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Abstract  

 

Centrally administered glucagon-like peptide-1 (GLP-1) supresses food intake. Here 

we demonstrate that GLP-1-producing (PPG) neurons in the nucleus tractus solitarii (NTS) 

are the predominant source of endogenous GLP-1 within the brain. Selective ablation of NTS 

PPG neurons by viral expression of diphtheria toxin subunit A (DTA) substantially reduced 

active GLP-1 concentrations in brain and spinal cord. Contrary to expectations, this loss of 

central GLP-1 had no significant effect on ad libitum feeding of mice, affecting neither daily 

chow intake nor body weight or glucose tolerance. Only after bigger challenges to 

homeostasis were PPG neurons necessary for food intake control. PPG-ablated mice 

increased food intake following a prolonged fast and after a liquid diet preload. Consistent 

with our ablation data, acute inhibition of hM4Di-expressing PPG neurons did not affect ad 

libitum feeding, however, it increased post-fast refeeding intake and blocked stress-induced 

hypophagia. Additionally, chemogenetic PPG neuron activation through hM3Dq caused a 

strong acute anorectic effect. We conclude that PPG neurons are not involved in primary 

intake regulation, but form part of a secondary satiation/satiety circuit, activated by both 

psychogenic stress and large meals. Given their hypophagic capacity, PPG neurons might be 

an attractive drug target in obesity treatment.  

Keywords  

GLP-1, Preproglucagon, Food intake, DREADD, hM4Di, DTA, restraint stress, satiation, 

satiety, GCG neurons 
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Introduction 

Glucagon-like peptide-1 (GLP-1) is found in the CNS, with the highest levels reported in the 

hypothalamus, a major projection target of preproglucagon (PPG) neurons. PPG neurons are 

the presumptive main source of endogenous central GLP-1 and are expected to exert effects 

similar to those of exogenously delivered GLP-1. The most notable of these are reduced food 

intake and bodyweight loss. PPG neurons are in a prime position to fulfil this role since they 

innervate all areas identified as mediating GLP-1 effects in the CNS (1-4) and are sensitive to 

peripheral satiety signals, including gastric distension, leptin, and CCK (5-8). However, 

doubts have been raised whether PPG neurons are involved in the homeostatic regulation of 

food intake or whether they signal interoceptive stress and only regulate food intake under 

pathophysiological conditions (9-13). Three recent studies demonstrated that activation of 

PPG neurons in vivo using Gq-coupled DREADD or optogenetic stimulation reduces food 

intake and maintains glucose homeostasis (14-16). Whilst these studies confirmed that PPG 

neurons have the capacity to modulate food intake and glucose tolerance, they did not address 

the question of whether PPG neurons play a role in the regulation of appetite or blood glucose 

under physiological conditions.  

Here we use a mouse line expressing Cre-recombinase (Cre) under the control of the 

glucagon promoter (17) to selectively target NTS PPG neurons. Pharmacogenetic activation, 

confirmed using in vitro Ca
2+

 imaging, acutely reduced food intake, replicating previous 

studies, but failed to have a lasting impact on body weight. Selective ablation of these 

neurons significantly reduced active GLP-1 concentrations in hypothalamus, brainstem, and 

spinal cord but did not affect bodyweight or daily food intake. However, PPG-ablated mice 

ate more chow post-fast than control littermates and were less sensitive to the satiating effects 

of a liquid diet preload. Similarly, pharmacogenetic inhibition of NTS PPG neurons, 

confirmed in vitro using patch-clamp electrophysiology, had no effect in ad libitum fed mice, 

but significantly increased food intake after a long fast and prevented the hypophagic effect 

of acute restraint stress.  

 

Research Design and Methods 

Animal models 

Adult male and female Glu-Cre/tdRFP (17), Glu-Cre/GCaMP3 (18; 19), and Glu-YFP (20) 

mice were group-housed whenever possible on a 12h light/dark cycle with chow and water 

available ad libitum unless otherwise stated. All experiments were performed in accordance 

with the U.K. Animals (Scientific Procedures) Act, 1986, with appropriate ethical approval. 
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Mice were anaesthetised with intramuscular ketamine (50mg/kg) and medetomidine 

(1mg/kg) or 1.5-2.5% isoflurane and injected with virus (200-250nl, bilaterally; Table 1) 

using a pressurized glass needle at the following coordinates from the calamus scriptorius: 

500µm lateral, 100µm rostral, and 350µm ventral to transduce PPG neurons and were left for 

at least two weeks before experiments started.  

Ca
2+
 imaging and electrophysiology 

Coronal brainstem sections (200µm) were prepared as previously described (18). 

Ca
2+

 imaging was performed in widefield configuration using a 40x water immersion lens 

(18). Excitation and emission light were filtered at 470±20nm and 515±17nm, respectively 

(Chroma 59004) and images captured on a CCD camera (Q-click; QImaging). Camera and 

LED light source were controlled using Micro-Manager (21). Electrical activity of PPG 

neurons was recorded in cell-attached configuration as described previously (22). Currents 

were filtered at 1.0kHz and digitised at 3kHz. Recordings were analyzed with WinEDR 

Software (University of Strathclyde, Glasgow, United Kingdom). 

Active GLP-1 assay 

Brains were rapidly extracted from the skull and lower brainstem, hypothalamus, cerebellum, 

olfactory bulbs and spinal cord were isolated, snap frozen and homogenised by pestle and 

mortar then trituration in 500µl ACSF supplemented with DPP-4 inhibitor (Millipore) 

through a 29G insulin syringe, before storage for 24hs at -80°C. To generate a crude protein 

lysate samples were thawed on ice and clarified twice by centrifugation at 500g for 10min 

and the supernatant collected. The active GLP-1 concentration was determined using a MSD 

kit (K150JWC-1; Meso Scale Diagnostics, Rockville, Maryland, USA). A Bradford protein 

assay was performed (Bio-Rad). Absorbance was determined using a Lab Systems Multiscan 

MS. 

Immunohistochemistry 

Mice were transcardially perfuse-fixed with 4% PFA, brains sectioned at 30µm and 

immunostained for GCaMP3, EGFP, YFP, tdRFP, mCherry or cFOS (for details see Table 1) 

as previously described (18). Sections were incubated overnight at 4°C with primary 

antibodies in blocking solution followed by fluorophore-conjugated secondary antibody in 

blocking solution for 2h. Immunofluorescence was visualised on an upright microscope 

(Leica). Images were captured using a Retiga3000 camera (QImaging). Brightness and 

contrast were adjusted using Fiji software (23). 

cFOS expression in PPG neurons  
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Mice expressing hM3Dq in NTS PPG neurons were food-restricted for 3h prior to injection of 

vehicle or clozapine-N-oxide (CNO), which was administered 2mg/kg i.p. in 5ml/kg saline, 

30mins before dark onset for all in vivo chemogenetic experiments. Mice were transcardially 

perfused 90mins after injection, tissue processed and immunostained for cFOS as described 

above. 

Glu-YFP mice were trained to consume Vanilla Ensure. Following three days of stable 

Ensure intake, mice were randomly allocated into control (n=5) and Ensure-fed groups (n=5) 

and fasted for 3h. Control mice had no access to chow or Ensure, whereas Ensure-fed mice 

had access to Vanilla Ensure for 120 mins. At that point mice were transcardially perfused 

and tissues immunostained for cFOS and YFP.  

