greater extent than they encode IS.  SN/VTA peaks: 

(Right peak Montreal Neurological Institute (MNI) coordinates, 12 -26 -12, Ppeak = 0.03, Tpeak = 4.06, and left 

peak MNI, -9 -26 -14, Ppeak = 0.03, Tpeak = 4.03). Ventral striatum peaks (left peak MNI, -12 -15 -4, Ppeak = 0.001, 

Tpeak = 5.33, and right peak MNI, 8 15 -4, Ppeak = 0.02, Tpeak = 4.19). Image thresholded at P < 0.005 (unc.) 

cluster extent threshold > 100 for illustration purposes only.  (b): Significant clusters displayed at family-wise 

error corrected Pcluster < 0.05 (Voxel cut-off P<0.001 (unc.), critical cluster threshold = 244), projected onto 

inflated cortical surface. Significant clusters include left middle frontal gyrus, left supplementary motor 

cortex, and bilateral parietal cortex. Colour bar represents t-values.  
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Fig S2 
 

 
 
fMRI neural activity encoding Bayesian Surprise projected onto inflated cortical surface. Significant clusters 

of activation encoding Bayesian surprise across the whole brain displayed at family-wise error (FWE) 

corrected Pcluster < 0.05. (Voxel cut-off P < 0.001 (unc.), critical cluster threshold = 290), including posterior 

parietal cortex and lateral prefrontal cortex (see SI Table S3 for details). Colour bar represents t-values.  
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Fig. S3 

 
fMRI neural activity encoding information-theoretic surprise. (a) Clusters of activation encoding information-theoretic surprise across the whole brain, including 

the pre-supplementary motor area and left anterior insula. Image thresholded at P < 0.001 (unc.) with cluster extent threshold > 100 for illustration purposes only 

(see SI Table S4 for family-wise error corrected cluster results). Colour bar represents t-values. (b) A cluster of voxels in the pre-supplementary motor area (shown 

in red) was significant at whole brain family-wise error (FWE) corrected Ppeak < 0.05 level (peak Montreal Neurological Institute (MNI), -3 20 51, cluster size = 167,  

Ppeak = 0.001, Tpeak = 7.72). The effect size of this activation within this cluster (principle eigenvariate of parameter estimates for information-theoretic surprise 

contrast) positively correlated with participants’ performance on the task (measured as the correlation between observed belief ratings and predictions of an ideal 

Bayesian observer (I.B.O.) model).  Broken trendline represents 95% confidence bounds. SMA (pre-supplementary motor area). 
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Fig. S4  

 
fMRI neural activity encoding signed reward prediction error. Clusters surviving whole brain family-wise 

error (FWE) correction at Pcluster < 0.05, applying a very liberal P < 0.05 (unc.) voxel-level cut-off. At this 

threshold there is a single large cluster of activation within the left striatum (peak Montreal Neurological 

Institute (MNI), -15 -3 -2,  Pcluster = 0.006, Tpeak = 4.83) surviving P < 0.05 corrected at whole brain level (critical 

cluster threshold = 4111). These results should be interpreted with caution given the very liberal cluster 

defining threshold used. Colour bar represents t-values. 
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Fig. S5 

 
fMRI neural activity encoding uncertainty over prior beliefs at cue presentation.  

Left: Subjective uncertainty: Blue clusters surviving whole brain family-wise error (FWE) correction at Pcluster < 0.05 from GLM1 (belief uncertainty at cue 

presentation defined as subjective uncertainty reported on rating bar on previous trial). See SI Table S5 for details. 

Middle:  Model-derived uncertainty: Red clusters surviving whole brain FWE correction at Pcluster < 0.05 from GLM2 (belief uncertainty at cue presentation defined 

as entropy over model-derived prior belief distribution on the same trial). See SI Table S5 for details. 

Right: Intersection: Violet clusters representing the intersection of voxels surviving whole brain FWE correction at Pcluster < 0.05 in both GLM1 and GLM2. 
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Fig. S6 

 

 
 

Whole brain analysis showing voxels where a participant’s neural activation (1st level parameter estimate) 

encoding Bayesian surprise is predicted by the participant’s whole striatum dopamine release capacity, 

with a negative linear relationship. This relationship is significant following small volume correction (within 

combined SN/VTA and ventral striatum ROI) in the left ventral striatum (peak Montreal Neurological Institute 

(MNI) coordinates, -20 15 -9, Ppeak = 0.002, Tpeak = 6.31). Image thresholded at P < 0.001 (unc.) with inclusive 

ROI mask, for illustration purposes.  Colour bar represents t-values. 
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Fig. S7 

 

 
 

Combined substantia-nigra/ventral tegmental area (SN/VTA) and ventral striatum mask used for ROI analysis. 

