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Abstract

Proton therapy is an advanced form of cancer treatment. To use this precise

technique to its full potential, a better understanding of the uncertainties in-

volved in the treatment process and their mitigation is necessary. This thesis

aims at the investigation, understanding, and improvement of three sources

of range uncertainties: (i) CT imaging and conversion to tissue, (ii) mean

excitation energies and (iii) lateral inhomogeneities in the irradiated object.

To predict the range of the proton beam within the patient, knowledge

of the tissues in the beam’s path is required. Clinically, the required tissue

characteristics are estimated using a single-energy CT (SECT) scan of the

patient. In this work, the potential of dual-energy CT (DECT) to improve the

estimation of tissue characteristics for proton therapy planning and the related

uncertainty is shown in two steps. In a first study, several DECT approaches

are compared in a theoretical study and their performance in realistic situations

is evaluated. In a second study, DECT-predicted tissue characteristics are

validated in an experimental setup using animal tissues.

To understand the influence of the mean excitation energy (I -value) on

the range uncertainty, elemental I -values for particle therapy planning are

revisited and an uncertainty budget is established. This enables the estimation

of stopping power and range uncertainties arising from I -values.

The largest source of range uncertainties in particle therapy planning

arises from lateral inhomogeneities in the irradiated body, introducing range

degradation. Conventional dose calculation algorithms use ray tracing to cal-
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culate the beam range, leading to severe range uncertainties. Monte Carlo

(MC) was demonstrated to reduce these uncertainties by accurately simulat-

ing particle transport in the patient geometry. In this work, the uncertainties

arising from lateral inhomogeneities are investigated with both, ray tracing

and MC techniques.
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Chapter 1

Introduction

1.1 Radiotherapy with protons

Proton radiotherapy is a form of cancer treatment utilizing a beam of acceler-

ated protons directed at the tumor. The main advantage of radiotherapy with

protons over radiotherapy with photons lies in their favorable dose deposition

pattern. Protons continuously slow down in many interactions with the elec-

trons and nuclei of the target material, depositing dose along their paths. Due

to the nature of the interactions, the energy loss and thus the energy deposited

locally in the target material increases with decreasing proton velocity, leading

to the formation of a well-defined dose peak, the so-called Bragg peak. A frac-

tion of the protons do not contribute to the Bragg peak due to large angular

scattering or interactions with the target nucleus. The Bragg peak is followed

by a steep dose fall off, with very low dose behind it arising from neutrons

and gamma radiation produced during nuclear interactions, giving the proton

beam a finite range within the irradiated material. This finite range, together

with the low entrance dose, results in a lower integral dose compared to photon

radiotherapy for a given target dose, and to a better sparing of healthy tissues

distal to the target volume.

In addition to the favorable depth dose deposition, another advantage of

proton therapy over photon therapy is the sharp lateral dose profile. A sharp
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lateral penumbra is important to spare organs next to the target volume. The

achievable penumbra depends on several factors, such as beam delivery system

and depth in the patient. Proton penumbras at shallow depths are steeper

than photon penumbras. However, while photon penumbras show a moderate

increase with depth, proton penumbras widen more drastically. For example,

the penumbra of a proton beam of a range of 28 cm in water is larger than a

15 MV photon beam [1].

In recent years, proton therapy has established itself as a preferred treat-

ment method for various indications. Those indications include, among others,

tumors of the central nervous system, head and neck cancers, hepatocellular

cancers, ocular tumors, base of skull tumors, and primary tumors in children

[2].

As of 2016, a total of approximately 150,000 patients were treated with proton

therapy (according to the Particle Therapy Co-Operative Group (PTCOG)

Patient statistics per end of 2016) [3], with the number of treatment centers

steadily growing. Currently, 79 particle treatment centers are operational,

with another 46 under construction and 22 in the planning stage (as of March

2018) [4].

1.1.1 Proton interactions with matter

In the following, the physical interaction processes of a beam of accelerated

protons with matter are described. In contrast to photons, protons and ions

are not attenuated by the atoms of the traversed material but slow down in

many interactions. The accelerated particle is referred to as the projectile,

while the traversed material is the target. The most frequent interactions are

collisions with shell electrons of the target material. This interaction leads to

the production of secondary electrons and ionization of the target atom, while

the projectile experiences a small amount of energy loss.

Another frequent interaction is scattering of the projectile off the electric field

of a target nucleus. The positively charged ion and the atomic nucleus repel

each other and the projectile gets deflected from its path. The scattering angle
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of a single scattering event is usually small, as described by the Rutherford

differential scattering cross section [5]. In thick absorbers, projectiles experi-

ence multiple Coulomb scattering (MCS) events, leading to a nearly Gaussian

angular distribution behind the scatterer. In case of a pencil beam of particles,

MCS will lead to a widening of the beam. The scattering probability and the

angular distribution of a pencil beam behind a thick absorber are described

by Moliére’s theory [6].

A third group of interactions are collisions with the atomic nucleus. These

nuclear interactions can be either elastic, nonelastic or inelastic. In an elastic

nuclear interaction, the incident projectile scatters off the target while the state

of target nucleus and projectile stay unchanged. In some cases, the collision

of projectile and target leads to excitation of the target nucleus, referred to

as inelastic nuclear interaction. In other cases, the collision leads to the frag-

mentation of the target nucleus, referred to as nonelastic nuclear interaction.

Particles that underwent inelastic or nonelastic nuclear interactions are called

secondary particles.

1.1.2 Energy loss of protons

Protons traversing a slab of material loose their energy in many interactions

with the atoms of the target material, until coming to rest. The mean energy

loss dE of a beam of particles traversing through a slab of material dx is

defined as

S =
dE

dx
, (1.1)

where S is the linear stopping power of the material. The stopping power

consists of several components accounting for electronic (el), radiative (rad)

and nuclear (nuc) effects

S =

(
dE

dx

)
el

+

(
dE

dx

)
rad

+

(
dE

dx

)
nuc

. (1.2)

For protons at therapeutic energies, the dominating contribution to the en-

ergy loss is the electronic stopping power, also called collision stopping power
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dE
dx

)
el

. The radiative stopping power accounts for radiative losses from

Bremsstrahlung and is irrelevant for protons at therapeutic energies. The

nuclear stopping power describes the energy loss from elastic Coulomb scat-

tering and is only relevant at low proton energies. Please note that energy loss

due to nuclear nonelastic interactions is usually not included in S.

The energy loss of particles was formulated by Bethe (1930) [7], with several

corrections added retrospectively [8] and is described as

− dE

dx
= k

z2

β2
Ne

(
ln

2mec
2β2

I (1− β2))
− β2 − C

Z
− δ

2

)
. (1.3)

In the above equation, k is a constant, z the projectile charge (z = 1 for pro-

tons), β is the velocity of the projectile relative to the speed of light c, Ne is

the electron density of the target medium, me is the electron rest mass, I is

the mean excitation energy of the medium, C is the shell correction constant,

Z the atomic number of the target material, and δ the density correction con-

stant.

The most important property in the Bethe-Bloch formula is the inverse de-

pendency on the particle velocity, which describes the increase in energy loss

with decreasing particle velocity.

The shell correction term C
Z

becomes important only at low energy when the

projectile velocity is lower than the orbital velocity of the shell electrons of the

target atoms. The density correction term δ
2

corrects for dielectric polarization

effects of the traversed medium and is only important at high energies and in

dense materials. Further corrections can be applied that are not included in

the here presented version of the Bethe-Bloch formula. All applied corrections

are very small at therapeutic energies.
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1.1.3 Range of protons

The total path length R of a particle with initial energy E is given by the

integration of the energy loss over the whole energy range

R(E) =

∫ E

0

(
dE ′

dx

)−1

dE ′. (1.4)

The quantity R is similar to the mean range of the particles since scattering

is relatively small. It is assumed that the particle is continuously slowed down

in many interactions while crossing the medium, hence R is referred to as con-

tinuously slowing down approximation (csda) range. It should be noted that

the csda range is larger than the penetration depth due to scattering.

The integration of the Bethe-Bloch formula over the energy range gives the

mean range of a particle beam. Due to statistical variations, particles with

the same initial energy have varying path lengths. This results, for a thick

absorber, in a Gaussian shaped range distribution, referred to as range strag-

gling.

1.1.4 Sources of range uncertainties

An important part of proton therapy treatment planning is the estimation of

the beam range within the patient. In an ideal scenario, it would be possible

to accurately predict the beam range in human tissues. Due to uncertainties

during the treatment planning and delivery process, the delivered beam range,

however, differs from the predicted beam range. To ensure full coverage of

the treatment volume, range uncertainties are taken into account by adding

margins to the treatment volume. As a consequence, a substantial amount

of healthy tissue receives the full treatment dose, increasing the risk of side

effects. No clinical consensus on the size of these margins exists, but centers

often use 3.5% of the predicted range plus an absolute value. The different

sources of uncertainties and their contribution to the margin are summarized

by Paganetti (2012) [9], and again listed here in table 1.1. Paganetti identifies

two categories of sources of uncertainties in a patient treatment. The first
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category of uncertainties is largely independent of the dose calculation and

includes measurement uncertainties during commissioning, uncertainties from

the compensator, uncertainties from beam reproducibility, and uncertainties

from patient setup. The second category of uncertainties comes from the dose

calculation itself and includes uncertainties from biological effects, computed

tomography (CT) imaging and the conversion into relevant quantities, uncer-

tainties from the mean excitation energy, and the uncertainties from range

degradation. The main uncertainties occur in the second category, and efforts

to improve range predictions should be focused on the aforementioned sources

of uncertainties.

Range uncertainties from CT imaging

From a physical point of view, the reduction of uncertainties coming from dose

calculation is of current research interest. Several research groups focus on the

reduction of uncertainties from CT imaging and conversion to relevant quan-

tities. In clinical practice, the range is predicted based on a single-energy CT

(SECT) scan of the patient. The acquired CT numbers are converted into the

quantities needed to calculate the beam range. These quantities can be rela-

tive stopping powers (RSPs, also referred to as stopping power ratio (SPR)) for

analytical dose calculation techniques [10], or densities and elemental composi-

tions of body tissues for Monte Carlo (MC) based dose calculation techniques

[11]. In the first case, the conversion of CT numbers to RSP values is based on

a bi-linear relation between measured CT numbers and RSP values of different

tissue-equivalent plastics. The effect of nuclear interactions and secondary par-

ticles, which presents as a low dose envelope often referred to as ’beam halo’,

is usually estimated from a semi-empirical model [12]. In the second case, the

required densities and elemental compositions are found by segmentation, i.e.

assigning a range of CT numbers to a certain body tissue and assume uni-

form densities and compositions within the assigned tissue. From the assigned

densities and compositions, RSP values are calculated for the transport of the

primary beam, and nuclear interaction cross sections are calculated to simu-



1.1. Radiotherapy with protons 33

late secondary particles from nuclear interactions. In both cases, errors are

introduced during the conversion process since SECT does not provide enough

information to accurately estimate tissue-specific quantities relevant to proton

therapy planning. A popular approach for a better characterization of tissue

quantities from CT imaging is to replace the currently used SECT imaging

by dual-energy computed tomography (DECT) imaging. With DECT, two

CT images of the same volume at different energies are acquired, providing

another layer of information that can be used to estimate quantities needed

for treatment planning. Different mathematical models were proposed in lit-

erature [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] to convert DECT images into

images of RSP values that can be used as in input into parametric treatment

planning algorithms. Other models focus on the estimation of densities and

elemental compositions of body tissues [24, 25, 26] as input for MC-based dose

calculations.

Range uncertainties from mean excitation energies

Another major source of uncertainties in dose calculation comes from the mean

excitation energies, or I -values. The I -value is, next to the electron density

(ED), the second tissue-specific quantity necessary to estimate the RSP from

CT imaging. While the I -values of unbound elements and simple composite

materials can be derived from stopping power data or calculated from semi-

empirical dipole oscillator-strength distributions (table 4.1 in ICRU report 37

[27]), the I -values of human tissues carry great uncertainty. Various studies

were performed in the past to accurately determine the I -value of liquid water

[28, 29, 30, 31, 32, 33], with results varying by approximately 15%. These vari-

ations arise from different measurement setups, different applied corrections to

the Bethe formula, as well as errors inherent to the analysis of the measure-

ments. Considering that liquid water is a relatively simple composite material

compared to human tissues, the uncertainties on human tissue I -values can be

assumed similar or higher. Currently, a simple model is applied to estimate tis-

sue I -values needed to calculate tissue RSPs, the Bragg additivity rule. With
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this model, one can estimate tissue I -values by performing a weighted sum of

the logarithmic elemental I -values. Associated limitations lie in the simplicity

of the model since the I -value of an element changes with the bonding state

of the element within a composition. Clinically used elemental I -values were

proposed in 1981 [34] and adopted in the ICRU report 37 in 1984 [27], without

a thorough uncertainty budget on those values or the Bragg additivity rule

itself. The later ICRU report 49 [35] adapts these values for the use in proton

and ion radiotherapy. Paganetti (2012) [9] recommends to account for range

uncertainties from tissue I -values of 1.5%. This value is based on a paper by

Andreo (2009) [36], who estimated the uncertainty on tissue I -values to be

about 5-15%.

Range uncertainties from range degradation

One of the largest sources of range uncertainties in particle therapy planning

arises from lateral inhomogeneities in the irradiated body. Interfaces between

tissues with very different densities (such as soft tissue - lung interfaces or

soft tissue - bone interfaces) introduce range degradation. Analytical dose

calculation algorithms use ray tracing to calculate the beam range, based on the

water equivalent thickness of human tissues in the beam path, neglecting the

effects of multiple Coulomb scattering and straggling [37, 38]. This can lead to

severe range uncertainties in body sites that contain inhomogeneities [39]. The

review by Paganetti suggests to include a global relative range uncertainty of

2.5% to the treatment margin to account for range degradation with ray tracing

techniques. This review also pointed out the potential of MC dose calculation

techniques to reduce these range errors to a level of 0.1%, as demonstrated in

earlier studies [40].

1.1.5 Margins in proton therapy

Uncertainties including the ones listed above limit the accuracy of radiother-

apy. To ensure full target coverage, the errors and uncertainties that can arise

during treatment need to be taken into account during radiotherapy plan-
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Table 1.1: Sources of range uncertainties in proton therapy as listed in [9]. The
here quoted values for the range uncertainties are estimates (based on
1.5 standard deviations) taken from different publications. Values ex-
press confidence intervals, those with a + and - sign refer to asymmetric
intervals around the estimate. The values given in mm are absolute un-
certainties, values given in % are relative uncertainties. The bottom
lines are the total uncertainties, quoted as a mixture of relative and
absolute uncertainties. This work focuses on the investigation of those
uncertainties printed in bold.

Source of range uncertainty without MC with MC
Independent of dose calculation
Measurement uncertainty in water 0.3 mm 0.3 mm
Compensator design 0.2 mm 0.2 mm
Beam reproducibility 0.2 mm 0.2 mm
Patient setup 0.7 mm 0.7 mm

Dose calculation
Biologyˆ +0.8% +0.8%
CT imaging and calibration 0.5% 0.5%
CT conversion to tissue 0.5% 0.2%
CT grid size 0.3% 0.3%
Mean excitation energies in tissues 1.5% 1.5%
Range degradation: complex inhomogeneities −0.7% 0.1%
Range degradation: local lateral inhomogeneities* 2.5% 0.1%

Total (excluding ˆ,*) 2.7% + 1.2 mm 2.4% + 1.2 mm
Total (excluding ˆ) 4.6% + 1.2 mm 2.4% + 1.2 mm

ning. The uncertainties occurring during treatment can be of systematic or

random nature. For example, errors arising from target delineation are purely

systematic as they affect all fractions in the same way, whereas setup errors

and errors from organ motion have a systematic and a random component

[41]. Random and systematic errors have different effects on the delivered dose

distribution. While Random errors blur the dose distribution [42], systematic

errors introduce a shift of the cumulative dose relative to the planned dose

distribution [43].

The IRCU [44] defines the treatment volumes as follows:

1. Gross Tumor Volume (GTV): ”The GTV is the is the gross palpable or

visible/demonstrable extent and location of malignant growth.”
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2. Clinical Target Volume (CTV): ”The CTV is a tissue volume that con-

tains a demonstrable GTV and/or subclinical microscopic malignant dis-

ease, which has to be eliminated. This volume thus has to be treated

adequately in order to achieve the aim of therapy, cure or palliation.”

3. Planning Target Volume (PTV): ”The Planning Target Volume is a ge-

ometrical concept, and it is defined to select appropriate beam sizes and

beam arrangements, taking into consideration the net effect of all the

possible geometrical variations, in order to ensure that the prescribed

dose is actually absorbed in the CTV.”

In the above definitions, the PTV is an expansion of the CTV and contains

all treatment uncertainties. The PTV is hence the volume to be irradiated to

ensure full coverage of the CTV with the prescribed dose. However, there are

no unambiguous guidelines in the above mentioned ICRU report on how to

expand the CTV into a PTV. For that purpose, Stroom et al. [45] and van

Herk et al. [43] provided analytical descriptions of the effect of random and

systematic geometrical errors and suggest recipes on how to derive the PTV

margin based on coverage probabilities. Stroom et al. recommend a margin

of 2 times the standard deviation of the systematic errors plus 0.7 times the

standard deviation of random errors. Van Herk et al. recommend a margin

of 2.5 times the standard deviation of the systematic errors plus 0.7 times

the standard deviation of random errors. The here summarized considerations

were made for radiotherapy with photons and are applied in clinical routine.

The principal is taken over for proton and ion radiotherapy. Additionally, the

uncertainties arising from dose calculation,as listed in table 1.1, need to be

considered and included in the margin recipe.

1.2 Research aims and objectives

Although it was shown in earlier studies that DECT is capable of predicting

the RSP values accurately and DECT scanners are routinely available, it is



1.2. Research aims and objectives 37

not yet used for proton therapy treatment planning. The reason for this is

that the conversion models (DECT images to RSP values) were only tested

in a theoretical framework using ideal CT numbers of a set of standard hu-

man reference tissues. The performance of the conversion models in realistic

situations with CT artifacts and tissues is still unclear. The evaluation of

the performance in realistic situations is not a straightforward task for two

reasons. Firstly, it cannot be undertaken using routinely used CT calibration

phantoms. These phantoms do not resemble a human body in elemental com-

positions and are therefore not suitable to draw conclusions on the accuracy of

a conversion model. Secondly, it cannot be undertaken in patient scans, since

the elemental compositions and densities of body tissues are unknown. To

investigate the performance of DECT predicted RSPs in realistic situations,

this project focuses on the following aims.

1. Evaluate the potential of DECT to reduce range uncertainties in a con-

trolled theoretical environment. The objectives of this project are:

� Implement DECT conversion models suggested in the literature.

� Develop a virtual phantom with known ground truth and simulate

DECT and SECT images containing CT artifacts and noise.

� Compare the performance of different DECT and SECT conversion

models using simulated images of the virtual phantom.

� For the best performing DECT conversion methods, evaluate the

range accuracy and uncertainties for different levels of image noise

and compare to SECT.

2. Evaluate the potential of DECT to reduce range uncertainties in a real-

istic clinical environment. To meet this aim, the WER of animal tissues

is measured in a proton beam. The measured tissue WER values give

the opportunity to assess the accuracy of SECT and DECT calibrations

and compare them. Furthermore, they can be used to investigate the
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effect of the range calculation algorithm (RT or MC) on the predicted

range. The objectives of this project are:

� Develop an efficient method to measure water equivalent ranges

(WER) of a proton beam in animal tissues.

� Measure the WER of a proton beam through animal tissue samples.

� Estimate the WER based on SECT and DECT images of the sam-

ples and compare the accuracy.

� Calculate the WER based on a CT scan of the samples using a) ray

tracing and b) MC to model the beam transport.

� Compare the accuracy of both models and report on the potential

improvement with MC.

Since animal tissues were used in the above study, knowledge on elemental

compositions, densities and therefore stopping powers is unavailable. The

only measurable quantity relevant here is the WER of the proton beam af-

ter traversing the samples. When comparing this WER with those predicted

from SECT or DECT, the resulting uncertainties are a combination of CT

imaging/conversion uncertainties and uncertainties on the I -values. The ex-

perimentally observed range uncertainty, however, is found to be much lower

than the values tabulated by Paganetti (approximately 0.7% for CT imag-

ing/conversion and 1.5% for I -values), suggesting that these numbers are over-

estimated for the here investigated applications. A further limitation when es-

timating tissue parameters for range prediction is, therefore, the I -value itself,

defining the new aim of this thesis as follows.

3. Perform a rigorous investigation of the I -value uncertainties and their

influence on RSP values and beam ranges. In order to improve the

understanding of I -value uncertainties and how they translate into RSP

and range uncertainties, the following objectives are defined:
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� Develop a theoretical model to optimize elemental I -values for the

use in compounds in combination with the Bragg additivity rule.

� Establish a framework to quantify uncertainties associated with the

elemental mean excitation energies and the Bragg additivity rule.

� Investigate how these uncertainties translate into RSP uncertainties

and proton beam range uncertainties and provide an uncertainty

budget.

Each of the above-listed aims was published as a first author paper in peer-

reviewed journals during the course of this PhD.

1.3 My contribution

The work presented in this thesis was performed as a collaboration between

different centers, with the involvement of scientists with clinical and theoretical

backgrounds. The following centers were involved with this work:

� Proton and Advanced Radiotherapy Group, Department of Medical

Physics and Biomedical Engineering, University College London (UCL),

London, UK

� Acoustics and Ionising Radiation Team, National Physical Laboratory

(NPL), Teddington, UK

� Department of Radiation Oncology, Massachusetts General Hospital

(MGH), Boston, MA, USA

� Centre hospitalier de l’Université de Montréal (CHUM), Montréal,

Québec, Canada

� Département de Physique, Université de Montréal, Montréal, Québec,

Canada

� Department of Medical Radiation Physics and Nuclear Medicine,

Karolinska University Hospital, Stockholm, Sweden
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During the course of my PhD, I spent time at each of the first four centers.

The project required work in different research areas, with my contribution to

each of these areas listed below.

� Identifying the clinical relevance of DECT for proton therapy

planning: Before starting the PhD in Medical Physics at UCL, I under-

went the two years training to become a clinical scientist at the German

Cancer Research Center (DKFZ) in Heidelberg, Germany. This program

allowed me to spend equal amounts of time in three different facilities in

Heidelberg: DKFZ, the University Clinic, and the Heidelberg Ion Beam

Therapy (HIT) facility. Having acquired clinical experience in different

advanced radiotherapy methods, I was well able to identify the need for

better tissue characterization, especially for proton and ion radiother-

apy. With the first two UK based NHS proton therapy centers at the

University College London Hospital (UCLH) and the Christie in Manch-

ester being developed, the expertise in imaging for proton therapy is very

limited. After conversations with clinical scientists at UCL, UCLH, and

NPL, I selected this particular project.

� Tissue characterization methods from CT imaging: After a

thorough literature research on tissue characterization with SECT and

DECT, I noticed the variety of proposed CT to RSP conversion models in

the literature. Furthermore, a comparison between different models was

impossible since every publication used different materials to test their

models. During a discussion with my supervisors, I decided to implement

and test each model on simulated images so that inter-comparison and

performance evaluation was possible. I developed a method to calcu-

late range errors and range uncertainties introduced by the CT to RSP

conversion model and applied it to each method.