Glucose Tolerance Test 

Mice were placed into new cages, given ad libitum access to water and fasted for 18h. 

Animals were injected with glucose (1g/kg i.p,, 5ml/kg, Sigma). Blood glucose 

measurements were repeatedly taken from the tail over two hours and analyzed using a Roche 

Accu-Chek Glucose Meter.  

Feeding paradigms 

Intake was measured using standard chow or Vanilla Ensure liquid diet. Mice were weighed 

daily and habituated to 5ml/kg i.p. saline injection and food intake measurements. On 

experimental days, food was removed 3h prior to dark onset (except for overnight fast/refeed 

paradigm) thus standardising the time all mice had their first meal. 

Repeated injections of CNO 

Using a between-subjects, repeated-measures design, body weight and food intake of control 

and hM3Dq-expressing mice were measured daily for five days. On the sixth day, twice daily 

injections of CNO were started.  

Normal chow intake 

The PPG-ablation study was a between-subjects design, while the activation study (hM3Dq) 

was a counterbalanced, within-subject design and the acute inhibition study (hM4Di) was a 

mixed-model design. Mice were transferred to individual cages and food removed 3h or 18h 

prior to dark onset. Chow was returned at dark onset and intake was measured manually in 

the following hours.  

Ensure preload 

This experiment was a between-subjects design. PPG-ablated and control mice were 

transferred to individual cages and food removed 3h prior to dark onset. Vanilla Ensure was 

provided for 15 mins at dark onset and intake measured manually, with this protocol repeated 
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for several days until intake was stable (Fig 6C). On test day, chow intake was measured for 

1h immediately after Ensure access.  

Stress-induced hypophagia 

Stress-induced hypophagia was assessed using a mixed-model design. Control (EGFP-

expressing) and hM4Di-expressing mice were transferred to individual cages without food 3h 

prior to dark onset. All mice received CNO 1h before dark onset. Thirty minutes before dark 

onset, mice were restrained in plastic bags with a breathing hole for 30 mins. At dark onset, 

they were returned to their cages and chow intake was measured in the following hours.  

Statistical analysis 

Statistical analysis was performed in GraphPad Prism7.0. Summary data are presented as 

mean±SEM. Statistical significance was tested using nonparametric tests, t-tests, three-way 

mixed-model ANOVA, two-way mixed-model or repeated measures ANOVA, and simple 

main effects as appropriate and as indicated in figure legends.  

 

Results 

Pharmacogenetic activation of PPG neurons robustly reduces food intake 

To assess the role of PPG neurons in feeding, we first confirmed and extended previous 

findings that PPG neurons have the capacity to reduce food intake (14; 15). We used 

transgenic mice expressing Cre under glucagon promotor control (Glu-Cre) and a Cre-

dependent reporter (red fluorescent protein (RFP) or the Ca
2+

 indicator GCaMP3 (18; 19)). 

GCaMP3-positive cells in this mouse are GLP-1-immunoreactive (19), and as an additional 

control we crossed this mouse with the Glu-YFP mouse that expresses YFP under glucagon 

promoter control. YFP-expressing neurons in the NTS of Glu-YFP mice have been shown to 

express preproglucagon mRNA by single-cell RT-PCR (6). The Glu-YFP/Glu-Cre cross 

revealed an almost complete overlap of these cell populations; more than 85% of YFP-

expressing cells expressed RFP and less than 5% of RFP cells did not express YFP (Fig 

S1A). Previous reports used a Phox2b transgenic mouse to target PPG neurons, assuming 

Phox2b is expressed and active in PPG neurons (24; 25). However, targeting the lower 

brainstem with a lentivirus expressing GFP under the promoter responsive to Phox2b 

(PRSx8-AlstR-IRES-EGFP-LV; (26)) yielded no co-localisation between GFP and RFP (Fig 

S1B). 

To selectively activate NTS PPG neurons in vivo, the excitatory DREADD hM3Dq was 

expressed by stereotaxic injection of AAV2-FLEX-hM3Dq:mcherry into Glu-Cre mice (Fig 

1A). Activation of hM3Dq with CNO substantially increased [Ca
2+

]i in brainstem slices (Fig 
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1B). Similarly, in awake mice, CNO injection elicited cFOS immunoreactivity in PPG 

neurons (Fig 1C). 

Having confirmed that CNO activates PPG neurons both in vitro and in vivo, we explored 

whether in vivo activation suppresses feeding. First, we confirmed that viral over-expression 

of hM3Dq in PPG neurons had no intrinsic effect on food intake, nor did administration of 

CNO in mice transduced with a control virus (Fig S2). Subsequently, ad libitum dark onset 

food intake was measured in mice expressing hM3Dq in NTS PPG neurons in a 

counterbalanced cross-over design. CNO-injected mice consumed substantially less chow 

than when injected with saline in both the first and second hour (Fig 1D) and cumulative 

intake was suppressed over the first four hours after dark onset (Fig 1E). The effect of CNO 

disappeared over 21h with cumulative daily intake unaffected by PPG activation (Fig 1E).  

To determine whether this was simply due to washout of CNO, we injected another cohort of 

hM3Dq-expressing and control mice with CNO every 12 hours (at dark and light onset) for 

four days. Twice-daily PPG activation initially suppressed feeding, with significantly lower 

24h intake following the first injections, however intake suppression was not sustained (Fig 

1F). 

 

NTS PPG neurons are the main source of GLP-1 in brain  

Whilst the above results demonstrate the capacity of PPG neurons to reduce feeding, they do 

not prove that brain GLP-1 is derived from these neurons. To address this, we used an AAV 

Cre-dependently encoding diphtheria toxin subunit A (DTA). Unilateral targeting of the NTS 

in Glu-Cre mice with AAV8-mCherry-FLEX-DTA selectively ablated PPG neurons, with 

complete disappearance of cell bodies within 14 days, whilst contralateral PPG neurons 

remained intact (Fig 2A). Bilateral ablation of NTS PPG neurons dramatically reduced active 

GLP-1 levels in brainstem, hypothalamus, and spinal cord (Fig. 2B), demonstrating that NTS 

PPG neurons are the main source of GLP-1 in these areas.  

Active GLP-1 concentrations in brainstem, hypothalamus, and spinal cord were 4-fold, 6-

fold, and 29-fold larger, respectively, than those from concurrent systemic blood samples, 

indicating that blood contained within the brain samples was not the source of the GLP-1. 

Consistent with this, amounts of active GLP-1 in cerebellum, which does not receive 

projections from PPG neurons (3), were negligible, and neither blood nor cerebellar 

concentrations were affected by PPG neuron ablation. Similarly, the GLP-1 concentration in 

the olfactory bulb, a confirmed location of additional PPG neurons (27; 28), was very low 

and not affected by DTA ablation in the brainstem.  
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Ablation of NTS PPG neurons does not impact bodyweight, daily food intake, or glucose 

tolerance 

Although activation of PPG neurons robustly suppressed short-term feeding, sufficiency does 

not prove necessity. We therefore explored physiological conditions under which PPG 

neurons might regulate food intake. Bodyweight and daily food intake were recorded over 

two months in Glu-Cre mice injected bilaterally with AAV8-mCherry-FLEX-DTA or 

AAV1/2-FLEX-Perceval as control. Ablation of NTS PPG neurons did not affect bodyweight 

(Fig 3A) or daily food intake when fed ad libitum (Fig. 3B), suggesting no significant impact 

on long-term energy balance under these conditions.  

