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A Review on the Use of Wearable Functional Near-

Infrared Spectroscopy in Naturalistic Environments 

 

 

Abstract: The development of novel miniaturized wireless and wearable functional 

Near-Infrared Spectroscopy (fNIRS) devices have paved the way to new functional brain 

imaging that can revolutionize the cognitive research fields. Over the past few decades, 

several studies have been conducted with conventional fNIRS systems that have 

demonstrated the suitability of this technology for a wide variety of populations and 

applications, to investigate both the healthy brain and the diseased brain. However, what 

makes wearable fNIRS even more appealing is its capability to allow measurements in 

everyday life scenarios that are not possible with other gold-standard neuroimaging 

modalities, such as functional Magnetic Resonance Imaging. This can have a huge impact 

on the way we explore the neural bases and mechanisms underpinning human brain 

functioning. The aim of this review is to provide an overview of studies conducted with 

wearable fNIRS in naturalistic settings in the field of cognitive neuroscience. In addition, 

we present the challenges associated with the use of wearable fNIRS in unrestrained 

contexts, discussing solutions that will allow accurate inference of functional brain 

activity. Finally, we provide an overview of the future perspectives in cognitive 

neuroscience that we believe would benefit the most by using wearable fNIRS. 
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Introduction 

 Understanding and identifying the relationships between human behaviour and 

cognitive processes represented the main goal of cognitive neuroscientists over the past 

century. Historically, neuropsychological assessments were conducted investigating the 

effect of task manipulations on participants’ performance and behavioural variables (e.g., 

response times, accuracy, etc.), with cognitive models built on the basis of the outcome 

of the cognitive tests. Neuropsychological tests were - and still are - often used as a 

support for diagnostic purposes, e.g. for the early detection of cognitive disabilities such 

as Alzheimer’s (Spooner & Pachana, 2006). However, there is not always a univocal 

correspondence between a certain stimulus and behaviour, and behavioural variables 

might not be enough in characterizing some cognitive functions (Poldrack, 2006).  

 Nowadays, the field of cognitive neuroscience concerns itself with mapping 

information processing models of the mind onto the structural and operational (e.g., 

electrical, metabolic, hemodynamic) features of the brain. This has been enabled by 

neuroimaging technologies currently available to neuroscientists, such as neurovascular-

based techniques (i.e., functional magnetic resonance imaging (fMRI), functional near-

infrared spectroscopy (fNIRS), positron-emission-tomography (PET)), and 

electromagnetic techniques (i.e., electroencephalography (EEG) and 

magnetoencephalography (MEG)).  

 In classical neuroimaging investigations, participants are required to undertake a 

timely rigid constructed experimental procedure involving one or many different types of 

stimuli that intend to elicit a behaviour that can be associated with particular brain 

regions. Often, the experimental paradigm used to elicit the mental processing (e.g., 

showing a long series of single words one at a time) does not require the participant to be 
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engaged in a mental task that is very similar to one that would typically be encountered 

in everyday life. Indeed, as neuroimaging is done within the tight constraints of the 

neuroimaging laboratory and instrument, everyday life behaviour cannot be exactly 

replicated. For example, interactions with other people (including physical ones), and 

complex integrative tasks such as serial multitasking where a person is swapping between 

very different tasks such as cooking or shopping (Burgess, 2015). These situations are 

hard to mimic in e.g. an fMRI scanner. In fact, fMRI as well as PET and MEG impose 

significant physical constraints, given the fact that measurements are taken with 

participants restrained in a scanner. Moreover, all these techniques are highly susceptible 

to motion artifacts and/or cannot be brought outside the lab, thus not being suitable for 

use on freely-moving subjects and in everyday life.  

 These issues limit the questions that can be asked, and raise the question of the 

ecological validity (i.e., the degree to which the task performance predicts the real-world 

behaviour (Burgess et al., 2006) of the results. For these reasons, a neuroimaging method 

which can be used while people perform almost any activity that they would in everyday 

life, especially over lengthy durations, opens up the possibility of asking very different 

scientific questions, especially exploratory ones. Moreover, the method can, if used 

appropriately, decrease the possibility of an error of scientific inference in mapping mind 

to brain.  

A solution for monitoring the neural correlates of daily life activities can be 

achieved by wearable fNIRS devices. fNIRS is one of the most recent neuroimaging 

technique and, over the past few decades, it has rapidly grown to become an invaluable 

and powerful tool for neuroscientists and clinicians to monitor changes in brain tissue 

oxygenation and hemodynamic (Boas, Elwell, Ferrari & Taga, 2014). fNIRS utilises near-
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infrared (NIR) light (650-1000 nm) to measure the concentration changes of oxygenated 

(HbO2) and deoxygenated (HbR) haemoglobin, taking advantage of the different 

absorption spectra of the two chromophores in the NIR wavelength range. When a brain 

region becomes metabolically active, there is an oversupply of cerebral blood flow (CBF) 

to meet the increase in oxygen demand; this is reflected by an increase in HbO2 and a 

decrease in HbR (i.e., the hemodynamic response) and is an indicator of functional brain 

activity (Scholkmann et al., 2014). fNIRS measurements are performed by placing a 

certain number of NIR light sources, shining light into the brain, and optical detectors, 

collecting the back-scattered light, onto the participants’ head. The transmitted and the 

back-scattered light are usually guided through fibre optics connected to the main 

recording unit of the fNIRS system.  

Most of the conventional fNIRS instruments are quite heavy and big in size, and 

need carts to be transported (Scholkmann et al., 2014). Thanks to the recent technological 

advancements, more portable and miniaturized fNIRS devices were developed. This new 

generation of wearable devices allow participants to freely and naturally move in the 

environment without tight physical restraints. These systems are battery-powered, 

wearable and data can be either stored on the wearable recording unit or transmitted 

wirelessly to a laptop. Wireless EEG solutions were proposed as well for use in outdoor 

environments and on freely-moving individuals (Debener, Minow, Emkes, Gandras, & 

Vos, 2012; Mihajlović, Grundlehner, Vullers, & Penders, 2015). EEG can provide 

measurement of neural activity with a higher temporal resolution than fNIRS (ms versus 

tens of ms) so it might be more suitable for monitoring neural responses to fast processes 

and stimuli happening in everyday scenarios. However, EEG is more susceptible to 

motion artifacts than fNIRS, and thus people’s movements walking in the real-world must 
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be limited. Therefore, fNIRS might be a better option when a wider range of movements 

are needed and a higher spatial localization of brain activity is required (fNIRS spatial 

resolution 2-3 cm versus EEG 5-9 cm). 

The availability of this novel fNIRS technology, paves the way to new 

neuroscientific investigations that can now be performed in more naturalistic and 

ecologically-valid settings, with people free to walk and interact with the environment as 

they would do in real-life. The aim of this review is to give an overview of the studies 

performed so far with wearable fNIRS devices in the field of cognitive neuroscience in 

more naturalistic situations. In this framework, we also aim at discussing (a) the 

challenges associated with the use of fNIRS on freely moving people, focusing on the 

analysis approaches and limitations, (b) provide recommendations for successful use of 

the technology in naturalistic situations, and (c) discuss the possible future directions. 

 

Overview of Wearable fNIRS Systems 

The last decade has seen a trend towards the development of miniaturized and 

wearable fNIRS devices. Such systems are based on the continuous-wave (CW) NIRS 

technology (Scholkmann et al., 2014), and overcome the issues and restrictions related to 

bulky fibre optic bundles, usually by having LEDs directly coupled to the head and 

flexible headbands holding sources and detectors. In addition, these instruments are 

battery operated, being more portable and allowing measurements in everyday life 

scenarios with minimal restraints; data are usually stored in the device itself or sent to a 

PC through wireless communication. 