Masks derived from 1,9. 
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Table S1  

Mean individual parameter estimates of cue validity (ψ) and state transition probability (1-"). 

Participant " ψ 
1 0.83 0.96 
2 0.98 0.95 
3 0.94 0.76 
4 0.93 0.81 
5 0.94 0.86 
6 0.97 0.97 
7 0.91 0.98 
8 0.97 0.98 
9 0.93 0.93 
10 0.97 0.89 
11 0.97 0.99 
12 0.90 0.76 
13 0.96 0.97 
14 0.91 0.71 
15 0.96 0.96 
16 0.92 0.89 
17 0.99 0.93 
18 0.94 0.88 
19 0.94 0.96 
20 0.95 0.96 
21 0.82 0.96 
22 0.93 0.97 
23 0.50 0.89 
24 0.95 0.91 
25 0.89 0.90 
26 0.88 0.65 
27 0.90 0.63 
28 0.91 0.84 
29 0.85 0.95 
30 0.93 0.93 
31 0.95 0.83 
32 0.83 1.00 
33 0.93 0.83 
34 0.97 0.94 
35 0.97 0.99 
36 0.98 0.84 
37 0.91 1.00 
38 0.89 0.97 
39 0.93 0.95 
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Table S2  

Results from the univariate (Model 1) and multivariate (Model 2) quadratic regression models, 

demonstrating an inverted-U relationship between striatal baseline D2/3R availability (BPND) and trial-by-trial 

behavioural sensitivity to meaningful information (mean belief shift on informative vs. non-informative 

trials). Model 1: #$ℎ&'()*+&,	.$/.(0('(01 =	34 +	36#789 +	3:(#789):, F2,33 = 3.42, adjusted R2 = .12, 

model P = 0.04. Model 2: #$ℎ&'()*+&,	.$/.(0('(01 =	34 +	36#789 +	3:	>?$ +	3@	#AB +	3C(#789):, 

F4,31 = 3.40, adjusted R2 = .22, model P = 0.02. Quadratic term has been mean-centred for both models.  BMI 

= body mass index. BPFG = [11C]-(+)-PHNO non-displaceable binding potential within whole striatum region 

of interest. 

 

 H Standard Error T statistic P value 

Model 1     

Intercept 0.89 0.94 0.95 0.35 

BPFG 0.50 0.44 1.13 0.26 

BPFG: -3.21 1.47 -2.19 0.04 

     

Model 2     

Intercept 0.33 1.72 0.19 0.85 

BPFG 0.88 0.52 1.68 0.10 

Age 0.04 0.02 1.81 0.08 

BMI -0.05 0.03 -1.70 0.10 

BPFG: -4.07 1.49 -2.73 0.01 
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Table S3 

Whole brain effects for Bayesian surprise (Kullback-Leibler divergence). Clusters of activation surviving whole brain family-wise error (FWE) corrected Pcluster < 

0.05 threshold (voxel cut-off P < 0.001 (unc.), critical cluster threshold = 290). Anatomical label and MNI co-ordinates are reported for the voxel with the maximum 

t-statistic from each cluster. MNI (Montreal Neurological Institute), dACC (dorsal anterior cingulate cortex), pre-SMA (pre-supplementary motor area).  

     
MNI coordinates (mm) 

Anatomical label P(FWE)cluster Cluster size Tpeak Zpeak x y z  

Left thalamus/brainstem <0.001 1045 8.82 6.47 -3 -24 0 

Left pre-SMA/dACC (cluster includes left supramarginal gyrus and 

right middle/superior frontal gyrus) 
<0.001 31924 7.64 5.91 0 9 60 

Left cerebellum <0.001 1215 7.43 5.81 -38 -62 -28 

Right cerebellum <0.001 3450 6.3 5.18 36 -51 -32 

Right cerebellum <0.001 1630 5.63 4.77 30 -63 -46 

Left occipital pole 0.008 382 5.6 4.75 -22 -102 -6 

Right middle frontal gyrus 0.001 591 5.52 4.7 34 54 9 

Right occipital pole 0.001 586 5.44 4.65 22 -102 -2 

Right precuneus / superior parietal lobule 0.003 460 5.43 4.64 14 -66 42 

Right supramarginal gyrus 0.005 420 4.91 4.3 42 -27 39 

Right angular gyrus / supramarginal gyrus 0.029 290 4.91 4.29 48 -46 42 

Left middle frontal gyrus 0.001 578 4.86 4.26 -33 45 8 
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Table S4  