� Development of experimental range measurement techniques: I

worked together with scientists at NPL and MGH to develop an efficient
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method to measure water equivalent beam ranges in animal tissue sam-

ples. I spent a full year at the Francis H. Burr proton therapy center in

MGH to help developing an efficient and accurate measurement method.

I was involved in the development and calibration of the method. I

tested the developed method using water phantoms and different tissue-

equivalent materials.

The range measurement technique was used to verify the proton ranges

predicted by SECT and DECT in animal tissue samples. For this part

of the project, I performed the experiments and CT scans and wrote the

codes to convert CT numbers into RSP values. I adapted an existing ray

tracing algorithm to predict the WER from the RSP values of the tissue

samples.

� MC treatment planning: When predicting beam ranges from SECT

or DECT, one first voxelwise converts CT numbers to RSP values or

elemental compositions using a conversion model. During the analysis of

the experimental data, I first decided to use a simple ray tracing algo-

rithm to predict the beam ranges from the RSP maps, as it is commonly

done in clinically used treatment planning systems. The observed errors,

especially in samples containing bone tissues, were larger than expected.

I decided to use MC to model the beam transport through my sam-

ples, which largely improved the range prediction. Since measured WER

values for those samples were available, I decided that it was feasible

to investigate the range prediction errors introduced by ray tracing as

compared to MC.

� Quantification of range uncertainties: As above mentioned, I had

quantified the range uncertainties arising from the CT to RSP conversion

model on a theoretical ground. After the analysis of the animal tissue

experiments, I noticed that the observed uncertainty is much lower than

the uncertainty quoted by Paganetti (2012). Since the observed uncer-
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tainty is a combination of uncertainties from CT to RSP conversion and

I -value, I decided to work on the quantification of I -value uncertain-

ties alone. I developed a mathematical model to optimize the I -values

for the use in compound materials and estimate their uncertainties. I

propagated the uncertainties to RSP and range uncertainties, such that

a better understanding of range uncertainties stemming from I -value

uncertainties alone is possible.

1.4 Impact and novelty of the work

The research presented in this thesis focuses on the improvements in range

accuracy and uncertainty achievable with DECT. The following aspects are

novel:

� Comparing the performance of various DECT conversion mod-

els: In recent literature, many models were published to convert DECT

images into maps of RSP values or elemental compositions. These papers

quote the accuracy of the proposed model in a self-consistency man-

ner, meaning that the model is tested on the same data as they were

calibrated on. Furthermore, each published method uses different cali-

bration materials, making the comparison of accuracies between models

difficult. This thesis provides the first comparison of different suggested

models and their accuracies to predict proton ranges. This part of the

work impacts clinical decision making, by giving clinicians an overview

of DECT conversion models proposed in literature, their accuracy and

the uncertainty related to the conversion model.

� Sensitivity of DECT predicted tissue parameters to image

noise: Since the published models were only tested in a theoretical

scope, it was unclear how sensitive the predicted RSP and range val-

ues are to imaging artifacts. This thesis presents the first investigation

of the influence of noise and beam hardening on these models. An im-

portant finding of this study is that noise impacts the DECT to RSP
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conversion, to a point where the benefits of using DECT can be lost over

the noise robustness of SECT conversion models. This important result

impacts future work, therefore efforts to make DECT conversion models

more robust to noise were made hereafter, such as methods suggested in

Bär et al. (2018) [46] or Lalonde et al. (2017) [47].

� Modeling of range uncertainties: The developed theoretical method

to assess range accuracy and uncertainty from RSP errors allows the

quantification of range uncertainties introduced from the CT to RSP

conversion method. This method was used in Lalonde et al. (2017) [47]

to assess the range accuracy and uncertainties when using multi-energy

CT (MECT) to estimate elemental compositions. This method is also

applicable to other RSP prediction or measurement methods, such as

proton or ion tomography.

� Validation of DECT predicted ranges using animal tissue sam-

ples: This thesis presents the first end-to-end test of range predictions

with DECT and compare them to SECT in animal tissue samples. It is

the first to demonstrate the achievable improvement in range uncertainty

and the first to demonstrate the benefits of DECT in a clinical setup.

This part of the work states the superiority of DECT over SECT to

predict RSPs and elemental compositions in body tissues and therefore

impacts the future of radiotherapy planning strategies. This study shows

that DECT can safely be used for proton and ion therapy planning, and

might lead to an adaption of clinical margins.

� Experimental investigation of range errors introduced by the

dose calculation algorithm: This thesis presents the first study to

demonstrate the range uncertainties introduced by a ray tracing algo-

rithm in a situation where the ground truth is known, and the improve-

ments that can be achieved by using MC for range prediction. It provides

further rationale to push for full MC treatment planning systems. Ad-
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ditionally, it provides an estimate of the range uncertainties introduces

when ray tracing is used.

� A new set of elemental I -values and uncertainties: This thesis

revisits elemental I -values since the clinically applied values were es-

tablished in 1981 and not revisited since. The here proposed elemental

I -values were established using a mathematical model and a large set of

calibration data. This thesis also presents the first thorough and rigorous

model to estimate range uncertainties coming from I-values alone. The

demonstrated uncertainties can be used clinically to adjust the treatment

margin.
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The potential of dual-energy CT

to reduce proton beam range

uncertainties

The work presented in this chapter can be found in the following peer-reviewed

journal articles:

1. Bär, E., Lalonde, A., Royle, G., Lu, H.-M. and Bouchard, H. (2017).

The potential of dual-energy CT to reduce proton beam range uncertain-

ties. Medical Physics 44: 2332-2344. doi:10.1002/mp.12215.

2. Lalonde, A., Bär, E. and Bouchard, H. (2017) A Bayesian approach to

solve proton stopping powers from noisy multienergy CT data. Medical

Physics 44: 5293-5302. doi: 10.1002/mp.12489.

It was also presented at the following conferences:

3. Bär, E., Lalonde, A., Royle, G., Lu, H.-M. and Bouchard, H. (2016).

On the Performance of Four Dual Energy CT Formalisms for Extract-
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other work presented in this chapter was done by myself.

2.1 Introduction

Conventionally, radiotherapy planning is based on CT images. For proton

therapy dose calculation, CT numbers need to be converted into tissue SPRs

relative to water, which are used to calculate the beam range in the patient

and the energy deposited along the penetration path. To exploit the full

benefits of protons and to avoid errors on dose delivery at the distal fall-off,

accurate conversion from CT numbers to SPR is essential. To further improve

clinical outcomes of proton therapy, one must aim at a higher precision, which

allows us to reduce safety margins and thus irradiate less healthy tissue while

maintaining conformal target dose.

In clinical practice, human tissue characterization for treatment planning

is achieved by acquiring a CT scan on the patient and then converting the

data into SPRs. Conventionally, the CT scan is acquired using a single energy

spectrum, and one clinically reliable method to obtain SPR from CT numbers

is the calibration method proposed by Schneider et al. (1996) [10]. In this

procedure, a relation between calculated SPRs of human reference tissues [48,

49], and CT numbers (in Hounsfield units (HU)) are determined using a plastic

phantom with radiological properties equivalent to that of human tissues.
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The calibration of Schneider et al. (1996), referred to as the SECT sto-

ichiometric calibration method throughout this chapter, is fairly accurate in

predicting human tissue SPR [50]. Schaffner and Pedroni (1998) verified the

SECT stoichiometric calibration by measuring pairs of CT numbers and SPR

using animal tissue samples. They found an accuracy in SPRs of ± 1.1% for

soft tissues and ± 1.8% for bones, which translates into range uncertainties of

up to 3 mm for therapeutic energies. In more recent work, the combined uncer-

tainty in proton range estimation was reported to be 2.7-3.5% + 1.0-1.2 mm

(1.5 standard deviations), excluding biological effects [51, 9]. While a large

uncertainty is associated with the knowledge of the mean excitation energy

(I-value) [9], another limitation in the accuracy of proton beam treatment

planning is from CT data. In SECT, data is limited to a single dimension

per voxel and this is problematic since HU-SPR calibration curves are not

one-to-one relations (i.e., bijections) for human tissues. While both HU and

SPR values are dominated by the ED, these quantities depend on other tissue

properties, such as the effective atomic number (EAN) or the I-value [51, 9].

In turn, these properties depend on the elemental composition. Small patient-

to-patient variations in density and elemental compositions were shown to

introduce significant changes in CT numbers [23]. These variations are not

necessarily resolved by the SECT stoichiometric calibration since the HU-to-

SPR conversion approach cannot explicitly decouple the dependency of CT

numbers on elemental compositions and mass density, therefore limiting the

precision to which tissue characteristics can be resolved.

DECT has the potential to improve the conversion of CT data to SPR.

Over the last decade, several papers were published on DECT to either show

potential benefits for radiotherapy or to propose a mathematical formalism

to extract tissue parameters relevant to dose calculation. Recent publications

propose the extraction of ED and EAN (or alternatively, extraction of the

I-value), from DECT images [52, 53, 21, 16, 15, 13, 20, 14, 26]. These meth-

ods rely on post-reconstruction data analysis, conversely to sinogram-based
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methods (e.g., Refs. [54, 55]) which are yet to be fully explored. Studies on

DECT for proton therapy typically report errors on stopping power determi-

nation between 0.5% and 1.5% [52, 53, 21, 16, 15, 13, 20, 14, 26]. Although

there exists no direct relation between X-ray attenuation and stopping pow-

ers, it was shown that DECT has the potential to substantially improve proton

radiotherapy planning as it is widely clinically available.

This study is aimed at evaluating the potential of DECT to reduce proton

beam range uncertainties in a clinical context, with focus on CT artifacts and

noise, and leaving aside uncertainties related to the I-value and the CT grid

size. The performance of different mathematical techniques to predict proton

stopping powers is compared theoretically, experimentally and with simulated

CT data. Since a consistent basis is needed for such comparison, all methods

are compared under the same conditions using the same calibration phantom,

CT images, and statistical quantities. The resulting distributions of SPR er-

rors are used to estimate the impact on proton beam range uncertainties, in

this way allowing estimating the gain in precision provided by DECT in a

clinical environment. A comparison against the SECT stoichiometric method

is achieved in order to predict the potential clinical impact of DECT in proton

therapy dose calculation.

2.2 Methods

2.2.1 Photon attenuation in mixtures and compounds

The attenuation of photons traveling through media is described by the

Lambert-Beer law

φ(x) = φ(0) · e−µx, (2.1)

where φ(x) is the photon flux at point x, φ(0) is the initial flux and is µ the

linear attenuation coefficient. The linear attenuation coefficient is defined as

µ =

 ρZ
A
NAσe for electronic interactions

ρ 1
A
NAσa for atomic interactions,

(2.2)
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where ρ is the mass density of the material Z is the atomic number, A is

the mass number, NA is Avogadro’s number and σe,a is the interaction cross

section for electronic or atomic interactions. Generally, the interaction cross

section σ is dependent on the atomic number Z of the interacting medium and

the photon energy E,

σ ≡ σ(Z,E). (2.3)

The electron density of a medium is given by

Ne = ρNA

(
Z

A

)
med

. (2.4)

We define the average
(
Z
A

)
med

as

(
Z

A

)
med

=
∑
i

ωi

(
Z

A

)
i

, (2.5)

with ωi being the fraction of mass associated with the i-th element.

The mass attenuation coefficient for a mixture or compound can be ap-

proximated as the weighted sum of attenuation coefficients of the constituents

i [56]

(
µ

ρ

)
med

=
∑
i

ωi
µi
ρi

= NA

(
Z

A

)
med

σe,med. (2.6)

This expression neglects any changes in attenuation properties resulting from

molecular binding.

In CT imaging, the attenuation coefficient is measured in terms of CT

numbers, expressed in Hounsfield Units (HU):

CT number =
µ− µw

µw

· 1000, (2.7)

with µ being the attenuation coefficient of the respective medium at the re-
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spective energy and µw being the attenuation coefficient of water. From CT

numbers, the tissue attenuation coefficient can be derived.

From eq. (2.2) we know that the attenuation coefficient µ of a medium

is defined as the product of the electron density relative to water ρe and the

electronic cross section σe. The electronic cross section describes the probabil-

ity of a photon interacting with the material. It can therefore be expressed as

the sum of the probabilities of the interactions

σe(E,Z) =
σa(E,Z)

Z
= [σph(E,Z) + σincoh(E,Z) + σcoh(E,Z)]e , (2.8)

where σph is the cross section of the photoelectric interaction, σcoh is the cross

section of coherent scatter and σincoh is the cross section of incoherent scatter.

The interaction cross section is a function of the photon energy E and the

atomic number Z of the element involved in the interaction. If the interaction

happens with a medium or compound, the atomic number is replaced by the

EAN of the medium. In literature, several parametrization of σ(E,Z) have

been proposed.

� Alvarez and Macovski, 1976

Alvarez and Macovski [57] suggested to parametrize the attenuation co-

efficient in the form of

µ(E,Z) = Ne

(
K1

Zk

El
+K2fKN(E)

)
, (2.9)

with constants K1 and K2 and the Klein-Nishina function fKN(E). The

exponents k and l are energy dependent, but classically approximated

with k = 3 and l = 3. The first term describes the energy dependence

of photoelectric interactions, which is approximated as Z3

E3 . The second

term gives the energy dependence of the total Compton scattering cross

sections, as derived by Klein and Nishina in 1929 [58]. The influence of

coherent scatter is not considered in this parametrization.
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� Rutherford et al., 1976

Rutherford [59] suggested a general expression for the parametrization

of cross sections, which is given as

σ = AE−mZn. (2.10)

The parameters A, m and n were found via fitting the parameters to

cross section data of oxygen. The resulting expression for the attenuation

coefficient is as follows

µ = 20.64E−3.82Z4.62
eff Neff + fKNZeffNeff + 2.80E−2.02Z2.86

eff Neff, (2.11)

with Neff being the effective number of atoms per volume and Ne =

ZeffNeff. The first term describes attenuation via photoelectric absorp-

tion, the second term is the Klein-Nishina cross section and the third

term corrects for coherent scatter and binding energy effects.

In a more general way and not confined to the cross section data of

oxygen, eq. (2.11) can be written as follows

µ = Ne

[
KphZm +KcohZn +KKN

]
, (2.12)

with the Klein-Nishina cross section [58] KKN, m and n are energy de-

pendent.

� Jackson and Hawkes, 1981

Jackson and Hawkes [60] describe the cross section based on the formal

theory of photoelectric effect and scattering. Thereby, the atomic cross

section of the photoelectric effect is given as

aσ
pe(E,Z) =

[
4
√

2Z5α4

(
mc2

E

) 7
2 8

3
πr2

e

]

×
[
2π
(εK
E

) 1
2
f(n1)

]
[1 + Fns(β)] UN(E,Z). (2.13)
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In the first factor, α is the fine structure constant, mc2 is the electron

rest mass energy, r2
e is the classical electron radius. In the second factor,

εK describes the k-shell binding energy and is given as

εK =
1

2
(Zα)2(mc2), (2.14)

and

n1 =

[
εK

(E − εK)

] 1
2

, (2.15)

f(n1) =
exp(−4n1 cot−1(n1))

1− exp(−2πn1)
. (2.16)

The first two factors in eq. (2.13) represent the atomic Stobbe cross

section (aσ
ST
ls ) for the k-shell. The third factor is a correction factor

accounting for relativistic effects, given as

[1 + Fns(β)] = 1 + 0.143β2 + 1.667β8, (2.17)

with β = v
c
, with v is the velocity of the photoelectron. The last factor

UN(E,Z) accounts for screening of the nucleus by atomic electrons.

The combined cross section for coherent and incoherent scattering is

proposed as

aσ
coh(E,Z) +a σ

incoh(E,Z) =

Z eσ
KN(E) + (1− f(Z)Z−1)

[(
Z

Zs

)2

a

σcoh(Es, Zs)

]
, (2.18)

with eσ
KN(E) the Klein-Nishina cross section, f(Z) = Z0.5, Zs is a stan-

dard element used for scaling the coherent scatter cross section as a

function of the standard energy Es = (Zs/Z)1/3E. Jackson and Hawkes

suggested to use oxygen as a standard element for human tissues. The
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Klein-Nishina cross section is calculated as

eσ
KN(E) = 2πr2

e

×
{

1 + δ

δ2

[
2(1 + δ)

1 + 2δ
− 1

δ
ln(1 + 2δ)

]
+

1

2δ
ln(1 + 2δ)− 1 + 3δ

(1 + 2δ)2

}
,

(2.19)

with δ = E/mc2. The total cross section σtot is calculated using eq. (2.8).

� Torikoshi et al., 2003

Torikoshi et al. [61] simplified eq. (2.8) to

µ = Ne

[
Z4F (E,Z) +G(E,Z)

]
, (2.20)

where the first term approximates photoelectric interactions and the sec-

ond term summarizes the scatter contribution. In their paper, they mea-

sured the electron density of tissues with monochromatic synchrotron

radiation. For F (E,Z) and G(E,Z) they used the physics-based formu-

las proposed by Jackson and Hawkes [60]. Bazalova et al. [53] extended

this approach for the application in spectral CT. In this approach, the

functions F (E,Z) and G(E,Z) are obtained by quadratic fits of the pho-

toelectric and scattering terms of XCOM [62] attenuation coefficients.

� Bourque et al., 2014

Bourque et al. [13] proposed to parametrize the electronic cross section

as a function of the atomic number

σe =
M∑
m=1

bmZ
m−1. (2.21)

The parameters am are obtained by a least square fit on cross section

data from the XCOM database, averaged over a given spectrum. M is

the order of the fit.
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This last section provided a detailed view on the cross section parametriza-

tion proposed in literature. The parametrization provided by Alvarez and

Macovski and Rutherford et al. rely on a power law with an energy depen-

dent exponent. In these cases, optimization is necessary to find the exponents

suitable for the energy spectrum used in specific studies. The use of the clas-

sical values is not sufficiently accurate in most of the cases and will introduce

uncertainties to the attenuation coefficient. The parametrization of Jackson

and Hawkes and Torikoshi et al. in turn incorporate the physical equations

related to the interactions of radiation with matter. These equations are en-

ergy dependent and therefore more suitable to describe a range of different

experimental setups. However the implementation of these formulas is com-

plex and might not be practical. The parametrization provided by Bourque

et al. consists of a practical Taylor expansion, where parameters are found

by fitting to experimentally determined cross section values. Due to the high

number of degrees of freedom, it can accurately depict cross sections and thus

attenuation coefficients.

2.2.2 An overview of investigated DECT tissue charac-

terization methods

In literature, several techniques to extract proton stopping powers from DECT

images exist. Commonly, these methods extract the density ρ, or alternatively,

the relative electron density ρe, plus the EAN Zeff [63] or Zmed [13] to derive

the I-value via a parametric relationship between Z and I for human tissues

[23, 13]. Some published methods [14, 26] do not require the concept of EAN

to determine tissue parameters. The key elements of all the formalisms studied

are summarized in tables 2.1 and 2.2.

While they are reported in chronological order, there are two types of

techniques compared. The first type is based on parameter extraction, i.e.,

either ρe-Z or ρe-I. With this type, proton SPRs can be calculated with

Bethe’s equation:
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S = ρe
k0

β2

[
ln

(
2mec

2β2

I(1− β2)

)
− β2

]
, (2.22)

by taking the ratio of the resulting stopping power S for a given ρe, I-value and

reference energy. Note that in this chapter, Iw = 74.2 eV is used to calculate

the theoretical stopping powers, as derived from the effective atomic number

of water, see table 1 in Bourque et al. [13]. It should be noted that changing

Iw in this study will not influence the results as long as it is kept consistent. In

the equation above, k0 is a constant, me is the electron rest mass, c is the speed

of light, and β the particle velocity relative to c. For the techniques extracting

Z, I is calculated depending on which definition of the EAN is applied. The

conversion Z into I proposed either by Yang et al. [23] or Bourque et al. [13]

is used for Zeff or Zmed, respectively.

The second type of technique is meant to extract elemental weights frac-

tions and mass or electron density. There exists three methods compared

herein predicting elemental weight fractions and density from DECT. From

the predictions of these methods, the I-value of each pixel is calculated using

the Bragg additivity rule [27]:

ln I =
∑
i

λi ln Ii. (2.23)

where λi are the elemental electronic fractions. The SPR is then obtained with

equation 2.22 using the electron density, either obtained directly or calculated

from the mass density and the elemental composition allowing estimating Z/A.

It is worth noting that methods predicting elemental compositions and density

are suitable with MC radiation transport algorithms, which are known to im-

prove the accuracy of range predictions in heterogeneous media [9]. However,

since most clinical dose calculation engines require SPRs, the present focus is

on the ability to predict these ratios and further evaluate the impact on beam

range predictions using an analytic model.



56 Chapter 2. The potential of DECT to reduce range uncertainties

2.2.2.1 Bazalova et al. 2008

A tissue characterization method for monoenergetic photons was proposed by

Torikoshi et al. [61], but first adapted by Bazalova et al. [53] for the use in

commercial CT scanners. In this parametrization, the photoelectric attenua-

tion and Compton scattering are expressed as quadratic functions F (E,Z) and

G(E,Z). F (E,Z) and G(E,Z) are obtained by fitting of quadratic functions

to elemental cross sections (i.e., the XCOM database [62]). For the use of this

parametrization in a spectrum of energies, spectral weights and integration

over the energy must be taken into account. Zeff is found via numerical solu-

tion from two energies, ρe is obtained by substitution of Zeff. In Bazalova et

al.’s method presented here, the numerical solution for Zeff is obtained using

the MATLAB (The MathWorks, Inc., Natick, MA, USA) build in numerical

solver fzero. Additionally, spectral attenuation in the examined object must be

taken into account. Hence, the output spectrum of the X-ray tube is not used

for tissue parameter extraction, but a tissue filtered spectrum. This tissue

filtered spectrum is calculated using an analytical absorption model, which

employs the attenuation law. As Bazalova et al. evaluated in their paper, it is

valid to assume a filtering of 16 cm of water to describe every position within

the round-shaped phantom.

2.2.2.2 Landry et al. 2013

To extract the EAN with DECT, Landry et al. [16] developed a method

combining previously proposed techniques. The approach was inspired by

the SECT stoichiometric calibration by Schneider et al. (1996) [10]. The

parametrization of Rutherford et al. [59] was utilized. This parametrization,

in contrast to the parametrization by Alvarez and Macovski, comprises a term

to take coherent scatter into account. In their method, Landry et al. proposed

using the ratio of attenuation coefficients measured with the CT scanner at

low and high energy in a two-step calibration procedure. In a first step, the

attenuation coefficients of a calibration phantom are measured at two energy
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spectra. The measured values are used to find the stoichiometric parameters

k1kVp and k2kVp as proposed by Schneider et al. (2000) [11] per energy. These

parameters are then used to calculate attenuation coefficients of a set of human

reference tissues [49]. The ratio of the calculated attenuation coefficients of

human tissues serves as a basis data set to find the fit parameters Al,h, Bl,h

and Cl,h. These parameters correspond to A, B and C in table 2.1, with l for

the low and h for the high energy spectrum. Zeff is obtained by solving the

parametrization for Z. To determine the electron density, Landry et al. recom-

mended that the method by Saito is used to obtain ρe. Saito [21] developed a

method to only extract electron densities from DECT. This approach employs

a ∆HU, which is obtained as a linear combination of HUl and HUh, with a

single weighting factor. This factor is scanner-specific and must be found in a

calibration process, employing a calibration phantom.