Concerning the number of channels, this depends on the number of sources and 

detectors the device is equipped with. A channel is composed by one source and one 
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detector, and represents the measurement point, i.e., the investigated brain tissue volume 

located at half of the source-detector distance and at a depth of around half the source-

detector distance (Patil, Safaie, Moghaddam, Wallois, & Grebe, 2011).  The first wearable 

system implementing wireless telemetry was limited by the number of optodes (i.e., light 

source or detector), having one detector and one light source, resulting in one 

measurement channel, and permitting the monitoring of very limited brain regions (Hoshi 

& Chen, 2002; Shiga, Yamamoto, Tanabe, Nakase, & Chance, 1997). Significant 

progress was made subsequently, and more sophisticated devices were developed and 

validated, with a higher number of channels (e.g., 16 (Ayaz et al., 2013), 20 (Piper et al., 

2014), 22 (Atsumori et al., 2009), 32 (Muehlemann, Haensse, & Wolf, 2008)) to meet the 

need for higher head coverage for different functional investigations. For example, one 

of the first portable optical brain imagers (Chance, Luo, Nioka, Alsop, & Detre, 1997) 

was improved and extended from one to 16 channels (4 LEDs light sources and 10 

detectors; sampling frequency=2 Hz) at Drexel University (Ayaz et al., 2013), allowing 

now the monitoring of both dorsal and inferior frontal cortical areas. Additionally, the 

palm-sized wireless system described by Muehlemann, Haensse, and Wolf (2008) can 

measure up to 32 channels at a sampling frequency of 100 Hz (Muehlemann et al., 2008). 

Channels configuration and number can be easily adapted on individual’s needs using 

systems with modular optodes (Funane et al., 2017; Chitnis et al., 2016a). More recently, 

multi-distance, eight- and four-wavelength systems were implemented (Chitnis et al., 

2016b; Wyser, Lambercy, Scholkmann, Wolf, & Gassert, 2017), permitting the 

monitoring of changes in both brain hemodynamics (HbO2, HbR) and metabolism 

(oxidized cytochrome-c-oxidase (oxCCO)), at different depths, and with a scalable 

number of channels, thanks to the modular optodes design (Wyser, Lambercy, 
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Scholkmann, Wolf, & Gassert, 2017). In addition, the availability of short-separation 

channels in the system presented by Wyser, Lambercy, Scholkmann, Wolf, and Gassert, 

(2017) improves the signals’ quality by automatically removing the influence of systemic 

physiological changes originating at the more superficial layers of the head (Tachtisdis & 

Sholkmann, 2016; Wyser et al., 2017). Wearable solutions integrating simultaneous EEG 

and fNIRS measurements were proposed as well (Lareau et al., 2011; Safaie, Grebe, 

Moghaddam, & Wallois, 2013), taking advantage of the suitability of fNIRS for 

multimodal imaging. However, to date, in order to minimize the power consumption and 

have a miniaturized and light wearable device that functions for long time periods, the 

number of channels is still limited when compared to conventional fNIRS instruments 

that can reach whole head coverage. 

From 2009, several companies began to commercialize wearable and wireless 

fNIRS devices. The systems available so far in the market were reviewed by Quaresima 

and Ferrari (2016) (NOTE: in addition to the list provided by the authors, a newer system, 

the Brite23, has been recently introduced by Artinis, Netherlands, with 23 channels, a 

maximum sampling rate of 100 Hz, wireless data transmission and possible 

hyperscanning configuration). In Table 1, we expanded the information provided by 

Quaresima and Ferrari (2016) with additional details on the available systems (Quaresima 

& Ferrari, 2016).  

[TABLE 1 ABOUT HERE] 

 Twenty devices are currently commercially available, with different number of 

channels (from 1 to 496) and sampling frequencies (1-100 Hz). The majority of them 

implement wireless data transmission and allow the synchronization of multiple devices 

(up to 7) for hyperscanning measurements (i.e., simultaneous recording of brain activity 
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of two or more individuals (Babiloni & Astolfi, 2014)). High-density (i.e., more dense set 

of source-detector pairs (Eggebrecht et al., 2012)) optical tomography systems for the 

prefrontal cortex are available as well, with 204 and 496 channels (Quaresima & Ferrari, 

2016), that allows the performance of diffuse optical tomography (DOT) measurements. 

DOT configurations involve the use of multiple source-detector distances resulting in 

overlapping channels that allows researchers to sample tomographical maps of HbO2 and 

HbR and to gather several measurements at different depths, which improves the lateral 

and depth resolution (Eggbrecht et al., 2012, Zhao & Cooper, 2017). Most of the 

instruments are designed for measuring only the prefrontal cortex (Table 1), mainly to 

maximize the functioning duration of the system, and the optical components are usually 

connected to a small processing and recording/transmitting unit holding the battery, 

usually carried through a backpack (Figure 1).   

[FIGURE 1 ABOUT HERE] 

 Most instruments have fixed source-detector separations, typically 3 cm for adult 

studies. Two DOT systems are available and allow measurement of brain activity at 

different depths, while two systems permit the adjustment of source-detector separations 

with custom configurations. The majority of the instruments use two wavelengths to 

resolve oxy- and deoxy- haemoglobin concentrations, except the Pocket NIRS HM from 

Dynasense and the SPEEDNIRS and LIGHTNIRS from Shimadzu that use three-

wavelengths to account for the scattering, and the WOT-100 from Hitachi, which uses 

only one wavelength to resolve total-haemoglobin. Eleven of the available systems are 

completely fibreless and optical components are directly coupled to the head (Table 1; 

see Figure 1 A for an example); the others use shorter and lighter wires than conventional 

fNIRS systems to guide the light that are connected to the control unit (see Figure 1 B for 
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an example), still allowing for free movement. To prevent detector saturations in case of 

outdoor use, shading caps are available (Figure 1 A); alternatively, some devices 

implement a reference detector measuring the ambient light that is used to correct for 

stray light. 

 

Literature Review 

 A literature review of research articles using wearable fNIRS devices in more 

ecologically-valid cognitive experiments was carried out in order to identify the most 

common applications of wireless fNIRS in the field of cognitive neuroscience so far, and 

to set the starting point for our discussions and future directions. More precisely, we 

focused on the studies employing the new class of wearable and/or wireless devices in 

unrestrained contexts with freely-moving participants while undertaking a cognitive task. 

The search procedure was performed using the PubMed database, manual search from 

articles references and the publication surveys available on the Society for functional 

Near Infrared Spectroscopy website (http://fnirs.org/publications/nirs-niri-publications/). 

For database searching, we used the keywords functional near-infrared spectroscopy, 

fNIRS, wireless, portable, wearable, and brain. Articles were selected on the basis of the 

following inclusion criteria: 

1. Original research papers published on peer-reviewed journals until September 

2017. Review papers and conference proceedings were excluded. 

2. Papers involving task-evoked functional activity experiments with a cognitive 

task performed on freely moving participants and not in a typical laboratory setup 

(usually, seated and interacting with a computer only). 

http://fnirs.org/publications/nirs-niri-publications/)
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3. Articles employing wearable fNIRS devices to measure brain activity in response 

to cognitive tasks. Papers using conventional fNIRS instrumentation were 

excluded. 

In case of multiple cognitive tasks examined within the same paper, only the ones 

involving the use of wearable fNIRS devices, and with freely-moving subjects were 

considered. Ten original research papers were included in the present review. Following 

the procedure adopted by Herold et al. (2017), from articles’ full-texts we collected 

information concerning the application of wireless fNIRS (e.g., population, and 

experimental protocol), the pre-processing, and the statistical analysis of fNIRS data. In 

the following sections, we present the approaches adopted in the reviewed studies with 

additional details, providing an overview of the application of wearable fNIRS (Table 2), 

and data acquisition (Table 3), data pre-processing (Table 4) and statistical inference 

(Table 5). 

 

Population and Experimental Protocol 

The majority of the studies (Table 2) included in the present review were performed 

on a cohort of healthy young adults (Atzumori et al., 2010; Balardin et al., 2017; 

McKendrick et al., 2016; McKendrick, Mehta, Ayaz, Scheldrup, & Parasuraman, 2017; 

Mirelaman et al., 2014; Pinti et al., 2015; Takeuchi, Mori, Suzukamo, Tanaka, & Izumi, 

2016) and two on healthy older adults (Maidan et al., 2016; Takeuchi et al., 2016). Two 

papers examined individuals with neurological deficits such as Parkinson’s Disease 

(Maidan et al., 2016; Nieuwhof et al., 2016), and one included individuals with mild 

cognitive impairments (Doi et al., 2013).  

