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Abstract
Every information retrieval (IR) model embeds in its scoring function a form of term fre-
quency (TF) quantification. The contribution of the term frequency is determined by the 
properties of the function of the chosen TF quantification, and by its TF normalization. 
The first defines how independent the occurrences of multiple terms are, while the second 
acts on mitigating the a priori probability of having a high term frequency in a document 
(estimation usually based on the document length). New test collections, coming from dif-
ferent domains (e.g. medical, legal), give evidence that not only document length, but in 
addition, verboseness of documents should be explicitly considered. Therefore we propose 
and investigate a systematic combination of document verboseness and length. To theo-
retically justify the combination, we show the duality between document verboseness and 
length. In addition, we investigate the duality between verboseness and other components 
of IR models. We test these new TF normalizations on four suitable test collections. We do 
this on a well defined spectrum of TF quantifications. Finally, based on the theoretical and 
experimental observations, we show how the two components of this new normalization, 
document verboseness and length, interact with each other. Our experiments demonstrate 
that the new models never underperform existing models, while sometimes introducing 
statistically significantly better results, at no additional computational cost.
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1 Introduction

The development of retrieval models is one of the key aspects of research in information 
retrieval (IR). The IR models arise from experimental observations about the use of the 
language, predominantly on collections of documents primarily composed of news cor-
pora. Today, with the almost total digitization of most text produced, it is clear that the tex-
tual documents are not just news and that different collections require different approaches 
(Hanbury and Lupu 2013). Consequently, the field has been driven to deal with different 
kinds of information types, demonstrated by the creation of new and more domain specific 
initiatives in the main IR evaluation campaigns: TREC, NTCIR, CLEF, and FIRE. Now, 
thanks to the observations made in the context of these evaluation campaigns, we are able 
to revisit some of the original assumptions and extend the models to integrate other collec-
tion statistics that reflect the different use of the language in different domains.

Every IR model boils down to a scoring function in which we can distinguish a com-
ponent that increases with the number of occurrences of a term in a document (a term 
frequency component, TF ) and a component that decreases with the commonality of a term 
(an inverse document frequency component, IDF ). In this paper we focus on the TF com-
ponent. Its normalization, first introduced by Robertson et al. (1994) for BM25, and then 
generalized by Singhal et al. (1996) for a generic model, consists in adjusting the within-
document term frequency ( tfd ) based on the ratio between the document length ( ld ) and its 
expectation ( E[ld] ), called pivoted document length normalization. The work of Singhal 
et al. is motivated by the experimental observation that the length pattern of the retrieved 
documents should match the pattern of the relevant documents. Robertson et al. justify this 
normalization, later declared as ‘soft’ for the mitigation effect provided by the division 
by the mean, by introducing two contrasting hypotheses (Robertson and Zaragoza 2009), 
named verboseness and multi-topicality: (a) the verboseness hypothesis states that some 
authors need more words to explain something that could have been explained with fewer; 
(b) the multi-topicality hypothesis states that the reason why more words are required is 
because the author has covered more ground. While the first hypothesis suggests a docu-
ment should be normalized by its length, the second suggests the contrary.

Recently, Lipani et al. (2015) have brought back to the attention of the IR community 
this discussion, pointing out that another collection statistic could be embedded in the TF 
normalization of BM25. This new statistic measures a kind of verboseness, the repetitive-
ness of terms in a document, and leads to the achievement of performance better than the 
standard BM25.

In this paper we address this new observation from the perspective of the established 
models, and provide a new, general theory. Before doing that, a few general observations 
are in order.

Retrieval models combine various parameters into a score reflecting the degree to which 
a document implies a query. The common parameters and rationales are: 

tfd  within-document term frequency; frequent is good
PD(t|c)  document-based term prob. (aka IDF(t, c) = − log(PD(t|c)) ); rare is good
P(t|c)  occurrence-based term probability (LM mixture)
ld  document length; to promote short documents

where c is a collection of documents, d is a document, and t is a term. We claim that there 
are other properties of documents and terms that are important but under-represented, 
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namely verboseness and the previously introduced burstiness (Roelleke 2013). In this paper 
we will focus primarily on verboseness, but we will also make some observations on bursti-
ness and its relation with IDF . However, before starting, we introduce the notation used.

1.1  Notation

The basic symbols and sets are given in the following table. The notation is based on the 
proposal made by Roelleke (2013). However, unlike Roelleke, given that here we will not 
theoretically analyze different collections, we will generally drop the collection c index 
where convenient and not ambiguous.

 set of terms in the collection
 set of documents in the collection
t a term t ∈ 

d a document d ∈ 

| | number of terms
|| number of documents
lc length of collection (number of term occurrences)

Based on the basic symbols, we define frequencies. Term frequencies, document fre-
quencies, average term frequencies are ambiguous notions. It is important to clarify exactly 
what symbols mean.

lt number of occurrences of the term t in the collection, here also called term length (aka 
collection frequency)

t set of documents where t occurs
d set of terms in d
|t| number of documents where t occurs (aka document frequency, df(t))
|d| number of distinct terms in d
ld length of document d (number of term occurrences, note ld ≥ |d|)

Next, we define the four averages important for this paper. The first two combine in a 
systematic way the symbols of the previous table.

Et
[tfd] = lt∕|t| average frequency of term t in the documents in which the term occurs

Ed
[tfd] = ld∕|d| average term frequency of terms that occur in document d

l̄d ∶= E[ld] = lc∕|| average document length
l̄t ∶= E [lt] = lc∕| | average term length

Note that there are two notions regarding “average term frequency”, Et
[tfd] and Ed

[tfd] . 
In the first case the average is performed fixing t and averaging across the documents t 
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containing t, and in the second case the average is performed fixing d and averaging across 
the terms d contained therein.

Finally, we introduce the probabilities used in this paper.

P(t) = PL(t) = lt∕lc location based probability of t ∈ 

P(d) = PL(d) = ld∕lc location based probability of d ∈ 

PD(t) = |t|∕|| document based probability of t ∈ 

PT (d) = |d|∕| | term based probability of d ∈ 

As can be seen, in this paper, when mentioning probability (P) with no index we refer to 
the probability based on locations, i.e. the probability defined on the sample space of term 
occurrences.

1.2  Motivations

In this section we formally introduce the document verboseness and term burstiness. We then 
motivate their investigation in IR models.

Verboseness is reflected by the ratio ld∕|d| : the document length divided by the number of 
(distinct) terms in the document. The ratio corresponds to the average tfd (over all terms) in 
document d:

A document is verbose if few terms are repeated many times; its domain is [1, ld] , 1 for 
non-verbose (no term occurs more then once), and ld for maximally verbose (one term is 
repeated ld times).

Intuitively, the more verbose (repetitive) a document is, the higher is the chance to find 
a high tfd . In other words, a document has a high score just because words are repeated 
(e.g. spamming), and therefore, one wants to demote verbose documents in the ranking.

Burstiness is reflected by the ratio lt∕|t| , that is the length of the term in the collection c 
(or number of occurrences of the term in c) divided by the number of the collection’s docu-
ments where the term t occurs (aka document frequency). The ratio corresponds to the aver-
age tfd (over the number of documents where the term t occurs) in collection c:

A term is bursty if it occurs in few documents many times; its domain is [1, lt] , 1 for a 
non-bursty term (it occurs only once in each document where it is present), lt for maxi-
mally bursty (all the occurrences are only in one document).

Intuitively, the more bursty a term is, the higher is the chance to find a high tfd . In other 
words, a bursty term occurs in fewer documents than a non-bursty (a normal) term, and there-
fore, one wants to promote documents containing bursty terms.

(1)vd ∶= Ed
[tfd] =

ld

|d|

(2)bt ∶= Et
[tfd] =

lt

|t|
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Instead of verboseness and burstiness, scoring functions most often use normalization of 
the tfd based on the document length ld (e.g. in the TF component of BM25 and in some ver-
sions of TF-IDF) .

The contribution of the document length is smoothed by its average, that corresponds to the 
average ld (over all the documents) in collection c:

This is then used to calculate the pivoted document length (pivotization indicated in the 
paper with a hat) as follows:

The l̂d is greater than 1 for relatively long documents (greater than the average document 
length), and smaller than 1 for short documents (lower than the average document length).

It is surprising that IR models are keen to capture the l̂d , but seem to hide away verbose-
ness and burstiness, i.e.  there is no parameter explicitly associated with these properties. 
However we observe that some IR models implicitly use these normalizations.

We investigate which IR models capture verboseness and burstiness, and how the 
parameters can be made explicit or added. Motivated by the work of Lipani et al. (2015), 
we formally justify verboseness from its duality with the document length normalization. 
As a supportive case we also present its duality with the concept of burstiness (Roelleke 
2013), and term length (aka collection frequency).

1.3  Contributions and structure

The main contributions of this paper are: (1) The inclusion of document verboseness as an 
explicit parameter in TF quantifications, showing that verboseness is to be viewed in a sim-
ilar way as the document length in the TF normalizations; (2) An extensive set of experi-
ments capturing a well-defined spectrum of TF quantifications, whose results for log-based 
and BM25-based TF quantifications deliver a significant contribution to insights into the 
effect of TF quantifications, even beyond the TF normalization variants; (3)  Theoretical 
justifications for the way document verboseness and length are combined, considering the 
dualities between verboseness and other parameters (including the burstiness of terms).