As an extension of their method, Landry et al. [25] proposed a segmen-

tation method to extract a full elemental composition from any Zeff and ρe

couple. First, these two parameters are calculated for a dataset of reference

human tissues. Then, the tissue assigned in each voxel is the one showing the

shortest generalized distance with the measured data in the ρe-Zeff space. The

segmentation technique allows assigning a tissue to each voxel and a generic

elemental composition to the tissue. The determination of electron density

and EAN with the method of Landry et al. is referred to as Landry et al. #

1, while the one extracting elemental weights is Landry et al. # 2.

2.2.2.3 Hünemohr et al. 2014

The first of the existing DECT tissue parameter extraction methods for clinical

use was published in 2003 by Heismann et al. [52]. They employed the atten-

uation cross section (µ) parametrization from Alvarez and Macovski [57] and

developed their formalism on post-reconstruction data. In the model, one first

term describes the attenuation due to the photoelectric effect, while the other

term describes Compton scattering. Each physical effect has an associated

coefficient (α and β) which quantifies the magnitude of the effect. The coeffi-



58 Chapter 2. The potential of DECT to reduce range uncertainties

cients are energy-specific and can be found in a calibration process employing

a DECT scan of materials with known compositions. The energy dependence

of the system is furthermore taken into account by introducing parameters (gL

and gH) and integrating the attenuation coefficient over the energy spectrum

using spectral weights wL,H. Hünemohr et al. [15] adapted the approach by

Heismann et al. and proposed a calibration using a tissue characterization

phantom instead of the integration over the spectral energies. Furthermore,

the authors employ the mathematical methodologies of the ρ-Z projection of

Heismann et al. but substitute the mass density ρ by the relative electron

density ρe. In this work, we chose to implement the version of Hünemohr et

al., employing ρe instead of ρ.

To take into account potential elemental composition variation for a given

tissue within a population, Hünemohr et al. [24] proposed to parametrize ele-

mental weights as a function of Zeff and ρe. Thus, for each of the 13 elements

(H, C, N, O, Na, Mg, P, S, Cl, K, Ca, Fe and I), a reference dataset of tis-

sues is used to create a linear fit describing the weight of each element as a

combination of ρe, Zeff, and ρeZeff, as recommended in their publication. In

the present work, the determination of electron density and EAN with the

method of Hünemohr et al. is referred to as Hünemohr et al. # 1, while the

one allowing to obtain elemental weights is Hünemohr et al. # 2.

2.2.2.4 Bourque et al. 2014

In the method by Bourque et al. [13], the attenuation coefficient relative to

water is parametrized as a polynomial of the order M -1 with coefficients bm.

The parameters bm are obtained from a least square fit to measured µ/µw

from a CT scan of the calibration phantom. A specific definition of the EAN

is used, Zmed, and their values for the phantom materials have previously

been calculated and averaged for both energy spectra. The fit procedure to

obtain coefficients bm must be performed for both energies of the DECT scan

separately. In analogy to the attenuation coefficient, Bourque et al. define

a parametrization for the estimation of the EAN, as listed in table 2.1. It
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uses the dual-energy ratio Γ (defined as the attenuation coefficient of the low-

energy scan relative to the high-energy scan) for its independence on electron

density. To find the model parameters ck, Γ is measured for the inserts of

the calibration phantom and a least square fit of order K − 1 is performed.

For a dual energy CT scan of unknown tissues, Zmed and ρe are found by

measurement of (µ/µw)L and (µ/µw)H.

2.2.2.5 Van Abbema et al. 2015

Van Abbema et al. [20] developed a method that is not based on calibration but

requires spectral knowledge. They use the electron cross-section parametriza-

tion eσ
tot(E, Ẑ) of Jackson and Hawkes [60], extended with fit functions to

yield a dependency on E and Z. Knowledge of the spectral weighting function

w(E) at every energy increment dE is necessary. Zeff is found by solving the

ratio of attenuation coefficients at low and high energy numerically for Z, and

ρe is obtained by substitution of Zeff. As this method makes use of spectral

knowledge, the attenuation of the examined object must be taken into account,

similarly to the method proposed by Bazalova et al.. To account for spectral

hardening, van Abbema et al. propose to apply a w(E) local weighting func-

tion (LWF), which is obtained iteratively from spectral weights w(E) and the

measured attenuation coefficients in the corresponding voxel.

2.2.2.6 Han et al. 2016

A recent paper by Han et al. [14] proposed a two-parameter model. They

assume that the attenuation coefficient of an unknown material in a given

voxel can be described as a linear combination of the attenuation coefficient

of two basis materials µ1 and µ2. The basis materials are chosen as water and

polystyrene for soft tissues, and water and an aqueous CaCl2 solution (23%)

for bony tissues. The parameters c1 and c2 are material specific, found by

measuring the attenuation coefficients of the basis materials as well as the

unknown material at two different energies. The integration over all energies

of the spectrum is approximated in this model by using the mean energy of
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spectrum. ρe and I of unknown tissues are then found using the determined

parameters c1 and c2, according to table 2.1.

2.2.2.7 Lalonde and Bouchard 2016

Lalonde and Bouchard [26] introduced a representation of human tissues based

on principal component analysis (PCA). An optimal basis of virtual materials

(principal components, PC) is defined from a reference dataset of tissues, each

of them described by a mass density and array of elemental compositions (H,

C, N, O, Na, Mg, P, S, Cl, K, Ca, Fe and I). The partial electronic density yk

of each PC is retrieved by performing a material decomposition from DECT

data. Once the yk are solved, their sum equals the electronic density and

the elemental composition is unfold from the PC content. To estimate the

electronic cross section of each PC (i.e., fk in table 2.1), a calibration method

similar to Bourque et al. [13] is proposed, but without the need for defining the

EAN. In this way, the attenuation coefficient relative to water is parametrized

using a series of power specific average atomic numbers, i.e., Z,Z2, Z3, . . .,

referred to as Z-space. The fit parameters are obtained for each energy and

scanning protocol from a least square fit on measured µ/µw from a CT scan of

a calibration phantom. It should be noted that only the formalism of Lalonde

and Bouchard gives directly a complete set of elemental weights and mass

density without an intermediate step. However, two other methods (Landry

et al. # 2 and Hünemohr et al. # 2) can be adapted to convert measured ρe

and Z to suitable MC inputs. These methods are investigated in this study

and compared to the PCA approach of Lalonde and Bouchard.

2.2.3 Comparison of DECT tissue characterization

methods

This section describes how the performance of the different DECT methods

is compared. Firstly, a theoretical comparison with the XCOM photon cross

sections database is performed in order to evaluate the theoretical robustness
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Ẑ
eff

= ∑
Kk
=

1
c
k Γ

k−
1

5
th-ord

er
fi
t

w
ith

Z
m

ed
ρ̂

e,L
/
H

=
u

L
/
H

∑
Mm

=
1
b
m

,L
/
H
Z

m
−

1
e
ff

V
an

A
b
b

em
a

et
al.

solve
µ

L

µ
H

n
u
m

erically
Y

an
g

et
al.

su
b
stitu

te
Ẑ
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of the method. Secondly, methods are compared with respect to measurements

in order to eliminate the ones that are not practical for a clinical environment.

Thirdly, methods are compared in an imaging simulation environment in or-

der to reproduce the context of noise and imaging artifacts while allowing a

comparison with theoretically calculated RSP values, which will be referred to

in the following as ground truth.

2.2.3.1 XCOM photon cross sections

A theoretical comparison of tissue characterization methods is performed us-

ing a set of 34 ICRU reference tissues [64]. The reference tissues with corre-

sponding electron density are listed in table 2 of Bourque et al. [13] (see also

corrigendum). For methods that require calibration, theoretical CT numbers

of the tissue characterization phantom Gammex 467 (Sun Nuclear, Melbourne,

FL, USA) are calculated and used for calibration (Hünemohr et al. #1 and

#2, Landry et al. #1 and #2, Bourque et al., Lalonde and Bouchard ). For

Han et al., the calibration is done with water, polystyrene and a CaCl2 aque-

ous solution (23%). The spectra used are from a dual source dual energy

CT scanner, kindly provided by the manufacturer (Somatom Definition Flash,

Siemens Sector Healthcare, Forcheim, Germany), for energies of 100 kVp and

140 kVp/Sn (Siemens custom tin filtration). Values of ρe and Zeff (or Zmed)

are derived for the complete set of reference tissues using the listed tissue char-

acterization methods. Theoretical SPR values are calculated using the given

electron densities and atomic compositions of the 34 human tissues. The the-

oretical I-values of the tissues as given from ICRP 23 [65] are calculated using

the Bragg additivity rule. Although there are uncertainties in the knowledge

of the I-value, such calculated theoretical SPR values provide a comparison

reference to our best nowadays knowledge and form the ground truth for our

study. All methods are implemented using MATLAB.

2.2.3.2 Experimental comparison with calibration phantom

A comparison based on experimental data is performed. The Gammex 467

phantom is scanned in a Siemens Somatom Definition Flash DECT scanner.
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The tube voltages are 100 kV and 140 kV/Sn with tube currents 300 mAs and

232 mAs respectively. CT numbers of the tissue equivalent inserts are measured

using a circular region of interest (ROI) readout (17.3 cm3) over all slices of

the phantom. The measured CT numbers are used to calibrate the methods

that require calibration. Spectral knowledge is required for the spectral-based

methods. The spectra of the Somatom scanner were kindly provided by the

manufacturer. ρe and Zeff are determined from the CT numbers measured in

the ROIs, using each of the tissue characterization methods. A list of tissue

equivalent inserts and their nominal electron densities (as specified by the

phantom manufacturer) can be found in table 2 of Bourque et al. [13]. Again,

theoretical reference values of SPRs are calculated using elemental I-values

from ICRP 23 as well as the Bragg additivity rule shown in equation 2.23.

2.2.3.3 Simulated CT images

To evaluate the performance of DECT tissue characterization methods for pro-

ton therapy, it is not sufficient to test the accuracy of the methods on plastic

phantoms only. Phantoms are often regular-shaped and made of similar chem-

ical compositions, which do not entirely reproduce chemical compositions in

patients. Hence, the methods need to be tested on an object resembling a pa-

tient anatomy and chemical composition of tissues, while being in a controlled

environment with known reference values (here referred to as ground truth).

To simulate CT images, the software ImaSim, developed by Landry et

al. [66], is used. In their previous study comparing ImaSim against DECT

phantom images, the authors concluded that the tool is suitable to explore

applications of DECT imaging in radiotherapy [67]. However, they found

differences of up to 15% when comparing simulated against experimentally

measured relative attenuation coefficients µ/µw. While discrepancies are to

be expected due to the complexity of reproducing realistic CT scanners (i.e.,

spectra non-uniformity, reconstruction algorithms, artifact corrections, etc.),

some of the features in ImaSim are simplified compared to the clinical real-

ity, which could partially explain the magnitude of these differences. For the
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purpose of the present study, we need to assure that ImaSim can reproduce

most imaging artifacts encountered in clinical conditions but also CT numbers

with accuracy comparable to commercial CT scanners. Therefore, a validation

of the software in its ability to predict µ/µw values is necessary to assure the

performance of the basic reconstruction technique and the beam hardening cor-

rection algorithm. Furthermore, since we found that the ability to reproduce

realistic noise with tube current settings is questionable, a model to account

for image noise is used independently from ImaSim.

For the image simulations, four geometries are designed. To simulate the

calibration procedures, the geometry of a Gammex 467 phantom is defined,

reproducing the dimensions and materials of its homogeneous disk (i.e., a di-

ameter of 32 cm) using specifications provided by the manufacturer. A second

calibration phantom is defined specifically for the method of Han et al.[14]. It

has the same dimensions and base material as the Gammex 467 phantom, but

it has only 3 inserts: water, polystyrene and CaCl2 aqueous solution (23%).

A third calibration phantom meant to validate ImaSim is defined. It has the

same 13 inserts but its cylinder base is replaced by an elliptical cylinder of

32 cm width by 24 cm height. This allows us to evaluate the accuracy of

the beam hardening correction in heterogeneous phantoms of irregular shapes.

The fourth phantom designed has that same elliptical-shaped geometry and

is a virtual patient phantom resembling a slice through the human abdomen.

The virtual patient consists of various structures filled with the elemental com-

positions and mass densities of 15 human tissues described by Woodard and

White [49, 48]. The phantom is illustrated in figure 2.1, and the list of tissues

used is found in table 2.3.

All phantom scans are simulated with 3 spectra available by default in the

software: 100 kVp, 120 kVp and 140 kVp/Sn. For the SECT tissue characteri-

zation techniques, the 120 kVp spectrum is used, while for DECT the 100 kVp

and 140 kVp/Sn spectra are used. Image simulations are performed with in-

finite tube current (mAs) to disregard noise. Reconstructions are performed
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with the Filtered Back Projection method using a Shepp Logan filter. For all

simulations, the CT grid size is set to 0.9× 0.9× 1.0 mm3 voxels.

To study the impact of noise, Gaussian noise is added to simulated HU

values obtained with ImaSim. For a consistent comparison between SECT and

DECT, an equivalent amount of noise in the SECT image in terms of photon

dose in water is calculated with the following relation:

µw,SECT

∆HU2
SECT

=
µw,L

∆HU2
L

+
µw,H

∆HU2
H

. (2.24)

with ∆HUSECT, ∆HUL and ∆HUH the noise levels in SECT, DECT low kVp

and DECT high kVp, respectively. The average attenuation coefficients in

water µw,SECT, µw,L and µw,H are calculated using the 120 kVp, 100 kVp and

140 kVp/Sn, respectively. This relation is derived using Poisson’s distribution

for shot noise assuming an equal dose of photons used to generate the SECT

image and the DECT image pair (i.e., DSECT = DL + DH). Note that be-

cause the dose is approximately proportional to the number of photons times

the mass absorption coefficient in water µab,w/ρ, neglecting electron transport

(hence approximating that µab,w/ρ ≈ µw) and assuming shot noise to dom-

inate ∆HU yields equation 2.24. We study two levels of noise: 1) the low

level, corresponding to SECT noise of ∆HUSECT = 7 and DECT noises of

∆HUL = 12 and ∆HUH = 8, and 2) the high level, corresponding to SECT

noise of ∆HUSECT = 14 and DECT noises of ∆HUL = 24 and ∆HUH = 16.

A thorough validation of ImaSim is performed to assure the software to

be reliable for this study. The data is validated against XCOM photon cross

sections taken at the effective energies corresponding to each photon spec-

trum. This choice of using effective energies instead of full spectra is based

on the nature of the filtered back projection reconstruction that is being used

in ImaSim. The attenuation coefficients depend on the energy in each voxel.

Since a spectrum is used for simulation, the energy changes along the line of re-

sponse due to beam hardening. Thus, in filtered back projection, the existence

of an effective attenuation coefficient is assumed and by definition different
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from the average attenuation coefficient over the energy spectrum. The rel-

ative attenuation coefficients of the 13 inserts are determined and averaged

over circular ROIs. For each spectrum, the effective energy Eeff is defined at

which the residual differences between simulated and theoretically calculated

relative attenuation coefficients (XCOM) are zero on average. The consistency

of HU is also evaluated by comparing the simulated data as a function of the

phantom shape. The averaged HU over circular ROIs of the 13 inserts are

compared between the cylindrical and elliptical-shaped Gammex 467 calibra-

tion phantoms. Differences in HU are used to compare the accuracy of ImaSim

to clinical tolerances. The tolerances were chosen to mimic clinical conditions

in terms of CT reconstruction performances.

To calculate ground truth maps of SPRs in the humanoid phantom,

electron densities and tissue compositions of the Woodard and White tissue

database [49, 48] are used and equations 2.22 and 2.23 are applied pixelwise.

For each method, tissue-specific probability distribution functions (PDFs) of

SPR errors over all pixels are determined by comparing predicted SPR values

to ground truth pixelwise. The PDFs are then grouped into two types of tis-

sues: 1) soft tissues and 2) bones. This further allows determining the DECT

method accuracies to predict SPRs and evaluate the effect on range uncer-

tainties. PDFs in the absence of noise are first used to establish which DECT

method is well conditioned for further comparison against SECT. The robust-

ness to noise of the chosen DECT method is evaluated and adapted in order

to determine the potential benefit of DECT over SECT in clinical conditions.

It is worth noting that the ground truth SPR map of the virtual humanoid

phantom is not affected by noise or imaging artifacts. However, limitations

caused by the CT grid size are left aside by avoiding analyzing data adjacent

to interfaces, this way assuring voxels to be homogeneous. Also, because the

accuracy of reference values is limited by the Bragg additivity rule, the present

study leaves aside uncertainties related to the I-value by (directly or indirectly)

using the same rule to predict SPR. This way, the present work focuses mainly
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(a) (b)

Figure 2.1: Geometries used for the ImaSim simulation: (a) a simulated 140
kVp/Sn CT image of the calibration phantom (resembling the Gam-
mex RMI 467) with added noise (1σ = 16 HU), showing artifacts
reproduced by ImaSim; (b) a simulated 100 kVp/Sn CT image of the
virtual humanoid phantom geometry.

on the effect of CT noise and artifacts, leaving the effects of CT grid size and

I-value aside.

Table 2.3: List of the 15 human tissues specified by Woodard and White [49, 48]
used to simulate CT images and calculate ground truth SPRs. The I-
values are calculated using the Bragg additivity rule from the elemental
composition using equation 2.23 and I-values recommended by ICRP
[65]

.

Tissue
number

Tissue name
Electron density
relative to water

I-value
(eV)

1 Adipose tissue 0.951 64.780
2 Adrenal gland 1.025 70.835
3 Aorta 1.038 75.160
4 Blood, whole 1.050 75.203
5 Gallbladder bile 1.026 75.245
6 Kidney 1.040 74.286
7 Liver 1.041 74.355
8 Mammary gland 1.014 70.294
9 Muscle, skeletal 1.040 74.621
10 Ribs 6th and 2nd 1.347 90.722
11 Small intestine wall 1.024 74.285
12 Spleen 1.051 74.980
13 Stomach 1.042 74.194
14 Vertebral column C4 1.355 91.218
15 White matter 1.034 73.126
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2.2.4 Evaluation of range uncertainties

The impact of the DECT methods on proton beam range uncertainty is eval-

uated using numerical models. To evaluate the impact in soft tissues, a water

equivalent path length (WEPL) based method [68] is used in combination to

SPR error sampling at depth increments of 1 mm, to be consistent with the

largest dimension of CT voxels used in the ImaSim simulations. For each tissue

characterization technique (SECT or DECT), beam range errors are sampled

repeatedly by individually sampling SPR errors at each depth increment of 1

mm with PDFs determined from results of the simulated CT images in soft

tissues. This way, the performance of the method in extracting SPR from sim-

ulated CT images determines the probability distribution of SPR errors. Each

statistical sample of range error is calculated analytically from a random array

of SPR errors through which the beam is transported. For a given beam en-

ergy, depth-dose curves of pristine proton beams are calculated by remapping

the depth-dose curve in water, initially calculated with the PSTAR lookup

table [69], to the array of WEPL values associated to the random array of

SPR error values set in each 1 mm depth increment. That is, one range error

sample corresponds to one array of SPR errors set in each depth increment, as

illustrated in fig 2.2. The calculated range is then compared to the expected

range in water (i.e., without SPR errors) to estimate the range error for that

random array of SPR errors. In the dose falloff, the final depth increment is

reduced to the proton track-end in order for the result not to be influenced by

the size of the CT grid. The statistical distributions of beam range errors in

soft tissues are used to estimate the 95% confidence intervals for each tissue

characterization technique. The same rationale is used to evaluate the impact

of SPR errors in bones and its effect on the range uncertainty. The error in

range caused specifically by transport in bones is attributed to its uncertainty

in energy loss through them. For a given bone thickness, a number of depth

increments are defined (and again set to 1 mm) and a random array of SPR

errors is sampled with the PDFs determined in bones from the simulated CT
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images. Energy loss errors in bones are estimated with Bethe’s formula (equa-

tion 2.22). The calculated errors on energy loss are translated into range shift

by using the PSTAR energy-range lookup table in water[69] as a function of

the beam energy.

Figure 2.2: Schematic illustration of the range uncertainty determination. The
PDFs of SPR errors are converted into cumulative density functions
(CDFs). From the CDFs, SPR errors are randomly sampled and con-
verted into an array of SPRs. A proton beam with a fixed energy is
transported through this array. The range of this beam is compared
to the nominal range of the beam and the difference is recorded. This
process is repeated 2200 times to gain a mean range error and standard
deviation.

2.3 Results

2.3.1 Theoretical comparison of tissue characterization

methods

All methods are applied to theoretical attenuation coefficients to predict the

SPR of 34 human reference tissues. The residual analysis between predicted

and theoretical SPR values is found in table 2.4. All methods are capable of
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predicting the SPR of human tissues within 1% under ideal conditions. The

methods by Bazalova et al. and Bourque et al. appear to give the most accu-

rate SPR predictions within a theoretical setup, this considering the negligible

bias (i.e., the mean error) and the smallest root mean square error, although

Bourque et al. contains its errors within the smallest unbiased interval (i.e.,

less than ±0.4%). The method by van Abbema et al. introduces a bias to tis-

sues with a high EAN. In their publication, van Abbema et al. discovered that

EANs determined from their method suffer a systematic deviation. Therefore,

the authors suggest that their method should only be used for electron density

determination.

Table 2.4: Statistics of residual errors of theoretically determined SPRs for 34 hu-
man reference tissues using the investigated formalisms.

Method
Min
(%)

Max
(%)

Mean
(%)

RMS
(%)

Bazalova et al. -0.47 0.26 -0.02 0.16
Landry et al. #1 -0.46 0.33 -0.06 0.20
Landry et al. #2 -0.72 0.34 0.17 0.17
Hünemohr et al. #1 -0.46 0.33 0.03 0.19
Hünemohr et al. #2 -0.43 0.29 0.16 0.16
Bourque et al. -0.38 0.38 0.04 0.16
Van Abbema et al. -0.84 -0.04 -0.30 0.41
Han et al. -0.55 0.60 0.01 0.23
Lalonde and Bouchard -0.48 0.54 -0.01 0.19

2.3.2 Experimental comparison of tissue characteriza-

tion methods

All methods are used with scanned images to predict the SPR of the Gammex

467 phantom. The results, displayed in table 2.5, are compared to theoretically

calculated SPR values for the 13 inserts. The spectral based methods (Bazalova

et al., van Abbema et al.) suffer from a systematic bias in the region of

higher EAN. This problem was addressed by both authors. Bazalova et al.

suggested a semi-empirical correction to the subset of data points that are

affected by this bias. Van Abbema et al. suggest an LWF for every pixel

in the image. Although this LWF is applied here, we still observe a bias for

higher-Z materials, which was discussed in the paper by van Abbema et al.
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and is addressed above. During our study, we found that the calculation of the

LWF and the process numerically solving µL/µH requires high computational

effort and time.