[TABLE 2 ABOUT HERE] 
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All the studies examined in this review (Table 2) involved a motor-cognitive dual-

task walking (DTW) protocol, in which participants were asked to perform a secondary 

cognitive task while walking. For instance, in the study of Atsumori et al. (2010), the 

secondary task was an attention demanding task (ball-carrying) that was carried out while 

walking (Atzumori et al., 2010). Other cognitive tasks employed in addition to walking 

involved serial subtractions (Maidan et al, 2016; Mirelaman et al., 2014; Nieuwhof et al., 

2016), counting forward (Mirelaman et al., 2014; Nieuwhof et al., 2016), reciting a series 

of digits (digit span (Nieuwhof et al., 2016), a verbal letter fluency task (Doi et al., 2013) 

and playing a game on a smartphone (Takeuchi et al., 2016). A table tennis task was used 

by Balardin et al. (2017) to investigate the feasibility of wearable and wireless fNIRS in 

case of moderate levels of motion (Balardin et al., 2017). Whilst the above-mentioned 

studies were performed in indoor environments, more interestingly four studies (Balardin 

et al., 2017; McKendrick et al., 2016; McKendrick et al., 2017; Pinti et al., 2015) were 

carried out outside in everyday life contexts. Balardin et al. (2017) monitored changes in 

prefrontal cortex activity during the execution of everyday life actions (Balardin et al., 

2017). The study by McKendrick et al. (2016) aimed at investigating situation awareness 

and mental workload on people during navigation of a college campus using a hand-held 

display, or an augmented reality wearable display while simultaneously performing a 

visual perception or an auditory 1-back task (McKendrick et al., 2016). More recently, 

the auditory 1-back was repeated on participants while sitting, walking indoor and 

walking outdoor around a busy college campus (McKendrick et al., 2017). Pinti et al. 

(2015) investigated the neural correlates of a prospective memory (PM) task conducted 

in the streets of London on freely-moving subjects with no particular restrictions and no 

preparation of the environment (Pinti et al., 2015).  
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 Typical block design experiments (i.e., conditions are repeated over time and 

spaced out by rest periods) are usually employed except for the papers by Pinti et al. 

(2015) and Balardin et al. (2017), where continuous monitoring with minimum task 

repetitions were adopted (Balardin et al., 2017; Pinti et al., 2015). For instance, in Pinti 

et al. (2015) conditions were repeated twice while in most neuroscience experimental 

investigations blocks and events are repeated multiple times (e.g., 10 or more). This was 

done to mimic real-life situations as much as possible and to have more ecologically-valid 

cognitive tasks (Pinti et al., 2015). Rest periods are usually represented by normal walking 

(NW, i.e., walking with no secondary task) conditions (Atsumori et al., 2010; 

McKendrick et al., 2016; Pinti et al., 2015; Takeuchi et al., 2016), standing while 

performing a secondary task (Pinti et al., 2015) or standing still (Balardin et al., 2017; 

Doi et al., 2013; Maidan et al., 2016; McKendrick et al., 2017; Mirelaman et al., 2014; 

Nieuwhof et al., 2016). 

 

Data Acquisition 

Cortical hemodynamic responses (Table 3) were usually investigated over the pre-

frontal cortex (PFC) since this region is easily accessible, and most of the commercially 

available system allows the monitoring of only frontal regions (Atsumori et al., 2010; Doi 

et al., 2013; Maidan et al., 2016; McKendrick et al., 2016; McKendrick et al., 2017; 

Mirelaman et al., 2014; Nieuwhof et al., 2016; Pinti et al., 2015; Takeuchi et al., 2016). 

In one study, supplementary motor and primary motor cortex were probed instead during 

a table tennis task (Balardin et al., 2017). 

[TABLE 3 ABOUT HERE] 
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Data Pre-processing 

 The pre-processing of fNIRS data is a crucial step as the results of statistical 

analyses strongly rely on the quality of the data. It is thus extremely important to reduce 

the impact of physiological noises, motion artifacts and slow drifts present in the fNIRS 

signals. Table 4 summarizes the details of the pre-processing steps adopted in the 

reviewed studies to de-noise fNIRS data. 

 [TABLE 4 ABOUT HERE] 

Data Analysis 

 The presence of functional activation in the investigated brain regions was 

statistically assessed (Tak & Ye, 2014) in most of the studies (Table 5) using the 

averaging method, i.e. averaging signal segments across task and rest periods, and 

inferring functional brain activity on the basis of the difference between task and rest 

mean values (Atsumori et al., 2010; Doi et al., 2013; Maidan et al., 2016; McKendrick et 

al., 2016; McKendrick et al., 2017; Mirelaman et al., 2014; Nieuwhof et al., 2016; 

Takeuchi et al., 2016).  

[TABLE 5 ABOUT HERE] 

One paper adopted the General Linear Model (GLM) approach instead, i.e. fitting the 

fNIRS data with task-related regressors modelling the theoretical hemodynamic response 

to the assigned cognitive task (Balardin et al., 2017). Continuous Wavelet Transform 

(CWT) was used in 2 articles to investigate the functional connectivity between brain 

regions (Balardin et al., 2017; Mirelaman et al., 2014). 
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4. Challenges and Way Forward 

 When recording fNIRS data in unrestrained contexts and on mobile people, there 

are some methodological issues that need to be considered and addressed. In this section, 

we discuss and summarize the technology limitations (Table 6), providing some 

suggestions to overcome these issues, and to get meaningful fNIRS data and results.  

[TABLE 6 ABOUT HERE] 

 

Body Movements 

 In order to arrive at a correct neuroscientific conclusion, it is necessary to record 

good quality fNIRS data. However, the signals’ quality can be deteriorated by several 

factors.  

 If we consider recording neuroimaging data on freely moving people, the first 

concern relates to the execution of body and head movements. In fact, although fNIRS is 

more tolerant to movements, and wearable devices are miniaturized and even more robust 

than conventional fNIRS instruments, motion artifacts are more likely to occur when 

participants are walking rather than sitting on a chair, as they are allowed to move freely 

and perform a wider range of movements. For example, motion errors can corrupt fNIRS 

signals with shifts from baseline values (Figure 2 A, green shaded areas) or fast and 

narrow spikes (Brigadoi et al., 2014), characterized by a positive correlation between 

HbO2 and HbR (Figure 2 A, yellow shaded areas).  

[FIGURE 2 ABOUT HERE] 

 To date, several methods are available to identify and correct for motion artifacts 

(Scholkmann, Spichtig, Muehlemann, & Wolf, 2010), and were reviewed by Brigadoi et 

al. (2014) (Brigadoi et al., 2014). Among these, the wavelet-based (Molavi & Dumonts, 



 

 

 

15 

2012) and the targeted principal component analysis (tPCA) approaches (Yücel, Selb, 

Cooper, & Boas, 2014) appeared to be the most effective. In Figure 2 B, we show the 

effectiveness of tPCA to correct both baseline shifts (green shaded areas) and higher-

frequency spikes (yellow shaded areas). In the latter, the physiological anti-correlation 

between HbO2 and HbR typical of functional activity (Obrig et al., 2000) is effectively 

restored.  

 Only 3 of the reviewed papers included the correction of motion errors. Since 

correcting for such artifacts was demonstrated to be better than rejecting corrupted trials 

(Brigadoi et al., 2014), we suggest employing one of the available correction techniques, 

and especially the wavelet-based filtering or tPCA (Table 6), as part of the pre-processing 

flow. Head movements can also lead to a loss of coupling between the optodes and the 

head that further deteriorates signals’ quality. In case of poor optical coupling, no 

physiological signals are sampled and time-series are only constituted of white-noise 

(Figure 3 A), characterized by a constant power spectral density (PSD). The fNIRS probes 

thus have to be securely attached to the head, with good contact with the skin. 

[FIGURE 3 ABOUT HERE] 

 In addition, when using fNIRS in outdoor environments, optical detectors should 

be protected from the stray sunlight. In this case, the detectors will be overexposed and 

measured intensity signals will appear as flat lines or be full of spikes with non-

physiological amplitudes (Figure 3 B). Detector overexposure and saturation can be 

prevented using light-shielding caps/hats (Figure 1 A; McKendrick et al., 2016, 2017; 

Pinti et al., 2015) or detectors with very high dynamic range or using fNIRS devices that 

incorporate a reference detector measuring only the ambient light that is then subtracted 

from the other channels’ signals(e.g., Brite23 and Octamon from Artinis, Table 1).  