The remainder of the paper is structured as follows: in Sect.  2 we present the back-
ground. In Sect.  3, the main contribution of the paper, namely combining document 
verboseness and length into the normalization parameter Kd of the TF quantification, is 
presented. We next review in Sect. 4 the probabilistic foundations of IR models. This high-
lights the role of parameters such as verboseness, burstiness and document length, and the 
theoretical justification of TFBM25-IDF. In Sect.  5, we report the experimental setup and 
results, followed by Sect. 6 dedicated to the discussion of the results. Section 7 concludes 
the paper.

(3)avgdl(c) = E[ld] =
lc

||

(4)l̂d ∶=
ld

E[ld]
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2  Background

The discussion about the TF normalization was initiated by Robertson and Zaragoza 
(2009), introducing the two hypotheses: verboseness and multi-topicality and then fol-
lowed by the work of Singhal et al. (1996) where the document length pivotization is justi-
fied experimentally. Not much work has been done on the multi-topicality hypothesis, but 
some for the verboseness hypothesis. However, the problem of how to weight terms dates 
back further, to the work of Salton and Buckley (1988). Na et al. (2008) introduce the con-
cept of repetitiveness to derive a smoothing method for Language Modeling, showing an 
improvement with respect to other smoothing methods.

Following other work on the TF normalization issues, He and Ounis (2005a) apply the 
Dirichlet priors to the TF normalization following the idea of Amati and Van Rijsbergen 
(2002), and test it on different test collections (He and Ounis 2003, 2005b). Lv and Zhai 
pointed out that the TF quantification based on document length excessively penalizes very 
long documents due to its lower bound, a problem mitigated by leveraging the TF nor-
malization by adding a constant (Lv and Zhai 2011b). They also pointed out that in case 
of BM25 it can be mitigated by adding a constant to the TF normalization (Lv and Zhai 
2011c). Rousseau and Vazirgiannis (2013) generalized the previously mentioned TF nor-
malizations through functional composition. Lv and Zhai (2011a) estimate dynamically the 
parameter k1 of BM25, based on a proposed information gain measure.

Lipani et al. (2015) introduce a new variant of BM25, called BM25VA that explicitly 
incorporates verboseness. This is the main work that motivates this paper. The verboseness 
is defined as in Eq. (1), and pivoted as vd∕E[vd] . Verboseness is then added to the TFBM25 , 
linearly combining the two contributions through the parameter b, as follows:

In this work, it is heuristically shown that the parameter b is inversely proportional to a 
statistic of the collection, the average collection verboseness E[vd] , and that it can be pre-
dicted without statistically damaging the performance of the trained BM25.

Another way of approaching the length normalization issue is to consider retrieval of 
the the individual passages (Robertson and Walker 1999). However, this use of passages to 
address length normalization is theoretically unjustified and introduces a series of decision 
points (size and nature of passages) that are not the focus of this current study.

3  TF normalisations

Before getting into the details of the duality between document verboseness and length, it 
is necessary to formally define the current pivotization of document length and introduce 
the pivotization of verboseness. To do this we start from the foundation of every IR model: 
the document-term matrix A ∈ ℕ

||×| | , in which each element is a tfd indicated here by ad,t 
for convenience of the notation. For any given matrix, we can define two ways to sum the 
elements of this matrix; one that fixes a column (a term t) and sums over the rows (the || 
documents) and one that fixes a row (a document d) and sums over the columns (the | | 

(5)Kd ∶= k1 ⋅
[
(1 − b) ⋅ v̂d + b ⋅ l̂d

]
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terms). Doing this we calculate two lengths: the length of a term1 and the length of a docu-
ment, as follows:

Now, if we want to compute the average of the values on each row or column, we have to 
divide the sums obtained above by a value. For this value we actually have two options: the 
number of columns or rows, and the number of non-zero elements in the columns or rows. 
The first is what we would call the average, and the second the elite average. To give an 
intuition, think of the question “What is the average number of Ferraris owned by a per-
son?”. This question has two answers: we can divide the total number of Ferraris (the sum 
of the elements on a row/column) by the total number of people on the planet (the number 
of columns/rows); or, we can consider only those people that have at least one Ferrari and 
then divide the number of Ferraris by the size of this set of people. The first one is the 
common average, while the second, obviously, is the elite average.

Returning to our document-term matrix, we will denote by a bar ( ̄a ) a common average 
and by a breve (ă ) an elite average:

in which we observe that the two elite averages just defined ăt and ăd correspond to the 
burstiness bt as defined in Eq. (2) and the verboseness vd as defined in Eq. (1).

Considering the remaining elements, āt , ăt , ād and ăd , we can think of them as defin-
ing an average document d̄ = [āt1 … āt| | ] , an elite average document d̆ = [ăt1 … ăt| | ] , an 
average term t̄ = [ād1 … ād|| ] , and an elite average term t̆ = [ăd1 … ăd|| ] . Moreover, we 
observe also that the elite average document is equal to d̆ = [bt1 … bt| | ] and the elite aver-
age term is equal to t̆ = [vd1 … vd|| ].

So, now, for each row d and for each column t we have a sum, an average, and an elite 
average. To obtain a collection-level statistic, we have to aggregate again, calculating sums 
and averages (common and elite averages are identical now, because all rows and all col-
umns have a non-zero aggregated value).

Doing so, we observe that

(6)
∑
d∈

ad,t = lt

∑
t∈

ad,t = ld

(7)

āt =
1

||
∑
d∈

ad,t =
lt

||
ăt =

1

|{ad,t ∶ ad,t ≠ 0}|
∑
d∈

ad,t =
1

|t|
∑
d∈

ad,t =
lt

|t| = bt

ād =
1

| |
∑
t∈

ad,t =
ld

| |
ăd =

1

|{ad,t ∶ ad,t ≠ 0}|
∑
t∈

ad,t =
1

|d|
∑
t∈

ad,t =
ld

|d| = vd

(8)l̆d ∶=
1

||
∑
d∈

ld l̄d ∶=
∑
t∈

āt =
lc

|| l̆d = l̄d

1 Although the “length of a term” is non intuitive, here it is meant the L1-length of a vector
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i.e. the average document length l̄d is equal to the sum of the elements of the average docu-
ment d̄.

However, the same observation is not valid for verboseness, because it is an elite aver-
age. Instead, we have two notations:

A graphical representation of the calculations performed in this section is shown in 
Fig. 1.

3.1  Duality: document verboseness and length

Recalling the definition of verboseness from Eq. (1), it is the average number of times a 
document’s term occurs within the document. To observe the duality of document verbose-
ness, Eq. (3), let us first define the notation to identify the singleton of a document d ∈  
as d = {d} and the singleton of a term t ∈   as t = {t} . Obviously |d| = |t| = 1 and 
therefore we can write ld = ld∕|d| . Let us now consider the pivoted verboseness and piv-
oted document length, using the two sets of values defined above: l̄d = l̆d , v̄d and v̆d:

(9)v̆d ∶=
1

||
∑
d∈

vd v̄d ∶=
∑
d∈

ād =
lc

| | v̆d ≠ v̄d

(10)l̈d =
ld

l̄d
=

ld∕|d|
lc∕||

Fig. 1  The graphical rapresentation of the calculation performend in Sect. 3. On the top left corner we show 
the matrix A ∈ ℕ

||×| | . To the right of A we show three vectors, l⃗
d
 , t̄  , and t̆  , obtained by performing a 

summation, an average and an elite average of the columns of A. On the bottom of A we show three vectors 
l⃗
t
 , d̄ , and d̆ , obtained by performing a summation, an average and an elite average of the rows of A. On the 

bottom right corner we show the set of collection statistics, calculated using these six vectors, obtained by 
performing a summation (when indicated by a Σ ) or an average (when indicated by an E ) of the values of 
the vector on the top of the operator sign if the operator sign is shown on the top side of the block, or on the 
left of the operator sign if the operator sign is shown on the left side of the block. All the collection statis-
tics appearing in the same block are equivalent, e.g. l̆

t
= l̄

t
= v̄

d
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where we indicate the non-elite pivotization with a double dots and the elite pivotization 
with a hat. The duality is obtained substituting  →   to go from ld to vd or  →  to go 
from vd to ld.

The pivoted verboseness of a document is with respect to the space of terms (   ), 
whereas the pivoted document length of a document is with respect to the space of docu-
ments (  ). One can also show the duality between document verboseness and length based 
on probabilistic expressions:

PL(d) is the location based probability of a document. Dividing this by the term based prob-
ability of d, PT (d) = |d|∕| | yields the pivoted verboseness. Dividing by the document 
based probability of d, PD(d) = |d|∕|| = 1∕|| , yields the pivoted document length.

The dualities between average document verboseness and average document length 
justify the combination of parameters as formalized in the definition capturing the nor-
malization variants of Kd:

Definition 1 (TF Normalisations Kd ) 

K̈d : the non-elite normalization comprises the non-elite pivots l̈d and v̈d.
K̂d : the elite normalization comprises the elite pivots l̂d and v̂d.
The expression pivdl , pivoted document length, denotes one of the two:

Analogously for pivdv , pivoted document verboseness.