Calibration-based methods show a good overall performance in a phantom

setup. The methods by Landry et al. #1 and #2, Hünemohr et al. #1 and

Bourque et al. describe SPRs of phantom materials within ±2%. This resid-

ual analysis compares both approaches (spectral- and calibration-based) and

is intended to show that spectral-based methods need further consideration to

reach the accuracy of calibration based-methods. Despite that both approaches

can reach similar theoretical performances (see table IV), the calibration-based

methods yield more accurate residuals with experimental data (see table V),

since the spectral information is likely not to be representative of the actual

spectrum. Also, due to beam hardening effects, the spectrum is not unique in

space for all projections. Therefore, one could assume the existence of an effec-

tive spectrum giving optimal experimental results. Fitting the spectrum to the

experiments would improve the model, but would end up being considered as

a calibration-based method. The observed discrepancies between theoretically

calculated SPRs (i.e., based on electron densities and compositions provided

by the vendor) and those found using the calibrations have three major un-

certainty components: 1) experimental uncertainties, 2) uncertainties in the

phantom composition and 3) uncertainties in the models themselves. With

the residual analysis performed herein, we compare the uncertainties of the

models consistently without changing the other first two sources of uncertain-

ties, therefore consistently comparing the models under the same conditions.

It is worth noting that the method of Lalonde and Bouchard is designed to

describe human tissues only, as the principal components used in the material

decomposition are not applicable to the Gammex phantom materials. This

might explain some of the large differences reported in table 2.5, although the

method is overall unbiased with a negligible mean error. Also, note that the

method of Han et al. and is not included in the experimental comparison as
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the technique requires the use of CaCl2 solutions which was not considered in

the present study.

Table 2.5: Statistics of residual errors of experimentally determined SPRs of the
Gammex 467 calibration phantom using the investigated formalisms.

Method
Min
(%)

Max
(%)

Mean
(%)

RMS
(%)

Bazalova et al. -1.49 4.29 0.57 1.67
Landry et al. #1 -1.61 1.78 -0.11 0.80
Landry et al. #2 -1.52 1.20 -0.12 0.70
Hünemohr et al. #1 -1.73 1.25 -0.23 0.81
Hünemohr et al. #2 -2.22 1.93 -0.10 1.21
Bourque et al. -1.57 1.12 -0.25 0.68
Van Abbema et al. -2.04 8.55 1.12 3.19
Han et al. - - - -
Lalonde and Bouchard -2.52 2.82 0.06 1.66

2.3.3 Comparison of tissue characterization methods

based on simulated CT images

2.3.3.1 Validation of ImaSim

The ability of ImaSim to reproduce attenuation coefficients is evaluated on the

results obtained with the cylindrical and elliptical-shaped calibration phan-

toms. In comparing results of the cylindrical phantom with XCOM cross

sections data, the worse case scenario is found for the 100 kVp spectrum

(Eeff = 69.3 keV) with errors ranging from -0.9% to 1.1%, and a root mean

square error of 0.7%. The same analysis with experimental data of the Gam-

mex 467 phantom scanned with a Siemens Somatom Flash Definition dual-

source CT yields mean absolute errors of range from -1.7% to 1.9%, and a root

mean square error of 1.0%, for the 100 kVp spectrum (Eeff = 71.6 keV). Be-

cause experimental data are expected to be higher than numerical simulations

due to additional sources of uncertainties, this shows that ImaSim is reliable

for cylindrical geometries. In its performance with the elliptical-shaped cali-

bration phantom, the worst discrepancies on average HU values between the

cylindrical and elliptical-shaped phantoms are found to be for the 100 kVp

spectrum and range between -2.2 and 0.5 HU as well as 7.1 and 37.5 HU
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for the plastics equivalent to soft tissues and bones, respectively. However,

because only two bones are defined in the virtual humanoid phantom, i.e.,

vertebral column and ribs, two of the materials in the calibration phantom are

out of range in terms of density. Removing these in the analysis yields a max-

imum discrepancy of 10.4 HU. These results show that the beam hardening

correction is acceptable for soft tissues, compared to typical vendor recommen-

dation of ±4 HU for water. However, errors are slightly higher in bones than

expected. But when comparing the elliptical-shaped results against XCOM

cross sections with the same effective energy as found for the cylindrical phan-

tom (Eeff = 69.3 keV), leaving the two high-density inserts aside (i.e., SB3 and

CB2 - 50%) yields errors ranging from -1.7% to 1.3% with a root mean square

error of 1.0%. This is comparable to experimental results obtained with the

cylindrical Gammex 467 phantom. Therefore, we conclude that ImaSim is an

acceptable tool for the present study.

2.3.3.2 Estimated probability distribution functions of SPR er-

rors

To reproduce clinical use, only calibration-based methods are used to predict

SPRs from simulated DECT images pixelwise. The differences between pre-

dicted SPR maps and ground truth SPR values are analyzed. The SECT

method proposed by Schneider et al. (1996) serves as a gold standard for ρe-Z

formalisms. PDFs of SPR errors in the absence of noise are displayed in figure

2.3. The statistics of the methods is summarized in table 2.6. For soft tissues,

all investigated DECT methods predict SPRs with a smaller mean error than

the SECT method of Schneider et al. (1996), therefore introducing a smaller

bias and decreased errors on proton range. Among our implementations, the

method by Bourque et al. is found to have the smallest mean error, thus in-

troducing a quasi-null bias on proton range prediction, as well as the smallest

standard deviation on SPR. For bones, not all DECT methods have a smaller

mean error than SECT methods. Three DECT methods introduce a higher

bias than the method of Schneider et al. (1996), and four introduce a higher
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bias than the SECT method of Schneider et al. (2000), which is shown to

improve the characterization of bones compared to the gold standard SECT.

The method of Lalonde and Bouchard was found to have a quasi-null bias

and the smallest standard deviation. To determine if the population means of

the probability density functions are statistically different, we performed pair-

wise Welsh’s t-tests. In soft tissues, for each pair of PDFs, we found p-values

smaller than 10−5, indicating that all distributions are significantly different

from each other (p < 0.05), with one exception. The distributions derived from

Hünemohr et al. #1 (µ = 0.1068) and Han et al. (µ = 0.1148) are statistically

similar (p = 0.293). For bones, we found that all distributions are significantly

different from each other (p < 0.05), with the exception of Hüemohr et al.

#1 and Landry et al. #1 (p = 0.064). The Welsh’s t-test is designed for

normal distributions. While the PDFs for soft tissues can be assumed almost

normally distributed, this is not the case for the PDFs for bone, which should

be considered when interpreting the results of the statistical significance.

It is worth noting that the methods suitable to predict MC inputs (i.e.,

Landry et al. #2, Hünemohr et al. #2 and Lalonde and Bouchard) do not per-

form better in soft tissues than the ρe − Z decomposition method of Bourque

et al.. These results lead to believe that the intermediate step of assigning ele-

mental weight fractions before calculating SPR might not be optimal as it can

reduce the accuracy of the estimation. However, the potential improvement in

dose calculation using MC simulation over analytic tools used commercially are

not shown explicitly in these results. Therefore the DECT techniques suitable

for MC should not be literally compared with the ones suitable for analytic

methods.

2.3.4 Proton beam range error estimations

Results are calculated for each noise level separately, i.e., none, low and high. It

is worth noting that for accurate estimations of range error confidence intervals,

a sufficiently large number of samples is required to get a smooth behavior

of the results as a function of the beam energy and/or bone thickness. The
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(a)

(b)

Figure 2.3: PDFs of SPR errors generated with each method applied on the sim-
ulated images in the absence of noise: (a) soft tissues and (b) bones.
The SECT methods #1 and #2 are Schneider et al. (1996) and Schnei-
der et al. (2000), respectively. The DECT methods from #1 to #7
are Landry et al. #1, Han et al., Hünemohr et al. #1, Bourque et al.,
Hünemohr et al. #2, Landry et al. #2 and Lalonde and Bouchard,
respectively. The display of errors is reduced to within ±5%, although
larger errors occur.
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Table 2.6: Statistics of the PDFs of SPR errors of all investigated tissue character-
ization methods in the absence of noise: the mean (µ̂) and the standard
deviation (σ̂).

Soft tissues Bones

Method
µ̂

(%)
σ̂

(%)
µ̂

(%)
σ̂

(%)
Schneider et al. (1996) -0.43 1.42 1.34 1.61
Schneider et al. (2000) -0.29 1.49 0.65 1.72
Landry et al. #1 0.27 1.40 -1.72 1.87
Han et al. 0.11 1.34 -0.41 1.71
Hünemohr et al. #1 0.11 1.28 -1.64 1.83
Bourque et al. 0.02 1.25 -0.77 1.95
Hünemohr et al. #2 0.23 1.26 -0.34 1.22
Landry et al. #2 -0.04 1.27 -1.92 1.89
Lalonde and Bouchard -0.13 1.27 -0.08 1.14

number of samples per method and per beam energy is set to N=2200, totaling

415 800 range error sampling for soft tissues for all 3 levels of noise. For bones,

the number of samples is 2 079 000 since five bone thicknesses are investigated,

totaling about 2.5 millions of range error samples.

2.3.4.1 Comparison of DECT methods in the absence of noise

Two independent sources of range uncertainties are evaluated from PDFs. The

first effect is the range error limited by the precision of SPR predictions in soft

tissues. The second effect in the range error caused by proton beam transport

through bones before being aimed at a tumor (located in soft tissue). Resulting

effects on range errors are shown in figure 2.4. The effects are consistent

with the statistics of the PDFs reported in table 2.6. In soft tissues, both

SECT methods are systematically biased, while most of the implementations

of the DECT methods show smaller bias and similar or smaller 95% range

error distribution, with five out of seven methods having low bias: Han et

al., Hünemohr et al. #1, Bourque et al., Landry et al. #2 and Lalonde and

Bouchard. The smallest range errors were found in the method by Bourque

et al., with maximal beam range errors within -0.54 mm and 0.39 mm, with

a probability of 95%, for beam energies corresponding to ranges in water of

up to 35 cm. For the impact of transporting proton beams through bones,
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both SECT methods are systematically biased, while in our implementations

four of out seven DECT methods yield low bias: Han et al., Bourque et al.,

Hünemohr et al. #2 and Lalonde and Bouchard. The smallest range errors

were found in the method by Lalonde and Bouchard. It shows maximal beam

range errors within -0.91 mm and 1.05 mm (with a probability of 95%) for

bone thicknesses up to 5 cm and for beam energies corresponding to a range

in water of up to 35 cm.

2.3.4.2 Range uncertainties in clinical conditions: the impact of

noise

The impact of noise on beam range uncertainties is evaluated by applying the

range error estimator models on PDFs calculated with two levels of noise. For

soft tissues, the SECT method used is the gold standard method of Schneider

et al. 1996 and the DECT method is the one of Bourque et al., but adapting

its fit parameter of the dual-energy index (DEI) versus Z to lower order to

make it more robust to noise (i.e., K = 3 instead of K = 5). When noise

is present in the image, the values for the DEI can fall out of the calibration

domain. By choosing a lower fit order, we are able to control the behavior of

the calibration curve outside the calibration domain. An alternative approach

would be to use the high fit order (K = 5) for values within the calibration

domain and additionally describe values outside the calibration domain using

a linear extrapolation. For bones, the SECT method used is Schneider et al.

1996 and the DECT method used is the method of Lalonde and Bouchard

without any modification. The selection of DECT methods to investigate the

impact of noise was based on their performance without noise, showing the

smallest mean error in soft tissues and bones, respectively. Since the theoretical

robustness of methods is investigated, all here presented comparisons are made

under idealistic conditions. Therefore, selecting the method with the smallest

differences is a suitable criterion.

Results are shown in figure 2.5. The mean errors and boundary values of

the 95% confidence interval of range errors in SECT and DECT are compared.
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(a)

(b)

Figure 2.4: Comparison of estimated range errors in tissues from CT data exclud-
ing noise for: a) soft tissues, and b) bones. The plain line shows the
mean error values and the dotted lines show the boundaries of the
95% confidence intervals of range errors. The energy used the effect in
bones is 196 MeV, corresponding to a range in water of 25 cm. The
method’s numbering is the same as in figure 2.3.

For soft tissues, results are displayed as a function of the beam energy, reported

in terms of range in water. The comparison shows that for the low level of CT

noise, range errors with DECT methods are unbiased compared to SECT, with
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interval boundary values closer to zero. For the high level of CT noise, the

DECT interval is slightly biased and the boundary values are much higher than

for SECT, which sensitivity to noise is small. In the absence of noise, maximum

range absolute errors with DECT are decreased by about 0.5% relative to the

beam range in water, while for the low level of CT noise they are reduced by

up to 0.4% relative to the beam range in water. However, for the high level

of noise SECT had smaller range uncertainties than DECT, despite its bias in

predicting the range.

For bones, results are displayed as a function of bone thicknesses through

which a 196 MeV beam is transported. The comparison shows that for the low

and high levels of noise, DECT errors are unbiased compared the SECT, with

interval boundary values closer to zero. Between 1 and 5 cm bone thickness,

maximum range absolute errors are reduced by values of up to about 0.6 to

1.1 mm with DECT. For the high level of noise, the same calculations (not

shown here) lead maximum range absolute errors reductions between 0.5 and

0.9 mm for bone thicknesses between 1 and 5 cm, respectively.

2.4 Discussion and conclusion

In the present study, the potential of DECT is evaluated over SECT in the con-

text of proton beam range prediction. Nine different techniques are compared

in their ability to predict proton SPRs. The methods are implemented and

evaluated in three different contexts to evaluate their theoretical foundation

(i.e., with XCOM cross sections data), their practicality in a clinical envi-

ronment (i.e., with measurements) and their performance with a patient-like

geometry under constraints of CT artifacts and noise (i.e., ImaSim simula-

tions and Gaussian noise model). The first two contexts allow reducing the

number of suitable methods to seven. The performance of the DECT methods

with a humanoid phantom is first estimated in the absence of noise to allow

choosing techniques being the most robust to CT artifacts, i.e., Bourque et

al. for soft tissues and Lalonde and Bouchard for bones. It is worth noting
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(a)

(b)

Figure 2.5: Comparison of range error statistics between SECT and DECT for low
and high CT noise in a) soft tissues, and b) bones. The dotted lines
represent the boundary values of the 95% confidence interval and the
plain line is the average error.

that all methods are implemented to the best of our knowledge, based on the

publications available in literature. We use the theoretical comparison based

on XCOM data, as well as the experimental data, as an indicator to assure

that the methods are implemented properly. Our results reproduce values that
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were quoted by the authors of each method, leading to the conclusion that all

methods should be correctly implemented.

The most clinically-relevant results of this study are the ones where CT

artifacts and noise are present. Range error estimations clearly demonstrate

the advantages of DECT over SECT in the presence of low CT noise, since

SECT is generally more robust to noise due to the mathematical nature of its

techniques (i.e., linear models). Overall, one could expect DECT to reduce

range uncertainties (to the 95% confidence level) by about 0.4% in soft tissues,

and up to about 1 mm for beams of therapeutic energies transported through

bones. For high levels of CT noise, the benefits of DECT can be lost over the

robustness of SECT in soft tissues. While this is expected due to the math-

ematical complexity of DECT techniques, it is yet to be demonstrated that

some techniques could be further adapted for high CT noise. For instance,

Bourque et al. is used in soft tissues with minimal adaptation (i.e, just chang-

ing K = 5 to K = 3 in the DEI conversion to Z), and this could explain

why it is only robust to low noise levels. As for the method of Lalonde and

Bouchard, it is surprising that despite no adaptation it stills outperforms the

SECT gold standard for low or high noise levels. This could suggest that an

effort in adapting the method for the presence of noise could yield even better

results. The results suggest that DECT-predicted SPR can benefit from an

increase in mAs defined in the scanning protocol. Therefore we recommend in-

vestigating SPR uncertainties before establishing a clinical DECT protocol for

radiotherapy planning. We would like to emphasize that errors arising from

spectral differences between the calibration and patient scan are not taken

into account here. Therefore we recommend performing the calibration for

each scanner model and scanning protocol individually.

While the benefits of DECT over SECT are expected to be improved by

refined robustness to noise, one could also seek for more sensible values in range

uncertainties to be obtained with a more realistic dose calculation model, such

as MC simulations. However, performing such a study with MC transport
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simulations is rather difficult, yet impossible, as a high number of range error

samples is required (i.e., nearly 2.5 million in this study), which in the context

of cross sections become multidimensional rather than simply the SPR error,

requiring to redefine a set of materials and a full calculation (with millions

of histories) for each sample. Nonetheless, it is quite conceivable that the

numbers estimated in the present study are realistic due to the consistency of

the methods. The simulation of CT images using ImaSim has the advantage of

allowing SPR estimation with various techniques in a controlled and consistent

environment, with focus on CT artifacts and noise, leaving the effects of CT

grid size, uncertainties in I-values and other sources aside. Finally, while the

WEPL-based model is not entirely accurate, it is still used consistently and

therefore should yield correct estimations of errors.

A simplified interpretation of the results presented in the present study

allows comparison with the topical review by Paganetti [9]. In that publi-

cation, uncertainties in CT conversion to tissue as well as CT imaging and

calibration each contribute to 0.5% of the range uncertainty (1.5σ), and the

overall uncertainty recommended for proton beam range is 2.7% + 1.2 mm.

While adding the two uncertainty sources in quadrature yields about 0.9% for

a significance level of 95%, this value corresponds to the maximum error found

in the present study at the highest noise level for SECT. From this, we could

conclude that the recommended uncertainty with DECT should be reduced

to 2.4% + 1.2 mm (i.e., reporting the 95% level of confidence, corresponding

to a statistical significance of 1.5σ). But a closer look at the present results

suggests a deeper analysis, which is addressed in figure 2.6. Here we illustrate

the main advantage of unbiased range errors, as it allows reducing the size of

the margins. Indeed, DECT has the advantage of reducing uncertainties as

only the interval boundary needs to be considered as an uncertainty for each

direction with respect to the beam, conversely to using the maximum absolute

error in SECT.

The method proposed in the present study provides a more detailed es-
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(a)

(b)

Figure 2.6: Illustration of the effect of range uncertainties on the definition of
margins adjacent to still targets in two situations: a) unbiased range
uncertainties, and b) biased range uncertainties. In each figure, the left
graph shows the spread-out Bragg peak (SOBP) adapted for the target,
while in the second the SOBP it is adapted to the target plus margins,
accounting for range uncertainties. In this example, the systematic
bias of the error doubles the size of the margins and compromises
OAR sparing.

timation of range uncertainties than more simplistic rules used in the clinic

(i.e., set to 3.5% of the range in water for all energies). An interesting result in

figure 2.5a shows that range uncertainties relative to the beam range in water

are larger for smaller energies. This can be explained by the fact that the

smaller the energy, the smaller the number of voxels contribute to the average

SPR. This way, the uncertainty on the average SPR is inversely proportional

to the square root of the number of voxels traversed. And because the range

relative to that of water equals the inverse of the average SPR, with a few

manipulations we show that the relative range uncertainty is given by [13]

∆R

R
=

∆SPRave

SPRave

=

√
∆x

R

∆SPR

SPRave

, (2.25)

with ∆x the size of the voxels in which SPR values are assumed homogeneous

and ∆SPR the uncertainty on SPR in each voxel. This relation predicts that for

a fixed CT grid size and uncertainty on SPR the relative range uncertainty in

soft tissue (where SPRave is approximately constant) is inversely proportional
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to the square root of the range, which is consistent with results shown in figure

2.5a.

Finally, although it could be possible to improve SECT methods notably

by using Schneider et al. 2000 or attempting to correct for the bias, the present

study suggests that DECT can go beyond the capabilities of SECT in the

context of proton therapy. However, noise remains a major limiting factor and

needs to be carefully addressed if the patient imaging dose is to be kept to the

same level as in conventional radiotherapy treatment planning. We conclude

that DECT has substantial potential for reducing range uncertainties in proton

therapy and that further developments of DECT methods should focus on their

robustness to noise since mathematical formalisms might have found their full

maturity at the present time. Also, it is expected that DECT methods based

on raw-data should enable the reduction of CT artifacts, and therefore range

uncertainties. Moreover, improvements in CT grid size (i.e., such in future

developments in spectral CT) could help to improve the precision of proton

therapy planning.

Before proton therapy planning with DECT predicted SPR values is pos-

sible, a thorough experimental validation of any applied method should be

performed. If SPR values are used directly as input for treatment planning,

the work presented in this chapter suggests the use of the method by Bourque

et al. [13]. It was shown that the method has a low biased and can be adapted

to be robust to noise. In the case of MC planning where elemental composi-

tions are desired as planning input, this work suggests the use of the Lalonde

and Bouchard [26] method due to its low bias in predicting soft tissue and

bone SPR and ranges. For this method, further work is performed to ensure

robustness to image noise.
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initial testing of the measurement methods applied in this study. Kai Yang
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acquisition of DECT images. Gary Royle provided input on the impact of this
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3.1 Introduction

In this chapter, two main contributions of range uncertainties are investigated.

The main part of the chapter focuses on the uncertainties related to CT imag-

ing and conversion to tissue, and the question of how DECT can improve

range predictions compared to SECT. A smaller part focuses on the uncer-

tainties introduced by the range calculation algorithm. Here, a simple ray

tracing approach to estimate the range from DECT data is compared to a

more sophisticated MC method.

3.1.1 Range uncertainties from CT imaging and conver-

sion to tissue

In clinical practice, the conversion from CT numbers (in HU) to SPRs for

SECT is often performed using the stoichiometric calibration method pro-

posed by Schneider et al. [10]. The CT scanner is calibrated for each specific

X-ray spectrum and CT scan protocol by acquiring the CT numbers of a

calibration phantom composed of plastic materials of known composition and

density. The CT-number-to-SPR calibration curve is established for each CT

scan protocol by applying the calibrated model on a set of human reference
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tissues [49]. As stated in section 2.1, this calibration method was validated

experimentally by Schaffner and Pedroni [50]. They performed a SECT scan

of different biological samples (liver, muscle, spleen, heart, brain, adipose,

kidney, blood) and applied the CT-number-to-SPR conversion to the samples.

From the resulting SPR maps, they calculated the WER of a proton beam

traveling through the samples and compared it to measured values of the

WER. This study reports range errors caused by CT scanning and calibration

of 1.1% in soft tissues and 1.8% in bones, taking beam hardening into account

(expected 1% without beam hardening artifacts).

DECT was proposed in literature to potentially increase the accuracy of

SPR predictions. Yang et al. [23] performed a theoretical study comparing

SECT and DECT determined SPRs of standard human biological tissues.

They proved the theoretical superiority of DECT over SECT, especially when

the electron density and elemental compositions of the investigated tissue vary

from reference tissues.

Several formalisms for converting CT numbers from DECT to SPR were

proposed in literature. Most of these formalisms are parameter-based and

aim at the extraction of ED and EAN [52, 53, 15, 16, 13, 21, 18] or photon

absorption cross section [17], which are used to estimate the mean excitation

energy (I -value) or the stopping number, respectively. Alternative methods

parametrize the I -value [14] or the SPR [19] directly, while other groups focus

on calibrating pseudo-monoenergetic images derived from DECT to predict

the SPR of tissues [22]. Another class of formalisms aims at extracting elemen-

tal compositions as inputs for MC simulations [25, 24, 26, 47]. In chapter 2,

we performed a theoretical study on the potential of DECT to reduce proton

range uncertainties [70]. For a virtual phantom filled with human reference

tissues, we found that DECT can reduce beam range uncertainties by about

0.4% in soft tissues and up to 1 mm (as reported for a 5 cm thick slab) for
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therapeutic energies in bones. Additional studies [71, 72] performed treat-

ment planning on phantom and patient data sets, comparing treatment plans

calculated using SECT-derived and DECT-derived SPRs. Zhu and Penfold

[72] demonstrate a dose difference of up to 8% between a SECT-based and a

DECT-based plan. Hudobivnik et al. [71] evaluated range differences between

SECT-based and DECT-based plans for five head trauma patients, concluding

group median relative range differences of -1.4%.