PPG neurons were recently shown to be sufficient to improve glucose tolerance (16). We 

therefore investigated whether NTS PPG ablation affects the response to an intraperitoneal 

glucose load (Fig 3C,D). Before ablation, there was no difference in glucose tolerance, with 

males having poorer glucose tolerance than females (Fig S3). Seven weeks after PPG 

ablation, sex differences were still evident, but loss of NTS PPG neurons did not affect 

glucose tolerance (Fig 3C,D). 

 

Ad libitum food intake is unaffected by ablation or acute inhibition of NTS PPG neurons 

Having found no evidence that NTS PPG neurons regulate long-term energy balance, we next 

asked whether PPG neurons are necessary for short-term regulation of feeding. PPG ablation 

had no effect on cumulative (Fig 4A) or non-cumulative chow intake (Fig 4B) over 4h after 

dark onset, suggesting that although activation of PPG neurons is sufficient to reduce food 

intake, they are not necessary to regulate ad libitum feeding.   

Although ablations were inflicted in adult mice, compensatory responses could account for 

the lack of effect on long-term energy balance. We therefore assessed the effect of acute 

inhibition of PPG neurons using the inhibitory DREADD hM4Di.  

To assess whether hM4Di stimulation inhibits PPG neurons in vitro, virally transduced PPG 

neurons were identified by mCherry fluorescence in brainstem slices and electrical activity 

recorded in the cell-attached configuration. PPG neurons were spontaneously firing at 

1.57±0.22 Hz, consistent with previous observations (6; 18). CNO superfusion reduced firing 

frequency to 0.66±0.20Hz (Fig 4C).  

hM4Di expression did not affect bodyweight or food intake in the absence of CNO (Fig S4) 

and daily food intake was unaffected after a single dose of CNO at dark onset (Fig S4C). As 
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with ablation, acute inhibition of PPG neurons did not affect dark onset feeding (Fig 4D,E). 

The data from both ablation and acute inhibition therefore suggest PPG neurons are not 

necessary for the regulation of long-term or short-term food intake in ad libitum fed mice.  

 

PPG neurons limit fasting-induced refeeding 

Having found no major role of NTS PPG neurons in ad libitum feeding, we next investigated 

whether PPG neurons need abnormally large meals to become engaged as suggested for rats 

(9; 10). To encourage significant refeeding, we fasted mice for 18h prior to intake 

measurements from dark onset. Control animals ate 0.6±0.05g chow in the first hour 

compared to 0.4±0.06g when food-restricted only briefly (Fig 5C and Fig 4A, respectively), 

whilst PPG-ablated animals ate 0.9±0.11g (Fig 5C). This elevated post-fast chow intake was 

evident over 4h (Fig 5A), but did not last overnight, although there was a trend towards 

increased intake (Fig 5B). 

Similarly, CNO-injected hM4Di-expressing mice ate 0.23±0.1g more chow in the first hour of 

refeeding compared to when injected with saline (Fig 5F). This hypophagic effect was not 

sustained beyond 1h (Fig 5D) and there was no impact on 21h chow intake (Fig 5E).  

 

PPG neurons limit chow intake following a liquid diet preload 

Results from these two independent, complementary experiments suggest that PPG neurons 

may be recruited following unusually large intakes to limit subsequent feeding. To further 

investigate this hypothesis, we encouraged high intakes by provision of a highly-palatable 

liquid diet (Vanilla Ensure). Mice were habituated to dark onset Ensure access for eight days, 

during which 30min intake stabilised at 1.7±0.1g from day four. On day nine mice were 

randomly allocated to Ensure or fasted groups and subsequent analysis of cFOS 

immunoreactivity revealed that 45% of PPG neurons were activated following Ensure intake, 

compared to 10% activation in fasted controls (Fig 6A,B).  

To determine whether ablation of PPG neurons affects feeding under these conditions, mice 

were habituated to consume a 15min Ensure preload at dark onset which stabilised at 

1.4±0.04g after four sessions (Fig 6C). Ensure intake between PPG-ablated and control mice 

did not differ at the beginning (Fig 6C) or end (Fig 6D) of the habituation. Following the final 

Ensure session, chow intake was lower in the control group than usually seen 1h into dark 

phase, with control mice eating roughly half their normal intake (Fig 6E, 0.21±0.06g vs 

0.4±0.06g in Fig 4B). In contrast, PPG-ablated mice ate significantly more than control mice, 
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with 0.61±0.1g of chow eaten 1h after Ensure preload (Fig 6E). These data support the 

hypothesis that unusually large intakes recruit NTS PPG neurons to limit subsequent feeding.  

 

Stress-induced hypophagia requires PPG neurons 

We next explored whether there are other conditions under which PPG neurons are necessary 

for anorectic effects. Previous work suggests that central GLP-1 contributes to the intake 

suppression following acute stress in rats (29). To investigate whether PPG neurons 

contribute to the hypophagic response to restraint stress, we acutely inhibited PPG neurons in 

vivo by activating the hM4Di receptor. Control and PPG-inhibited mice were exposed to 

30mins restraint stress and subsequent food intake was measured. Restraint stress 

significantly suppressed cumulative feeding over 4h in control mice, whereas PPG-inhibited 

mice displayed no stress-induced hypophagia (Fig 7A). In the absence of stress, CNO had no 

effect on food intake in both control and PPG-inhibited mice as compared to vehicle (Fig 

7A). Stress-induced hypophagia was seen in the first hour (Fig 7B), during which intake in 

control mice was reduced by 50±8%, whereas intake was unaffected by stress in the PPG-

inhibited group. There was no clear suppression of chow intake in hour 2. These data 

demonstrate that PPG neurons are required for the hypophagic response to acute restraint 

stress. 

 

Discussion 

We demonstrate here that NTS PPG neurons are the main source of brain GLP-1. Active 

GLP-1 was reduced by >60% in brainstem, and almost 80% in hypothalamus and spinal cord 

following ablation of NTS PPG neurons. In contrast, circulating GLP-1 levels, which were 

substantially lower than in brain, were unaffected by ablation and levels in cerebellum, which 

receives no projections from PPG neurons (3), were negligible, and likely reflect only the 

vascular supply throughout the brain. Remaining GLP-1 levels in the sampled CNS regions 

after ablation likely reflect the IRT and ventral midline PPG cells, which were left intact in 

our study. These neurons make up 44% (29) and 32% (1) of all PPG neurons in the brainstem 

in rat and mouse, respectively. Outside the brainstem, small populations of PPG neurons have 

been described in olfactory bulb (27; 28), piriform cortex (3), and lumbar-sacral spinal cord 

(1). Of these, the olfactory bulb neurons project only locally (28), and the spinal neurons do 

not project to the brain (1), excluding these populations as the source of remaining GLP-1 

after ablation of NTS PPG neurons. Approximately 50% of PPG neurons have axons 
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projecting to the autonomic control areas of the spinal cord (1). The current study adds to the 

significance of these projections by demonstrating a high GLP-1 content in spinal cord, the 

majority of which is supplied by NTS PPG neurons. This suggests a significant physiological 

role for spinal GLP-1 release, an intriguing path for future research considering the role of 

GLP-1 in sympathetic outflow (30-33).  