(11)l̂d =
ld

l̆d

=
ld∕|d|

E[ld∕|d|]

(12)v̈d =
vd

v̄d
=

ld∕|d|
lc∕| |

(13)v̂d =
vd

v̆d
=

ld∕|d|
E[ld∕|d|]

(14)l̈d =
ld

l̄d
=

PL(d)

PD(d)
=

ld∕lc

|d|∕||

(15)l̂d =
ld

l̆d

=
PL(d)∕PD(d)

E[PL(d)∕PD(d)]

(16)v̈d =
vd

v̄d
=

PL(d)

PT (d)
=

ld∕lc

|d|∕| |

(17)v̂d =
vd

v̆d
=

PL(d)∕PT (d)

E[PL(d)∕PT (d)]

pivdl =

{
l̈d non-elite pivot

l̂d elite pivot
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Then, the pivotization components are defined for the disjunctive (linear) and conjunc-
tive (product) combination of the pivots.

where the two parameters b and a are both defined in [0,  1]. The parameter b controls 
the degree of normalization between full normalization (when b = 1 ) and no normalization 
(when b = 0 ), and the parameter a controls the balance between the contributions of pivdl 
and pivdv . The combination of these pivots becomes part of the usual definition of the nor-
malization parameter Kd.

where the parameter k1 , which is defined in ]0,∞[ , controls the power of the normalization.

It is worth pointing out now that for b = 0 , or b = 1 and a = {0, 1} these two combina-
tions are the same. In particular we should note that:

which is the “traditional” Kd , created ignoring both document verboseness and length 
( b = 0).

To summarize, there are four variants of the pivotization factor Kd : non-elite disjunctive 
denoted as K̈∨ , non-elite conjunctive denoted as K̈∧ , and the respective elite variants K̂∨ and 
K̂∧ . The experiments emphasize the analysis of the behavior of these four variants.

3.2  Example of calculation of the pivotizations

The next example illustrates the arithmetic to compute the pivoted document verboseness 
and length.

Example 1 (Pivoted Document Verboseness and Length) Assume a document d with 
ld = 300 word occurrences, and |d| = 150 distinct words. The verboseness is:

Let the collection contain lc = 107 word occurrences, and | | = 105 distinct words. The 
non-elite average document verboseness is 100, that is, in average, a term occurs v̄d = 100.

The elite average verboseness is the average over the verboseness values of the docu-
ments. For example, let v̆d = 5∕2 be the elite verboseness.

The pivoted verboseness is the verboseness divided by the average verboseness, e.g. the 
non-elite average verboseness:

(18)comb_pivb,a,∨(d) ∶= 1 − b + b ⋅
[
(1 − a) ⋅ pivdl + a ⋅ pivdv

]

(19)comb_pivb,a,∧(d) ∶=
[
pivdl1−a ⋅ pivdva

]b

(20)Kd = k1 ⋅ comb_piv(d)

(21)comb_piv0,a,∧(d) = comb_piv0,a,∨(d) = 1

vd =
ld

|d| =
300

150
= 2

v̈d =
vd

v̄d
=

2

100
=

1

50
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while the pivoted elite verboseness is the verboseness divided by the elite average 
verboseness:

Regarding the document length, let l̄d = 400 be the average document length. Then, the 
pivoted document length is:

Then we can combine the non-elite pivots, for example, in a disjunctive way:

or, the elite pivots in a conjunctive way:

The other two variants, elite pivots combined in a disjunctive way ( K̂∨,d ), and non-elite piv-
ots combined in a conjunctive way ( K̈∧,d ) are left to the reader.

3.3  Other dualities

To strengthen the theoretical justifications, we explore two other dualities, namely the 
duality between document verboseness and term burstiness, and later in the section 
the duality between term burstiness and term length. Here, the definitions of the first 
couple:

The duality is obtained substituting  →  and d → t to go from vd to bt or  →   and 
t → d to go from bt to vd . Verboseness is the average term frequency when considering the 
document length ld over the set d of terms that occur in the respective document. Bursti-
ness is the average term frequency when considering the number of times the term occurs lt 
over the set t of documents in which the respective term occurs.

Furthermore, starting from burstiness and substituting  →   , we observe another 
duality, between term length and burstiness:

v̂d =
vd

v̆d
=

2

5∕2
=

4

5

l̈d =
ld

l̄d
=

300

400
=

3

4

K̈∨,d = k1 ⋅
{
1 − b + b ⋅

[
(1 − a) ⋅

3

4
+ a ⋅

1

50

]}

K̂∧,d = k1 ⋅

[(
3

4

)a(4
5

)1−a
]b

(22)
document verboseness: vd ∶= ld∕|d|

term burstiness: bt ∶= lt∕|t|

(23)
term burstiness: bt ∶= lt∕|t|

term length: lt ∶= lt∕|t|
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These dualities, based fundamentally on substitutions between the set of documents  and 
the set of terms   , were briefly explored in the early 1990s, when Knaus et al. (1994), and 
Amati and Kerpedjiev (1992) talked about ITF (inverse term frequency) and IDF. IDF later 
generalized by Metzler (2008).

Whereas the IDF is applied for reasoning about the similarity between documents, 
the ITF is applied for reasoning about the similarity between terms. Viewing the ITF 
and IDF together, by looking at the denominator’s argument of the logarithms, shows 
that ITF is related to verboseness, and IDF is related to burstiness.

Overall, the discussion supports the case to consider verboseness as a document-
specific parameter, whereas traditional IR focuses on the pivoted document length 
only.

3.4  Summary

This section justified the systematic combination of pivoted document length and pivoted 
verboseness, while placing them in the context of other dualities, involving burstiness and 
term length. Table 1 shows the list of all the explored dualities.

4  Probabilistic derivation of IR models

To discuss the justification of TF quantifications, we consider the probabilistic derivation 
of IR models. Most IR models can be derived from measuring the dependence between 
document and query. Let d denote a document, q a query, and c a collection. The docu-
ment-query independence (DQI Roelleke and Wang 2008) is the point-wise mutual infor-
mation expressed as:

Document and query are considered as sequences of term events. The decomposition of 
d leads to TF-IDF (and, for particular assumptions, to BM25), and the decomposition of q 
leads to LM. In this section we review the decomposition of d. When decomposing d using 
P(d, q) = P(d|q)P(q) and then P(d) =

∏
t∈d

P(t)tfd and P(d�q) = ∏
t∈d

P(t�q)tfd , we obtain:

ITF(d, c) ∶= − log
(
PT (d|c)

) (
= log

( | |
|d|

))

IDF(t, c) ∶= − log
(
PD(t|c)

) (
= log

( ||
|t|

))

(24)DQI(d, q) ∶= log

(
P(d, q)

P(d) ⋅ P(q)

)

Table 1  List of all four dual 
properties Document verboseness vd ∶= ld∕|d|

Document length ld ∶= ld∕|d|      (noting that |d| = 1)
Term burstiness bt ∶= lt∕|t|
Term length lt ∶= lt∕|t|           (noting that |t| = 1)



577Information Retrieval Journal (2018) 21:565–596 

1 3

Here, P(t|q) is the query term probability, and P(t) is the background model (collection-
wide) term probability. The equation makes two independence assumptions: different 
terms are independent, and also, the multiple occurrences of the same term are independ-
ent. The first assumption is reflected in applying the sum over different terms, and the sec-
ond assumption is reflected by the total term frequency count, tfd.

To provide a justification for TF-IDF, one is looking for the bridges to close the gap 
between the probabilistic roots (assuming independence) and the TF-IDF. Expressed as an 
equation, we are looking for justifications to transform components of Eq. (25) to TF-IDF.

where TF and IDF are the two components, term frequency and inverse document 
frequency.

4.1  Observations about the TF component

The within-document term frequency ( tfd ) in IR models is usually not used pure due to its 
bias towards long documents as motivated in Sect. 2. The step from tfd towards a quantifi-
cation function involves a normalization component, referred to as Kd . The widely known 
TFBM25 normalization factor is:

Given that k1 and b are parameters of Kd , one should use the notation Kk1,b,d
 , but for read-

ability, we simplify the notation to Kd.
The following definition formalizes the well-defined spectrum of TF quantifications 

(Roelleke et al. 2015).

(25)log

(
P(d|q)
P(d)

)
=
∑
t∈d

tfd ⋅ log

(
P(t|q)
P(t)

)

tfd ⋅ log
P(t|q)
P(t)

↓ ↓

TF(t, d) ⋅ IDF(t)

(26)Kd = k1 ⋅
(
1 − b + b ⋅ l̂d

)

0

1

2

3

0.0 2.5 5.0 7.5 10.0

tfd

T
F

tfd
log(tfd + 1)

2tfd/(tfd + 1)

1

Fig. 2  TF quantifications when K
d
= 1
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Definition 2 (TF Quantifications)

The shape of the different TF quantifications is shown in Fig. 2.  This spectrum is well-
defined because each of these TF s correspond to an assumption regarding term events 
(Roelleke et  al. 2015). TFtotal  corresponds to assuming independence, and the TFlog  and 
TFBM25 variants assume the occurrences of an event to be dependent.