The presented study aims at validating DECT for estimating SPR val-

ues in biological tissues. We utilize animal tissue samples consisting of single

organs and a variety of different animal bones to measure the WER of the sam-

ples in a proton beam using the dose extinction method proposed by Zhang et

al. [73]. The measured WER is then compared to a calculated WER predicted

from SECT and two different DECT formalisms. These formalisms include one

ED-EAN method (Bourque et al.) and one eigentissue decomposition (ETD)

method (Lalonde et al.).

3.1.2 Range uncertainties from the range calculation al-

gorithm

A crucial part of accurate dose delivery in proton therapy is the calculation

of the range the particles travel within the irradiated tissue. While the beam

range in a homogeneous medium of known compositions can be measured

accurately, uncertainties are involved when patients are irradiated, which are

taken into account in form of a treatment margin. While the exact size of

the treatment margin varies slightly between different centers, range margins

are around the value of 3.5% ± 1 mm as implemented in the Francis H. Burr

proton center at Massachusetts General Hospital (MGH).

In a review paper about range uncertainties, Paganetti [9] groups the range

uncertainties into two categories whether they are dependent or independent

of dose calculation. The main sources of uncertainties that are dependent on

dose calculation are: Biology (+0.8%), CT imaging and conversion to tissue
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(0.78%), mean excitation energies (1.5%) and range degradation (up to 2.5%

without MC, 0.1% with MC).

The uncertainties coming from lateral and local tissue inhomogeneities

depend on the algorithm used to calculate the beam range. Lateral inho-

mogeneities in the irradiated material cause unaccounted multiple Coulomb

scattering and range straggling, which cannot properly be modeled using

simplified dose calculation algorithms as applied in most clinical planning

algorithms [38, 40, 74]. The magnitude of arising uncertainties was quoted as

up to 2.5%, which is the largest source of range uncertainties encountered in

treatment planning. This uncertainty can be reduced by properly modeling

the physics of particle interactions in tissue by using MC simulations instead

of parameter-based algorithms for dose calculation. According to Paganetti,

the remaining uncertainty due to inhomogeneities is 0.1% when MC is used for

dose calculation. Schuemann et al. [39] investigated the influence of multiple

Coulomb scattering on the proton range by comparing a large data set of

treatment fields for different sites. They used treatment plans from a commer-

cial treatment planning algorithm (XiO, Computerized Medical System Inc.)

and recalculated them with MC to investigate the effect range degradation has

on plan delivery. They found substantial differences between planning system

and MC calculated beam ranges, with root mean square deviations up to 6%

caused by range degradation in head and neck cases.

This chapter presents an initial study to investigate the effect of lateral

inhomogeneities and the applied range calculation algorithm on the accuracy

of the predicted range. We use measured WER values of animal tissue samples

to investigate range uncertainties from lateral inhomogeneities by comparing

predicted WER values from a) a simple ray tracing algorithm and b) MC.
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3.2 Materials and methods

3.2.1 Sample preparation

In this study, 12 types of tissue samples are used. The samples are collected

fresh from the butcher’s on the day of the experiment and fitted into plastic

containers (5 cm x 5 cm x 15 cm). The remaining space in the container is filled

up with saline water, with a concentration of 9 g NaCl per liter of water. The

amount of saline water that is added per container varies between 50 mL and

100 mL, depending on the sample size. Fig. 3.1 shows a picture of the samples

in the container, and a list of all samples can be found in table 3.1.

Figure 3.1: Animal organs individually packed into plastic containers, view from
the top along the beam direction. After packing the organs into con-
tainers with saline water, the samples are placed in the beam line for
measurements of the WER.

We measure the WER of the animal tissues using the dose extinction

method, as described in the paper by Zhang et al. [73], and briefly illustrated

here. The WER measurements are performed in a double-scattering beam

line with gantry (IBA International, Louvain-La-Neuve, Belgium), at a gantry

angle of 0◦. A Matrixx Evolution ion chamber array (IBA Dosimetry, Bartlett,

TN, USA) with 1020 ionization chambers (chamber volume 0.08 cm3, diame-

ter 4.5 mm, 7.62 mm center to center distance, 24.4 × 24.4 cm2 active area) is

positioned on the treatment table. For measurement of the WER, we operate

the Matrixx detector in movie mode, collecting 1 frame per second, in this way
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Table 3.1: List of animal tissues investigated in this study with the statistics of
their ED and EAN values extracted using Bourque et al., as well as their
low- and high-kVp CT numbers. The means and standard deviations
are calculated over all voxels of an ROI of 308 mm3. The ROI is placed
into a single slice within the samples and is chosen to represent ED,
EAN and HU of the respective tissues.

ED EAN HUl HUh

Tissue type Mean Std Mean Std Mean Std Mean Std
1 Pig stomach 1.039 0.018 7.33 0.61 43.7 10.0 42.6 11.4
2 Pig blood 1.043 0.016 7.33 0.55 48.0 7.9 47.0 9.3
3 Pig muscle 1.056 0.019 7.41 0.61 64.0 14.1 61.4 13.1
4 Cow muscle 1.057 0.020 7.30 0.61 60.8 14.1 60.6 15.1
5 Veal brain 1.036 0.019 7.37 0.69 42.5 11.8 41.2 11.6
6 Pig kidney 1.027 0.028 7.16 0.70 26.2 32.2 29.5 26.3
7 Pig liver 1.053 0.017 7.43 0.62 62.0 9.2 59.0 10.1
8 Pig leg 1.452 0.409 10.82 2.95 853.5 758.2 616.2 532.7
9 Cow tail 1.185 0.167 9.45 2.22 341.5 344.5 257.8 243.3
10 Pig rib 1.227 0.168 10.94 1.70 486.1 335.2 345.4 240.6
11 Pig vertebra 1.296 0.079 11.81 0.57 614.2 140.1 443.2 103.8
12 Pig scapula 1.262 0.314 10.14 2.68 526.6 591.7 375.8 425.0

collecting a dose profile as a function of time. The plastic containers with the

biological samples are positioned on top of the detector array. A water-filled

tank is placed on top of the samples. The setup is illustrated in fig. 3.2.

3.2.2 Measurement of the WER using the dose extinc-

tion method

We continuously irradiate the setup with a broad proton beam (circular field

with a diameter of 25 cm). The energy of the beam is 195 MeV, correspond-

ing to a beam range of 25 cm in water, with a modulation of 20 cm. During

irradiation, we slowly drain the water from the tank, thus increasing the range

of the beam in the samples. The tank and the pump are calibrated to reduce

the water level by 0.4 mm per second.

The dose measured as a function of time is converted into dose as a func-

tion of water height in the column. For every detector pixel of interest, we

find the water height corresponding to a dose fall-off of 80% of the maximum
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dose. From this water height H80, we calculate the WER of the samples as

WERexp = R80 −H80 −Roffset (3.1)

with R80 the beam range as measured in the dose extinction setup, at the 80%

dose fall off behind the Bragg peak. Roffset includes the water tank bottom and

the Matrixx build-up material, and is measured independently for this setup

using a pinpoint chamber (PinPoint TN31006, PTW Freiburg, Germany). The

value of Roffset is 13.85 mm, and the uncertainty is determined in repeated mea-

surements as 0.35% (68th percentile), leading to a negligible impact on WER

measurements (i.e., less than 0.05 mm). The quoted uncertainty is a type A

uncertainty. Type B uncertainties are not considered here but are expected to

be negligible. Additionally, we account for non-uniformity of the beam across

the field by applying a map of correction factors, as described in Zhang et al..

We find that the beam range heterogeneity is around 1.5 mm across the field.

This only includes field heterogeneities, no inhomogeneities of the samples are

considered at this point. The uncertainty of the resulting correction factor

is estimated to be 0.2% with repeated measurements, leading to a negligible

impact on WER measurements (i.e., less than 0.01 mm). Accounting for the

chamber response reproducibility (±0.20%), the overall uncertainty of WER

measurements with the dose extinction method is estimated to be 0.20% (68th

percentile).

3.2.3 Estimation of the WER using CT

3.2.3.1 CT acquisition

To perform SECT and DECT scans of the tissues, a Siemens Somatom Flash

(Siemens Sector Healthcare, Forchheim, Germany) dual-source CT scanner is

used. The scan parameters for the DECT and SECT scans are summarized

in table 3.2. To estimate SPRs from CT numbers, a calibration procedure

must be performed. Therefore, a tissue characterization phantom Gammex

RMI-467 (Gammex, Inc., Middleton, WI, USA) is scanned using the quoted
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Figure 3.2: Illustration of the measurement setup for the dose extinction method.
The range of the broad beam is varied by continuously decreasing the
water level in the tank. The beam passes the samples and the dose
behind the samples is recorded by the Matrixx detector, operated in
movie mode. This way we measure the dose as a function of time.
A CT slice of the samples is shown here (Window: 1500 HU; Level:
300 HU).

SECT and DECT protocols. The phantom disk has a diameter of 33 cm,

the insert diameter is 2.8 cm and the insert height is 7 cm. To perform the

calibration, the CT numbers of the tissue-equivalent inserts are measured in

circular ROIs (226 mm3) and averaged over 20 slices within the phantom.

Both protocols (SECT and DECT) are chosen to represent clinically applicable

protocols. As a result, the DECT protocol has a higher CTDIVol, indicating

a higher dose to the patient. We decide not to adapt SECT scan parameters

to match the CTDIVol of the DECT scan. Although the image quality of the

SECT in terms of noise would improve, we have shown in an earlier study [70]

that the SPR prediction based on Schneider et al. is fairly robust to noise
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and an improvement in image quality would only have a minimal effect on the

predicted SPR.

Table 3.2: List of scan parameters for the SECT and DECT scans. The image
noise (1σ) was measured in lucite.

Parameter SECT DECT low DECT high
Tube voltage 140 kV 100 kV 140 kV Sn
Exposure 300 mAs 300 mAs 232 mAs
Slice thickness 1 mm 1 mm 1 mm
Pixel width 0.46 mm 0.46 mm 0.46 mm
CTDIVol 29.51 mGy 23.29 mGy 23.29 mGy
Image noise (∆HU) 9.1 HU 13.4 HU 13.0 HU
Reconstruction
Kernel

B30f B30f B30f

CTDI phantom
size

32 cm 32 cm 32 cm

3.2.3.2 CT-number-to-SPR conversion

The SECT calibration is performed using the stoichiometric method proposed

by Schneider et al. [10]. The CT numbers of the tissue-equivalent inserts are

used to find the energy fit parameters (Kph, Kcoh, K incoh). With the found

parameters it is possible to calculate the CT numbers of a set of human refer-

ence tissues [49]. Theoretical SPR values of these tissues are calculated from

composition data using the Bethe-Bloch formula for an energy of 195 MeV.

I-values of the tissues are calculated from elemental mass fractions of the

tissues using the Bragg additivity rule. The elemental I-values are taken from

ICRU Report 37 [27]. The calibration curve is then obtained by performing

piecewise linear fits for three tissue regions (Lung: -1000 HU to -40 HU, soft

tissues: -40 HU to 150 HU, bony tissues: 150 HU to 2000 HU). The calibration

curve is applied voxel wise to obtain a map of SPR values.

The DECT data is processed using two different calibration methods. In

a previous study [70], we evaluated the theoretical accuracy of both methods.

The method by Bourque et al. estimates the EAN from DECT images using

a parametric fit to the DEI of tissue substitutes. From the EAN estimation,
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we can solve the system for the ED and estimate the I -value; both quantities

are necessary to estimate the SPR using the Bethe-Bloch equation.

In the same study [70], we tested the ETD method by Lalonde and

Bouchard [26], which predicts elemental compositions and electron densities

of the tissues. The SPR values are calculated from elemental compositions

using the Bragg additivity rule as well as the Bethe-Bloch formula. In this

study, we investigate an adaptation of this method especially made for SPR

prediction from noisy MECT data [47].

To calibrate the method by Bourque et al., we use the CT numbers mea-

sured in the tissue-equivalent inserts to find the fit parameters bm, as described

in [13], eq. 28. From the DEI of the tissue substitutes, we find the ck values by

fitting the DEI to theoretically calculated values for the EAN, as described in

[13], eq. 35. Bourque et al. suggest a polynomial order of 5 for the DEI-EAN

fit. When single pixels are considered, it is possible that the observed DEI is

outside the calibration domain due to noise. To be more robust to noise, we

add two virtual materials with Z = 3 and Z = 20 to the DEI-EAN calibration.

We find the DEI values of these two virtual materials by linear extrapolation

from the original DEI-EAN fit. This strategy ensures the behavior of the

calibration curve outside the calibration domain. The formalism by Bourque

et al was investigated in the previous chapter and was found to predict RSP

values of soft tissues and bones with a very low bias (0.02% and -0.77% for

soft tissues and bones, respectively).

For the method of Lalonde et al. [47], we use the measured CT numbers of

the phantom to calibrate the Z-space coefficients, as proposed in [26], eq. 24.

Once the Z-space coefficients are calibrated, it is possible to decompose CT

data with optimal materials following a method called Bayesian ETD. Theses

optimal materials, called eigentissues, are principal components of human tis-
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sue elemental compositions found in literature. By using a prior function that

penalizes solutions with unlikely eigentissue fractions, Bayesian ETD extracts

the maximum likelihood a posteriori composition in each voxel. The advan-

tage of ETD over most DECT formalisms is the direct voxelwise estimation

of elemental compositions of tissues, without performing an ED-EAN fit first

or applying tissue segmentation. A suggested future application is the use of

these elemental compositions for accurate MC treatment planning. However,

this study aims at the validation of SPR inputs for current treatment planning

systems rather than the validation of MC input parameter, which can be the

subject of future studies. The formalism by Lalonde et al was investigated

in the previous chapter and was found to predict RSP values of soft tissues

and bones with a very low bias (0.13% and -0.08% for soft tissues and bones,

respectively).

The here applied CT-number-to-SPR conversion methods are designed

to predict the SPR values in human tissues. The containers, however, are

made out of plastic. We ensure that the use of these methods on plastic

HUs does not introduce a bias to the predicted WER. Therefore, we measure

the WER of the container top and bottom in a water tank using a pinpoint

chamber. The resulting WER (3.5 mm) is compared to each CT predicted

WER of the container walls, and the difference is added to or subtracted from

the CT predicted WER. We follow the same procedure with the trays holding

the containers in place. We obtain three different maps for the WER: based

on SECT images (WERSECT) and based on DECT images (WERBourque and

WERLalonde). In figure 3.3, examples of the resulting 2D maps are shown for

one DECT method and the measured WER map from dose extinction.

3.2.3.3 MC simulation

To take into account the inevitable beam degradation due to lateral inhomo-

geneities on WER calculations, MC simulations are performed using TOPAS

(TOol forPArticle Simulation) version 3.1. Because MC calculations cannot be
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performed directly on the SPR maps, results obtained by each method are con-

verted to MC inputs in a two steps procedure. First, the built-in CT number

to MC inputs tool of TOPAS based on the method from Schneider et al. [11]

is used to construct a reference CT number to SPR look-up table. Then, the

inverse of this look-up table is used to convert SPR volumes predicted by each

method into synthetic input CT geometries. This way, we ensure that the SPR

distributions seen by TOPAS correspond to the ones originally predicted by

each method. The WER associated to each SPR volume is calculated using

a mono-energetic proton beam of 195 MeV, with a total number of 1.2 × 107

histories. The mean energy of protons exiting the animal samples is scored in

a surface detector placed at the effective point of measurement of the Matrixx

detector. Conversion from proton energy to WER is done using the PSTAR

database [75]. The co-registration between the MC detector and the Matrixx

is performed using metallic markers routinely used in image-based treatment

planning simulation, which are attached to the sample containers before the

CT scan. Before each WER measurement, a radiograph of the samples and

the Matrixx detector positioned on the treatment table is taken. On this ra-

diograph, it is possible to identify the markers and thus calculate their position

relative to the center of the Matrixx. This information is used to place the sur-

face detector in the MC simulation. Since the WER is determined via the mean

energy behind the samples using a reproduction of the experimental setup, it

is not necessary to additionally account for the larger projected thickness of

the off-axis samples.

3.2.3.4 Ray tracing

To assess the errors made by a simpler dose calculation algorithm, we estimate

the WER from DECT images using a ray tracing algorithm. For this study,

the SPR maps calculated from the ETD method are selected. We perform a

co-registration with a virtual detector of similar proportions as the Matrixx

detector. The co-registration is performed using metallic markers routinely

used in image-based treatment planning simulation, which are attached to the
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Figure 3.3: Examples of the 2D WER maps that are compared in this study. On
the top are the measured WER maps using the dose extinction method;
on the bottom are the WER maps obtained with MC from the ETD
method. The image on the bottom indicates which chambers are used
for analysis. The containers in the displayed images are filled with
(from top to bottom, left to right): Pig liver, pig muscle, cow muscle,
pig blood, a Lucite block, pig stomach, pig kidney, pig vertebra, pig
leg bone. The pig leg bone measurement of this particular sample
is not included in the analysis since it did not range out during the
measurement. The measurement was repeated with less bone in the
beam path.
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sample containers before the CT scan. Before each WER measurement, a

radiograph of the samples and the Matrixx detector positioned on the treat-

ment table is taken. On this radiograph, it is possible to identify the markers

and thus calculate their position relative to the center of the Matrixx. This

information is used to place the virtual detector. The experimental setup is

then simulated by performing ray tracing in plastimatch [76] through the SPR

images. The grid size for ray tracing is 512 × 512, resulting in a pixel size of

0.48 × 0.48 mm2. From ray tracing, we record the intersection length of each

ray with the image voxels, as well as the corresponding SPR in this voxel. The

WER along each ray is calculated by a summation of the intersection length

of the ray in the voxel multiplied by the corresponding RSP. The WER values

of those rays that fall on the same virtual detector element (in total 80 rays

per detector element) are averaged.

3.2.3.5 Statistical analysis

For the purpose of clarifying our WER analysis, we define four statistical

quantities and specify the formulas used to calculate them. For WER values

obtained experimentally and predicted with a specific CT-based method, we

define the WER error as follows:

∆WER ≡ WERCT −WERexp

WERexp

, (3.2)

where WERCT is the CT-based WER value (e.g., WERSECT, WERBourque or

WERLalonde) and WERexp is the WER measurement with the dose extinction

method as described in equation 3.1. ∆WER is determined for the number

N of detector elements. From the statistical sample of N ∆WER values, we

calculate the following quantities:

1. The mean WER error, defined as

∆WER ≡ 1

N

N∑
i=1

∆WERi. (3.3)
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For each CT-based method, this quantity corresponds to the bias in

WER prediction. We can show that the expectation value of the WER

error is E(∆WER) = µ (the true mean).

2. The standard deviation of the WER error, defined as

s∆WER ≡

√√√√ 1

N − 1

[
N∑
i=1

∆WER2
i −∆WER

2

]
. (3.4)

For each CT-based method, this quantity represents the distribution

spread of WER errors with respect to its mean. We can show that the

expectation value of the estimator is E(s2
∆WER) = σ2 (the true variance).

3. The root mean square error (RMS error), defined as

RMS∆WER ≡

√√√√ 1

N

N∑
i=1

∆WER2
i . (3.5)

We can show that the expectation value of the RMS error squared

is E(RMS2
∆WER) = σ2 + µ2. The square root of this quantity cor-

responds approximately to the limit of the symmetric interval (i.e.,

[−
√
σ2 + µ2,

√
σ2 + µ2]) containing 68% of a Gaussian distribution with

mean µ and variance σ2. Therefore, this quantity is interpreted as the

overall uncertainty, i.e. u ≡
√
σ2 + µ2, with a statistical significance of

68% (k=1).

We can show quite trivially that the variance of the mean error is the

following quadratic sum

σ2 = σ2
WER + σ2

exp (3.6)

where σWER and σexp are the standard deviations (i.e., type A uncertainties) of

the WER estimated with the overall CT-based method and the dose extinction

method, respectively. We can also show that for each CT-based method, the
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expectation value of the RMS error squared is the quadratic sum of the type

A uncertainty in predicting WER with the CT method (σWER), the bias of the

result (µ) and the type A uncertainty in predicting WER experimentally with

the dose extinction method (σexp). That is,

E(RMS2
∆WER) = σ2

WER + µ2 + σ2
exp. (3.7)

In this relation, the value of σexp is set to 0.20% and the assumption is made

that the dose extinction method is unbiased. This assumption is based on

results found during the validation of the workflow using tissue substitutes, see

figure 3.5. In equation 3.3 we define the mean WER error as a relative quantity,

we can show that the expectation value of the average error corresponds to the

ratio of the expectation of the range difference over the expected range. This

approximation is valid since the probability distribution of the range difference

can be assumed narrow with respect to the average range and also far from the

singularity of the denominator being zero. This leads to our following definition

of the uncertainty of the WER estimation (with the statistical significance of

k=1):

uWER =
√

RMS2
∆WER − σ2

exp (3.8)

which is an unbiased estimator of the quadratic sum of the WER standard

deviation from CT only and the mean WER error, that is the expectation

value of the estimator is

E(u2
WER) = σ2

WER + µ2. (3.9)

The uncertainty of WER estimation from CT only, uWER, includes the

uncertainties from range degradation due to multiple Coulomb scattering udeg.

The term range degradation refers to a widening of the distal dose fall-off of the

Bragg peak, originating from increased multiple Coulomb scattering at tissue

interfaces and inhomogeneities. Also included into uWER are the uncertainties
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from the I-value uI and the uncertainty from the CT calibration an conversion

uCT. Hence we can define

u2
WER = u2

deg + u2
I + u2

CT. (3.10)

The contribution from range degradation udeg for soft tissues is assumed

to be negligible since no soft tissue-bone interfaces are present in the samples.

For the bones, we assume an uncertainty of 0.14%, based on the value reported

by Paganetti (2012).

The contribution of the I-value uncertainty uI to range uncertainty was

estimated previously [28, 32, 77, 9]. In this study, we expect to observe a

combined uncertainty of the contributions from I-value and CT calibration

and conversion, defined as

u2
comb = u2

I + u2
CT. (3.11)

3.2.4 Validation of the workflow using Gammex RMI-

467 tissue substitutes

Our implementation of the dose extinction method is validated using tissue

substitutes from a Gammex RMI-467 phantom. The reference SPR values

are measured using a pinpoint ionization chamber (PinPoint TN31006, PTW

Freiburg, Germany) in a broad beam (25 cm range, 20 cm modulation). We

use 12 tissue-equivalent inserts of the Gammex RMI-467 phantom, as listed

in table 3.3. To measure the WER of the Gammex inserts with the dose

extinction method, we remove the inserts from the phantom disk and place

them on the Matrixx. In this work, we additionally validate our SECT and

DECT calibrations using the SPR values from the pinpoint chamber. After

calibrating SECT and DECT with the Gammex RMI-467 phantom, we apply

the calibration to the phantom images and measure the SPR throughout the

phantom inserts. The SECT calibration curves for tissues and substitutes as
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well as the curves to convert the EAN into I-values are displayed in figure

3.4. It should be noted that the SECT calibration curve for this validation

study is not established using the method by Schneider et al. (1996). To

establish a calibration curve, we apply a piecewise linear fit between measured

CT numbers in the Gammex RMI-467 phantom inserts and measured reference

SPR. This curve does not represent human tissues but is suitable for the use

in tissue-equivalent plastics. The displayed results for SECT hence represent

the errors coming from the fit procedure itself. Similarly, we proceed with the

DECT method by Bourque et al.. This method uses a polynomial fit to relate

the EAN to I-values based on the idea of Yang et al. [23]. The differences

between the approaches are the definitions of EAN and the use of continuous

function instead of a piecewise fit. In their paper, Yang et al. suggest to

perform the fit based on theoretical I-values calculated from Woodard and

White [49] composition data, representing human tissues. Hence, to make this

method suitable for the use in tissue substitute materials, we perform the fit

based on I-values calculated from compositions of the substitutes. We do not

adapt the method of Lalonde and Bouchard to plastic materials as the whole

method is designed to describe human tissues.