 

In addition to providing unequivocal evidence that PPG neurons are the main source of brain 

GLP-1, these results validate that our genetic approach targets the cells that provide GLP-1 in 

the CNS. In contrast, injection of a lentivirus that expresses GFP in Phox2b-expressing cells 

(PRSx8-AlstR-EGFP-LV; (26)), failed to show any co-localisation with Cre-expressing PPG 

neurons, indicating that the transcription factor Phox2b is not expressed in adult PPG 

neurons. Transgenic mice expressing Cre under the control of Phox2b have been used 

previously to target PPG neurons (24; 25). Whilst our results do not exclude the possibility 

that PPG neurons express Phox2b during development, they clearly show that using adult 

Phox2b-Cre mice combined with Cre-dependent viruses is not a valid approach to target PPG 

neurons. This substantiates previous concerns about that approach (34; 35). 

 

Recent studies have pharmacogenetically and optogenetically activated PPG neurons, using a 

mouse model produced independently from ours but using an equivalent strategy (14-16). 

Based on those results and our observations, NTS PPG neurons are sufficient to suppress 

feeding in mice. Here we also demonstrate that repeated, twice daily chemogenetic activation 

of NTS PPG neurons leads to a transient decrease in food intake reminiscent of results 

reported for both CCK- and DBH-expressing NTS neurons (36). In both cases there was a 

strong short-term reduction in intake, but either no effect (CCK cells) or only a small effect 

(DBH cells) on 24h food intake. A similar lack of long-term effects has been observed with 

ICV GLP-1 infusions in rat (37) and it seems likely that compensatory mechanisms are 

activated to maintain energy balance and avoid excessive weight loss, although we cannot 

exclude that continued activation downregulates DREADD receptors.  

 

Gaykema et al. (14) argued that chemogenetic activation using hM3Dq is comparable to 

activation by physiological stimuli, such as leptin and CCK. However, with <50% of PPG 

neurons activated, our cFOS-expression study demonstrated that even a large volume of 

Ensure did not activate PPG neurons to the same degree as hM3Dq-activation (98%; (14)). 
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Similarly, acute stress in rats activated ~74% of GLP-1-producing neurons (29), suggesting 

that chemogenetic activation of PPG neurons is a supraphysiological stimulus.  

 

Prompted by these limitations we attempted to determine the physiological role of PPG 

neurons in food intake. Although Liu et al. (15) did address the role of endogenous GLP-1 in 

food intake by optogenetically inhibiting NTS
PPG

→PVN projections, the specific 

physiological conditions under which PPG neurons influence food intake were not 

investigated. Whilst chemogenetic activation strongly suppressed feeding, ablation of NTS 

PPG neurons had no effect on 24h intake or bodyweight in mice with ad libitum access to 

food. Not only was long-term energy balance unaltered by loss of NTS PPG neurons, neither 

ablation nor acute inhibition affected dark onset food intake when mice were fed ad libitum. 

Similarly, Liu et al. failed to observe persistent increases in food intake over 7 daily 

injections of 0.3mg/kg CNO (15), although this dose schedule may not provide lasting 

inhibition of the PPG neurons (38). This suggests that PPG neurons do not produce an 

obligatory meal termination signal required for normal satiation, a conclusion supported by 

both experimental approaches used here. Loss of NTS PPG neurons also failed to affect 

glucose tolerance, consistent with previous reports that central GLP-1R are not necessary for 

glucose control in mouse (39). However, both ablation and acute inactivation left a 

proportion of PPG neurons, in the IRT, intact. It is conceivable that only a small fraction of 

PPG neurons is needed to maintain satiation and that complete loss of PPG neurons could 

reveal a role in ad libitum feeding. This reliance on a few neurons only was demonstrated for 

orexin neurons, where >90% loss was necessary to reveal the cataplexy phenotype (40). 

Whilst this is difficult to categorically exclude, our results suggest that PPG neurons are not 

normally recruited in response to ad libitum feeding, but point to a role for PPG neurons in 

suppressing food intake in response to stronger physiological stimuli, such as a large meal or 

acute stress. In support, global and central knockdown of GLP-1R has little impact on food 

intake and body weight in mice (39; 41).  

 

In contrast, studies in rat have provided some evidence for a role of endogenous GLP-1 in the 

control of normal feeding and glucose control (35; 42; 43). Infusion of exendin-9 into the 

ventricular system or knockdown of GLP-1 receptors in discrete nuclei increase food intake 

and shRNA-mediated knockdown of PPG in the brainstem led to increased bodyweight gain 

and hyperphagia (35; 44). It is unclear if these different observations reflect species 
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differences and, in that case, which rodent species is the best model of human physiology 

(35; 45).  

 

Several studies in rat support the idea that GLP-1-producing neurons are mainly recruited 

following intake of a large meal. An unusually large meal is required to activate GLP-1-

producing neurons in the NTS (10), gastric distension activates GLP-1 neurons (7), and the 

ensuing decrease in food intake is mediated by central GLP-1 signalling (46). In support of 

these findings, we demonstrate here that NTS PPG neurons are necessary for satiation/satiety 

following intake of a large meal, either encouraged by food-depriving mice for 18 hours or by 

providing them with access to a highly palatable diet. Seemingly contradictory findings by 

previous studies in rat suggest that GLP-1 neurons are inhibited by negative energy balance 

following an overnight fast, rendering them less sensitive to stimulation with CCK or acute 

stress (29; 47). However, we demonstrate here that a large meal following food deprivation is 

sufficient to recruit NTS PPG neurons to limit overeating as was previously suggested in rat 

(10).  

 

In addition to playing a role in satiation/satiety following a large meal, we found that 

hypophagia induced by acute restraint stress was dependent on PPG neuron activity. In 

support of a role for central GLP-1 in stress regulation, central infusion of GLP-1 increases 

plasma ACTH and corticosterone levels and elicits anxiety-like behaviour in rats (48). 

Conversely, 3rd ventricular exendin-9 attenuated the rise in corticosterone after psychogenic 

stress, demonstrating HPA axis activation by exogenous as well as endogenous GLP-1. 

However, chemogenetic activation of PPG neurons in mouse did not affect stress hormone 

levels or anxiety-related behaviour (14), suggesting the restraint stress-induced hypophagia 

investigated in our study may not involve activation of the HPA axis, but employs different 

pathways. In ad libitum fed rats, restraint stress induces cFOS-expression in GLP-1-

immunoreactive neurons and restraint stress-induced hypophagia can be reversed by lateral 

ventricular exendin-9 (29). Those findings are in line with the effects of direct inhibition of 

PPG neurons that we report here and suggest that these neurons play a central role in restraint 

stress-induced hypophagia in both mouse and rat. This places PPG neurons at the centre of 

behavioural decisions to maintain energy intake vs avoiding danger and stress. 