With this understanding of what the TF stands for, namely a factor modeling a depend-
ence assumption, the role of Kd is to tune the dependence assumption. For Kd > 1 , that is 
for long documents, TF(t, d) decreases, i.e.  the dependence increases. This means that in 
long documents, the multiple term occurrences are more dependent than in short docu-
ments. This makes perfect sense when imagining a long document that repeats some terms 
many times.

This discussion makes evident that it is not just the length of the document that matters. To 
illustrate, consider two documents of equal length, for example, ld = 300 words. The standard 
Kd will be equal for both documents. One document, however, contains many repetitions of 
some words (the document is verbose), whereas the other document contains many different 
words (the document is not verbose). Indeed, it is the verboseness and not simply the docu-
ment length that leads to high term frequencies, and thus, to dependencies of multiple term 
occurrences. Therefore, this paper views Kd as a combination of

the pivoted document length ( pivdl ) and

the pivoted document verboseness ( pivdv).

The following equation indicates the difference between the standard Kd as known for BM25 
[as shown in Eq. (26)], and the systematic extension proposed and investigated in this paper:

Here, f (pivdl, pivdv) is a function combining the two parameters, and this paper explores 
both a conjunctive and a disjunctive combination.

4.2  Observations about the IDF component

Regarding TFBM25-IDF , the question remains of how to close the gap between P(t|q)/P(t) and 
IDF , as commonly defined in the literature: IDF(t) = 1∕PD(t) . Mathematically, we are look-
ing for a justification that leads to the following equation:

where in order to avoid confusion in the next derivation steps the collection symbol c is 
made explicit. We note that P(t|c) and PD(t|c) are both in the denominators of the func-
tions. Let us consider what the relation between these two elements is, i.e. P(t|c)∕PD(t|c) . 
Referring back to the notations introduced at the end of Sect. 1.1, we have:

(27)TF(t, d) =

⎧
⎪⎨⎪⎩

tfd∕Kd TFtotal: independent

log(tfd∕Kd + 1) TFlog: logarithmic

2 ⋅ tfd∕(tfd + Kd) TFBM25: semi-subsumed

1∕Kd TFconstant: subsumed

(28)Kd = k1 ⋅ f (pivdl, pivdv)

(29)log

(
P(t|q, c)
P(t|c)

)
=

{
log

(
1

PD(t|c)
)

t ∈ q

0 t ∉ q
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that is,

and, substituting in the left side of (29), it becomes:

This equation makes burstiness explicit, and in particular its otherwise implicit role in the 
relationship between IDF and the probabilistic model. If we were to return to Eq. (29), we 
are forced to consider:

Essentially, we have observed that the IDF, in its generic form of 1∕PD(t|c) implies that, 
when the term is not part of the query q, we estimate P(t|q) as the probability of the term in 
the collection (P(t|c)) and when the term is part of q we estimate it as P(t|q) = bt∕l̄d.

This separation between the cases when t ∈ q and t ∉ q is reminiscent of smoothing in 
language modeling. We could for instance write

with

We shall call this an extreme mixture.
If we were to continue this inspiration from language modeling, leaving the above for a 

moment aside, to compute the P(t|q, c) we would estimate it through a linear mixture between 
the P(t|c) and the P(t|q), as follows:

This equation is traditionally made because to estimate the probability of a term given the 
query q, when q is short, is not reliable (even more so than when considering a document 
d).

Substituting Eq. (36) into Eq. (32), we have:

where P(t|q) is calculated in a traditional way with a maximum likelihood estimator. How-
ever, this would not solve our problem given by the shortness of q. Instead, we need to use 
the estimation of Eq.  (34). Then, reintroducing the distinction between t ∈ q and t ∉ q 
(i.e. �q ), we obtain

(30)
PD(t|c)
P(t|c) =

|t|
|| ⋅

lc

lt
=

lc

|| ⋅
|t|
lt

=
l̄d

bt

(31)PD(t|c) =
l̄d

bt
⋅ P(t|c)

(32)log

(
P(t|q, c)
P(t|c)

)
= log

(
P(t|q, c)

bt∕l̄d ⋅ PD(t|c)
)

(33)P(t|q, c) =
{

bt∕l̄d t ∈ q
bt∕l̄d ⋅ PD(t|c) t ∉ q

=

{
bt∕l̄d t ∈ q
P(t|c) t ∉ q

(34)P(t|q, c) = 𝜆q bt∕l̄d + (1 − 𝜆q)P(t|c)

(35)�q =

{
1 t ∈ q
0 t ∉ q

(36)P(t|q, c) = �q P(t|q) + (1 − �q)P(t|c)

(37)log

(
P(t|q, c)

bt∕l̄d ⋅ PD(t|c)
)

= log

(
(1 − 𝜆q) + 𝜆q

P(t|q)
bt∕l̄d ⋅ PD(t|c)

)
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In which if we set �q = 1 then the foreground probability P(t|c) cancels out from the lin-
ear mixture assumption ending up with the standard IDF . We shall call this inverse docu-
ment frequency IDFL , where L stands for linear mixture, in contrast to the standard IDF (or 
IDFE ) that is defined by an extreme mixture.

4.3  LM and TF‑IDF

We already reached with our analysis a point where the border between LM and TF-IDF gets 
blurred. In this section we discuss the derivation of the LM model and highlight some com-
monality with the derivation of TF-IDF done in the previous section. We remember that the 
discussion of IDF in TFBM25-IDF was started from Eq.  (24), where we decomposed 
P(d, q) = P(d|q)P(q) . Here we can review the decomposition of q as P(d, q) = P(q|d)P(d) . 
We will then have: P(q�d) = ∏

t∈q
P(t�d)tfq , and:

Using again the observation formalized in Eq.  (31), we observe the explicit presence of 
burstiness in the following equation, as it was in Eq. (32):

Analogously for the derivation of TF-IDF for the estimation of P(t|q, c) in Eq. (36), and as 
commonly done in language modeling, we estimate the P(t|d, c) as:

and substituting to Eq. (40) we obtain:

We can now notice the symmetry with Eq. (37). In LM, when applying a Dirichlet-based 
mixture (D-LM), the value of �d is Zhai and Lafferty (2001):

where � is a parameter of the collection. This parameter could be set based on the aver-
age documents length l̄d . Zhai and Lafferty (2001) report values of � ≈ 2000 , though 
they note that the range of optimal parameter values in different collections is quite large 
(500–10,000). Later, Fang et al. (2004) posited that � needs to be at least as large as the 
average document length ( ̄ld ), so a reasonable value form for �d is:

(38)log

(
(1 − 𝜆q) + 𝜆q

P(t|q)
bt∕l̄d ⋅ PD(t|c)

)
=

{
log

(
(1 − 𝜆q) + 𝜆q

1

PD(t|c)
)

t ∈ q

0 t ∉ q

(39)log

(
P(q|d, c)
P(q|c)

)
=
∑
t∈q

tfq ⋅ log

(
P(t|d, c)
P(t|c)

)

(40)log

(
P(t|d, c)
P(t|c)

)
= log

(
P(t|d, c)

bt∕l̄d ⋅ PD(t|c)
)

P(t|d, c) = �d P(t|d) + (1 − �d)P(t|c)

(41)log

(
P(t|d, c)

bt∕l̄d ⋅ PD(t|c)
)

= log

(
(1 − 𝜆d) + 𝜆d

P(t|d)
bt∕l̄d ⋅ PD(t|c)

)

�d =
ld

ld + �
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Now, just as we did for the normalization of TF in the TF-IDF derivation, we should con-
sider here not only the presence of the document length but also that of verboseness:

In a symmetric way we may define for TF-IDF a parameter not strongly dependent by the 
presence or absence of the term in q (as it was the case in the extreme mixture observed in the 
previous section) but rather using the Dirichlet based smoothing approach and the maximum 
likelihood estimation for P(t|q) = tfq∕lq:

However, the components of this formulation for �q are generally not very informative 
(queries tend to be significantly shorter than documents, and therefore we cannot really talk 
about the verboseness of a query). Instead, at this place we can exploit the duality of docu-
ment verboseness and length with term length and burstiness (see Sect. 3.3):

𝜆d =
ld

ld + l̄d
=

ld

l̄d

ld

l̄d
+ 1

=
pivdl

pivdl + 1

(42)�d =
f (pivdl, pivdv)

f (pivdl, pivdv) + 1

(43)�q =
f (pivql, pivqv)

f (pivql, pivqv) + 1

(44)�q =
f (pivtl, pivtb)

f (pivtl, pivtb) + 1

Table 2  Test collection’s information about the collection size || , number of terms | | , collection length 
lc , average document length l̄d , average verboseness v̄d , elite average verboseness v̆d , average term length l̄t , 
average burstiness b̄t , and elite average burstiness b̆t

Ordered as indicated by the arrow ( ↓)

Corpus EC Challenge || | | lc

l̄d v̄d v̆d ↓

l̄t b̄t b̆t

Aquaint TREC HARD’05 1,033,461 647,280 282,858,247
273.700 436.995 1.519
436.995 273.700 1.384

Disks 4&5 TREC Ad Hoc 8 528,106 737,963 156,226,039
295.823 211.699 1.575
211.699 295.823 1.377

eHealth’14 CLEF eHealth’14 1,104,298 1,103,947 685,458,908
620.917 308.294 1.900
308.294 620.917 1.349

.GOV TREC Web’02 1,214,592 2,937,251 1,770,120,644
1,457.379 602.645 4.830
602.645 1,457.379 3.012
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In summary, in this section we have explored the relationship between TF-IDF and 
LM. Both models apply a mixture: TF-IDF for estimating P(t|q, c), and LM for estimating 
P(t|d,  c). Moreover, both models involve the component bt∕l̄d ⋅ PD(t) measuring the dis-
criminativeness of the term, where burstiness is made explicit.