 

 

 

16 

 In order to identify noisy channels due to poor coupling or not-measuring channels 

due to detectors saturation, we highly recommended to (a) visually inspect the recorded 

signals and (b) assess channels’ quality using more objective measures e.g. following the 

approach proposed by Piper et al. (2014) based on the coefficient of variation (CV) of the 

signals, excluding those channels with CV values higher than 15% (Piper et al., 2014). 

Signals’ quality can be evaluated checking for the presence of the heart beat oscillation 

(0.6 - 1 s) in the time-series, especially in HbO2, or a frequency peak in the range 1 - 

1.5 Hz in the PSD of the signal (Figure 2 C). This ensures that physiologically meaningful 

components are measured.   

 

Systemic Interferences 

 To improve the accuracy of functional investigations through fNIRS, the influence 

of physiological confounding factors need to be taken into consideration as well. In fact, 

fNIRS signals are contaminated by components of systemic origin that are not related to 

neuronal activity and that can lead to false positives and/or false negatives when inferring 

functional activity (Tachtsidis & Scholkmann, 2016). These physiological changes can 

arise both at the intra- and extra-cerebral compartments of the head, and can be both 

spontaneous and evoked by the cognitive task (Scholkmann et al., 2014). We expect the 

effect of systemic interferences to be even more pronounced in case of physical activity. 

For example, rapid posture changes (e.g., from laying down to standing up) can induce 

venous pooling or orthostatic hypotension (Balardin et al., 2017). In addition, walking 

can lead to changes in e.g. heart and breathing rates. In Figure 4, we show examples of 

heart rate (A) and breathing rate (B) signals recorded during the experiment performed 

by Pinti et al. (2015) (Pinti et al., 2015).  
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[FIGURE 4 ABOUT HERE] 

Walk-related changes can be observed in both signals when passing from experimental 

conditions involving walking (W; yellow shaded areas, lasting 6 min) to standing 

conditions (S; blue shaded areas, lasting 3 min), with increases and decreases in both 

heart rate and breathing rate levels. 

 Measuring acceleration (Figure 4 C) or GPS data can help in the interpretation of 

physiological and hemodynamic changes, providing information on participants’ 

movements (e.g., walk vs. stand, speed). Walking for long periods can cause  fatigue with 

consequent systemic changes that alter the brain hemodynamic responses. As shown in 

Figure 5, changes in breathing rate exhibits trends very similar to concentration signals, 

and in particular HbO2 (Kirilina et al., 2012; Tachtsidis & Scholkmann, 2016), both 

when the participant is walking (W; yellow shaded areas) and standing (S; blue shaded 

areas). To reduce fatigue, longer rest periods lasting a few minutes are recommended 

(Herold et al., 2017), to allow physiological and hemodynamic variables to reach their 

baseline values.  

[FIGURE 5 ABOUT HERE] 

 Different methods were proposed so far to reduce the impact of these components 

(Scholkmann et al., 2014). One of the most straightforward is to filter the fNIRS signals 

in specific frequency bands, preserving the functional activity range and excluding the 

noise frequencies. In the reviewed studies, low-pass filters are more often used. However, 

fNIRS signals can also include slow trends related to instrumental noise and/or very low 

frequency vasomotion regulations (<0.1 Hz). We thus recommend to use low-pass filters 

together with high-pass filters (i.e., band-pass filters) to remove both slow trends and 

higher frequency physiological noises (e.g., heart rate (1 Hz)). Attention should be paid 
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in the choice of the cut-off frequencies to ensure that only the noise components are 

filtered out.  

 Additionally, the use of short-separation (SS) channels was demonstrated to be 

effective in removing the extra-cerebral signals components (e.g., superficial skin blood 

flow) from long-separation channels (Gagnon et al., 2012). SS channels are created by 

placing a light source very close to a detector, usually at less than 1 cm distance, and 

record data from the extra-cerebral tissue. However, such superficial signal regression 

techniques (Funane et al., 2014, Gagnon et al., 2012) require a larger number of optodes, 

as each long separation channel must be combined with a short separation channel as 

close as 1.5 cm (Gagnon, Yücel, Boas, & Cooper, 2014). This is not fully possible with 

most of the commercially available wearable devices since the number of channels is still 

limited compared to conventional systems and are designed to maximize the investigation 

of the cortical tissue. Superficial regression can, to date, be performed with DOT devices 

(e.g., Genie from MMRA, and NIRSIT from Obelab, Table 2) that have a denser array of 

optodes, with the possibility of sampling from SS channels.  

 Other approaches based on independent component analysis (ICA) (Kohno et al., 

2007), principal component analysis (PCA; Zhang, Brooks, Franceschini, & Boas, 2005), 

Bayesan filtering (Scarpa et al., 2011) and anti-correlation maximization (CBSI; Cui, 

Bray, & Reiss, 2010) have been proposed as well. Currently, the most effective 

methodology able to separate systemic components from fNIRS cortical signals 

(Scholkmann et al., 2014) is to combine fNIRS measurements with systemic 

physiological data (e.g., mean blood pressure, heart rate, scalp blood flow). These 

systemic signals can be e.g. used as additional regressors in the GLM analysis of fNIRS 
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data (Tachtsidis et al., 2010; Kirilina et al., 2012) or combined with ICA to identify the 

components to remove (Patel, Katura, Maki, & Tachtsidis, 2011).  

 Only one of the studies we reviewed (Pinti et al., 2015) monitored changes in heart 

rate and breathing rate, and none included SS channels signal regression or PCA/ICA 

approaches. However, we recommend measuring physiological signals alongside fNIRS 

for a more effective reduction of systemic interferences. In fact, thanks to the feasibility 

of fNIRS for multimodal monitoring, this can be easily performed through the use of 

wearable physiological monitors (e.g., chest straps; Pinti et al., 2015) that do not interfere 

with the optical equipment and with participants’ movements.  

 

Statistical Analysis 

 Concerning the statistical analysis of fNIRS data, the most common method to 

infer functional brain activity from fNIRS signals is to use averaging or GLM approaches 

(see Tak and Ye (2014) for a review (Tak & Ye, 2014)) and group-level analyses can be 

performed on a channel-wise basis or on topographic maps. These methods are commonly 

used to analyse fNIRS data recorded with typical fNIRS systems and can be expanded to 

the analysis of fNIRS data gathered through the new generation of wireless fNIRS 

devices.  

 The averaging method consists in computing the average concentration changes 

across task and rest periods, and using statistical tests (e.g., ANOVAs) to assess the 

presence of functional activation in task periods versus rest periods. The GLM approach 

provides more statistical power by considering the whole fNIRS time series. It expresses 

fNIRS data as a linear combination of regressors reflecting the experimental protocol and 

an error term. Regressors are computed through the convolution of delta and boxcar 
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functions representing the experimental design with the hemodynamic response function 

(HRF). If on the one had the averaging method has less statistical power considering only 

segments of fNIRS data, on the other hand the GLM is strongly model-dependent and 

requires assumptions on the shape and dynamics of the HRF. Both methods require the 

knowledge of the timeline of events, which are pre-established and known in 

conventional experimental protocols structured as typical block- or event-related design 

paradigms.  

 However, the analysis is not so immediate in case of unstructured experimental 

protocols such as those conducted in everyday life situations with wireless fNIRS 

systems, where brain activity is continuously monitored with minor control over the 

presentation of stimuli. For instance, in the work by Pinti et al. (2015), functional brain 

activity over the PFC was measured during the execution of an unstructured prospective 

memory task (Pinti et al., 2015). In that case, participants were asked to respond and “fist 

bump” in greeting particular targets (either certain people or stationary objects) located 

in the testing area. However, the onsets of functional events associated with those actions 

were not pre-established as in typical block or event-related design experiments, and were 

very difficult to identify from the analysis of video recordings of participants’ behaviour. 

In fact, the peaks of hemodynamic responses (i.e., increase in HbO2 and decrease in 

HbR) are expected to occur 6 s after the stimulus onset (Scholkmann et al., 2014); 

however, non-synchronous hemodynamic responses to the targets’ fist bumping were 

observed (Figure 6 A, arrows), where the HbO2 and HbR peaks were anticipated of 

15 s.  