Conclusions 
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We report that NTS PPG neurons of the lower brainstem are the main source of the GLP-1 

found in the CNS, that these neurons have the capacity to significantly suppress food intake, 

and describe conditions under which they are necessary for the control of feeding. Our results 

suggest that PPG neurons may not control ad libitum food intake but are essential for short 

term limitation of feeding following unusually large intakes, and in mediating stress-induced 

hypophagia. We thus conclude that PPG neurons likely form part of a secondary 

satiation/satiety circuit, activated by both psychogenic stress and presumptive gastric 

distension from unusually large intake. PPG neurons thus constitute a regulator with scope 

for substantial hypophagia, without being involved in day-to-day energy balance, and as such 

they may be an attractive target for pharmaceutical intervention to reduce body weight.  
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Table 1. Sources of virus and antibody preparations used. 

 

Virus/Antibody 

Titer/dilution 

Application Source References 

AAV2-FLEX-

hM3Dq:mCherry 

6.1x10
12

 

Activation of Cre-

expressing PPG 

neurons 

UNC Vectorcore pAAV-hSyn-DIO-

hM3D(Gq)-mCherry was a 

gift from Bryan Roth (49) 

AAV8-FLEX-

hM3Dq:mCherry 

4x10
12 

Activation of Cre-

expressing PPG 

neurons  

VVF, ZNZ, 

Zurich 

pAAV-hSyn-DIO-

hM3D(Gq)-mCherry was a 

gift from Bryan Roth (49) 

AAV8-mCherry-

FLEX-DTA 

3.3x10
12

 

Ablation of Cre-

expressing PPG 

neurons 

UNC Vectorcore pAAV-mCherry-flex-dtA 

was a gift from Naoshige 

Uchida. 

AAV2-FLEX-

hM4Di:mCherry 

6.4x10
12 

Inhibition of Cre-

expressing PPG 

neurons 

VVF, ZNZ, 

Zurich 

pAAV-hSyn-DIO-

hM4D(Gi)-mCherry was a 

gift from Bryan Roth (49) 

AAV1/2-FLEX-

Perceval 

Titer not 

determined 

Control for viral 

transduction 

Made in house.  pAAV-FLEX-empty was a 

gift from Bill Wisden (50) 

pShuttleCMV-Perceval was 

a gift from Guy Rutter  

AAV8-FLEX-

EGFP; 8x10
12

 

Control for viral 

transduction 

VVF, ZNZ, 

Zurich 

pAAV-hSyn-DIO-EGFP 

was a gift from Bryan Roth 

PRSx8-AlstR-

EGFP-LV 

1x10
10 

Identification of 

Phox2b neurons  

Sergei Kasparov (26) 

Chicken anti-GFP; 

Alexa488 goat 

GCaMP3, EGFP, 

YFP 

Abcam AB13970; 

Invitrogen #A-

(18) 
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anti- chicken; 

1:1000 

11039 

Rabbit anti-dsRed; 

Cy3 sheep anti-

rabbit; 1:1000 

mCherry, tdRFP Takara Bio 

#632496; Sigma 

#C2306 

 

Rabbit anti-cFOS 

1:500; Alexa488- 

goat anti-rabbit 

1:1000 

cFOS Merck #ABE457; 

Invitrogen #A-

11008 

 

 

Figure Legends 

 

Figure 1. Pharmacogenetic activation of PPG neurons robustly reduces food intake. 

(A) Expression of hM3Dq:mCherry (magenta) in PPG neurons (detected with an anti-GFP 

antibody, green) three weeks after stereotaxic injection of AAV2-hM3Dq:mCherry into the 

NTS of Glu-Cre/GCaMP3 mice. Scale bar: 100 µm. (B) Increase in [Ca
2+

]i in GCaMP3-

expressing PPG neurons in response to superfusion of ex vivo brainstem slices with 1 µM 

CNO. Data are displayed as traces (top panel) and a heat map (bottom panel) representing the 

fractional change in fluorescence from baseline. Right panel: Representative pseudocoloured 

cell responding to 1 µM CNO with an increase in [Ca
2+

]i. Scale: 10 µm, n=11 cells. (C) 

Expression of the immediate early gene cFOS (green) in PPG neurons expressing 

hM3Dq:mCherry (magenta) following i.p. injection of 2 mg/kg CNO (top panels) or saline 

(bottom panels). White arrows: Representative cFOS-positive hM3Dq-expressing cells. White 

stars: Representative cFOS-negative hM3Dq-positive cells. Scale bars: 100 µm (middle 

panel) and 20 µm (right panel). (D-E) Non-cumulative (D) and cumulative (E) food intake in 

the first four hours of dark phase following injection of CNO (2 mg/kg i.p.) or saline. CNO 

was delivered 30 mins prior to dark onset. Data given as mean±SEM, n=9 mice. D: No 

significant time × drug interaction (F(2, 16) = 2.897, p=0.0844), but a significant main effect 

of drug treatment (F(1,8)=17.31, p=0.0032); E: Significant time × drug interaction 

(F(2,16)=5.626, p=0.0141). 1h p=0.0005, 2h p<0.0001, 4h p<0.0001 (Sidak’s multiple 

comparisons test). Inset: p=0.20 (paired t-test). (F) Daily chow intake in hM3Dq-expressing 

(n=7) and control (n=6) Glu-Cre mice in response to twice daily i.p. injection of 2 mg/kg 

CNO (indicated with black arrows). Significant time × virus interaction (F(11, 121) = 2.06, 
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p=0.0283); day 6 p=0.0119 (Sidak’s multiple comparisons test). Data given as mean±SEM. 

*p<0.05, ***p<0.001, ****p<0.0001. 

 

Figure 2. NTS PPG neurons are the main source of brain GLP-1. 

(A) Expression of mCherry and GCaMP3 (as a marker for PPG neurons) four, seven, and 14 

days after unilateral stereotaxic injection of AAV8-mCherry-FLEX-DTA into the NTS of a 

Glu-Cre/GCaMP3 mouse (schematic on left). White arrows indicate GCaMP3-positive PPG 

neurons remaining. Scale bars: 100 µm (top panels) and 20 µm (inset).  

(B) Protein levels of active GLP-1 (normalised to total protein) detected in several brain 

regions after bilateral stereotaxic injection of AAV8-mCherry-FLEX-DTA or a control virus 

(AAV1/2-FLEX-Perceval). Brainstem: p=0.0317, Hypothalamus: p=0.0079, (Mann-Whitney 

U Test); Spinal cord: p=0.0004 (unpaired t-test). Data given as mean±SEM, n=5 in each 

group. *p<0.05, **p<0.01, ***p<0.001. 

 

Figure 3. Ablation of NTS PPG neurons has no impact on body weight, food intake, or 

glucose tolerance.  

(A-B) Bodyweight change (A) and daily chow intake (B) following stereotaxic injection of 

AAV8-mCherry-FLEX-DTA or control virus. Bodyweight was measured every 2-3 days 

over two months. Mean±SEM, n=7 (control), n=6 (DTA). A: No significant time × virus 

interaction (F(1, 12)=0.08578, p=0.7746) and no significant main effect of virus (F(1, 

12)=0.08578, p=0.7746); B: p=0.45 (unpaired t-test). (C-D) Blood glucose in response to an 

i.p. injection of glucose (1 g/kg) at t=0 seven weeks after stereotaxic injection of DTA or 

control virus in six male (C) and six female (D) Glu-Cre mice. Area under the curve (AUC) 

of the i.p. glucose tolerance test for each group is given on the right of each graph. Data given 

as mean±SEM. Glucose concentrations: There was a significant time × virus interaction for 

males (F(5, 20)=3.83, p=0.014), but no significant difference between DTA and control mice 

at any timepoint. There was no significant time × virus interaction for females (F(5, 

20)=0.19, p=0.96) and no significant main effect of virus (F(1, 4)=1.08, p=0.36). AUC: No 

effect of virus for males (p>0.99, Mann-Whitney U test) or females (p=0.34, unpaired t-test).  