The mixture assumption for P(t|q, c) leads to IDF and it becomes clear why IDF is seen 
as capturing burstiness in an “implicit” way (Church and Gale 1999). The Dirichlet-based 
mixture for P(t|d, c), usually only associated with the document length, is extended with 
the document verboseness. This extension is done analogously to the way the TF quantifi-
cation has been extended for the TF-IDF models.

5  Experiments

In this section, we first present the material, then the experimental setup. Finally we dis-
cuss the results.

5.1  Setup and materials

To test the TF normalization variants on the different kinds of TF quantifications, we used 
4 test collections: TREC HARD 2005, TREC Ad Hoc 8, CLEF eHealth 2014, and TREC 
Web 2002. Details and corpora properties shown in Table 2. The test collections have been 
purposefully chosen with a high degree of variability of v̆d . In this way we can observe the 
different use of the language in different domains (e.g. we observe that in .GOV on aver-
age a term is repeated 218% more times than in the Aquaint collection). We developed2 the 
tested IR models on the IR platform Terrier3 4.2. All the documents have been preproc-
essed using the English tokenizer and Porter stemmer of the Terrier search engine. All the 
topics, when multiple lengths are available in the test collections, are of the shortest kind.

We tested a total of 24 models:

– 16 models based on TF-IDF variants: 4 TF normalizations for each of the 4 TF quantifi-
cations defined in Definition 2. Each model is identified by its TF quantification, TFtotal , 
TFlog , TFBM25 , and TFconstant and kind of TF normalization applied: non-elite disjunctive 
K̈∨,d , non-elite conjunctive K̈∧,d , elite disjunctive K̂∨,d and elite conjunctive K̂∧,d.

– 4 models based on D-LM: Each Dirichlet-based mixture is identified by its kind of 
�d normalization applied: non-elite disjunctive �̈�∨,d , non-elite conjunctive �̈�∧,d , elite dis-
junctive �̂�∨,d and elite conjunctive �̂�∧,d.

– 4 models based on the TF-IDFL : Each Dirichlet-based mixture is identified by its kind 
of �q normalization applied: non-elite disjunctive �̈�∨,q , non-elite conjunctive �̈�∧,q , elite 
disjunctive �̂�∨,q and elite conjunctive �̂�∧,q . As TF component, we select the non-normal-
ized TFtotal.

The TF normalization of each model presents 3 parameters: k1 , b and the new a intro-
duced in this paper. The D-LM and TF-IDFL based models present 2 parameters: b and a. 
Our experiments focus on the parameter a. For k1 and b, there are two ways of selecting 

3 http://www.terri er.org.

2 Software available on the website of the first author.

http://www.terrier.org
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their values: using the standard values from the literature, or identifying trained values. For 
the models based on the TF-IDF variants, the standard parameters for TFBM25 are k1 = 1.2 
and b = 0.7 (Robertson et  al. 1994). The standard parameter for TFtotal and TFconstant is 
b = 0 that simplifies Kd to a constant. In this case we set k1 = 1 , because it is easy to dem-
onstrate that to change the parameter k1 , as long as k1 > 0 , does not change the rank of the 
retrieved documents for these two quantifications. The same set of parameter values are 
set for the standard TFlog ( b = 0 , k1 = 1 ). For the models based on the D-LM, the stand-
ard parameters are k1 = 1 and b = 0 , which reduces to the standard definition of D-LM 
(Zhai and Lafferty 2001). For the models based on the LM variant derived by TF-IDF, the 
standard parameters are k1 = +∞ , which reduces to the standard TF-IDF model with non 
normalized TFtotal quantification.

To identify trained values, the parameters of each model have been spanned as follows: 
a, b ∈ [0, 1] at steps of 0.1, and k1 ∈ [0, 5] , from 0 to 1 at steps decided by the function 
1 / n with n ∈ {1, ..., 50} , and from 1 to 5 at steps of 0.1. The trained values are obtained 
maximizing the mean over the topics of the selected evaluation measure. For every model’s 
configuration that requires training we perform a fivefold cross validation.

The IR evaluation measures employed are AP , NDCG and P@10.

5.2  Model candidates/structure

Each TF-IDF model candidate is characterized by choosing one of the following options:

1. Pivotization: elite pivotization or non-elite pivotization for document verboseness and 
length;

2. Normalization: conjunctive ( ∧ ) or disjunctive ( ∨ ) combination of pivoted document 
verboseness and length into Kd;

3. Quantification: TFtotal , TFlog , TFBM25 , or TFconstant;
4. Parameter Settings: standard (S) or trained (T) parameters.

Each D-LM model candidate is characterized by choosing one of the following options:

1. Pivotization: elite pivotization or non-elite pivotization for document verboseness and 
length;

2. Normalization: conjunctive ( ∧ ) or disjunctive ( ∨ ) combination of pivoted document 
verboseness and length into �d;

3. Parameter Settings: standard (S) or trained (T) parameters.

Each TF-IDFL model candidate is characterized by choosing one of the following 
options:

1. Pivotization: elite pivotization or non-elite pivotization for term length and burstiness;
2. Normalization: conjunctive ( ∧ ) or disjunctive ( ∨ ) combination of pivoted term length 

and burstiness into �q;
3. Parameter Settings: standard (S) or trained (T) parameters.
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5.3  Results

The main results observed are:

1. Document Verboseness versus Length: show a certain independence as shown by the 
shape of the distributions in Fig. 3;

Table 3  Comparison of the scores obtained with the TF-IDF model candidates with each TF normalization 
using the non-elite and elite pivotization for the HARD 2005 test collection

Column K indicates if standard (S) or trained (T) parameters are used. †  indicates statistical significance 
(paired t-test, p < 0.05 ) against the standard and ‡ against the trained parameters when a is not used

P Q K C k1 b a AP NDCG P@10

Non-elite TFtotal S – > 0 0.0 – 0.0721 0.2936 0.1920
T – > 0 0.5 – 0.0900 † 0.3201 † 0.2160

∨ > 0 0.9 0.9 0.0904 † 0.3223 † ‡ 0.2200
∧ > 0 1.0 0.6 0.0942 † ‡ 0.3277 † ‡ 0.2380 ‡

TFlog S – 1.0 0.0 – 0.1614 0.4424 0.4160
T – 0.2 0.3 – 0.2005 † 0.4799 † 0.4360

∨ 0.2 0.4 0.2 0.2010 † 0.4801 † 0.4320
∧ 5.0 0.8 0.7 0.2003 † 0.4813 † 0.4400

TFBM25 S – 1.2 0.7 – 0.1848 0.4563 0.3660
T ∨ 1.2 0.7 0.6 0.1898 0.4584 0.4280 †

– 1.5 0.3 – 0.2023 † 0.4797 † 0.4440 †
∨ 1.9 0.4 0.5 0.2030 † 0.4802 † 0.4480 †
∧ 3.2 0.4 0.3 0.2032 † 0.4812 † 0.4540 †

TFconstant S – > 0 0.0 – 0.0613 0.2436 0.1500
T – > 0 0.1 – 0.0735 † 0.2744 † 0.1620

∨ > 0 0.2 0.7 0.0742 † 0.2756 † 0.1620
∧ > 0 0.1 0.0 0.0740 † 0.2745 † 0.1660

Elite TFtotal S – > 0 0.0 – 0.0721 0.2936 0.1920
T – > 0 0.5 – 0.0900 † 0.3201 † 0.2160

∨ > 0 1.0 0.6 0.0946 † ‡ 0.3283 † ‡ 0.2380 ‡
∧ > 0 1.0 0.6 0.0942 † ‡ 0.3277 † ‡ 0.2380 ‡

TFlog S – 1.0 0.0 – 0.1614 0.4424 0.4160
T – 0.2 0.3 – 0.2005 † 0.4799 † 0.4360

∨ 0.2 0.6 0.5 0.2013 † 0.4798 † 0.4300
∧ 0.2 0.8 0.7 0.2003 † 0.4810 † 0.4400

TFBM25 S – 1.2 0.7 – 0.1848 0.4563 0.3660
T ∨ 1.2 0.7 0.6 0.2012 † 0.4759 † 0.4480 †

– 1.5 0.3 – 0.2023 † 0.4797 † 0.4440 †
∨ 1.5 0.5 0.5 0.2034 † 0.4807 † 0.4420 †
∧ 1.9 0.8 0.7 0.2037 † 0.4833 † 0.4400 †

TFconstant S – > 0 0.0 – 0.0613 0.2436 0.1500
T – > 0 0.1 – 0.0735 † 0.2744 † 0.1620

∨ > 0 0.1 0.0 0.0735 † 0.2744 † 0.1620
∧ > 0 0.1 0.0 0.0740 † 0.2745 † 0.1660
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2. Pivotization: for TF-IDF models the elite pivotization is overall better than the non-elite 
one; for D-LM models the non-elite pivotization performs better.