Whole brain effects for information-theoretic surprise. Clusters surviving whole brain family-wise error (FWE) corrected Pcluster < 0.05 threshold (voxel cut-off P < 

0.001 (unc.), critical cluster threshold = 306). Anatomical label and MNI co-ordinates are reported for the voxel with the maximum t-statistic from each cluster. MNI 

(Montreal Neurological Institute), pre-SMA (pre-supplementary motor area).  

 
Anatomical label     MNI coordinates (mm) 

 P(FWE)cluster Cluster size Tpeak Zpeak x y z  
Left pre-SMA <0.001 3441 7.72 5.95 -3 20 51 
Left anterior insula and inferior frontal gyrus 0.016 310 5.92 4.95 -28 24 -3 
Right middle frontal gyrus and inferior frontal gyrus <0.001 1582 5.83 4.9 50 22 30 
Left middle frontal gyrus <0.001 1748 4.83 4.24 -48 21 34 
Left angular gyrus and left superior parietal lobule 0.017 306 4.67 4.12 -32 -63 42 
Precuneus (bilateral) 0.002 451 4.3 3.85 3 -64 34 
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Table S5  

Whole brain effects for subjective belief uncertainty (GLM1) and model-derived belief uncertainty (entropy over prior beliefs) (GLM2) at cue onset. Clusters 

surviving whole brain family-wise error (FWE) corrected Pcluster < 0.05 threshold (voxel cut-off P < 0.001 (unc.), critical cluster threshold = 2343(GLM1) and 637(GLM2)). 

MNI co-ordinates are reported for the voxel with the maximum t-statistic from each cluster. MNI (Montreal Neurological Institute).  

     MNI coordinates (mm) 
Anatomical label P(FWE)cluster Cluster size Tpeak Zpeak x y z  
        
GLM1 (subjective uncertainty)        
Bilateral frontal cortex (including dorsolateral prefrontal cortex and 
medial prefrontal cortex), anterior insula and subcortical structures 
(including striatum). 

<0.001 49557 9.98 6.95 -20 16 10 

Bilateral occipito-parietal cortex and cerebellum <0.001 66515 9.57 6.79 -38 -72 -50 
Middle and Posterior cingulate cortex <0.001 2348 9.25 6.66 -4 -26 30 
        
        
GLM2 (model-derived uncertainty)        
Bilateral occipito-parietal cortex and cerebellum <0.001 42790 8.95 6.49 -10 -80 -34 
Right anterior insula and dorsolateral prefrontal cortex <0.001 11433 7.23 5.67 33 30 -3 
Left anterior insula and dorsolateral prefrontal cortex <0.001 9043 7.12 5.61 -27 24 -3 
Medial prefrontal cortex (pre-supplementary motor area) <0.001 2591 6.79 5.44 4 33 39 
Subcortical nuclei, including thalamus and striatum <0.001 2210 6.3 5.16 9 -6 9 
Left middle frontal gyrus <0.001 1198 6.09 5.03 -39 56 14 
Posterior cingulate cortex <0.001 1030 5.33 4.56 3 -36 27 
Right middle and inferior temporal gyrus <0.001 1054 5.2 4.48 58 -50 -14 
Left middle and superior temporal gyrus <0.001 637 4.43 3.94 -64 -40 3 
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Table S6  

Mean pairwise correlations (Pearson’s r) [and 95% C.I.] between parametric regressors at monetary outcome, used in the fMRI first-level general linear model (GLM). 

 Information-theoretic surprise Reward prediction error Money outcome 

Bayesian-surprise .53 [.49, .58] -.002 [-.03, .02] -.002 [-.02, .02] 

Information-theoretic surprise 1 .019 [-.02, .05] .008 [-.01, .02] 

Reward prediction error   1 .59 [.57, .61] 
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