 

Figure 4. Ad libitum food intake is unaffected by ablation or acute inhibition of NTS 

PPG neurons 
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(A-B) Cumulative (A) and non-cumulative (B) food intake of control and PPG-ablated 

(DTA) mice in the first four hours of the dark phase. Data given as mean±SEM, n=7 

(control), n=6 (DTA). n.s.: not significant. A: No significant time × virus interaction (F(2, 

22)=0.5406, p=0.5900) and no significant main effect of virus (F(1, 11)=0.012, p=0.91); B: 

No significant time × virus interaction (F(2, 22)=0.834, p=0.4476) and no significant main 

effect of virus (F(1, 11)=0.1472, p=0.7085). (C) Cre-dependent expression of hM4Di and 

EGFP as control in the NTS of Glu-Cre/GCaMP3 mice. Bottom left: Schematic of bilateral 

injections. Bottom right: Representative voltage-clamp recording (top) and summary data 

(bottom) of hM4Di-expressing PPG neurons in ex vivo slice preparation superfused with CNO 

(1 µM). Data given as mean±SEM, n=5. *p<0.05 (paired t-test). 

(D-E) Cumulative (D) and non-cumulative (E) food intake of hM4Di-expressing mice 

injected with saline or CNO (2 mg/kg, i.p., 30 mins prior to dark onset) in the first four hours 

of the dark phase. Data given as mean±SEM, n=12. D: No significant main effect of virus 

(F(1,21)=1.19, p=0.29) or drug (F(1,21)=0.002, p=0.96); E: No significant main effect of 

virus (F(1,20)=0.11, p=0.75) or drug (F(1,20)=0.045, p=0.83). Data from mice expressing 

control virus (Fig S4) included in analysis. n.s.: not significant. 

 

Figure 5. Ablation or acute inhibition of PPG neurons increases food intake only after a 

large meal.  

(A-C) Cumulative (A-B) and non-cumulative (C) food intake of control and PPG-ablated 

mice in the first four hours (A,C) and 21 hours (B) after onset of the dark phase following 18 

hours of food-deprivation prior to the onset of dark. Data given as mean±SEM, n=7 (control), 

n=6 (DTA). A: No significant virus × time interaction (F(2, 22) = 1.81, p=0.19), but a 

significant main effect of virus (F(1,11)=8.0, p=0.016); B: p=0.056 (unpaired t-test); C: No 

significant virus × time interaction (F(2, 22)=0.75, p=0.49), but a significant main effect of 

virus (F(1,11)=6.1, p=0.031).  

(D-F) Cumulative (D-E) and non-cumulative (F) food intake of hM4Di-expressing mice 

injected with saline or CNO (2 mg/kg, i.p., 30 mins prior to dark onset) in the first four hours 

of the dark phase following 18 hours of food-deprivation prior to the onset of dark. Data 

given as mean±SEM, n=12. D: There was a significant virus × drug interaction at hour 1 

(F(1, 21)=4.733, p=0.0411), p=0.038 (CNO vs Saline, Sidak’s multiple comparisons test); E: 

No significant virus × drug interaction (F(1, 21)=1.245, p=0.28) and no significant main 

effect of drug (F(1, 21)=1.67, p=0.21) or virus (F(1, 21)=0.084, p=0.77); F: There was a 

significant virus × drug interaction at hour 1 (F(1, 21)=4.733, p=0.0411), p=0.038 (CNO vs 
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Saline, Sidak’s multiple comparisons test). Data from mice expressing control virus included 

in analysis. *: p<0.05, n.s.: not significant. 

 

Figure 6. Intake of large volumes of highly palatable diet activates PPG neurons. 

(A) Expression of the immediate early gene cFOS (green) in PPG neurons following 30 mins 

access to Vanilla Ensure or no access to food (Control). White arrows: Representative cFOS-

positive PPG neurons. Scale bar: 100 µm. (B) Percentage of PPG neurons expressing cFOS 

90 mins after 30 mins access to Vanilla Ensure or no access to food. Data given as 

mean±SEM, n=3 (Control), n=3 (Ensure). p=0.0079 (Mann-Whitney UTest). (C) Ensure 

intake during 15-min access at dark onset over several days of habituation in control and 

PPG-ablated (DTA) mice. Data given as mean±SEM, n=7 (Control), n=7 (DTA). No 

interaction virus × time (F(3, 36)=0.592, p=0.62) and no significant main effect of virus (F(1, 

12)=1.135, p=0.31) or time (F(3, 36)=0.19, p=0.90). ). (D) Ensure intake during 15-min 

access period on the test day in control and PPG-ablated (DTA) mice. Data given as 

mean±SEM, n=7 (Control), n=7 (DTA). p=0.70 (unpaired t-test). (E) Chow intake of control 

and PPG-ablated (DTA) mice for one hour following 15-min access to Vanilla Ensure. Data 

given as mean±SEM, n=7 (Control), n=7 (DTA). p=0.0052 (unpaired t-test). **: p<0.01; n.s.: 

not significant. 

 

Figure 7. Stress-induced hypophagia requires PPG neurons. 

(A-B) Cumulative (A) and non-cumulative (B) chow intake of mice expressing EGFP or 

hM4Di injected with 2 mg/kg CNO i.p. 60 mins prior to dark onset and left undisturbed or 

exposed to 30 mins restraint stress 30 mins prior to dark onset. Also included in (A) is data 

from the same EGFP- and hM4Di-expressing mice injected with saline and left undisturbed. 

Data given as mean±SEM, n=9 (Control), n=12 (hM4Di). A: Significant main effect of stress 

for control (F(1, 8)=14.14, p=0.0055), but not hM4Di: (F(1, 11)=0.8684, p=0.37). No effect 

of CNO on food intake in both control (p=0.5) and PPG-inhibited mice (p=0.98) as compared 

to saline vehicle in the absence of stress. B: Hour 0-1: Significant effect of stress in the EGFP 

group (p=0.0008), but not in the hM4Di group (p=0.25) (Sidak’s multiple comparisons test). 

Hour 1-2: No significant virus × stress interaction (F(1, 19)=0.091, p=0.77) and no main 

effect of virus (F(1, 19)=0.49, p=0.49) or stress (F(1, 19)=1.16, p=0.29). **: p<0.01; ***: 

p<0.001; n.s.: not significant. 
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� �Figure 1. Pharmacogenetic activation of PPG neurons robustly reduces food intake. (A) Expression of 
hM3Dq:mCherry (magenta) in PPG neurons (detected with an anti-GFP antibody, green) three weeks after 
stereotaxic injection of AAV2-hM3Dq:mCherry into the NTS of Glu-Cre/GCaMP3 mice. Scale bar: 100 µm. 