3. Normalization: for TF-IDF models the combination of document verboseness and length 
achieves significantly better results, especially when combined in a conjunctive fashion; 
for D-LM models the combination of document verboseness and length rarely achieves 
statistically significance;

Table 4  Comparison of the scores obtained with the TF-IDF model candidates with each TF normalization 
using the non-elite and elite pivotization for the Ad Hoc 8 test collection

Column K indicates if standard (S) or trained (T) parameters are used. †  indicates statistical significance 
(paired t-test, p < 0.05 ) against the standard and ‡ against the trained parameters when a is not used

P Q K C k1 b a AP NDCG P@10

Non-elite TFtotal S – > 0 0.0 – 0.0635 0.2762 0.1360
T – > 0 0.5 – 0.0977 † 0.3306 † 0.2240 †

∨ > 0 0.5 0.0 0.0977 † 0.3306 † 0.2240 †
∧ > 0 1.0 0.5 0.1076 † ‡ 0.3491 † ‡ 0.2400 †

TFlog S – 1.0 0.0 – 0.1753 0.4568 0.3360
T – 0.1 0.3 – 0.2478 † 0.5381 † 0.4280 †

∨ 0.1 0.9 0.9 0.2563 0.5415 0.4560
∧ 0.1 0.9 0.5 0.2625 † ‡ 0.5475 † 0.4620 † ‡

TFBM25 S – 1.2 0.7 – 0.2433 0.5193 0.4680
T ∨ 1.2 0.7 0.8 0.2614 † 0.5438 † 0.4480

– 0.6 0.3 – 0.2614 † 0.5447 † 0.4520
∨ 0.6 0.3 0.1 0.2616 † 0.5441 † 0.4620 ‡
∧ 2.7 0.6 0.5 0.2681 † ‡ 0.5523 † ‡ 0.4660

TFconstant S – > 0 0.0 – 0.1550 0.4071 0.2060
T – > 0 0.1 – 0.1868 † 0.4387 † 0.3260 †

∨ > 0 0.1 0.9 0.1880 † 0.4452 † ‡ 0.3240 †
∧ > 0 0.2 0.4 0.1922 † 0.4462 † ‡ 0.3260 †

Elite TFtotal S – > 0 0.0 – 0.0635 0.2762 0.1360
T – > 0 0.5 – 0.0977 † 0.3306 † 0.2240 †

∨ > 0 1.0 0.7 0.1056 † ‡ 0.3469 † ‡ 0.2380 †
∧ > 0 1.0 0.5 0.1076 † ‡ 0.3491 † ‡ 0.2400 †

TFlog S – 1.0 0.0 – 0.1753 0.4568 0.3360
T – 0.1 0.3 – 0.2478 † 0.5381 † 0.4280 †

∨ 0.1 1.0 0.7 0.2521 † 0.5435 † 0.4500 † ‡
∧ 0.1 0.8 0.6 0.2562 † ‡ 0.5474 † ‡ 0.4540 † ‡

TFBM25 S – 1.2 0.7 – 0.2433 0.5193 0.4680
T ∨ 1.2 0.7 0.6 0.2535 † 0.5399 † 0.4700

– 0.6 0.3 – 0.2614 † 0.5447 † 0.4520
∨ 0.5 1.0 0.7 0.2638 † 0.5463 † 0.4700
∧ 0.6 0.6 0.5 0.2681 † ‡ 0.5524 † ‡ 0.4680 ‡

TFconstant S – > 0 0.0 – 0.1550 0.4071 0.2060
T – > 0 0.1 – 0.1868 † 0.4387 † 0.3260 †

∨ > 0 0.1 0.4 0.1878 † 0.4418 † ‡ 0.3320 †
∧ > 0 0.2 0.4 0.1922 † 0.4462 † ‡ 0.3260 †
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4. TF-Quantification: TFBM25 appears best, with TFlog close behind;
5. Standard versus Trained parameter: in both parameter configurations, standard and 

trained, the use of verboseness makes the model achieve better results. On the other 
hand, the use of term length most of the time has a negligible impact.

Table 5  Comparison of the scores obtained with the TF-IDF model candidates with each TF normalization 
using the non-elite and elite pivotization for the eHealth 2014 test collection

Column K indicates if standard (S) or trained (T) parameters are used. †  indicates statistical significance 
(paired t-test, p < 0.05 ) against the standard and ‡ against the trained parameters when a is not used

P Q K C k1 b a AP NDCG P@10

Non-elite TFtotal S – > 0 0.0 – 0.1166 0.3361 0.2640
T – > 0 0.7 – 0.2594 † 0.5206 † 0.5580 †

∨ > 0 0.8 0.4 0.2610 † 0.5209 † 0.5540 †
∧ > 0 1.0 0.4 0.2699 † 0.5322 † 0.5580 †

TFlog S – 1.0 0.0 – 0.2106 0.4637 0.4280
T – 0.2 0.7 – 0.4222 0.6701 † 0.7960 †

∨ 0.4 0.8 0.5 0.4242 0.6729 † ‡ 0.8000 †
∧ 1.9 1.0 0.4 0.4260 0.6729 † 0.8040 †

TFBM25 S – 1.2 0.7 – 0.3729 0.6310 0.7640
T ∨ 1.2 0.7 0.0 0.3729 0.6310 0.7640

– 4.5 0.6 – 0.4022 † 0.6595 † 0.7840
∨ 4.5 0.6 0.0 0.4022 † 0.6595 † 0.7840
∧ 4.5 0.7 0.0 0.4018 † 0.6542 † 0.7880

TFconstant S – > 0 0.0 – 0.0474 0.2021 0.1140
T – > 0 0.2 – 0.0755 † 0.2552 † 0.2280 †

∨ > 0 0.0 0.0 0.0840 † 0.3523 † ‡ 0.1760 †
∧ > 0 0.2 0.2 0.0745 † 0.2551 † 0.2260 †

Elite TFtotal S – > 0 0.0 – 0.1166 0.3361 0.2640
T – > 0 0.7 – 0.2594 † 0.5206 † 0.5580 †

∨ > 0 1.0 0.5 0.2697 † 0.5316 † ‡ 0.5820 †
∧ > 0 1.0 0.4 0.2699 † 0.5322 † 0.5580 †

TFlog S – 1.0 0.0 – 0.2106 0.4637 0.4280
T – 0.2 0.7 – 0.4222 0.6701 † 0.7960 †

∨ 0.2 1.0 0.4 0.4239 0.6713 † 0.8080 †
∧ 0.2 1.0 0.4 0.4239 0.6715 † 0.8060 †

TFBM25 S – 1.2 0.7 – 0.3729 0.6310 0.7640
T ∨ 1.2 0.7 0.1 0.3742 0.6320 0.7640

– 4.5 0.6 – 0.4022 † 0.6595 † 0.7840
∨ 5.0 1.0 0.5 0.4079 † ‡ 0.6635 † ‡ 0.7900
∧ 5.0 1.0 0.4 0.4092 † ‡ 0.6607 † 0.8000

TFconstant S – > 0 0.0 – 0.0474 0.2021 0.1140
T – > 0 0.2 – 0.0755 † 0.2552 † 0.2280 †

∨ > 0 0.2 0.0 0.0755 † 0.2552 † 0.2280 †
∧ > 0 0.2 0.2 0.0745 † 0.2551 † 0.2260 †
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For each test collections: HARD 2005 in Table 3, Ad Hoc 8 in Table 4, eHealth 2014 in 
Table 5, and Web 2002 in Table 6, we present the results obtained with the TF-IDF model 
variants and the two pivotizations. In these tables we observe each model with either its 
standard configuration (S), or its trained configuration (T), obtained taking the configura-
tion that maximizes the evaluation measure AP . The standard parameters of the normaliza-
tions for the TF quantifications: TFtotal , TFlog and TFconstant , have the effect of disabling the 

Table 6  Comparison of the scores obtained with the TF-IDF model candidates with each TF normalization 
using the non-elite and elite pivotization for the Web 2002 test collection

Column K indicates if standard (S) or trained (T) parameters are used. †  indicates statistical significance 
(paired t-test, p < 0.05 ) against the standard and ‡ against the trained parameters when a is not used

P Q K C k1 b a AP NDCG P@10

Non-elite TFtotal S – > 0 0.0 – 0.0171 0.1387 0.0260
T – > 0 0.9 – 0.0568 † 0.2642 † 0.0880 †

∨ > 0 0.9 0.4 0.0577 † 0.2713 † ‡ 0.0820 †
∧ > 0 1.0 0.4 0.0563 † 0.2732 † 0.0800 †

TFlog S – 1.0 0.0 – 0.0603 0.2719 0.1100
T – 0.2 0.8 - 0.1951 † 0.4799 † 0.2420 †

∨ 0.2 0.9 0.6 0.1991 † 0.4803 † 0.2360 †
∧ 0.2 0.9 0.2 0.1974 † 0.4812 † 0.2360 †