[FIGURE 6 ABOUT HERE] 
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This means that, in this case, functional events are more likely to occur when the 

participant spotted/approached the target (i.e., intention retrieval) rather than actually fist 

bumped it (i.e., intention realization). Recovery or prediction of the onset of the event 

corresponding to the moment when the participant retrieves the intention can be 

extremely difficult and time consuming from the video. This is also true when brain 

activity is continuously monitored during everyday life activities as in the study by 

Balardin et al. (2017), and it is very hard to match fNIRS signal changes to participants’ 

behaviour (Balardin et al., 2017). For instance, the authors investigated the inter-

hemispherical functional connectivity using 1 min sliding window over the 4 hours 

continuously recorded fNIRS data. The spectrogram of the time-varying connectivity 

revealed a frequency peak of 0.002 Hz that, however, could not be linked to a particular 

daily activity.  

 To overcome the issues related to the identification of functional events in 

unstructured protocols, alternative approaches must be developed. A first attempt was 

proposed by Pinti et al. (2017). The authors developed an algorithm based on the GLM 

fitting procedure, called AIDE (Automatic IDentification of functional Events) that 

recovers the onsets of functional events directly from fNIRS data with good accuracy. 

Functional events (both the onset and duration) are determined identifying the activation 

model (i.e., the convolution of a boxcar representing the timeline of the events with the 

HRF) that gives the best fit with the activation signal (Pinti et al., 2017). In Figure 6 B-

C, are presented the results of the application of AIDE to the example of Figure 6 A. More 

precisely, Figure 6 B shows the activation model (black line) giving the best fit with the 

activation signal (red line) that best describes the occurrence of functional trends (i.e., 

increase in the activation signal). The corresponding boxcar, representing the timeline of 
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functional events, is reported in Figure 6 C (black line). In agreement with the visual 

inspection of signals that suggested anticipated hemodynamic responses, functional 

events (Figure 6 C, orange asterisks) actually happened 20 s before the participant 

reached the targets (Figure 6 C, magenta lines). This confirms that functional events occur 

during the intention retrieval process rather than in correspondence of the intention 

realization. The main advantage of AIDE is that it does not make assumptions on the 

timings of functional events so that they can be identified also in case of experimental 

protocols with no particular structure. On the other hand, AIDE is model-dependent as it 

is based on the GLM. Hence, assumptions on the model and shape of the HRF have to be 

made. In addition, the impact of serial autocorrelations in fNIRS data must be taken into 

consideration and further improved from the current version of the algorithm.  

 To increase the strength of the statistical inference results and to formulate more 

accurate conclusions, we also recommend reporting results for both HbO2 and HbR. 

In fact, functional activation corresponds to an increase in HbO2 and decrease in HbR 

(Obrig et al., 2000). Changes in oxyhemoglobin are very often used as the marker to 

assess functional activity because of its high-contrast changes. However, this signal has 

been  demonstrated to be strongly influenced by systemic changes (Kirilina et al., 2012), 

and can give rise to global and poorly localized hemodynamic responses (Zhang X., 

Noah, & Hirsch, 2016). On the contrary, HbR is less affected by confounding factors 

(Kirilina et al., 2012) and a more robust indicator of brain activity, giving more localized 

and specific results (Hirsch, Zhang X., Noah & Ono, 2017). 

 In addition, the problem of correction for multiple comparisons needs to be taken 

into consideration, especially with the development of multi-channel fNIRS systems with 

a larger number of channels. The multiple comparison problem arises when more than 
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one statistical inference is carried out. In that case, the significance level (i.e., the p-value) 

has to be adjusted to control for Type I errors. Typical approaches can be applied to 

control for family-wise error rates (FWER) in case of channel-wise statistical analyses, 

such as the widely-used Bonferroni correction or the Least Significant Differences (LSD). 

In case of statistical tests performed on topographic fNIRS maps, other approaches were 

proposed to control for FWER, such as the tube formula or the Euler characteristic (EC) 

method (see Tak and Ye (2014) for a review (Tak & Ye, 2014)). More recently, the use 

of alternative and less conservative approaches was explored. An example is the False 

Discovery Rate (FDR) method, that evaluates the expected proportion of falsely declared-

active channels respect to the declared active channels. This approach provides a more 

robust and powerful measure of Type I errors than e.g. the Bonferroni correction, whilst 

ensuring a good compromise between power and specificity, and is highly recommended 

for channel-wise comparisons (Tak & Ye (2014); Singh & Dan, 2006). 

  

Optodes Placement and Spatial Registration 

 In order to record reproducible fNIRS data and compare measurements across 

studies and individuals, a consistent placement of the fNIRS optodes overlying the 

desired or the same brain regions across subjects is crucial. The easiest way to achieve 

this is to place the fNIRS optodes or channels with respect to particular anatomical 

landmarks on the scalp as defined by the 10-20 system (Jasper, 1998; Okamoto & Dan, 

2005) of electrode placement typically used for EEG. The 10-20 system identifies 

landmark points on the head surface that correspond to particular cortical structures on 

the basis of percentages of the distance between four references points (nasion, inion, 

right and left preauricular points). However, this approach alone provides only a 
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qualitative assessment of channel location. By adding a 3D digitizer, the optodes x, y, z 

coordinates can be recorded and used to register the fNIRS channels onto a common brain 

space to recover more accurate information on the underlying anatomical brain regions.  

 The registration of functional neuroimaging data onto a common brain template 

is extremely important to compare study results among research groups, modalities and 

individuals. Nowadays, the most used brain platform is the Montreal Neurological 

Institute (MNI) stereotaxic space, created through the registration onto the Talaraich 

coordinate system and average of MRI structural images of several individuals. The 

registration of functional data onto the MNI brain template is quite straightforward for 

fMRI or PET as structural images of the brain can be obtained. However, this is not the 

case for fNIRS as no anatomical images can be collected and data are sampled only from 

the cortical surface. To this goal, several approaches were proposed and reviewed by 

Tsuzuki and Dan (2014). In brief, initially the spatial registration of fNIRS channels was 

performed using the structural MRI of each individual by transforming the digitized 

fNIRS probe locations into the MRI space through rigid body rotations and translations. 

In the subject’s MRI space, fNIRS positions are projected from the head surface onto the 

brain cortex (Okamoto & Dan, 2005). Alternative approaches include the reconstruction 

of the functional image using the optical properties of the brain (Aasted et al., 2015). 

However, in order to perform channel-wise or topographic maps comparisons across 

individuals, it is necessary to normalize the single subject’s MRI coordinates into the 

standard MNI brain. Typically, this is done by normalizing the structural MRI into the 

MNI template and the inverse transformation matrices are then applied to the fNIRS 

optodes.  
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 As MRI scans are not always available, and MRI is expensive and would reduce 

the economic advantages of fNIRS, new stand-alone approaches to register the digitized 

fNIRS optodes locations onto the standard MNI space that do not require the MRI scans 

of each individual were developed (Singh, Okamoto, Dan, Jurcak & Dan, 2005). More 

recently, these approaches were improved even further to become completely stand-alone 

and do not need the use of a 3D digitizer (Cutini, Scatturin & Cutini, 2011; Tsuzuki et al., 

2007).  

 Once fNIRS optodes are registered onto the MNI template, between-subjects, -

studies and -modalities comparisons can be carried out. If channels are placed in a similar 

location and overlap the same brain anatomical region across individuals, channel-wise 

comparisons can be performed. However, channels can cover different anatomical 

regions in case of subjects with different head sizes and shapes and can impact group-

level channel-wise analyses. Alternatively, brain atlases, such as the Automated 

Anatomical Labelling (AAL), that consider macro-anatomical regions can be adopted to 

identify regions of interest (ROI) and increase the reproducibility by considering groups 

of channels within a ROI rather than single channels (Tsuzuki & Dan, 2005). 

 These methods are implemented in the main software for fNIRS data analyses, 

such as Homer2 (Huppert, Diamond, Franceschini, & Boas, 2009), SPM-fNIRS toolbox 

(Tak et al., 2016) and in the previous version NIRS-SPM (Ye, Tak, Jang, Jung, & Jang, 

2009), and POTATO (Sutoko et al., 2016). 

 

Discussion and Future Directions 

 Over the last few decades, fNIRS has rapidly become a powerful method to image 

brain activity and investigate cognitive functions that cannot be studied in artificial 
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contexts such as an fMRI scanner (e.g., social interactions (Hirsch et al., 2017), motor 

control (Herold et al., 2017), neurodevelopment (Lloyd-Fox, Blasi, & Elwell, 2010)). The 

boundaries of these neuroscientific investigations can now be further extended thanks to 

the availability of wearable fNIRS instrumentation (Quaresima & Ferrari, 2016), 

allowing the monitoring of brain functioning in even more ecologically-valid scenarios 

and in outdoor environments (Balardin et al., 2017; McKendrick et al., 2016; McKendrick 

et al., 2017; Pinti et al., 2015) with mobile participants.  