(B) Increase in [Ca2+]i in GCaMP3-expressing PPG neurons in response to superfusion of ex vivo brainstem 
slices with 1 µM CNO. Data are displayed as traces (top panel) and a heat map (bottom panel) representing 

the fractional change in fluorescence from baseline. Right panel: Representative pseudocoloured cell 
responding to 1 µM CNO with an increase in [Ca2+]i. Scale: 10 µm, n=11 cells. (C) Expression of the 

immediate early gene cFOS (green) in PPG neurons expressing hM3Dq:mCherry (magenta) following i.p. 
injection of 2 mg/kg CNO (top panels) or saline (bottom panels). White arrows: Representative cFOS-

positive hM3Dq-expressing cells. White stars: Representative cFOS-negative hM3Dq-positive cells. Scale 
bars: 100 µm (middle panel) and 20 µm (right panel). (D-E) Non-cumulative (D) and cumulative (E) food 
intake in the first four hours of dark phase following injection of CNO (2 mg/kg i.p.) or saline. CNO was 

delivered 30 mins prior to dark onset. Data given as mean±SEM, n=9 mice. D: No significant time × drug 
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interaction (F(2, 16) = 2.897, p=0.0844), but a significant main effect of drug treatment (F(1,8)=17.31, 
p=0.0032); E: Significant time × drug interaction (F(2,16)=5.626, p=0.0141). 1h p=0.0005, 2h p<0.0001, 

4h p<0.0001 (Sidak’s multiple comparisons test). Inset: p=0.20 (paired t-test). (F) Daily chow intake in 
hM3Dq-expressing (n=7) and control (n=6) Glu-Cre mice in response to twice daily i.p. injection of 2 mg/kg 
CNO (indicated with black arrows). Significant time × virus interaction (F(11, 121) = 2.06, p=0.0283); day 

6 p=0.0119 (Sidak’s multiple comparisons test). Data given as mean±SEM. *p<0.05, ***p<0.001, 

� �****p<0.0001.   
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Figure 2. NTS PPG neurons are the main source of brain GLP- � �1. (A) Expression of mCherry and GCaMP3 
(as a marker for PPG neurons) four, seven, and 14 days after unilateral stereotaxic injection of AAV8-

mCherry-FLEX-DTA into the NTS of a Glu-Cre/GCaMP3 mouse (schematic on left). White arrows indicate 

GCaMP3- � �positive PPG neurons remaining. Scale bars: 100 µm (top panels) and 20 µm (inset). (B) 
Protein levels of active GLP-1 (normalised to total protein) detected in several brain regions after bilateral 
stereotaxic injection of AAV8-mCherry-FLEX-DTA or a control virus (AAV1/2-FLEX-Perceval). Brainstem: 
p=0.0317, Hypothalamus: p=0.0079, (Mann-Whitney U Test); Spinal cord: p=0.0004 (unpaired t-test). 

Data give � �n as mean±SEM, n=5 in each group. *p<0.05, **p<0.01, ***p<0.001.   
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Figure 3. Ablation of NTS PPG neurons has no impact on body weight, food intake, or glucose tolerance. 

� � (A-B) Bodyweight change (A) and daily chow intake (B) following stereotaxic injection of AAV8-mCherry-
FLEX-DTA or control virus. Mean±SEM, n=7 (control), n=6 (DTA). A: No significant time × virus interaction 

(F(1, 12)=0.08578, p=0.7746) and no significant main effect of virus (F(1, 12)=0.08578, p=0.7746); B: 
p=0.45 (unpaired t-test). (C-D) Blood glucose in response to an i.p. injection of glucose (1 g/kg) at t=0 
seven weeks after stereotaxic injection of -DTA or control virus in six male (C) and six female (D) Glu-Cre 
mice. Area under the curve (AUC) of the i.p. glucose tolerance test for each group is given on the right of 

each graph. Data given as mean±SEM. Glucose concentrations: There was a significant time × virus 
interaction for males (F(5, 20)=3.83, p=0.014), but no significant difference between DTA and control mice 
at any timepoint. There was no significant time × virus interaction for females (F(5, 20)=0.19, p=0.96) and 
no significant main effect of virus (F(1, 4)=1.08, p=0.36). AUC: No effect of virus for males (p>0.99, Mann-

Whitney U test) or females (p=0.34, unpaired t- � �test).   
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� �Figure 4. Ad libitum food intake is unaffected by ablation or acute inhibition of NTS PPG neurons (A-B) 
Cumulative (A) and non-cumulative (B) food intake of control and PPG-ablated (DTA) mice in the first four 
hours of the dark phase. Data given as mean±SEM, n=7 (control), n=6 (DTA). n.s.: not significant. A: No 

significant time × virus interaction (F(2, 22)=0.5406, p=0.5900) and no significant main effect of virus (F(1, 
11)=0.012, p=0.91); B: No significant time × virus interaction (F(2, 22)=0.834, p=0.4476) and no 

significant main effect of virus (F(1, 11)=0.1472, p=0.7085). (C) Cre-dependent expression of hM4Di and 
EGFP as control in the NTS of Glu-Cre/GCaMP3 mice. Bottom left: Schematic of bilateral injections. Bottom 
right: Representative voltage-clamp recording (top) and summary data (bottom) of hM4Di-expressing PPG 
neurons in ex vivo slice preparation superfused with CNO (1 µM). Data given as mean±SEM, n=5. *p<0.05 
(paired t- � �test). (D-E) Cumulative (D) and non-cumulative (E) food intake of hM4Di-expressing mice 
injected with saline or CNO (2 mg/kg, i.p., 30 mins prior to dark onset) in the first four hours of the dark 
phase. Data given as mean±SEM, n=12. D: No significant main effect of virus (F(1,21)=1.19, p=0.29) or 
drug (F(1,21)=0.002, p=0.96); E: No significant main effect of virus (F(1,20)=0.11, p=0.75) or drug 
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(F(1,20)=0.045, p=0.83). Data from mice expressing control virus (Fig S4) included in analysis. n.s.: not 

� �significant.   
 

170x230mm (300 x 300 DPI)  

 

 

Page 30 of 34Diabetes



  

 

 

� �Figure 5. Ablation or acute inhibition of PPG neurons increases food intake only after a large meal. (A-C) 
Cumulative (A-B) and non-cumulative (C) food intake of control and PPG-ablated mice in the first four hours 
(A,C) and 21 hours (B) after onset of the dark phase following 18 hours of food-deprivation prior to the 
onset of dark. Data given as mean±SEM, n=7 (control), n=6 (DTA). A: No significant virus × time 

interaction (F(2, 22) = 1.81, p=0.19), but a significant main effect of virus (F(1,11)=8.0, p=0.016); B: 
p=0.056 (unpaired t-test); C: No significant virus × time interaction (F(2, 22)=0.75, p=0.49), but a 

� �significant main effect of virus (F(1,11)=6.1, p=0.031). (D-F) Cumulative (D-E) and non-cumulative (F) 
food intake of hM4Di-expressing mice injected with saline or CNO (2 mg/kg, i.p., 30 mins prior to dark 

onset) in the first four hours of the dark phase following 18 hours of food-deprivation prior to the onset of 
dark. Data given as mean±SEM, n=12. D: There was a significant virus × drug interaction at hour 1 (F(1, 
21)=4.733, p=0.0411), p=0.038 (CNO vs Saline, Sidak’s multiple comparisons test); E: No significant virus 
× drug interaction (F(1, 21)=1.245, p=0.28) and no significant main effect of drug (F(1, 21)=1.67, p=0.21) 

or virus (F(1, 21)=0.084, p=0.77); F: There was a significant virus × drug interaction at hour 1 (F(1, 
21)=4.733, p=0.0411), p=0.038 (CNO vs Saline, Sidak’s multiple comparisons test). Data from mice 

expressing control virus � �included in analysis. *: p<0.05, n.s.: not significant.   
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� �Figure 6. Intake of large volumes of highly palatable diet activates PPG neurons. (A) Expression of the 
immediate early gene cFOS (green) in PPG neurons following 30 mins access to Vanilla Ensure or no access 

to food (Control). White arrows: Representative cFOS-positive PPG neurons. Scale bar: 100 µm. (B) 