TFBM25 S – 1.2 0.7 – 0.1948 0.4696 0.2380
T ∨ 1.2 0.7 0.0 0.1948 0.4696 0.2380

– 4.1 0.7 – 0.2010 0.4777 0.2520
∨ 3.1 0.7 0.1 0.2016 0.4816 0.2420
∧ 5.0 0.8 0.2 0.1923 0.4722 0.2520

TFconstant S – > 0 0.0 – 0.0140 0.1514 0.0140
T – > 0 0.1 – 0.0310 † 0.2041 † 0.0500 †

∨ > 0 0.2 0.3 0.0310 † 0.2008 † 0.0500 †
∧ > 0 0.1 0.5 0.0311 † 0.1979 † 0.0480 †

Elite TFtotal S – > 0 0.0 – 0.0171 0.1387 0.0260
T – > 0 0.9 – 0.0568 † 0.2642 † 0.0880 †

∨ > 0 1.0 0.4 0.0635 † 0.2860 † ‡ 0.0940 †
∧ > 0 1.0 0.4 0.0563 † 0.2732 † 0.0800 †

TFlog S – 1.0 0.0 – 0.0603 0.2719 0.1100
T – 0.2 0.8 - 0.1951 † 0.4799 † 0.2420 †

∨ 0.1 0.9 0.2 0.1989 0.4817 0.2360
∧ 0.1 0.9 0.2 0.1975 † 0.4816 † 0.2380 †

TFBM25 S – 1.2 0.7 – 0.1948 0.4696 0.2380
T ∨ 1.2 0.7 0.0 0.1948 0.4696 0.2380

– 4.1 0.7 – 0.2010 0.4777 0.2520
∨ 3.6 0.8 0.2 0.2016 0.4808 0.2460
∧ 3.3 1.0 0.4 0.1966 0.4770 0.2500

TFconstant S – > 0 0.0 – 0.0140 0.1514 0.0140
T – > 0 0.1 – 0.0310 † 0.2041 † 0.0500 †

∨ > 0 0.2 0.3 0.0319 † 0.1988 † 0.0520 †
∧ > 0 0.1 0.5 0.0311 † 0.1979 † 0.0480 †
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normalization component ( b = 0 ). However, for TFBM25 this does not happen. Thereby, we 
can study the effect of the parameter a in its standard parametrization. To do this we extract 
the best value obtained with the standard k1 and b by selecting the maximum value of the 
measure AP obtained by varying the parameter a. In case of the trained parameter values 
instead, for all the TF  quantifications, we show in the first row the best result obtained 
maximizing the AP  without the use of verboseness in the scoring function ( a = 1 ), and 
then we show the result obtained when verboseness is added in the scoring function. The 
tables distinguish between the conjunctive ( ∧ ) and disjunctive ( ∨ ) combinations of docu-
ment verboseness and length.

TFBM25 works generally better than the other TF quantifications, but not for all test col-
lections. For the test collection eHealth 2014 TFlog is better.

We also observe that best configuration is achieved using the elite pivotization. The 
conjunctive combination works generally better than the disjunctive case (24 of 32 
experiments better than the disjunctive, all 7 unfavorable cases occur when using the 
Web 2002 test collection).

In Table 7, we present the results obtained for every test collections using D-LM with 
�d extended with verboseness. For this model the standard parameter is when b = 1 , 
and a = 0 , which reduces the formula to the standard D-LM without verboseness (cit
ealtZhai:2001:SSM:383952.384019). This variant is shown on the first row for every 

Table 7  Comparison of the scores obtained with the D-LM models candidates using the non-elite and elite 
pivotization

Column K indicates if standard (S) or trained (T) parameters are used. †  indicates statistical significance 
(t-test, p < 0.05 ) against the standard parameters

Challenge P K C b a AP NDCG P@10

HARD’05 S – 1.0 – 0.1912 0.4680 0.4220
Non-elite T ∨ 1.0 0.8 0.1970 0.4801 † 0.4580 †

∧ 1.0 0.3 0.1998 † 0.4806 † 0.4380
Elite T ∨ 1.0 0.0 0.1912 0.4680 0.4220

∧ 1.0 0.0 0.1912 0.4680 0.4220
Ad Hoc 8 S – 1.0 – 0.2583 0.5420 0.4560

Non-elite T ∨ 0.9 0.7 0.2625 † 0.5481 † 0.4600
∧ 0.8 0.3 0.2606 0.5448 0.4480

Elite T ∨ 0.9 0.0 0.2589 0.5410 0.4680
∧ 0.9 0.0 0.2587 0.5415 0.4600

eHealth’14 S – 1.0 – 0.3863 0.6444 0.7980
Non-elite T ∨ 0.8 0.5 0.3965 † 0.6468 0.7900

∧ 0.7 0.7 0.4082 † 0.6616 † 0.7920
Elite T ∨ 0.8 0.0 0.3939 † 0.6467 0.7820 †

∧ 0.7 0.0 0.3927 † 0.6468 0.7900
Web’02 S – 1.0 – 0.1877 0.4617 0.2380

Non-elite T ∨ 0.8 0.0 0.1984 † 0.4767 † 0.2580
∧ 0.5 0.1 0.2039 † 0.4844 † 0.2600

Elite T ∨ 0.9 0.3 0.2002 † 0.4785 † 0.2620
∧ 0.5 0.0 0.2037 † 0.4836 † 0.2660
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test collection. The subsequent rows present the variant of �d when combined with ver-
boseness in disjunction and conjunction with non-elite and elite pivots. For this model 
we observe that the presence of verboseness produces for only one test collection sig-
nificant improvements. Overall we observe that the non-elite pivotization should be pre-
ferred (all the experiments produce better results than the elite one). No difference is 
observed by using a disjunctive or conjunctive combination of the pivots.

In Table 8, we present the results obtained for every test collections using TF-IDFL 
model with �q that combines in a LM fashion the term length and burstiness. For this 
model the standard parameter is when �q = 1 , which reduces this IR model to a non 
TF-normalized TFtotal-IDF model. This variant is shown on the first row for every test 
collection. The following rows present the variant of �q when combined in disjunction 
and conjunction with non-elite and elite pivots. We observe that this parametrization 
produces significantly better results than the standard case, and that the non-elite para-
metrization should be preferred. Also here, as for D-LM, no difference is observed by 
using a disjunctive or conjunctive combination of the pivots. We also observe that over-
all the values of the trained parameter a is often equal to 1, which suggests that, for 
these model variants, the term length does not play an important role in adjusting the 
document’s score. This is a curious behavior since it is dual to the D-LM model, where 
the document verboseness does not play an important role either.

Table 8  Comparison of the scores obtained with the TF-IDFL model candidates using the non-elite and 
elite pivotization

Column K indicates if standard (S) or trained (T) parameters are used. †  indicates statistical significance 
(t-test, p < 0.05 ) against the standard

Challenge P K C b a AP NDCG P@10

HARD’05 S – – – 0.0721 0.2936 0.1920
Non-elite T ∨ 1.0 1.0 0.0967† 0.3329 † 0.2120

∧ 1.0 1.0 0.0967 † 0.3329 † 0.2120
Elite T ∨ 1.0 1.0 0.0753 † 0.2994 † 0.1960

∧ 1.0 1.0 0.0753 † 0.2994 † 0.1960
Ad Hoc 8 S – – – 0.0635 0.2762 0.1360

Non-elite T ∨ 1.0 1.0 0.1500 † 0.4135 † 0.2440 †
∧ 1.0 1.0 0.1500 † 0.4135 † 0.2440 †

Elite T ∨ 1.0 1.0 0.0688 † 0.2914 † 0.1480 †
∧ 1.0 1.0 0.0688 † 0.2914 † 0.1480 †

eHealth’14 S – – – 0.1166 0.3361 0.2640
Non-elite T ∨ 1.0 1.0 0.1623 † 0.4177 † 0.3220

∧ 1.0 1.0 0.1623 † 0.4177 † 0.3220
Elite T ∨ 1.0 1.0 0.1231 † 0.3502 † 0.2780

∧ 1.0 1.0 0.1231 † 0.3502 † 0.2780
Web’02 S – – – 0.0171 0.1387 0.0260

Non-elite T ∨ 1.0 1.0 0.0249 † 0.1865 † 0.0460 †
∧ 1.0 1.0 0.0249 † 0.1865 † 0.0460 †

Elite T ∨ 1.0 1.0 0.0183 † 0.1456 † 0.0280
∧ 1.0 1.0 0.0183 † 0.1456 † 0.0280
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Finally, in Tables 9 and 10 we present the results of the fivefold cross validation for all 
the trained cases of the TF-IDF models, in the first table, and the D-LM and TF-IDFL mod-
els, in the second table.

6  Analysis and discussion

Finally we make some observations across the experimental results about the behavior of 
the parameter a. Before that however, let us make an observation on the nature of the data 
at our disposal. Figure 3 shows the distribution of the document verboseness versus docu-
ment length for the elite and non-elite pivotizations. In both cases we see that verboseness 
brings additional information compared to document length: the plotted distributions are 
well spread, away from the first diagonal.