3.2.5 Comparison of two range calculation algorithms

We compare the predicted WER (ray tracing and MC) to the measured WER

values. Data points that contain a large portion of the container wall, air or

mixtures of tissue and air are excluded. It follows that for each tissue container

we can include 16 detector elements into our analysis. This way we obtain 112

measurements for the seven investigated soft tissues, and 80 measurements for

the five investigated bone tissues.
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Figure 3.4: Calibration technique on tissue-equivalent plastics: On the top, cali-
bration curves for the SECT methods are shown, where the solid line
represents the fit for the human reference tissues and the dashed line
represents the fit for tissue substitutes; the soft tissue region is shown
as inlet; on the bottom, the curves to convert EAN into I-values for
the Bourque method, where the solid line represents the fit for the hu-
man reference tissues and the dashed line represents the fit for tissue
substitutes.

3.3 Results

3.3.1 Validation of the workflow using Gammex RMI-

467 tissue substitutes

In the validation measurement, we show good agreement between SPRs mea-

sured by dose extinction and our reference SPR with an RMS error of 0.29%.

We consider this value as part of the overall uncertainty of the experimental

method to determine WER. The resulting differences in SPR values deter-

mined with dose extinction, SECT and DECT are summarized in fig. 3.5.

Table 3.4 summarizes the mean error and standard deviation as well as RMS
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errors on SPR for each investigated method. Our results clearly demonstrate

the limitations of the use of a standard SECT calibration curve in agreement

with earlier studies [15, 72]. We report an RMS error on SPR of 1.59% between

SECT-determined values and reference SPR. For DECT, we report RMS er-

rors of 0.61%. This value is in accordance with the original values published

in Bourque et al., who report an RMS error of 0.67% (for the same energy

couple) on experimentally determined SPR values.

Table 3.4: Mean error, standard deviation and RMS error in % between reference
SPR values (pinpoint chamber), dose extinction measured SPR values
and SECT and DECT predicted SPR values. Quoted values are relative
to water.

Method Mean Std RMS error
Dose extinction -0.06 0.28 0.29
SECT -0.25 1.57 1.59
DECT ρe − Z -0.28 0.55 0.61

Figure 3.5: Validation of our measurement methods. We compare SPR values
from tissue-equivalent materials of the Gammex RMI-467 phantom
determined with 1) dose extinction (left), 2) an empirical SECT cali-
bration curve (middle) and 3) the stoichiometric DECT calibration by
Bourque et al. (right) to the SPR measured in a water tank. Quoted
values are relative to water. Also presented are mean errors and the
standard deviations.

3.3.2 Tissue samples

For each investigated tissue type, we collect 16 data points from adjacent

ionization chambers of the array, presented in figures 3.6 and 3.7. With 16

data points per sample, we extract mean error and standard deviation for the
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WER per organ, resulting in a total number of detector elements of N = 112

for soft tissues andN = 80 for bones. To determine if the WER data come from

a normally distributed population, we apply a Lilliefors test. The test result

showed that all data with few exceptions are normally distributed, therefore we

can apply a paired two-tailed t-test on most of the data. For the not normally

distributed exceptions, we apply a Wilcoxon signed-rank test. We perform the

appropriate statistical test on each pair of observed WER differences (SECT vs.

DECT ρe−Z, SECT vs. DECT ETD, DECT ρe−Z vs. DECT ETD). For most

pairings, we observe significant differences (p<0.05) between WER predictions.

Whenever two distributions are not found to be significantly different, it is

explicitly indicated in the graphs of figures 3.6 and 3.7. Additionally, table 3.5

shows an overall uncertainty on the WER estimation. We observe uncertainties

of 0.53% and 1.37% for SECT (soft tissues and bones respectively), 0.19% and

1.06% for DECT using the method by Bourque et al. (DECT ρe − Z) and

0.38% and 1.06% for the DECT ETD method. A paired t-test is performed

on the overall distributions of WER errors for soft tissues and bones, showing

significant differences (p<0.05) for all pairings.

Table 3.5: Statistics of the WER errors in % for soft tissues and bones from CT
imaging only. The bias is the mean WER error (Eq. 3.3). The type A
uncertainty is the standard deviation of the WER error (Eq. 3.4) with
a quadratic subtraction of the experimental uncertainty (σexp=0.20%).
The overall uncertainty includes range degradation, I-value and CT
calibration, and it is equal to the quadratic sum of the mean WER error
and the standard deviation of the WER error (Eq. 3.8). Uncertainties
are reported with a statistical significance of k=1.

Soft tissues Bones
Method Bias Type A Overall Bias Type A Overall
SECT Schneider et al. -0.44 0.29 0.53 -0.88 1.06 1.37
DECT ρe − Z -0.01 0.19 0.19 -0.58 0.89 1.06
DECT ETD -0.33 0.20 0.38 -0.14 1.05 1.06
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Figure 3.6: Soft tissue samples: The tissue-specific percentage difference between
the WER determined with dose extinction and CT imaging is shown
here. For every tissue type, the WER differences, mean error and
standard deviation are shown for the stoichiometric SECT calibration
(Schneider et al.), the stoichiometric DECT calibration (Bourque et
al.) and the DECT ETD method (Lalonde et al.). The observed
WER distributions are all significantly different with two exceptions
(SECT vs. DECT ETD for pig blood and veal brain).
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Figure 3.7: Bone samples: The tissue-specific percentage difference between the
WER determined with dose extinction and CT imaging is shown here.
For every tissue type, the WER differences, mean error and standard
deviation are shown for the stoichiometric SECT calibration (Schnei-
der et al.), the stoichiometric DECT calibration (Bourque et al.) and
the DECT ETD method (Lalonde et al.).
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3.3.3 Estimation of uncertainties in CT-number-to-SPR

conversion

A detailed uncertainty budget is performed based on the statistical behavior of

the data and estimations of experimental uncertainties and uncertainties from

range degradation due to lateral inhomogeneities. In tables 3.6 and 3.7, we

summarize the uncertainties involved in the WER estimation arising from CT

calibration and I-value. We establish an uncertainty budget for soft tissues

and bones separately, due to differences in udeg for the two different tissue

types. The uncertainties arising from range degradation as well as I-value

occur in both imaging modalities (i.e., SECT and DECT). The differences in

the observed uncertainties uWER for SECT and DECT must, therefore, arise

from the CT calibration and conversion technique and I -value. In soft tissues,

we find an overall difference of -0.34% (68th percentile) between ucomb of DECT

and SECT. In bones, we find an overall difference of -0.31% (68th percentile)

on ucomb for DECT over SECT, which is mostly dominated by the bias observed

with the SECT method. The results are summarized in Tab. 3.8.

The voxelwise prediction of the SPR using SECT and DECT is subject

to CT imaging artifacts and errors from the CT-number-to-SPR conversion.

These errors and resulting range uncertainties were investigated within a the-

oretical scope in our previous work [70]. For noise levels comparable to this

study (7 HU for SECT, 8 HU and 12 HU for DECT), we reported a theoretical

error on the range (95th percentile) in soft tissues of 0.68% for SECT and

0.30% for DECT. These values are taken from figure 4a) in [70]. Based on

the methods applied in the previous study, we estimate the theoretical range

uncertainties to compare to the findings of the present study. The theoreti-

cal range uncertainty estimation for soft tissues is done for 16 cm of WER to

match the thickness of the samples. For bones, we quadratically combine the

uncertainty from 8 cm of bones and 8 cm of soft tissues. In soft tissues, we find

a difference of -0.34% (68th percentile) between uCT of DECT and SECT. In

bones, we find a difference of -1.14% (68th percentile) on uCT for DECT over
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SECT, which is mostly dominated by the bias observed in the SECT method.

The results are summarized in Tab. 3.8.

Table 3.6: Uncertainties of estimated WER in % over all soft tissues. The un-
certainty due to beam degradation from multiple Coulomb scattering
is assumed negligible for soft tissues. The combined uncertainty on
CT calibration and conversion and I-value ucomb is found by quadratic
subtraction (Eq. 3.10).

Soft tissues uWER udeg ucomb

SECT Schneider et al. 0.53 negligible 0.53
DECT ρe − Z 0.19 negligible 0.19
DECT ETD 0.38 negligible 0.38

Table 3.7: Uncertainties of estimated WER in % over all bones. The uncertainty
due to beam degradation from multiple Coulomb scattering is estimated
from Paganetti (2012) [9]. The combined uncertainty on CT calibration
and conversion and I-value ucomb is found by quadratic subtraction (Eq.
3.10).

Bones uWER udeg ucomb

SECT Schneider et al. 1.37 0.14 1.36
DECT ρe − Z 1.06 0.14 1.05
DECT ETD 1.06 0.14 1.05

Table 3.8: Comparison of the uncertainty from imaging (ucomb) of the method by
Bourque et al. with theoretical data. Theoretical data are estimated
using the method of Bär et al.[70]. Theoretical data are not affected by
the uncertainty on I-values (uI = 0).

Experimental Theoretical
SECT DECT Difference SECT DECT Difference

Soft tissue 0.53 0.19 -0.34 0.55 0.21 -0.34
Bones 1.36 1.05 -0.31 1.76 0.62 -1.14

3.3.4 Comparison of two range calculation algorithms

The resulting mean WER errors per tissue type for both, MC and RT, are

displayed in figure 3.8. In soft tissues, we observe a general overestimation of

the measured WER using the simple ray tracing algorithm, while MC seems to

slightly underestimate the measured WER. In bones, we find that ray tracing

underestimates the range for most of the samples while MC reduces this bias.

Using RT, the mean errors and standard deviations on WER are 0.50±0.52%
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Figure 3.8: Mean WER error and standard deviation per examined tissue. For
each tissue, 16 WER values were measured at different positions during
the dose extinction experiment and compared to the WER calculated
using ray tracing and MC.

for soft tissues and -0.43±2.12% for samples containing bones. With MC, these

values are reduced to -0.34±0.27% in soft tissues and -0.30±1.03% in samples

containing bones. The RMS error over all samples is 2.75% for ray tracing and

1.41% for MC, suggesting a reduction in WER calculation errors of 1.35%.

For ray tracing, we observe a minimum error of -6.09% and a maximum error

of 3.44%, which can be reduced to -3.63% and 2.37% with MC. The mean

error, standard deviation and RMS error for each tissue are listed in table 3.9.

Figure 3.9 shows a histogram of the absolute percentage WER prediction error

for both methods taking all samples into account. We apply a Welch’s t-test

to the population to determine the statistical significance of the results. The

test rejects the null hypothesis that the data come from normal distributions

with equal means (p<0.05).
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Figure 3.9: Histograms of the absolute WER error predicted by MC (blue) and
ray tracing (red) over all samples and all points of measurements.

Table 3.9: Statistics of the WER prediction errors from both range calculation
algorithms. For each tissue, 16 points of measurement were taken at
different positions in the sample.

Ray tracing MC
Tissue Mean WER error std RMS error Mean WER error std RMS error
Pig liver 0.55 0.34 1.06 -0.48 0.21 0.85
Pig muscle 0.72 0.50 1.43 -0.20 0.22 0.49
Cow muscle 0.25 0.62 1.07 -0.62 0.17 1.05
Pig blood 0.57 0.15 0.95 -0.14 0.16 0.33
Pig stomach 0.45 0.40 0.96 -0.34 0.16 0.61
Pig kidney 0.49 0.72 1.38 -0.40 0.33 0.83
Veal brain 0.49 0.66 1.38 -0.19 0.24 0.53
Cow tail -0.70 1.89 3.69 -0.99 0.73 2.27
Pig rib -0.41 2.04 3.60 -0.13 0.83 1.45
Pig leg -0.96 3.19 6.28 -0.31 1.66 3.18
Pig scapula -1.08 0.94 2.59 0.13 0.78 1.41
Pig vertebra 0.99 1.37 2.89 -0.18 0.51 0.92

3.4 Discussion

3.4.1 Performance of DECT methods in determining

SPR

In this study, we measure the WER of biological samples containing several

soft and bony tissues from three different types of animals. We pack iso-

lated organs (when possible) in plastic boxes, filled up with saline water. We
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measure the WER of a proton beam through the samples using the dose ex-

tinction method with the Matrixx detector. We scan the samples with SECT

and DECT and determine the SPR voxelwise from three different calibration

methods. We then predict the WER of the proton beam through the sample

by performing MC simulations on the CT-predicted SPR maps. Our mea-

surement method is validated against experimental reference SPR values of

tissue-equivalent materials. The SPRs determined with the dose extinction

method show excellent agreement with their respective reference SPRs. The

reference SPRs determined experimentally are then used to validate the CT-

based SPR values. SPRs of tissue-equivalent materials predicted from DECT

show a much better agreement with reference values than SPRs predicted by

SECT.

Our results with animal samples show that overall DECT performs well

in determining SPRs of biological samples. The errors on WER prediction

using SECT reported herein agree partially with earlier studies [50, 73]. The

WER of soft tissues can be predicted well within 1% uncertainty, but higher

uncertainties for bones are observed, mostly due to the bias observed with the

SECT technique. Range errors in bones are lower than the results reported by

Schaffner and Pedroni [50]. They predicted an overall error in range, caused

by CT artifacts and CT calibration, of 1.1% in soft tissues and 1.8% in bones.

It should be mentioned here that the range uncertainty for bones in their

study was based on a single piece of bone scanned in air, for which they adapt

a special calibration curve. Since their bone samples were scanned in air, they

also scanned their calibration materials in air and adjusted the calibration

curve accordingly. This procedure establishes similar beam hardening con-

ditions for calibration and scanning and therefore reduces the bias in bone

tissues. In the present study, we use a single calibration curve for all tissues

to reproduce clinical conditions. Additionally, we used five different kinds of

bones from two different animals, and take 16 measurements per piece of bone.
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The stoichiometric DECT calibration by Bourque et al. improves range

predictions by 0.34% in soft tissue and 0.31% in bones. Figure 3.6 shows that

the SPR prediction from Bourque et al. reduces the bias in range prediction

for each of the investigated soft tissues. For the bony tissues, we observe a

reduced bias for 4 out of 5 investigated tissue types, with the exception of pig

vertebra. Even though there is no improvement observed for this particular

sample between SECT and DECT, the bias for both techniques is very low.

As a third CT calibration method, we apply the ETD method as proposed by

Lalonde et al.. We observe improvement in range predictions by 0.15% for soft

tissues and 0.31% for bones. From figure 3.6 we observe that for three soft tis-

sue types, the ETD method outperforms SECT based range predictions. For

two tissue types, we observe a performance similar to SECT. For two tissue

types, we observe that SECT predicted ranges are slightly better than ETD

predicted ranges. It is worth noting that the ETD method is outperformed

by the ρe − Z formalisms in soft tissues. One hypothesis is that the higher

concentration of salt compared to biological tissues in the saline solution af-

fected the accuracy of the ETD method, designed specifically for human tissue

compositions. This behavior is expected due to the penalizing of unlikely so-

lutions in the Bayesian approach of the ETD, which is used in this study. The

prior function is constructed from human tissue composition, which makes the

method potentially less applicable to tissues different from human tissues. It

is however possible to adjust the severity of the regularization function. In

this study, we used a regularization value of α = 0.4, as suggested in the orig-

inal publication of Lalonde et al.. However, it would be possible to optimize

this parameter to reduce the severity of regularization, which can increase

suitability of the method to tissues with compositions different from those of

human tissues. It should be mentioned here that the main advantage of this

method, contrarily to the two others, is that the ETD method is also suitable

to estimate any other physical quantity relevant for proton therapy because
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it estimates elemental compositions prior to calculate the SPR. One possible

application would be to use the estimated compositions to define the materials

used for MC simulations. In this study, MC input data are obtained from

SPR maps using a look-up table. This is one way of defining input materials,

although not necessarily optimal. Future work can focus on implementing the

direct use of DECT predicted elemental compositions, as suggested in earlier

studies [24, 71, 25]. Finally, one other advantage of the ETD formalism is its

generality, that makes it suitable for any number of CT energy. Using more

sophisticated detectors, such as photon counting detectors (PCD), the method

could potentially yield a lower bias on range prediction.

3.4.2 Improvements from SECT to DECT

This study is the first to validate SECT and DECT predicted WERs in a

variety of animal soft tissues and bones using MC to simulate the proton path.

One major finding of this study is the validity of the SECT calibration in

the investigated soft tissues. SECT and DECT both predict the experimen-

tally measured ranges with a high accuracy level of 1% or better, and neither

method is largely biased. This finding validates that a SECT stoichiometric

calibration curve is well suited for the use in soft tissues. Future work could

focus on the investigation of adipose tissue, which is not considered in this

study.

In samples containing bones, we observe an overall improvement of 0.34%

with DECT. These results indicate that one major gain in the use of DECT

over SECT lies in the bony tissues. Before concluding on the validity of a

DECT method and recommend it for clinical use, it’s benefit in bones needs

to be validated, especially since SECT performs very well in soft tissues and

no major advantages are to be expected. Furthermore, intensive studies need

to be performed taking lung tissues into account.

We attempt to provide a detailed uncertainty budget to isolate the un-

certainty coming from tissue characterization from SECT and DECT imaging
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only. Besides the uncertainties of the WER measurement, we estimate the

sources of uncertainties from beam range degradation due to lateral hetero-

geneities, the I-value, as well as the CT imaging and calibration methods (i.e.,

conversion of CT data to SPR). Our soft tissue samples are homogeneous,

hence one expects fewer partial volumes artifacts and negligible effects from

range degradation due to Coulomb and nuclear scattering, which is more rele-

vant in bones. Here, we use a constant uncertainty value of 0.14% to quantify

the remaining uncertainties from lateral inhomogeneities. The uncertainty on

SPR arising from the I-value is expected to be smaller in soft tissues than

in bones due to the significant water content. Uncertainties reported in Tab.

3.6 and 3.7 are based on approximate estimations of uncertainty contributions

from range degradation, however we report a combined uncertainty for CT

imaging, CT calibration and I-value.

For water, an I-value of 75.3 eV is used. This value is derived using the

Bragg additivity rule, elemental I-values for hydrogen and oxygen are taken

from the ICRU report 37. We choose to comply with the Bragg additivity rule

for consistency reasons since the DECT method by Lalonde and Bouchard

derives elemental compositions and uses the Bragg additivity rule to calculate

composite I-values. A different I-value for water can potentially result in a

systematic shift of the CT-predicted WER values. However, the impact of a

different Iwater on the SPR and therefore the WER uncertainty depend on the

tissue type, since correlations in soft tissues need to be taken into account.

The uncertainties we quote here are the combined uncertainties from CT

imaging and calibration and I-values. The uncertainty on the I-value was

determined in earlier studies by Bichsel and Hiraoka [32] and Kumazaki et

al. [28], quoting a contribution on range uncertainty of 1.5% [9]. Our results

however suggest that this number is overestimated, especially in soft tissues.

As mentioned before, it can be shown mathematically that the contribution
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of I-value uncertainties on range uncertainty depends in the tissue type. As

De Smet et al. [78] show, the uncertainty on SPR originating from I-value

uncertainties can be as low as 0.1%, depending on the tissue’s water content.

Another study by Yang et al. reports similar results, quoting SPR uncertain-

ties of 0.23% (soft tissues) and 0.65% (bones) from uncertainties in I-values

[51]. Hence, range uncertainties in soft tissues are much lower than range

uncertainties in bones, which is in agreement with what we observe in this

study.

In this study we quote the improvement from SECT to DECT as a difference

in the combined uncertainty. We expect that the uncertainty arising from

the I-value (uI) is larger than the uncertainty arising from CT imaging and

calibration (uCT). Consequently, it can be shown mathematically that the

uncertainty difference arising from CT imaging and calibration only must be

higher than the combined uncertainty difference. Hence our quoted values

represent the lowest possible improvement in (uCT) that can be achieved using

DECT over SECT, when I-value uncertainties are taken into account. This

is in agreement with our theoretical study. Results in Tab. 3.8 show that the

experimental results for soft tissues are in good agreement with theoretical

estimations of range uncertainties, suggesting overall improvements on SPR

estimations with DECT. For bones, we observe smaller improvements exper-

imentally than theoretically. However, the improvements in the theoretical

study are only quoting improvements from CT imaging and calibration and

are hence expected to be larger than the combined uncertainty difference.

This suggests that further work is necessary to achieve accurate information

on the uncertainty of the I-value and evaluate the effects of using the Bragg

additivity rule to determine I-value on the proton beam range errors.

Additional sources of uncertainties could also arise from our setup. Al-

though our experimental setup is reproducible since we use organs tightly

packed in plastic containers, a slight movement of tissues within the con-
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tainers during the transport between CT and treatment room are difficult to

avoid. Furthermore, the representation of human tissues using animal tissues

has some limitations. While we observe very similar ED and EAN in soft

tissues, animal bones can be denser than human bones. For this reason, we

deliberately avoided the use of very dense animal bones such as a cow’s leg.

The samples were fresh from the butchers, collected on the day of the exper-

iment. The preparation time was kept to a minimum to ensure that tissue

characteristics as close to an in-vivo situation as possible. An additional CT

scan after the WER measurement was performed for each sample to check if

tissue properties had changed during the experiment. Analysis of those data

showed no significant change between scans. Hence, it seems reasonable to

assume that results are not strongly influenced by the sample preparation.

However, the saline water may have an impact on the CT predicted WER,

which will not be seen in an in-vivo situation since salt concentrations are

much lower.

The range measurements were performed in a scattered beam with spread

out Bragg peak, mandated by the available equipment. Here presented re-

sults address the accuracy of tissue characteristics as estimated from SECT

and DECT. Those quantities are assumed to be independent of the delivery

technique, hence validity of the reported uncertainties in spot scanning de-

livery techniques can be assumed. It is recommended to validate any DECT

tissue characterization technique before it is used for treatment planning. The

presented measurement techniques are easily adoptable to spot scanning tech-

niques, e.g. by using water column measurements instead of dose extinction.

3.4.3 Comparison of range calculation algorithms

Proton range uncertainties arising from lateral inhomogeneities and the influ-

ence of the range calculation algorithm are investigated. Therefore, a set of

measured WER from animal tissue samples with inhomogeneous structures is

used. For comparison, the WER is predicted based on a DECT scan of the
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samples using two different ways to calculate the beam range, ray tracing and

MC, which are then compared to the measured WER.

For ray tracing, we observe a systematic overestimation of soft tissues in

comparison to the measured WER. The same algorithm underestimates the

majority of bone tissues. In contrast to that, MC shows a slight systematic

underestimation of all tissues but is overall closer to the measured value than

ray tracing. As expected, both range calculation methods give different re-

sults for the WER. This behavior might arise from the difference between RSP

summation (as done in ray tracing) and integral from the energy loss (MC).