Percentage of PPG neurons expressing cFOS 90 mins after 30 mins access to Vanilla Ensure or no access to 
food. Data given as mean±SEM, n=3 (Control), n=3 (Ensure). p=0.0079 (Mann-Whitney UTest). (C) Ensure 
intake during 15-min access at dark onset over several days of habituation in control and PPG-ablated (DTA) 
mice. Data given as mean±SEM, n=7 (Control), n=7 (DTA). No interaction virus × time (F(3, 36)=0.592, 
p=0.62) and no significant main effect of virus (F(1, 12)=1.135, p=0.31) or time (F(3, 36)=0.19, p=0.90). 
). (D) Ensure intake during 15-min access period on the test day in control and PPG-ablated (DTA) mice. 
Data given as mean±SEM, n=7 (Control), n=7 (DTA). p=0.70 (unpaired t-test). (E) Chow intake of control 

and PPG-ablated (DTA) mice for one hour following 15-min access to Vanilla Ensure. Data given as 
mean±SEM, n=7 (Control), n=7 (DTA). p=0.0052 (unpaired t-test). **: p<0.01; n.s.: not significa � �nt.   
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Figure 7. Stress- � �induced hypophagia requires PPG neurons. (A-B) Cumulative (A) and non-cumulative (B) 
chow intake of mice expressing EGFP or hM4Di injected with 2 mg/kg CNO i.p. 60 mins prior to dark onset 
and left undisturbed or exposed to 30 mins restraint stress 30 mins prior to dark onset. Also included in (A) 
is data from the same EGFP- and hM4Di-expressing mice injected with saline and left undisturbed. Data 
given as mean±SEM, n=9 (Control), n=12 (hM4Di). A: Significant main effect of stress for control (F(1, 

8)=14.14, p=0.0055), but not hM4Di: (F(1, 11)=0.8684, p=0.37). No effect of CNO on food intake in both 
control (p=0.5) and PPG-inhibited mice (p=0.98) as compared to saline vehicle in the absence of stress. B: 
Hour 0-1: Significant effect of stress in the EGFP group (p=0.0008), but not in the hM4Di group (p=0.25) 

(Sidak’s multiple comparisons test). Hour 1-2: No significant virus × stress interaction (F(1, 19)=0.091, 
p=0.77) and no main effect of virus (F(1, 19)=0.49, p=0.49) or stress (F(1, 19)=1.16, p=0.29). **: 

� �p<0.01; ***: p<0.001; n.s.: not significant.   
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Supplemental Material 

Supplemental figures 

 

Supplemental figure 1 – related to Fig 1. RFP-positive Glu-Cre cells overlap with Glu-

YFP cells, but not Phox2b-expressing cells.  

(A) GFP- and RFP-immunoreactivity in the NTS of the result of crossbreeding Glu-YFP and 

Glu-Cre/tdRFP mice, demonstrating clear overlap between these neuronal populations. Scale: 

100 µm. Right panel: Percentage of RFP-positive cells also expressing YFP (left) as well as 

RFP-positive cells not expressing YFP (right) throughout the NTS. Data given as 

mean±SEM, n=3 mice. (B) RFP-immunoreactivity and Phox2b-dependent expression of 

EGFP in the NTS of Glu-Cre/tdRFP mice injected with PRSx8-AlstR-EGFP-LV. Scale: 100 

µm. N=3 mice. 
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Supplemental figure 2 – related to Fig 1. hM3Dq lacks intrinsic activity on food intake. 

(A) Schematic showing injection of AAV2-FLEX-hM3Dq:mCherry or AAV1/2-FLEX-

Perceval into the NTS of Glu-Cre mice. (B) Expression of tdRFP and Perceval (detected with 

an anti-GFP antibody). Scale: 100 µm. (C) Non-cumulative chow intake of Glu-Cre mice 

expressing Perceval or hM3Dq in the first two hours after dark onset following injection of 2 

mg/kg CNO i.p. 30 mins prior to dark onset. Data given as mean±SEM, n=4 (Control), n=4 

(hM3Dq). There was a significant virus × drug interaction at both hour 0-1 (F(1, 6)=17.19, 

p=0.006) and hour 1-2 (F(1, 6)=8.65, p=0.026) and a significant effect of CNO in the hM3Dq 

group in hour 0-1 (p=0.0038) and in hour 1-2 (p=0.024), but no effect of CNO in the control 

group in hour 0-1 (p=0.81) or hour 1-2 (p=0.82) (Sidak’s multiple comparisons test). *: 

p<0.05; **: p<0.01; n.s.: not significant. 
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Supplemental figure 3 – related to Fig 3. Glucose tolerance before PPG ablation. 

(A-B) Blood glucose in response to an i.p. injection of glucose (1 g/kg) at t=0 prior to 

stereotaxic injection of -DTA or control virus in six male (A) and six female (B) Glu-Cre 

mice. Area under the curve (AUC) of the i.p. glucose tolerance test for each group is given on 

the right of each graph. Data given as mean±SEM.   
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Supplemental figure 4 – related to Fig 4. hM4Di lacks intrinsic activity on body weight 

and food intake. 

(A) Change in bodyweight following stereotaxic injection of AAV2-FLEX-hM4Di (n=13) or 

AAV2-FLEX-EGFP (n=11, control). There was a significant virus × time interaction (F(23, 

506)=2.93, p=0.0001), but no significant difference between groups at any timepoint (Sidak’s 

multiple comparisons test). (B-D) Cumulative (B-C) and non-cumulative (D) chow intake in 

the first four hours (B,D) and 21 hours (C) after dark onset. Mice were expressing either 

hM4Di or EGFP in NTS PPG neurons and were injected with 2 mg/kg CNO i.p. 30 mins prior 

to dark onset. Data given as mean±SEM, n=11 (control), n=12 (hM4Di). B: There was no 

significant drug × time interaction for either the control (F(2, 20)=0.086, p=0.92) or hM4Di 

group (F(2, 22)=0.036, p=0.96), and there was no significant main effect of CNO in the 

control (F(1, 10)=0.22, p=0.65) or in the hM4Di group (F(1, 11)=0.11, p=0.74). C: There was 

no significant drug × virus interaction (F(1, 20)=0.22, p=0.65) and no main effect of CNO 

(F(1, 20)=0.47, p=0.5) or virus (F(1, 20)=0.11, p=0.75). D: No significant drug × virus 

interactions (Hour 0-1: (F(1, 21)=0.18, p=0.67), hour 1-2: (F(1, 21)=0.011, p=0.92), and 

hours 2-4 (F(1, 19)=1.30, p=0.27)). n.s.: not significant. 
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