Comparing the two distributions, it is interesting to observe that the non-elite pivotiza-
tion is significantly more skewed than the elite one: the x-axis of the left plot has a scale 

Table 9  Fivefold cross validation of the trained TF-IDF models candidates observed in Tables 3, 4, 5, and 6 
for the evaluation measure AP

P Q C k1 b a HARD’05 Ad Hoc 8 eHealth’14 Web’02

Non-elite TFtotal – > 0 ∗ – 0.0873 0.0927 0.2594 0.0543
∨ > 0 ∗ ∗ 0.0873 0.0927 0.2594 0.0543
∧ > 0 ∗ ∗ 0.0942 0.1058 0.2699 0.0523

TFlog – ∗ ∗ – 0.2005 0.2436 0.4136 0.1911
∨ ∗ ∗ ∗ 0.2293 0.2591 0.6081 0.2058
∧ ∗ ∗ ∗ 0.2257 0.2679 0.5985 0.2048

TFBM25 ∨ 1.2 0.7 ∗ 0.2228 0.2718 0.5679 0.2033
– ∗ ∗ – 0.1983 0.2597 0.3987 0.1937
∨ ∗ ∗ ∗ 0.2316 0.2671 0.6050 0.2042
∧ ∗ ∗ ∗ 0.2006 0.2634 0.3990 0.1892

TFconstant – > 0 ∗ – 0.0735 0.1868 0.0727 0.0309
∨ > 0 ∗ ∗ 0.1215 0.2087 0.2647 0.0559
∧ > 0 ∗ ∗ 0.0740 0.1881 0.0735 0.0291

Elite TFtotal – > 0 ∗ – 0.0873 0.0927 0.2594 0.0543
∨ > 0 ∗ ∗ 0.1495 0.1206 0.5188 0.0965
∧ > 0 ∗ ∗ 0.0942 0.1058 0.2699 0.0523

TFlog – ∗ ∗ – 0.2005 0.2436 0.4136 0.1911
∨ ∗ ∗ ∗ 0.2268 0.2591 0.6070 0.2060
∧ ∗ ∗ ∗ 0.2265 0.2593 0.6131 0.2062

TFBM25 ∨ 1.2 0.7 ∗ 0.2301 0.2573 0.5631 0.2033
– ∗ ∗ – 0.1983 0.2597 0.3987 0.1937
∨ ∗ ∗ ∗ 0.2339 0.2718 0.6028 0.2023
∧ ∗ ∗ ∗ 0.2010 0.2636 0.4089 0.1926

TFconstant – > 0 ∗ – 0.0735 0.1868 0.0727 0.0309
∨ > 0 ∗ ∗ 0.1198 0.2075 0.2645 0.0553
∧ > 0 ∗ ∗ 0.0740 0.1881 0.0735 0.0291
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in the (0, 0.02) range, while the one on the right plot has a scale that matches the y-scale: 
(0, 4). This supports and grounds our hypothesis that elite pivotization should provide us 
better means to balance verboseness and document length with parameter a.

The a parameter controls the contribution of elite pivoted verboseness and elite pivoted 
document length. When a < 0.5 , the contribution of the document verboseness is higher 
than the contribution of the document length, and vice versa when a > 0.5 . Looking at the 
distribution for the elite pivotizations of the documents, redefining the origin to the point 
(1, 1) we split the distributions in four quadrants.4 We know that whatever a we fix, the 
documents in the I quadrant will be always demoted to some degree, and in the III quad-
rant the documents will be always promoted to some degree. So here the question is what 
happens to the documents in the IV and II quadrant. When to be preferred is the contribu-
tion of document verboseness ( a > 0.5 ) more documents with low verboseness ( ̂vd < 1 ) 
and high length ( ̂ld > 1 ) will be promoted against the documents of the IV quadrant, and 
when preferred is the contribution of the document length ( a < 0.5 ) the contrary happens. 
Therefore, the a values, previously listed, should anti-correlate with the ratio of the number 
of relevant documents between the II quadrant and the IV quadrant. Here the two lists of 
values sorted by test collection, of a extracted from Tables 3, 4, 5, and 6, for the stand-
ard BM25 case with trained a: 0.8, 0.6, 0.4, and 0.0 and ratios: 0.63, 0.86, 1.16 and 4.20, 
where we observe that they anti-correlate. Therefore if we think that all the documents of 
the collection should be relevant we should find the a value that mostly balance the propor-
tion of non verbose but long documents with the short but verbose documents. All the test 
collections but Disks 4&5 have been crawled from the Web. For all of them we can observe 
that the plots manifest a visible noise. In particular we observe the presence of black dots 
that are most probably caused by the existance of duplicated documents in the collections. 

Table 10  Comparison of the 
fivefold cross validation of the 
trained D-LM and TF-IDFL 
models candidates observed in 
Tables 7 and 8

Challenge P C D-LM TF-IDFL

HARD’05 Non-elite ∨ 0.2288 0.1523
∧ 0.1998 0.0967

Elite ∨ 0.2258 0.1369
∧ 0.1912 0.0753

Ad Hoc 8 Non-elite ∨ 0.2679 0.1600
∧ 0.2539 0.1500

Elite ∨ 0.2653 0.0821
∧ 0.2556 0.0688

eHealth’14 Non-elite ∨ 0.5740 0.4545
∧ 0.4060 0.1623

Elite ∨ 0.5769 0.4116
∧ 0.3927 0.1231

Web’02 Non-elite ∨ 0.2051 0.0450
∧ 0.2011 0.0250

Elite ∨ 0.2092 0.0393
∧ 0.2010 0.0183

4 Here we enumerate the quadrants from the top right, I and then going counter-clockwise the others: II, III 
and IV.
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Fig. 3  Distribution of verboseness in the x-axis and document length in the y-axis of the relevant docu-
ments (in gold) and all the documents (in black). Left plot shows the non-elite pivotization case of verbose-
ness ( ̈v

d
 ) and length ( ̈l

d
 ) and the right plot shows the elite pivotization case of verboseness ( ̂v

d
 ) and length 

( ̂l
d
)
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Fig. 4  Difference on a per topic based between the AP of the trained TF
BM25

-IDF with verboseness com-
bined in conjunction with elite pivots, and the trained classic TF

BM25
-IDF. When the difference is positive 

the variant with verboseness performs better than the classic version
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For example, the existance of duplicated documents in the e-Health’14 test collection is a 
known issue to the e-Health IR community.

In Tables  3, 4, 5, and 6 we observe that the best performing configuration, for both 
TFlog  and TFtotal , uses the trained parameters combined in disjunction, in particular in 
Table 4 these configurations also show statistical significance against both standard config-
uration and trained configuration when verboseness is not present ( a = 0 ). The elite pivoti-
zation performs generally better than the non-elite pivotization. In particular the best per-
forming configurations are with elite pivotization and trained parameters in conjunction. 
We observe also that in general the elite pivotization weighting role is taken by the param-
eter a ( b = 1 means that a full document verboseness and length normalization is applied).

In Fig. 4 we further analyze the best configuration on a per topic basis. Here, we show 
the difference in AP between the AP of the trained TFBM25-IDF with verboseness combined 
in conjunction with elite pivots, and the trained classic TFBM25-IDF. If the difference is 
positive the variant with verboseness is better than the classic version.

7  Conclusion

This paper presents an extensive study of TF quantifications and normalizations. The quan-
tifications are with respect to a well-defined spectrum comprising TFtotal , TFlog , TFBM25 , 
and TFconstant . Each of these TF quantifications reflects a dependence assumption. In par-
ticular, TFtotal  and TFconstant  are the extremes of the quantification spectrum, assuming 
independence for the former and subsumption for the latter. TFBM25  is a relatively strong 
dependence assumption, and TFlog  is in the middle between TFtotal  and TFBM25 . Each of 
these quantifications incorporates a TF normalization parameter, usually denoted as Kd.

Whereas current approaches regarding Kd consider only the document length as param-
eter of Kd , this paper makes the case for Kd to be a combination of document verboseness 
and length. There are many heuristic options for how to combine the parameters, and this 
paper contributes the theoretical foundations leading to a systematic combination of docu-
ment verboseness and length.

The paper reports results of an experimental study investigating the effect of various 
settings of Kd for the four main TF quantifications. The overall finding is that combining 
document verboseness with document length (either in a conjunctive or disjunctive way) 
improves retrieval quality when compared to results considering document length only.

We expand this in two directions, first by exploring a similar normalization in the con-
text of LM and second a similar normalization in the context of TF-IDF. For the former, we 
include document verboseness into the Dirichlet smoothing where non-significant effect 
is observed, which signifies that document verboseness can be neglected. For the latter, 
in Sect. 4.3 we have observed the duality between document verboseness and document 
length on one side, and term burstiness and term length on the other side, and we observed 
the effect of these normalizations on the query side with respect to LM. Here, significant 
improvements are observed, however these improvements are obtained primarily by the 
use of term burstiness, while the term length can be neglected. In both directions improve-
ments are observed given by the new parametrizations, and their results show a dual behav-
ior, given by the exclusion of document verboseness in the former, and by the exclusion of 
term length in the latter.

In summary in this paper we have provided an exhaustive study of normalization fac-
tors in IR probabilistic models using 4 different test collections. Based on the observations 
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made on these test collections, we have made the case that different domains, having differ-
ent text statistics, can be directly factored into the existing probabilistic models. We have 
thus provided a quantification of the various document and term statistics into one factor 
that balances different prior probabilities that all these models, more or less explicitly, rely 
on.
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