Generally, high errors in range prediction of up to -6.09% are observed

using ray tracing, especially in inhomogeneous tissues. These results are in

agreement with the results obtained by Schuemann et al., who found dose

differences of up to 6% between a pencil beam algorithm (XiO) and MC

predicted ranges in head and neck patients. In a clinical situation, such large-

scale errors in range predictions would not be covered by the clinically applied

margin and might lead to an erroneous treatment. This result suggests that

margins should be chosen carefully and site-specifically.

As expected, an improvement in using MC to calculate the beam range

is observed. The use of MC reduces the bias in range prediction for both, soft

tissues and bones, due to a more accurate modeling of the physical processes.

From our experimental data, we can conclude a reduction in RMS error for

the WER prediction of 1.35% over all tissues.

It is worth noting that MC reduces the standard deviation of the pre-

dicted ranges in all cases except pig blood. These results were expected since

pig blood is reasonably close to water in density and composition and very

homogeneous, hence ray tracing can accurately predict the WER.
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The error reduction with MC as compared to ray tracing is especially

pronounced in the highly heterogeneous bone samples. We find a lower mean

prediction error with MC, and the standard deviation is considerably lower

using MC, with 2.12% with ray tracing and 1.03% for MC.

For this study, the SPR maps calculated from the ETD method are se-

lected. Initially, the ETD method was selected to compare the algorithms

because it can provide direct input data in form of material density and com-

position which should improve the MC approach. In this study, however, the

SPR maps are used and the exploration of advantages of using density and

compositional data for MC calculations are left for future studies.

Those results show the absolute necessity for accurate range prediction

and suggest the use of MC for dose calculation of proton therapy treatment.

Current arguments against using MC clinically are the high computational

complexity and the associated long computing times for full treatment plans.

Additionally, efforts need to be made to improve input data for MC dose

calculations. Available MC platforms (TOPAS as well as commercialized sys-

tems) extract their inputs from a SECT scan of the patient. The acquired

CT numbers are segmented into tissues and assigned a reference elemental

composition, while the density is scaled by the corresponding RSP. This pro-

cedure introduces uncertainties since it neglects tissue variability. Possible

improvements with DECT and MECT are currently under investigation.

This part of the work presents an initial study aimed at understanding

and quantifying how MC can improve proton range prediction, and if possible

reductions in uncertainty margins can be achieved. One limitation in the

study as currently performed is the difference in exit energies between the ex-

periment and the MC simulation. It can be assumed that the severity of range

degradation changes with energy, because scatter increases with decreasing
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energy. In the MC simulations, the entrance energy of the proton beam is kept

at a constant value. The residual energy of the beam after passing through

the samples is scored and used to find the WER. In the experiment, however,

we continuously increase the entrance energy until the Bragg peak was seen

by the detector. Hence, the average energy as seen in the detector is always

close to zero. This mismatch of energies might introduce errors in the MC

simulations. Although they are not expected to be large, it might be worth

investigating if this could be the origin of the observed bias.

3.5 Conclusion

This study aims at validating two DECT formalisms to extract SPR values

using heterogeneous animal tissue samples. SECT and DECT scans of ho-

mogeneous tissue-equivalent plastic materials are used to estimate their SPRs

and the same technique is applied on the biological samples to predict their

WER in MC simulations. Using WER measurements with the dose extinc-

tion method, we isolate an uncertainty estimation of combined CT imaging

artifacts, CT-number-to-SPR conversion and I-value on the range of a proton

beam. We observe clear improvements in determining SPRs with DECT for

homogeneous tissue substitutes as well as improvements in determining WER

in animal tissues since range errors are dominated by the bias produced by

the SECT method. We conclude benefits of 0.34% in soft tissues and 0.31%

in WER prediction in the presence of bony tissues using DECT over SECT.

Future MC-based treatment planning systems, however, might further benefit

from improved input data derived with the ETD method.

Overall, chapters 2 and 3 demonstrate that DECT can provide additional

information and therefore has the potential to increase accuracy in the pre-

diction of tissue parameters for proton radiotherapy. Both, the theoretical

and experimental study agree that uncertainties from CT imaging and con-

version to tissue can be reduced by about 0.3% by choosing DECT over SECT.
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We compare water equivalent ranges of a proton beam traveling through

a set of homogeneous and heterogeneous animal tissue samples with the WER

predicted by two different range calculation algorithms. We observe high pre-

diction errors of up to -6.09% using ray tracing, which can be reduced by

a factor of about two using MC. This work demonstrates the gain in range

accuracy when using MC for dose calculation in the presence of tissue inho-

mogeneities. A reduction of mean range errors and standard deviations can be

achieved in both, homogenous soft tissues and inhomogeneous soft tissue-bone

mixtures.
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Optimized I-values for the use

with the Bragg additivity rule

and their impact on proton

stopping power and range

uncertainty

The work presented in this chapter can be found in the following journal article:

1. Bär, E., Andreo, P., Lalonde, A., Royle, G., Bouchard, H. (2018) Op-

timized I-values for the use with the Bragg additivity rule and their

impact on proton stopping power and range uncertainty. Phys. Med.

Biol., in press. doi: 10.1088/1361-6560/aad312 [79].

The work was presented at the following meetings:

2. Bär, E., Andreo, P., Lalonde, A., Royle, G., Bouchard, H., (2017) A

new method to improve the accuracy of the Bragg additivity rule for

calculating proton stopping powers. London, 4th PPRIG Workshop.

3. Bär, E., Andreo, P., Lalonde, A., Royle, G., Bouchard, H., (2018) A

novel method to estimate mean excitation energies and their uncertain-
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ties for particle therapy. Barcelona, ESTRO 37. Radiother. Oncol. 127:

S42-S43.

Contribution of Authors: Pedro Andreo provided useful guidance,

discussions and provided help with the interpretation of ICRU recommended

values and uncertainties. Arthur Lalonde provided help with initial MC sim-

ulations. Gary Royle provided input in form of discussion. Hugo Bouchard

guided the development of the mathematical model, helped with the imple-

mentation and supervised the project. All other work was performed by myself.

4.1 Introduction

With DECT being on the edge to clinical implementation for radiotherapy,

one major remaining source of uncertainty lies in the determination of the

mean excitation energy, or I -value, of patient tissues. The portion of range

uncertainties arising from I -values was previously estimated to 1.5% [9] and

is currently taken into account as such in clinical treatment margins.

In practice, the I -values for compounds are calculated from elemental I -

values using the Bragg additivity rule (BAR). Current clinically used ele-

mental I -values were estimated by Berger and Seltzer in 1982 [34], and in

1984 those values were adapted as a recommendation in the ICRU report

37 [27], and later taken over for the use in proton and ion radiotherapy in

ICRU report 49 [77]. Seltzer and Berger used a large set of different stop-

ping power measurements of several compounds from previous publications

[80, 81, 82, 83, 30, 31, 84, 85, 86, 87] and derived the compound I -values and

their measurement uncertainties. Based on those compound measurements,

they estimated two sets of elemental I -values to use in compounds in com-

bination with the BAR, one set for gases and one set for liquids and solids.

It is important to note that the I -value of an element or a molecule depends

on whether it is unbound or bound, and the type of chemical bond. Hence,

elemental I -values for the use in compounds are different from I -values of
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unbound elements. Since the work of Berger and Seltzer was adapted to ICRU

recommendations, their elemental I -values for the use in compounds are in

clinical use.

The estimation of range uncertainties arising from I -values has always been

challenging. Andreo [36] showed differences in beam depths of 0.3 g
cm2 for a

proton beam when the water I -value varies from 67 eV to 80 eV, covering the

variety of values proposed in literature. Differences get larger when consid-

ering different tissue types or different particle species. Besemer et al. [88]

performed a variation study that uniformly varies the tissue I -values, and

evaluated the influence on patient dose distributions. They showed that a

10% variation of I -values influences the R80 beam range by up to 4.8 mm,

and resulting dose distributions by up to 3.5%. Although the uncertainties on

I -values can be relatively high, two studies by Yang et al. [51] and De Smet et

al. [78] suggest that the resulting RSP values are much lower since correlations

between water and medium need to be taken into account. Another study by

Doolan et al. [89] investigated the influence of different correction terms to

the Bethe formula on the calculated stopping power. They suggest using the

I -value as a free parameter to optimize according to which corrections to the

Bethe formula are used, in order to avoid systematic errors on RSP values.

Further recent work suggests the estimation of a patient-specific tissue I -value

from MRI imaging [90]. In this study, the I -value of tissue is parametrized

as a function of three components: water content, mass fraction of organic

tissues, and mass fraction of mineralized tissues. Those three quantities are

either directly measurable with MRI (water content) or can be related to

MR-measurable quantities (hydrogen content or hydroxyapatite).

The aim of this work is to revise the currently used elemental I -values. Since

the work of Seltzer and Berger, several new stopping power measurements

were performed [32, 91, 92, 33, 28] which can be included into the estimation

of elemental I -values for the use in compounds. We develop a mathematical

model to find, based on old and new measurement data, an optimal set of
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elemental I -values for the used in compounds. Furthermore, our model estab-

lishes an uncertainty budget on our newly found set of elemental I -values as

well as on the BAR. Our uncertainty budget allows the propagation of uncer-

tainties from elemental I -values to RSPs of tissues and ultimately to beam

ranges, to give a rigorous estimate of range uncertainties arising from I -values.

4.2 Materials and methods

4.2.1 Optimal elemental I-values to estimate com-

pounds I-values

Let us define a series of M media indexed by i = 1, . . . ,M consisting of N

elements and with given elemental weights wmed,ij, with j = 1, . . . , N . The

Bragg additivity rule (BAR) allows an estimation of the mean excitation energy

Imed,i of the i-th medium using the weighted sum of the logarithmic elemental

mean excitation energies:

ln Imed,i ≈
N∑
j=1

λmed,ij ln Imed,j (4.1)

where λmed,ij is the fraction of electrons from the j-th element in the i-th

medium and given by

λmed,ij =
wmed,ij

Zj

Aj(
Z
A

)
med,i

(4.2)

with Zj and Aj the atomic number and molar mass of the j-th element, and(
Z
A

)
med,i

is the number of electrons per unit mass in the medium (in mol/g).

Using matrix notation, the BAR can be written as the following estimator

ymed ≈ ŷmed ≡ Λmedŷelem (4.3)

where ymed is aM×1-dimensional array containing the logarithm of experimen-

tal I-values and ŷelem is an array of dimension N × 1 containing the optimized
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logarithm of elemental I-values for use the BAR defined as

ŷelem,j ≡ ln Îj. (4.4)

The matrix Λmed of dimension M × N contains the fractions of electrons for

the respective materials and its elements are written as λmed,ij, corresponding

tor the i-th medium and j-th element.

We propose to determine a new set of optimized elemental I-values, i.e.,

Îj, by finding the weighted least square solution of equation 4.3. To take

measurement and model uncertainties into account, we introduce weighting

factors accounting for uncertainties:

ωi =
1√
u2

med,i

(4.5)

with umed,i being the relative uncertainty of the I-value measurement of the

i-th medium. Note that because these uncertainties represent the absolute

uncertainty of the natural logarithm of the I-value, they are reported in rela-

tive uncertainty on the I-value (i.e., in %). These weighting factors multiply

individually both sides of the equation system 4.3 to account for uncertainties,

leading to a new equation system

ỹmed ≈ Λ̃medŷelem (4.6)

where the elements of ỹmed are ωiymed,i and the elements of Λ̃med are ωiλmed,ij.

We can now find the least square solution to equation 4.6:

ŷelem =
(
Λ̃T

medΛ̃med

)−1

Λ̃T
medỹmed

= M̃ỹmed,

(4.7)

with ŷelem being the estimation of the optimized logarithmic elemental I-values

and M̃ a projection matrix (from the measurement to the solution) defined to

ease the notation. To find the uncertainties on elemental I-values, we construct
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the covariance matrix of ŷelem as follows:

V (ŷelem) = M̃V (ỹmed) M̃T + u2
BAR1N×N , (4.8)

with V (ỹmed) being the covariance matrix on measured material I-values with

each line weighted by its corresponding ωi. Note that because the measurement

are assumed independent, V (ỹmed) is diagonal. It should be kept in mind

that the uncertainties umed on the media are the measurement uncertainties

quoted in the respective publication. It cannot be assumed that uncertainty

estimations are consistent over the whole data set, hence these inconsistencies

are reflected in the calculated weights.

Equation 4.8 is defined by combining two terms. The first one is obtained

by applying the rule of uncertainty propagation on equation 4.7, since the Ja-

cobian (∂ŷelem/∂ỹmed) is the projection matrix M̃. The second term is added

to account for the model uncertainty. Indeed, the rule of uncertainty propa-

gation can only yield accurate uncertainty estimations if the model is exact.

Because the BAR is not completely accurate, it is judicious to add a model un-

certainty component u2
BAR affecting each optimized values individually and in

an independent manner. This way, we divide the uncertainties involved in the

estimation of elemental I-values into experimental type A uncertainties and

model-related type B uncertainties. The resulting V (ŷelem) is a non-diagonal

square matrix of dimensions N × N accounting for statistical correlations in

the solution.

The solution expressed in equation 4.7 using experimental data yields a new

set of elemental I-values Îj for use with the BAR. The experimental data were

taken from different sources as listed in table 4.1. They include the data pro-

vided in ICRU report 37, table 5.3 of [93] and more recent publications. Like

Seltzer and Berger, we divide the data into two groups: 1) gases; 2) liquids and

solids. For gases, the data used in this work are the same than the ones used

by Seltzer and Berger [34] to determine the recommended elemental I-values

in ICRU report 37. For liquids and solids, we added data published in recent
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literature (see table 4.1, numbers 11-15). In total, we use 74 liquids and solids

for calibration, including six different I -values for water [28, 29, 30, 31, 32, 33].

We obtain two sets of elemental I-values which are optimized for the use in

compounds (one set for gases, one for liquids and solids) in combination with

the BAR. We use equation 4.8 to report uncertainty values uelem for the newly

determined Ielem. The here reported uncertainties are standard uncertainties

(68% confidence interval). Some of the data used for our analysis, especially

the ones used by Seltzer and Berger, are quoted for a 90% confidence interval,

as reported in ICRU report 37, footnote 10. Whenever this was the case, the

uncertainties were divided by a factor of 1.6 to convert from the 90% to the

68% confidence interval.

To test the validity of our data, we perform a self-consistency test. For this,

we use the optimized elemental I -values to reproduce the calibration data set.

The root mean square (RMS) errors between actual and predicted calibration

data are compared with predicted data using ICRU-recommended elemental

I -values. Again, we separate gases from liquids and solids.

4.2.2 Estimation of uBAR

While umed,i can be derived from experimental uncertainties, uBAR needs to be

estimated using a model. To estimate uBAR, we use the calibration data set

as listed in table 4.1, and calculate the residual error r between the estimated

and experimentally measured values for ymed:

r = ŷmed − ymed

= Λ
(
Λ̃T

medΛ̃med

)−1

Λ̃T
medỹmed − ymed

= K̃ỹmed − ymed

= (K− 1N×N) ymed.

(4.9)

with K̃ = ΛM̃ and where the elements of K equal the ones of K̃ divided by

the weighting factors, i.e., Kij = 1
wi

K̃ij. We can now estimate the covariance

matrix V(r) as
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V(r) = (K− 1N×N)V (ymed) (K− 1N×N)T + u2
BAR1N×N . (4.10)

To solve for u2
BAR, we find the value such that the sum of the residuals squared

normalized to their variance equals its number of degrees of freedom, that is:

N∑
i=1

r2
i

Vii(r)
= N −M. (4.11)

Note that the approach is based on the assumption that the experimental

data for a particular element follows a Gaussian distribution. This results in

the sum of above following a chi-square distribution with expectation value

equaling its number of degrees of freedom N − M , N being the number of

experimental data and M the number of optimized elemental I-values.

4.2.3 Application of optimal elemental I-values to water

and reference human tissues

Using the optimized set of elemental I-values, we determine compound I-values

for water and a set of 70 human reference tissues [48, 49]. The compound I-

values are compared to the results obtained with ICRU 37 recommended val-

ues. We establish the uncertainties on compound I-values using the covariance

matrix of the elemental I-values V (ŷelem):

V (ŷmed) = ΛmedV (ŷelem) ΛT
med. (4.12)

4.2.4 Uncertainties on RSPs

Once the uncertainties on the mean excitation energies are determined, it is

possible to propagate these into stopping power uncertainties. In this way,

we quantify the uncertainty on the RSP of medium to water originating from

uncertainties on I-values. Since the uncertainties of medium and water can

be correlated depending on the water content of the medium [78, 51], it is

important to consider covariances. We can formulate the RSP in terms of
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relative electron density ρe and stopping number as

Smed = ρe
Lmed

Lw

. (4.13)

where Lmed and Lw are the stopping numbers of the medium and water, re-

spectively. Using Bethe’s model and the BAR, the stopping number of an

arbitrary medium is expressed as

L = ln

(
2mec

2β2

1− β2

)
− β2 −

N∑
k=1

λkyk (4.14)

with me the electron mass, c the speed of light and β the particle velocity

relative to c. The derivative of the stopping number with respect to ln Ii is

then found to be

∂L

∂yi
= −λi. (4.15)

We can now express the derivative of the RSP with respect to ln Ii as

∂S

∂yi
= ρe

∂ Lmed

Lw

∂yi

= ρe
Lmedλw,i − Lwλmed,i

L2
w

.

(4.16)

The variance on the RSP can now be written as using the following rule

V (S) =

(
∂S

∂y

)T

V (y)

(
∂S

∂y

)

=


∂S
∂y1

...

∂S
∂yN


T

COVAR (y1, y1) COVAR (y1, yN)
...

. . .
...

COVAR (yN , y1) · · · COVAR (yN , yN)




∂S
∂y1

...

∂S
∂yN

 .

(4.17)

4.2.5 Uncertainties on beam ranges

To quantify the impact on beam ranges, we perform MC transport simulations

of a pristine proton beam in homogeneous media (volume: 30×30×30 cm3).
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We score the energy loss and position of each interaction of the beam with the

medium. We choose water and five different human reference tissues (Adipose

3, skeletal muscle 1, brain white matter, femur whole, cortical bone) relevant

to proton therapy. For every material, four simulations are performed: 1)

using ICRU-recommended I -values; 2) using our suggested I -values; 3) using

the upper uncertainty limit and 4) using the lower uncertainty limit. For

the simulations, we use the Geant4 code (Version 10.03.p02) with the QBBC

physics package [94]. We simulate proton beams of 173 MeV using 106 particles

per beam and a 1 mm cut-off value for secondary particles.

4.3 Results

4.3.1 Optimal elemental I-values to estimate com-

pounds I-values

The proposed approach results in a set of optimized elemental I-values for

the use with the BAR with compounds. Using the same measured compound

I-values than Seltzer and Berger and more recent literature on measured I-

values, we calculate optimized elemental I-values for the use in gases and for

the use in liquids and solids separately. Our optimized elemental I-values differ

from the ones suggested by Seltzer and Berger, as tabulated in tables 4.2 and

4.3. Table 4.4 shows the correlation coefficients of the optimized elemental

I -values for liquids and solids. We use both sets of elemental I -values to

perform a self-consistency test on the calibration data. Using the ICRU 37

recommended elemental I-values suggested by Seltzer and Berger, we observe

RMS errors of 1.02% (gases) and 6.17% (liquids and solids) when using the

BAR to predict the underlying experimental I-values. Using our optimized

elemental I-values, this prediction error can be reduced to 0.05% (gases) and

5.19% (liquids and solids). The model uncertainty arising from the BAR, i.e.,

uBAR, is quantified as 4.42%.
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Table 4.2: Comparison of elemental I-values (in eV) for the use in gas compounds.
The values recommended by Seltzer and Berger (ICRU 37) are com-
pared to the values determined with our proposed assignment scheme.

Gases
Element Seltzer and Berger This work Uncertainty [eV]
H 19.20 21.54 0.74
C 70.00 66.75 1.08
N 82.00 79.59 1.15
O 97.00 95.17 1.01

Table 4.3: Comparison of elemental I-values in eV for the use in liquid and solid
compounds. The values recommended by Seltzer and Berger (ICRU 37)
are compared to the values determined with our proposed assignment
scheme.

Liquids and solids
Element Seltzer and Berger This work Uncertainty [eV]
H 19.20 22.07 1.32
C 81.00 79.91 3.61
N 82.00 77.91 3.86
O 106.00 107.44 4.88
F 112.00 136.24 6.28
Al 187.58 191.69 11.13
Si 195.50 150.47 7.60
P 195.50 199.39 42.45
Cl 180.00 175.13 7.91
Ca 215.80 258.11 16.61

4.3.2 Application of optimal elemental I-values to water

and reference human tissues

Using our method, we estimate the compound I-value of water to

78.73±2.89 eV. This value is in good agreement with the recent recommenda-

tion given in ICRU 90 [95], which is based on the value 78±2 eV given in Andreo

et al. [96]. The compound I-values of 70 reference human tissues are listed in

tables 4.5 and 4.6. The uncertainty of the values suggested herein and the dif-

ference with Seltzer and Berger recommended values are also listed. In figure

4.1, we show the resulting uncertainties on tissue I-values when covariances

are not taken into account. With our model, we obtain uncertainties between

min {utissue} = 1.82 eV (mammary gland) and max {utissue} = 3.38 eV (cortical

bone). If statistical correlations between optimized elemental I-values are

neglected, these values increase to min {utissue} = 1.92 eV (mammary gland)
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Table 4.4: Correlation coefficients of the uncertainties of elemental I -values.

Element H C N O F Al Si P Cl Ca
H 1.00
C -0.12 1.00
N -0.02 -0.00 1.00
O -0.12 0.03 0.01 1.00
F 0.04 -0.02 0.00 -0.01 1.00
Al 0.09 -0.02 -0.01 -0.04 0.01 1.00
Si 0.03 -0.01 -0.00 -0.01 0.00 0.01 1.00
P 0.06 -0.02 -0.00 -0.02 0.03 0.02 0.01 1.00
Cl 0.01 -0.01 0.00 -0.00 -0.00 0.00 0.00 0.00 1.00
Ca 0.04 -0.02 -0.01 -0.02 -0.02 0.01 0.00 -0.35 0.01 1.00

Figure 4.1: Calculated uncertainties on compound I-values for 70 human reference
tissues. This graph also shows that neglecting statistical correlations
between optimized elemental I-values leads to an overestimation of the
uncertainties in compounds.

and max {utissue} = 3.85 eV (cortical bone).

4.3.3 Uncertainties on RSPs

We use our optimized I-values to calculate RSP values for 70 human refer-

ence tissues. Figure 4.2 shows the uncertainties on RSP values of 70 human

reference tissues, arising from uncertainties on I-values only. We observe un-

certainties on RSP values between 0.002% (mammary gland) and 0.44% (adi-

pose tissue 3). The uncertainties observed are the smallest for the soft tissues

since their water content is the highest between adipose tissue, soft tissues,
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lcccc

Table 4.5: Compound I-values determined with the elemental I-values recom-
mended by Seltzer and Berger (ICRU 37) and compared to those sug-
gested in this work. All I-values and standard uncertainties are given
in eV.