 To date, most of the studies were conducted in conventional laboratory settings, 

and involved the monitoring of PFC hemodynamics during a dual-task walking test 

(Table 2) with basic cognitive tasks (e.g., N-back task, digit span, verbal fluency task, 

serial subtractions, playing a game on a smartphone). Nevertheless, even though these 

studies adopted standard approaches for neuroimaging, they have contributed some major 

findings. First, they have demonstrated the feasibility of wearable fNIRS in assessing 

functional brain activity to tasks performed during walking. This sets the basis for future 

applications in real-world contexts since we continuously carry out dual-task walking 

(DTW) actions in our everyday life.  Second, the new class of fNIRS devices are well 

tolerated not only by healthy adults, but also by patients with neurological deficits and 

mild cognitive impairment. This opens the way to new applications in clinical settings 

such as for neurorehabilitation. Third, it was proven that the new class of fNIRS devices 

are able to investigate the interplay between gait and higher cognitive and cortical control 

mechanisms in case of clinical patients. For instance, this is particularly important in the 

case of Parkinson’s disease as the monitoring of these patients during DTW tasks can 

help in explaining their difficulties in performing two tasks at the same time or gait 

failures in everyday life (Maidan et al., 2016).  
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 The studies by Balardin et al. (2017), McKendrick et al. (2016, 2017), and Pinti 

et al. (2015) were conducted in outdoor environments and in situations mirroring 

everyday life contexts (Balardin et al., 2017; McKendrick et al., 2016, 2017; Pinti et al., 

2015). Whilst some precautions related to the use of fNIRS in challenging situations need 

to be taken into account, these studies have demonstrated the feasibility of wearable 

fNIRS in effectively monitoring functional brain activity on people freely moving in 

outdoor settings while carrying out tasks as they would normally do in real life. 

 Below, we describe some of the possible applications in the field of cognitive 

neuroscience that we believe they would benefit the most from the use of wearable fNIRS.  

 

The New Neuroscience of Two:  Hyperscanning with fNIRS 

 One clear advantage for fNIRS as a technique for the study of human brain-

cognition relationships is in the study of social interaction. This is because the typical 

environment of e.g. a MRI or PET scanner precludes naturalistic or normal social 

behaviour, limiting the questions that can be asked, and raising the question of the 

ecological validity of the results.  

 While current fNIRS hyperscanning studies all use tethered systems with seated 

participants (Scholkmann, Holper, Wolf, & Wolf, 2013), the extension of hyperscanning 

to wearable fNIRS would allow us to monitor brain activity during a much wider range 

of social activities including dance, teaching, large scale collaborative tasks, even sports. 

For example, a recent study used wireless EEG to track brain-to-brain synchrony in 

classrooms (Dikker et al., 2017); similar studies with fNIRS might provide more detailed 

information on the engagement of different brain systems during teaching and learning 

interactions. 
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 The investigation of dynamic social interactions between two individuals extends 

the fundamental unit of behaviour from a single brain to a two-brain unit, the dyad, and 

the focus is on communication protocols within the unit. Further to this, rapidly 

fluctuating facial expressions and subtle interaction-related movements that are 

transmitted and received during natural social interactions are poorly resolved by 

conventional experimental methods, thereby highlighting the significant advantages to 

hyperscanning (Schilbach, 2014). This advantage is illustrated in several recent studies. 

For example, although the salience of eyes in communication is well acknowledged, the 

evidence is primarily based on single brain studies and viewing static pictures often with 

direct vs indirect gaze (Allison, Puce, & McCarthy, 2000; Ethofer, Gschwind, & 

Vuilleumier, 2011). However, a recent hyperscanning study of live eye-to-eye contact 

with fNIRS confirms a previously unappreciated critical role for real interaction via eye 

contact in natural interpersonal interactions (Hirsch et al., 2017).  

 These foundational findings and the forward trajectories are early entry points 

toward a new neuroscience of TWO that emerges from hyperscanning based on fNIRS. 

 

fNIRS and Virtual Reality (VR) 

 A further benefit of fNIRS is that it can potentially be combined with virtual 

reality (VR) or augmented reality to give full experimental control of a participant’s 

experience in a dynamic environment. Common VR headsets (e.g., Oculus Rift) can be 

modified to combine with an fNIRS frontal cortex recording system, or fNIRS can be 

used in conjunction with a CAVE VR system in which the virtual environment is present 

on all the walls surrounding the participant and is seen in 3D with 3D glasses. Studies in 

fMRI examined how participants in VR respond to threat stimuli (McCall, Hildebrandt, 
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Bornemann & Singer, 2015) and if they show prosocial behaviour in an emergency (Pan 

& Slater, 2011). If these VR scenarios were combined with fNIRS, we could understand 

the neural mechanisms underlying these behaviours.   

 

fNIRS as a Tool of Driving Research 

 The potential of fNIRS is also particularly striking for everyday behaviours that 

simply cannot be investigated in the laboratory, such as driving a car. Liu, Pelowski, 

Pang, Zhou, and Cai (2016) reviewed fNIRS as a tool for driving research, evaluating 

different models of fNIRS devices, paradigms employed and key findings, as well as 

comparing to fMRI/EEG research. While various studies used fNIRS in driving 

simulators, others used fNIRS in real cars (see Liu et al. (2016) for a review (Liu, 

Pelowski, Pang, Zhou, & Cai, 2016)). fNIRS allowed the investigation of various risk 

factors in driving such as fatigue, distraction, ageing (for further details see Liu et al., 

2016). The authors are convinced that fNIRS proved itself as a useful method in driving 

research. Further research can address changes in brain activations in other regions than 

PFC, such as temporal cortex, parietal and pre-motor areas. Moreover, other risk factors 

can be explored, such as inexperience, unexpected events, distractions, alcohol and with 

passengers. Lastly, the authors highlight the recent introduction of time-course 

measurements, which will allow exploring real-time, dynamic activation changes during 

driving.  

 

 

fNIRS for Neuroeconomics and Neuroergonomics Research 
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 Other applications could involve multimodal monitoring in everyday life contexts. 

Kopton and Kenning (2014) evaluated the potential of fNIRS in neuroeconomics 

research. They argue that the interdisciplinary research field of ‘neuroeconomics’ was the 

result of investigating neurophysiological processes of economic decision making using 

methods such as fMRI, EEG, electrodermal activity (EDA) and eye-tracking. However, 

recent challenges in neuroeconomics necessitate measuring situational factors outside the 

laboratory and in the ‘real-world’. These methodological demands can only be met with 

flexible and mobile technologies such as wearable fNIRS. The review describes not only 

lab-based experiments using wireless fNIRS with high ecological validity, but also 

evaluate the reliability of wireless fNIRS in field experiments (Kopton & Kenning, 2014).  

 Additionally, neuroergonomics would massively benefit from the use of wearable 

fNIRS on mobile participants. In fact, it is different from conventional neuroscience as it 

investigates cognition in response to work, and requires the possibility to measure brain 

activity in naturalistic environments such as in the workplace (Mehta & Parasuraman, 

2013). Therefore, conventional neuroimaging techniques such as fMRI and PET are not 

well suited for neuroergonomics research. The potential of fNIRS in neuroergonomics 

has been reviewed by Ayaz et al. (2013) (Ayaz et al., 2013). 

 

fNIRS for the Study of Prefrontal Cortex Function 

 There is another sizeable subfield of cognitive neuroscience where the necessity 

is just as great but perhaps less immediately obvious. This is the study of prefrontal cortex 

(PFC) function. PFC supports a wide range of high-level mental processes and some 

subregions of PFC (especially rostral PFC) are specifically involved in dealing with 

‘open-ended’ situations, i.e. problems where there are many possible solutions and one 
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has to decide for oneself which one to take. These situations are very hard to recreate in 

a typical neuroimaging setting where an experimenter asks a person to lie down in a 

scanner, concentrate on what they are about to be shown, and then are shown a series of 

near-identical stimuli to which a very limited number of responses are instructed to be 

made. In addition, previous studies demonstrated how cognitive tasks that mimic ‘real-

world’ situations are more sensitive in detecting frontal lobe dysfunction in neurological 

patients than those that are administered in the clinic and are quite confrontational in their 

format (see Burgess et al., (2006) and Burgess and Stuss (in press) for review (Burgess et 

al., 2006; Burgess & Stuss (in press)). 

 The new developments with fNIRS offer the possibility of following an analogous 

path in moving from measurement in the clinic or laboratory, to measurement in “real 

life”, thus permitting much more accurate measurement of the processes of interest, with 

the attendant promise of new discoveries about the functions that the frontal lobes 

support. 

Conclusion 

 Over recent years, the focus of cognitive neuroscientists shifted significantly 

towards the monitoring of brain activity in ‘real life’, especially when investigating those 

cognitive functions that might be difficult to study in a highly artificial experimental 

environment. We now have the possibility to do this thanks to the availability of new 

instruments such as wearable fNIRS systems.  

 In summary, the reviewed studies laid the foundations to future neuroscientific 

investigations with wearable fNIRS devices in more ecologically-valid contexts and in 

outdoor environments, starting from the basics and demonstrating the feasibility of the 

new generation of wearable fNIRS with a series of proof-of-principle experiments. 
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Having demonstrated the strengths and the limitations of this new technology, we believe 

that wearable fNIRS can find application in many different fields, addressing questions 

that cannot be investigated with previous technologies. It seems possible now with recent 

technological and conceptual developments in fNIRS that neuroimaging for cognitive 

neuroscience can now move ‘from lab to life’. 
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Table 1. Overview of the features of the commercially available wireless and wearable 

fNIRS systems (adapted from Quaresima and Ferrari (2016)). 

Device 
Company, 

Country 

Probed 

brain 

region 

Fibreless Wavelengths SD separation 

Brite23 
Artinis, The 

Netherlands 

Whole 

PFC 
 760, 850 nm 35 mm 

OctaMon 
Artinis, The 

Netherlands 
PFC  760, 850 nm 

35 mm (26 

mm for 

babies) 

PortaLite 
Artinis, The 

Netherlands 
Custom  760, 850 nm 30, 35, 40 mm 

Hb-13N Astem, Japan PFC X 770, 830 nm 

2, 4, 20, 30 

mm 

(spatially 

resolved) 

Pocket NIRS 

HM 

Dynasense 

Inc., Japan 
PFC X 

735, 810, 850 

nm 
30 mm 

fNIRS Imager 

1200M 

fNIRS Devices 

LLC., USA 
PFC X 730, 850 nm 2.5 mm 

WOT-100 Hitachi, Japan PFC X 705, 830 nm 30 mm 

WOT-220 Hitachi, Japan PFC X 705, 830 nm 30 mm 

WOT-HS Hitachi, Japan PFC X 705, 830 nm 21.2, 30 mm 

HOT-1000 Hitachi, Japan PFC X 810 nm 10, 30 mm 

Genie 
MRRA Inc., 

USA 
INF INF 700, 850 nm DOT 

NIRSport 

NIRx Medical 

Technologies, 

LLC, USA 

Custom  760, 850 nm Custom 

NIRSIT Obelab, Korea PFC X 780, 850 nm 
15, 21.2, 30, 

33.5 

LIGHTNIRS 
Shimadzu, 

Japan 
Custom  

780, 805, 830 

nm 
30 mm 

SPEEDNIRS 
Shimadzu, 

Japan 
Custom  

780, 805, 830 

nm 
30 mm 

OEG-16 
Spectratech 

Inc., Japan 
PFC X 770, 840 nm 30 mm 

OEG-16 ME 
Spectratech 

Inc., Japan 
PFC X 770, 840 nm 30 mm 

OEG-17APD 
Spectratech 

Inc., Japan 
Custom  770, 840 nm 30 mm 
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OEG-SpO2 
Spectratech 

Inc., Japan 
PFC X 770, 840 nm 30 mm 

Techen 

Wireless 

TechEn Inc., 

USA 
INF INF INF INF 

Abbreviations: SD= source-detector; PFC = Prefrontal cortex; DOT = Diffuse optical 

tomography; INF= Information not found. 
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Table 2. Summary of the populations investigated in the reviewed articles and overview of the experimental protocols. 

First author 

Population 

(n= number of participants; age in 

years ± SD) 

 Experimental protocol 

Behavioural task Conditions 
Study design 

Number of blocks; block duration 

Atsumori et al. 2010 
- Healthy young adults  

(n=6; 29.7 ± 3.3) 

- NW 

- DTW + attention 

demanding task 

- Rest 

- Control (NW) 

- Task 

- 1 block; 20 s. 

- 6 blocks; 10 s. 

- 5 blocks; 10 s. 

Balardin et al. 2017 

- Healthy young adults  

(n=1; 30) 

- Playing table 

tennis 

- Rest 

- Forehand 

- Predictable 

- Unpredictable 

- 10 blocks; 30 s. 

- 10 blocks; 20 s. 

- 10 blocks; 20 s. 

- 10 blocks; 20 s. 

- Healthy young adults  

(n=1; 26) 

- Continuous 

monitoring in 

everyday life 

- Everyday life 

activities 
- Continuous; 4 h. 

Doi et al. 2013 
- MCI old adults  

(n=16; 75.4 ± 7.2) 

- NW 

- DTW + verbal 

letter fluency task 

- Pre-task rest 

- Task 

- Rest 

- 3 blocks; 10 s. 

- 3 blocks; 20 s. 

- 3 blocks; 30 s. 

Maidan et al. 2016 

- Old adults with Parkinson's 

Disease (n=68; 71.6 ± 0.9);  

- Healthy old adults  

(n=28; 70.4 ± 0.9) 

- NW 

- DTW + serial 

subtraction 

- DTW + 

negotiating 

obstacles 

- Rest 

- Task 

- 5 blocks; 20 s. 

- 5 blocks; 30 s. 
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McKendrick et al. 2016 
- Healthy young adults  

(n=20; 18-29) 

- DTW + auditory 1-

back task 

- DTW + scenery 

probe 

- Rest 

- Task 

 

- 47 blocks; minimum 15 s. 

- 37 blocks; 60 s. 

- 10 blocks; 30 s. 

McKendrick et al. 2017 
- Healthy young adults  

(n=13; mean=22; range 19-31) 

- Sitting + auditory 

1-back task 

- DTW indoor + 

auditory 1-back 

task 

- DTW outdoor + 

auditory 1-back 

task 

- Task 

- 4 blocks; 120 s. 

- 2 blocks: 120 s. 

- 2 blocks, 120 s. 

Mirelaman et al. 2014 
- Healthy young adults  

(n=23; 30.9 ± 3.7) 

- NW 

- DTW + counting 

forward 

- DTW + serial 

subtraction 

- Standing + serial 

subtraction 

- Rest 

- Task 

- 6 blocks; 20 s. 

- 5 blocks; 30 s/30 m. 

Nieuwhof et al. 2016 
- Old adults with Parkinson's 

Disease (n=12; 70.1 ± 5.4) 

- DTW + counting 

forward 

- DTW + serial 

subtraction 

- DTW + reciting 

digit span 

- Rest 

- Task 

- 6 blocks; 20 s. 

- 5 blocks; 40 s. 

Pinti et al. 2015 
- Healthy young adults 

(n=1; 24) 

- DTW + ongoing 

task 

- DTW + PM 

- Rest 

- Ongoing task 

- 2 blocks; 60 s. 

- 2 blocks; 5 min. 

- 1 block; 5 min. 
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- Non-social 

PM task 

- Social PM 

task 

- 1 block; 5 min. 

Takeuchi et al. 2016 

- Healthy young adults 

(n=16; 25.9 ± 4.4) 

- Healthy old adults  

(n=15; 71.7 ± 3.3) 

- DTW + playing 

Touch the numbers 

- Rest 

- Task 

- 6 blocks; 30 s. 

- 15 blocks; 10 s. 

Abbreviations: NW = Normal walking; DTW = Dual-task walking; MCI = Mild cognitive impairment; PM = Prospective memory. 

 

 

 

Table 3. Summary of the fNIRS devices and data acquisition features. 