Tissue Seltzer and Berger This work Uncertainty I-value difference
Adipose tissue 1 66.20 68.28 1.82 (2.67%) 2.09 (3.15%)
Adipose tissue 2 64.66 66.62 1.86 (2.79%) 1.96 (3.04%)
Adipose tissue 3 63.12 64.95 1.93 (2.98%) 1.84 (2.91%)
Adrenal gland 70.83 73.33 2.01 (2.74%) 2.50 (3.52%)
Aorta 74.78 77.50 2.34 (3.02%) 2.72 (3.64%)
Blood whole 74.78 77.62 2.47 (3.18%) 2.84 (3.79%)
Brain cerebrospinal fluid 75.52 78.93 2.89 (3.66%) 3.40 (4.51%)
Brain gray matter 74.34 77.36 2.52 (3.25%) 3.02 (4.06%)
Brain white matter 72.67 75.39 2.21 (2.92%) 2.72 (3.74%)
C4 including cartilage male 89.41 93.34 2.37 (2.53%) 3.93 (4.39%)
Cartilage 77.14 80.04 2.58 (3.22%) 2.90 (3.76%)
Clavicle scapula 92.25 96.53 2.40 (2.49%) 4.27 (4.63%)
Connective tissue 73.97 76.30 2.15 (2.82%) 2.34 (3.16%)
Cortical bone 111.63 117.81 3.38 (2.87%) 6.17 (5.53%)
Cranium 99.69 104.65 2.75 (2.63%) 4.97 (4.98%)
D6L3 including cartilage male 85.44 89.01 2.23 (2.51%) 3.58 (4.19%)
Eye lens 74.03 76.45 2.20 (2.87%) 2.42 (3.27%)
Femur Humerus spherical head 85.43 89.09 2.18 (2.45%) 3.66 (4.29%)
Femur conical trochanter 86.69 90.47 2.22 (2.45%) 3.78 (4.36%)
Femur cylindrical shaft 105.13 110.64 3.01 (2.72%) 5.51 (5.24%)
Femur total bone 90.24 94.31 2.33 (2.47%) 4.08 (4.52%)
Femur whole specimen 90.34 94.44 2.34 (2.47%) 4.10 (4.54%)
Gallbladder bile 75.03 78.23 2.69 (3.44%) 3.20 (4.26%)
Heart 1 73.43 76.13 2.27 (2.98%) 2.70 (3.67%)
Heart 2 73.91 76.72 2.37 (3.09%) 2.81 (3.80%)
Heart 3 74.61 77.52 2.49 (3.21%) 2.91 (3.91%)
Heart blood-filled 74.39 77.21 2.42 (3.14%) 2.83 (3.80%)
Humerus cylindrical shaft 93.56 97.96 2.45 (2.50%) 4.40 (4.70%)
Humerus total bone 92.23 96.50 2.40 (2.49%) 4.27 (4.63%)
Humerus whole specimen 88.06 91.98 2.26 (2.46%) 3.92 (4.45%)
Innominate female 92.82 97.08 2.45 (2.52%) 4.27 (4.60%)
Innominate male 90.75 94.80 2.37 (2.50%) 4.05 (4.46%)
Kidney 1 73.90 76.62 2.31 (3.01%) 2.72 (3.68%)
Kidney 2 74.28 77.10 2.40 (3.11%) 2.82 (3.80%)
Kidney 3 74.60 77.52 2.48 (3.20%) 2.92 (3.91%)
Liver 1 73.84 76.60 2.33 (3.04%) 2.77 (3.75%)
Liver 2 74.30 77.08 2.38 (3.09%) 2.78 (3.75%)
Liver 3 74.69 77.48 2.42 (3.12%) 2.79 (3.73%)
Lung deflated 74.72 77.59 2.48 (3.19%) 2.88 (3.85%)
Lymph 75.23 78.43 2.73 (3.48%) 3.20 (4.25%)
Mammary gland 1 66.79 68.81 1.82 (2.64%) 2.03 (3.04%)
Mammary gland 2 70.11 72.46 1.93 (2.66%) 2.35 (3.35%)
Mammary gland 3 73.84 76.53 2.31 (3.02%) 2.69 (3.65%)
Mandible 102.35 107.56 2.88 (2.67%) 5.21 (5.09%)
Muscle skeletal 1 73.74 76.40 2.28 (2.98%) 2.66 (3.60%)
Muscle skeletal 2 74.08 76.84 2.36 (3.07%) 2.75 (3.71%)
Muscle skeletal 3 74.72 77.58 2.47 (3.18%) 2.85 (3.82%)
Ovary 74.63 77.60 2.52 (3.25%) 2.97 (3.98%)
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Table 4.6: Continued: Comparison of ICRU 37 recommended I -values with our
suggested I -values for human reference tissues.

Tissue Seltzer and Berger This work Uncertainty I-value difference
Pancreas 73.11 75.90 2.29 (3.02%) 2.79 (3.82%)
Prostate 74.70 77.67 2.54 (3.27%) 2.97 (3.97%)
Red marrow 68.81 70.94 1.83 (2.59%) 2.13 (3.10%)
Ribs 10th 95.48 100.00 2.55 (2.55%) 4.53 (4.74%)
Ribs 2nd 6th 90.33 94.37 2.35 (2.49%) 4.04 (4.47%)
Sacrum female 89.16 93.10 2.31 (2.48%) 3.93 (4.41%)
Sacrum male 84.25 87.71 2.15 (2.45%) 3.46 (4.11%)
Skin 1 72.43 74.82 2.06 (2.75%) 2.39 (3.30%)
Skin 2 73.35 75.87 2.18 (2.88%) 2.52 (3.44%)
Skin 3 74.06 76.74 2.31 (3.02%) 2.68 (3.62%)
Small intestine wall 74.09 77.02 2.46 (3.19%) 2.93 (3.95%)
Spleen 74.58 77.43 2.45 (3.16%) 2.85 (3.82%)
Sternum 82.03 85.28 2.09 (2.45%) 3.25 (3.96%)
Stomach 73.87 76.67 2.37 (3.10%) 2.81 (3.80%)
Testis 74.35 77.33 2.51 (3.25%) 2.98 (4.01%)
Thyroid 74.35 77.23 2.45 (3.18%) 2.88 (3.88%)
Trachea 74.44 77.20 2.38 (3.08%) 2.76 (3.71%)
Urine 75.55 78.88 2.84 (3.60%) 3.33 (4.40%)
Vertebral column C4 excluding cartilage 90.83 94.90 2.37 (2.49%) 4.07 (4.48%)
Vertebral column D6L3 excluding cartilage 86.59 90.27 2.22 (2.46%) 3.67 (4.24%)
Vertebral column whole 86.65 90.34 2.27 (2.51%) 3.70 (4.27%)
Water 75.31 78.73 2.89 (3.67%) 3.41 (4.53%)
Yellow marrow 63.78 65.66 1.89 (2.88%) 1.88 (2.95%)

Figure 4.2: Calculated uncertainties on RSPs for 70 human reference tissues, aris-
ing from the uncertainties on compound I-values.

and bones.

4.3.4 Uncertainties on beam ranges

Figure 4.3 shows the percentage depth dose (PDD) curves for water and five

human reference tissues, each using four different sets of I -values: 1) the ICRU-
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recommended values; 2) the optimized I -values resulting from this work, 3)

the optimized I -values resulting from this work plus 1 standard deviation and

4) the optimized I -values resulting from this work minus 1 standard deviation.

We observe differences in the range of the distal 80% of the maximum dose

(R80) between ICRU-recommended values and our values of 0.75 mm (adipose

tissue 3) - 1.10 mm (water). We find range uncertainties between 0.31% and

0.47%, with the lowest uncertainty found in femur tissue, while the highest

uncertainty is found in water (see table 4.7).

Table 4.7: Calculated beam ranges in terms of R80 (in mm) using MC proton
beam transport simulations. The uncertainties reported are resulting
from the uncertainties on our optimized I -values and the differences are
taken between ranges simulated with ICRU-recommended I -values and
ranges simulated with our optimized I -values.

Liquids and solids
Material Range ICRU Range this work Uncertainty [%] Difference [%]
Water 202.25 203.35 0.95 (0.47%) 1.10 (0.54%)
Adipose tissue 3 211.97 212.72 0.79 (0.37%) 0.75 (0.35%)
Muscle skeletal 1 194.01 194.86 0.72 (0.37%) 0.85 (0.44%)
Brain white matter 194.68 195.55 0.72 (0.37%) 0.88 (0.45%)
Femur whole 151.49 152.34 0.47 (0.31%) 0.85 (0.56%)
Cortical bone 119.46 120.28 0.50 (0.42%) 0.82 (0.68%)

4.4 Discussion

In this work, we investigate RSP and range uncertainties arising from mean

excitation energies. We establish a mathematical model to optimize elemental

I -values for the use in gases and liquids and solids with the BAR. To calculate

our optimized I -values and establish an uncertainty budget, we utilize I -value

and stopping power measurements from literature, most of which were used by

Seltzer and Berger to establish the ICRU 37 recommended values, however, we

also include more recent measurements. To test consistency with Seltzer and

Bergers publication, we applied our methods to their original dataset. The

results obtained with our method differ from the elemental I-values proposed

by Seltzer and Berger, indicating that there is a methodological difference

between the two methods. The set of optimized elemental I -values for the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Percentage depth dose curves of a pristine proton beam with an ini-
tial energy of 173 MeV, simulated in homogenous media: a) Water,
b) adipose tissue 3, c) muscle skeletal 1, d) brain white matter, e)
femur whole and f) cortical bone. Shown are curves using the ICRU-
recommended I -values (black line), our suggested I -values (red solid
line) and uncertainty limits (dashed lines).
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use with the BAR in compounds and the reported uncertainties that can be

used to accurately assess the uncertainties on tissue I -values. Furthermore,

we provide an estimation of the uncertainty coming from the BAR itself and

include this uncertainty in our model. Our model allows the propagation of

uncertainties to RSP values and beam ranges, providing a better understand-

ing of the resulting uncertainties in proton therapy treatment planning.

Elemental I -values of liquids and solids are of special interest for proton

therapy treatment planning. We propose a set of values which differs from the

values recommended in ICRU 37. This is due to the availability of more recent

data and the fact that the underlying model used to find the optimized I -values

differs from the methods used by Seltzer and Berger to determine the originally

proposed values. For the majority of our proposed values (C, N, O, Al, P, Cl),

the ICRU-recommended values are within the uncertainty budget given by our

model. However, few exceptions are observed. We find considerably higher

elemental I -values for the elements H, F, and Ca than Seltzer and Berger. In

turn, our values for Si is lower. While the optimized value for P is close to

the ICRU recommended value (195.5 eV versus 199.93 eV), we observe a high

uncertainty of 42.45 eV. The high uncertainty can be explained due to the lack

of data available for P. From the 74 liquids and solids, only 3 materials contain

traces of P. The high observed uncertainty, however, is of little concern to

clinical applications. First of all, P is only abundant as a trace element in the

human body. Secondly, it is only observed in bones, where we observe a strong

statistical anti-correlation with Ca, compensating for the high uncertainty in

P.

The calibration materials used herein are taken from various sources of

literature, most of them were already utilized by Seltzer and Berger to recom-

mend the currently clinically applied elemental I -values. As a self-consistency

study, we evaluate the accuracy of our optimized elemental I -values in com-

parison to ICRU-recommended elemental I -values to predict the I -values of
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the calibration material. Our optimized elemental I -values show a lower RMS

prediction error than the ICRU-recommended values, indicating that our val-

ues are well suited to predict the I -values of tissues when the BAR is used.

When calculating the I -values of 70 human reference tissues, we observe gen-

erally larger tissue I -values using the optimized elemental I -values. Using our

technique and optimized elemental I -values, we achieve an I -value for water

of 78.73±2.89 eV, which is in good agreement with the value recommended

in the recently published ICRU 90 report. Using the elemental I -values rec-

ommended in ICRU 37, the I -value for water is estimated as 75.32 eV. Please

note that the value quoted in ICRU 90 is derived from water I -values only.

In this work, we include water but also various materials to derive elemental

I -values which are then used to calculated the I -value of water. An alternative

approach could be to fix the I -value of water to the latest ICRU recommen-

dation to obtain a set which is in better consistency with the ICRU report.

Our mathematical model incorporates estimates for uncertainty values

associated with each optimized elemental I -value and allows the propagation

of uncertainties on tissue I -value uncertainties. We show the importance of

taking into account statistical correlations between uncertainties of the differ-

ent elemental I -values. Our analysis shows that if statistical correlations are

ignored, the uncertainties might be overestimated by up to 0.5%.

The method proposed herein allows the estimation of uncertainties on

tissue RSPs resulting from I -value uncertainties. We observe the highest RSP

uncertainties in adipose tissues and bones, which is expected as those are the

tissues with a low water content. Those findings were already discussed in

previous studies by Yang et al. [51] and De Smet et al. [78]. We observe low

RSP uncertainties in soft tissues, which can be attributed to their high water

content.
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The resulting beam range uncertainties are assessed in water and five

selected human reference tissues. We choose the tissues according to their

importance to radiotherapy and abundance in the human body. Observed

range uncertainties are between 0.31% and 0.47%for a 173 MeV proton beam.

Overall, the ranges predicted using our optimized elemental I -values are sys-

tematically larger than the ranges calculated based on ICRU-recommended

I -values. This is expected since our optimized I -values calculate larger tissue

I -values than the ICRU recommendation.

It should be noted that the systematic shift in depth dose curves observed in

the MC simulations will not necessarily be observed with more simplistic dose

calculation algorithms as implemented in treatment planning systems since

they usually use the stopping power relative to water for dose estimation. Ad-

ditionally, it must be considered that MC based treatment planning systems

are usually commissioned based on measured ranges. The incident energy and

the I-value of water may be tuned such that the model matches the measured

ranges. However, it should be emphasized that our model yields a more realis-

tic I -value for water (and closer to the recent ICRU 90 recommendation) than

ICRU 37. Future work will focus on the application of optimized I -values to

CT scans of tissues, which can potentially prove the validity and superiority

of one set of elemental I -values over the other.

4.5 Conclusion

We propose a new set of optimized elemental I -values for the use with the

Bragg additivity rule in compounds. Our mathematical model establishes an

uncertainty budget on elemental I -values that can be propagated to compound

I -values, accounting for experimental uncertainties as well as the uncertainty

on the Bragg additivity rule itself. With our model, we provide realistic uncer-

tainties estimations on proton RSP and beam range values in human tissues.

In conclusion, this chapter shows that the currently assumed range uncertainty

originating from I -values as quoted in chapter 1 (1.5%) may be overestimated.
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The here proposed elemental I -values and corresponding uncertainty budgets

provide ground for a reassessment of those values and a possible reduction of

range uncertainties by up to 1%.





Chapter 5

Final remarks

Radiotherapy with protons and ions is becoming widely available as an option

for cancer treatment. A crucial part of treatment planning is the prediction of

the range that the particles travel in the patient. In its current form, however,

proton and ion therapy is not used to its full potential. Clinically applied

safety margins were defined as early as 1985 [97], and are still in use in many

centers nowadays. The use of large margins implies that a large amount of

healthy tissues is irradiated. A reduction of range margins, however, needs to

be performed in a careful manner and must be based on plenty of scientific

evidence. With proton therapy becoming widely available, there is a clear need

to carefully improve treatment accuracy by addressing the various sources of

range uncertainties.

One approach to improve treatment accuracy is by improving tissue char-

acterization based on CT scans. While DECT is widely available and in routine

clinical use for radiological applications, SECT is still the preferred method for

CT to RSP conversion in treatment planning. DECT, despite being quoted in

literature to improve range predictions, has not yet found its way into clinical

application due to the lack of data showing its safety and advantages in clinical

situations.

An uncertainty closely connected to those from CT imaging and conver-

sion to tissue is the uncertainty on the mean excitation energies. With DECT

having shown a potential to improve tissue characterization, the question about
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the contribution from I -values arises. The value currently applied to clinically

used uncertainty budgets and range margins is based on an estimate and shows

room for improvement.

A further source of uncertainty is the choice of dose calculation algo-

rithms. It was demonstrated in literature that a simple ray tracing algorithm

is not sufficient to predict the range in heterogeneous media and gives rise to

large range uncertainties. To improve treatment, MC is needed to accurately

model beam transport in patients.

The work described in this thesis has contributed to the field by ad-

dressing the above-mentioned issues. The clinical applicability of DECT

was demonstrated by (i) showing the potential of DECT in the presence of

imaging artifacts and by (ii) validating DECT predicted RSP values in an

experimental setup with animal tissues. The uncertainties arising from lat-

eral inhomogeneities were investigated (iii) using animal tissue measurements.

The uncertainties arising from mean excitation energies were addressed by (iv)

providing a new set of elemental I -values and a thorough uncertainty budget.

The potential of DECT and possible improvements compared to SECT

were investigated in a theoretical study. This study suggests that DECT

can improve the RSP predictions and reduce range uncertainties. In this

study, different formalisms published in literature to use DECT to convert

CT numbers into RSP values were compared and shown to perform differently

well. The outcomes of this study might aid clinical scientists in their decision

making on which method to implement clinically. It was the first study to

compare methods suggested in literature and apply them to realistic DECT

images. An important outcome of this study is the performance of DECT in

the presence of image artifacts. Most importantly, it was shown that DECT is

more sensitive to image noise than SECT, which can out-weight the benefits

of DECT over SECT. Following this finding, a Bayesian approach to solve
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RSPs from noisy DECT data was developed.

Following the theoretical study that pointed at a potential improvement

of range predictions using DECT, an experimental validation of these find-

ings was performed. In this study, the WER of fresh animal tissue samples

was measured in a proton beam to provide a ground truth. The WER was

then predicted from CT scans using both, SECT and DECT, and the WER

prediction accuracy of both imaging modalities was compared. Results of

this study show that a commonly used SECT method performs well, however

DECT can improve tissue characterization for proton radiotherapy and thus

reduce range uncertainties. The acquired data provide evidence for the clini-

cal applicability of DECT and quote an uncertainty budget to estimate range

margins, laying the ground for a clinical implementation of DECT for proton

therapy planning. Future work will be translational and focus on the compari-

son of patient treatment plans and dose differences between SECT and DECT.

The uncertainties arising from lateral inhomogeneities and the choice of

the dose calculation algorithm have been discussed in the past few years. It is

generally accepted that MC needs to be implemented for treatment planning,

and several research groups and vendors are working on the implementation

and realization. In this thesis, an initial experimental investigation of the in-

volved range errors with a known ground truth was performed to demonstrate

the gain in accuracy when MC is chosen over ray tracing. Future work can

focus on expanding and refining this study. Work has been done to improve

the performance of a pencil beam algorithm in the presence of lateral inho-

mogeneities, which can be included in the present study. Additional work will

focus on providing better MC input parameters.

The mean excitation energy is subject to discussion in recent literature.

The aim of the study presented in this thesis was to improve knowledge and
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understanding of uncertainties coming from I -values. Since I -values of a ma-

terial cannot be known or measured, it is crucial to estimate a set of elemental

I -values that can be used to best describe average I -values of human tissues.

Hence a new set of I-values is proposed in this thesis, together with a complete

uncertainty budget that allows the estimation of range uncertainties coming

from I -values alone. The presented results confirm that the currently used

uncertainty value of 1.5% is high, as could already be expected from the exper-

imental validation of DECT predicted ranges. A necessary next step would be

to validate the newly found elemental I -values in an experimental study and

compare the results to currently used ICRU recommended elemental I -values.

Table 1.1 shows the current estimates of sources of range uncertainties

in proton therapy. In this thesis, several of these numbers were challenged.

The here presented work increases knowledge of several components of range

uncertainties. The main achievements of this thesis were the validation of

DECT for range prediction and the quantification of the associated range

uncertainties. It was shown that DECT can improve range uncertainties as

opposed to SECT in soft tissues and bones, and an estimate of the associated

uncertainties is given. The current value of 0.5% should be adjusted to 0.19%

for soft tissues and 1.05% for bones. Furthermore, the uncertainties from

mean excitation energies were quantified in a rigorous study, giving a better

estimate of resulting range uncertainties. According to the here presented

data, the value can be reduced from 1.5% to 0.45% in soft tissues and 0.35%

in bones. Table 5.1 shows the imaging-related sources of range uncertainty

as quoted by Paganetti and our revised values. It can be concluded that the

contribution of the imaging-related relative range uncertainties should be ad-

justed from the current value of 2.4% to 0.9% in soft tissues and 1.7% in bones.

One aspect of DECT that was not discussed in this thesis but will be

addressed as future work is the ability to estimate nuclear interaction cross
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Table 5.1: Imaging- related sources of range uncertainties as investigated in this
thesis. The first column shows the currently assumed values listed in [9].
The second and third columns show the values derived within the scope
of this thesis. All values for the range uncertainties are given relative to
the total range and are based on 1.5 standard deviations. The bottom
lines are the total uncertainties. Those uncertainties printed in bold
were subject of evaluation in this thesis.

Source of range uncertainty Paganetti 2012
This work: This work:
Soft tissues Bones

CT imaging and calibration 0.5%
0.19% 1.05%

CT conversion to tissue 0.2%
CT grid size 0.3% 0.3% 0.3%
Mean excitation energies in tissues 1.5% 0.45% 0.35%

Total 2.4% 0.9% 1.7%

sections. Nuclear interaction cross sections of materials are needed for MC

treatment planning. Currently, they are either retrieved from tabulated data

after tissue segmentation or found via a calibration from SECT-determined

CT numbers [98]. With DECT, it is possible to estimate the material com-

positions in form of elemental mass fractions. These can be used to calculate

material-specific nuclear interaction cross sections.

Another aspect of DECT that can be of interest to future research is the

ability to estimate lateral scattering of a pencil beam. Modern proton ther-

apy techniques such as pencil beam scanning require accurate dose calculation

techniques. Current pencil beam algorithms are fast but lack in accuracy when

tissue inhomogeneities are present, since they do not accurately model multi-

ple Coulomb scattering. To improve pencil beam dose calculations, methods

for 2D pencil beam scaling were developed, as suggested by Szymanowski and

Oelfke [99, 100]. These methods make use of the scattering power of a mate-

rial, which can be modeled as a function of the CT numbers determined from

an SECT scan. The scattering power of the material is used in these models

to scale the dose from a pencil beam. This approach was shown to be more

accurate in estimating the dose in the presence of lateral inhomogeneities. In
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principle, the scattering power of a material can be determined from DECT,

as done by Collins-Fekete et al. [101], and used as input for the pencil beam

model. An alternative approach for pencil beam dose calculation was de-

scribed by Yao et al. [102, 103], who uses a random walk model to describe

the lateral dose from a pencil beam. Like the model proposed by Szymanowski

and Oelfke, this approach makes use of the scattering power, which could be

determined from DECT. It is left to future work to determine the impact of

using DECT-determined scattering powers of materials for lateral scaling of a

pencil beam.

To summarize, the work presented in this thesis provides a better under-

standing of three major sources of range uncertainties. Firstly, evidence for

the benefits of DECT based tissue characterization for proton therapy planning

is provided, and estimates of the related range uncertainties are given which

can be used in clinical practice to estimate the safety margin. Secondly, an

estimation of uncertainties from lateral inhomogeneities is provided. Thirdly,

a rigorous estimation of the uncertainties related to the I -values is provided.

The resulting values might be of interest for future clinical applications in MC

dose calculations.
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Diss. Naturwiss. ETH Zürich, Nr. 12474, 1997. Ref.: Peter Niederer;
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