First author 

fNIRS data acquisition 

Wavelengths 
Number of 

channels 

Source-detector 

separation 
Cortical brain region 

Sampling 

frequency 

Atsumori et al. 2010 - 754 and 830 nm - 22 - 30 mm - PFC - 5 Hz 

Balardin et al. 2017 - 760 and 850 nm 

- 23 

- 30 mm 

- PFC 

- 7.81 Hz 

 - 22 

- supplementary 

motor  

and primary motor 

cortex 

Doi et al. 2013 - 770 and 840 nm - 16 - 30 mm - PFC - 1.54 Hz 
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Maidan et al. 2016 - 760 and 850 nm - 6 - 30, 35, 40 mm - PFC - 10 Hz 

McKendrick et al. 2016 - 730 and 850 nm - 4 - Not reported - PFC - 4 Hz 

McKendrick et al. 2017 - 730 and 850 nm - 4 - Not reported - PFC - 4 Hz 

Mirelaman et al. 2014 - 760 and 850 nm - 6 - Not reported - PFC - 10 Hz 

Nieuwhof et al. 2016 - 760 and 850 nm - 6 - 30, 35, 40 mm - PFC - 10 Hz 

Pinti et al. 2015 - 705 and 830 nm - 16 - 30 mm - PFC - 5 Hz 

Takeuchi et al. 2016 - 705 and 830 nm - 16 - 30 mm - PFC - 5 Hz 

Abbreviations: PFC = Prefrontal cortex.
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Table 4. Summary of the steps adopted for the fNIRS data pre-processing. 

 

First author 

fNIRS data pre-processing 

DPF 
Motion artifact 

correction 
Filtering Additional steps 

Atsumori et al. 2010 - N/A - Not performed - Not performed - Baseline correction 

Balardin et al. 2017 - Not reported - Not performed - BP filter [0.01 0.2] Hz - Down-sampling to 1 Hz 

Doi et al. 2013 - Not reported - Not performed - LP filter 0.05 Hz - Baseline correction 

Maidan et al. 2016 - Not reported - Wavelet-based - BP filter [0.01 0.14] Hz - CBSI; Baseline correction 

McKendrick et al. 2016 - Not reported - Not performed - LP FIR filter, 20th order, 0.1 Hz - Baseline correction 

McKendrick et al. 2017 - Not reported - Not performed - LP FIR filter, 20th order, 0.1 Hz - Baseline correction 

Mirelaman et al. 2014 - Not reported - Not performed - LP FIR filter, 0.14 Hz - Baseline correction 

Nieuwhof et al. 2016 - Constant (6.0) - MARA - LP Butterworth filter, 0.1 Hz - Baseline correction 

Pinti et al. 2015 - N/A - Wavelet-based 
- BP Butterworth filter, 3rd order, 

[0.008 0.2] Hz 

- Down-sampling to 1 Hz; 

CBSI 
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Takeuchi et al. 2016 - N/A - Not performed 
- Moving average 

- BP filter [0.01 0.5] Hz 
- Baseline correction 

Abbreviations: DPF = differential path length factor; BP = Band-pass; LP = low-pass; CBSI = correlation-based signal improvement; FIR 

= finite impulse response; MARA = movement artifact reduction algorithm.
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Table 5. Overview of the analysis of fNIRS data. 

First author 
fNIRS analysis 

Method Activation parameter Time used for the analysis 

Atsumori et al. 2010 - Averaging + t-test - HbO2 and HbR - 6 – 32 s after the start of the task 

Balardin et al. 2017 
- GLM + t-test 

- CWT 
- HbO2 

- Entire task block 

- 1 min 

Doi et al. 2013 - Averaging + t-test - HbO2 - Entire task block 

Maidan et al. 2016 - Averaging + Linear mixed model - HbO2 - Entire task block 

McKendrick et al. 2016 
- Averaging + Generalized and 

linear mixed model 
- HbO2 and HbR - Entire task block 

McKendrick et al. 2017 
- Averaging + Generalized and 

linear mixed model 
- HbO2 and HbR - Entire task block 

Mirelaman et al. 2014 
- Averaging + RM ANOVA 

- CWT 
- HbO2 - Entire task block 

Nieuwhof et al. 2016 
- Averaging + Wilcoxon signed-

rank test 
- HbO2 and HbR - Entire task block 

Pinti et al. 2015 - N/A - HbO2 and HbR - Entire task period 

Takeuchi et al. 2016 - Averaging + ANOVA - HbO2 - Entire task block 

Abbreviations: GLM = General linear model; CWT = Continuous wavelet transform; RM ANOVA = Repeated measures analysis of 

variance analysis.
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Table 6. Summary of the challenges associated with using fNIRS in naturalistic settings 

and recommended solutions. 

Challenge Solution 

Body 

movements 

Motion 

artifacts 

Correct through: 

- Wavelet-based filtering 

- tPCA 

Optical 

decoupling 
- Properly secure the fNIRS probes to the head 

Sunlight/Detector saturation 
- Protecting caps 

- Device with ambient light detector 

Signals’ quality deterioration/ 

Channels inclusion criteria 

- Visual inspection of signals 

- Exclude channels without heart rate oscillations 

- Exclude channels with CV>15%  

- Exclude non-measuring channels (e.g. flat lines) 

Systemic changes 

- Include longer rest periods (e.g., 2 min) 

- Band-pass filtering (NOTE: this removes some of the 

physiological noises, e.g. heart rate and respiration, but it 

is not effective in removing task-evoked systemic changes) 

- Measure additional physiological signals 

- Monitor participants’ movements (accelerometer or GPS) 

- Report results of HbO2 and HbR 

Statistical inference/ 

Unstructured protocols 
- Apply AIDE 

Abbreviations: tPCA = targeted principal component analysis; SNR = Signal-to-noise 

ration; CV = coefficient of variation. 
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Figure 1. Examples of wireless and wearable fNIRS devices in unrestrained situations. 

Panel A shows a fibreless system (WOT-100, Hitachi, Japan) monitoring the prefrontal 

cortex outside the lab. A black cap is used to prevent detectors saturation. In panel B, a 

wearable device equipped with fibres (LIGHTNIRS, Shimadzu, Japan) measuring over 

the motor cortices is presented, where wires are connected to the control unit carried 

through a backpack (Photo courtesy of Shimadzu, Japan). 
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Figure 2. Example of motion artifacts in raw fNIRS signals (A) as shifts from baseline 

values (green shaded areas) and fast spikes (yellow shaded areas), where HbO2 and HbR 

are correlated. Panel B shows the effect of the application of the tPCA approach for the 

correction of motion errors. HbO2 and HbR become anti-correlated after being properly 

corrected. Data refer to the study by Pinti et al., 2015. 
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Figure 3. Example HbO2 and HbR in absence of a good coupling between the optodes 

and the head (A). This is reflected by the presence of only white noise, with a constant 

PSD. Data were in-house collected on the visual cortex using the Hitachi ETG-4000 

during the presentation of a flashing checkerboard. In panel B, examples of channels 

corrupted by sunlight are shown, with consequent detector saturation. Data refer to the 

study by Pinti et al., 2015. The quality of fNIRS data can be assessed evaluating the 

presence of heart beat oscillations (C), visible both in the time- and in the frequency-

domain. Data correspond to resting-state signals in-house recorded over the PFC using 

the Hitachi WOT-system. 
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Figure 4. Heart rate (A), breathing rate (B), and acceleration (C) data referring to one 

participant undertaking the experiment described in Pinti et al. (2014). Yellow shaded 

areas indicate the conditions involving walking (W), while blue shaded areas represent 

the phases in which the participant was standing (S). 
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Figure 5. Breathing rate and unpre-processed concentration changes in oxy- and deoxy- 

haemoglobin referring to one participant undertaking the experiment described in Pinti et 

al. (2014). Yellow shaded areas indicate the conditions involving walking (W), while blue 

shaded areas represent the phases in which the participant was standing (S). 
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Figure 6. Example of HbO2 and HbR signals referring to one participant undertaking 

the experiment described in Pinti et al. (2015) (A). Magenta lines represent the time point 

in which the participant fist bumped two targets in the experimental area. Panel B shows 

the resulting activation model resulting from the application of AIDE (black line; Pinti et 

al., 2017), corresponding to the best fit with the activation signal (red line). The 

corresponding boxcar (black line) and the identified event onsets (orange asterisks) are 

illustrated in panel C. The estimated functional events occur 20 s before the participant 

reached the targets (magenta lines). 
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