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Genome-wide association study identifies
glutamate ionotropic receptor GRIA4 as a
risk gene for comorbid nicotine
dependence and major depression
Hang Zhou 1, Zhongshan Cheng1, Nicholas Bass2, John H. Krystal1,3,4, Lindsay A. Farrer5,6,7,8,9,
Henry R. Kranzler 10,11 and Joel Gelernter 1,3,12,13

Abstract
Smoking and major depression frequently co-occur, at least in part due to shared genetic risk. However, the nature of
the shared genetic basis is poorly understood. To detect genetic risk variants for comorbid nicotine dependence (ND)
and major depression (MD), we conducted genome-wide association study (GWAS) in two samples of African-
American participants (Yale-Penn 1 and 2) using linear mixed model, followed by meta-analysis. 3724 nicotine-exposed
subjects were analyzed: 2596 from Yale-Penn-1 and 1128 from Yale-Penn-2. Continuous measures (Fagerström Test for
Nicotine Dependence (FTND) scores and DSM-IV MD criteria) rather than disorder status were used to maximize the
power of the GWAS. Genotypes were ascertained using the Illumina HumanOmni1-Quad array (Yale-Penn-1 sample) or
the Illumina HumanCore Exome array (Yale-Penn-2 sample), followed by imputation based on the 1000 Genomes
reference panel. An intronic variant at the GRIA4 locus, rs68081839, was significantly associated with ND–MD
comorbidity (β= 0.69 [95% CI, 0.43–0.89], P= 1.53 × 10−8). GRIA4 encodes an AMPA-sensitive glutamate receptor that
mediates fast excitatory synaptic transmission and neuroplasticity. Conditional analyses revealed that the association
was explained jointly by both traits. Enrichment analysis showed that the top risk genes and genes co-expressed with
GRIA4 are enriched in cell adhesion, calcium ion binding, and synapses. They also have enriched expression in the
brain and they have been implicated in the risk for other neuropsychiatric disorders. Further research is needed to
determine the replicability of these findings and to identify the biological mechanisms through which genetic risk for
each condition is conveyed.

Introduction
Substance use is highly associated with other psychiatric

illnesses1–5. For instance, substance use disorders (SUDs)
and major depression (MD) are highly comorbid in the
general population2,3, and strong associations between
alcohol misuse and other psychiatric disorders were

observed in a U.S. Army cohort1. Clinical outcome is
worse in the patients with comorbid psychiatric disorders
and SUDs than in each disorder separately6. The causes of
this comorbidity are poorly understood, and a better
understanding of the causal relationship and etiology may
provide opportunities for risk mitigation. In recent years,
genetic associations (pleiotropy) between specific sub-
stance use and psychiatric disorders have been investi-
gated by genome-wide approaches7–9 and some specific
genome-wide significant (GWS) loci that affect SUD/
psychiatric comorbidity have been identified in our pre-
vious study9.
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The association between cigarette smoking and MD is a
particularly well-studied comorbidity, with several epide-
miological studies showing co-occurrence3,10–12. Smoking
initiation, daily smoking, persistent daily smoking, and
heavy smoking were significantly associated with
increased risk of MD, and the association also applies to
nicotine dependence (ND)13–15. Different hypotheses
have been proposed to explain the association. It has been
suggested that depression may result from the neuro-
pharmacological effects of nicotine or nicotine with-
drawal12,16,17, or alternatively, that depression may cause
smoking as an attempt at self-medication of negative
feelings18,19 or that there are bidirectional causal effects
linking smoking and depression15. Genetic risk variants
for ND (as well as smoking-related behaviors) and MD (as
well as depressive symptoms) have been separately iden-
tified in large cohorts by genome-wide association study
(GWAS)20–25. Common risk factors or shared etiology for
smoking and depression have also been suggested26,27,
and genetic factors that predispose to both smoking and
MD were also suggested in a study of female twins28.
To detect shared genetic variants that predispose to

comorbid ND and MD, we conducted GWAS and meta-
analysis on criterion counts comprised of Fagerström Test
for Nicotine Dependence (FTND) scores and DSM-IV MD
criteria in two African-American samples. A variant in
GRIA4, the gene that codes for the subunit 4 of the α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) glutamate receptor, showed genome-wide sig-
nificance for association with ND–MD comorbidity.

Materials and methods
Participants and diagnostic procedures
A total of 4944 African American (AA) subjects were

recruited for the Yale-Penn genetics of substance depen-
dence study from 2000 to 2013, as previously descri-
bed22,29. The subjects were grouped into two sets, Yale-
Penn-1 (3227) and Yale-Penn-2 (1717), based on their
epoch of recruitment and the genotyping platforms used.
All subjects provided written informed consent, and cer-
tificates of confidentiality were obtained from National
Institute on Drug Abuse (NIDA) and National Institute
on Alcohol Abuse and Alcoholism (NIAAA). All subjects
were interviewed using the Semi-Structured Assessment
for Drug Dependence and Alcoholism (SSADDA)30.
Lifetime FTND scores31 and criterion counts for MD
from the DSM-IV (Diagnostic and Statistical Manual of
Mental Disorders, Fourth Edition)32 were derived. Six
items were assessed for the FTND, generating scores from
0 to 10 (the higher the score, the more severe the nicotine
use), and nine criteria were assessed for MD, generating
scores from 0 to 9. We scaled the FTND scores uniformly
using the same range as for MD criteria so as to weight
them comparably for the GWAS9. Then, the comorbid

(summed) criterion counts (ranging from 0 to 18) were
treated as the outcomes, representing the overall severity
of comorbidity. Subjects who were not exposed to tobacco
(i.e., who answered “no” to the question, have you ever
tried any form of tobacco?) were excluded from the 4994
participants, leaving 3724 eligible subjects, 2596 from
Yale-Penn-1 and 1128 from Yale-Penn-2.

Genotyping, quality control, and imputation
The Yale-Penn-1 sample was genotyped using the Illu-

mina HumanOmni1-Quad array containing ~988,000
SNPs. The Yale-Penn-2 sample was genotyped using the
Illumina HumanCore Exome array containing ~266,000
exonic SNPs and ~240,000 tagging SNPs for genome-wide
imputation. Individuals and SNPs with genotype call rates
<98%, and SNPs with minor allele frequency (MAF) <1%
were removed from downstream analyses. Yale-Penn-1
and Yale-Penn-2 data were analyzed separately.
To correct any misclassification from self-reported race,

we conducted principal component (PC) analysis33 on
SNPs common to both the two Yale-Penn genotype
datasets and the 1000 Genomes phase 3 reference panel
which contains African, American, Asian, and European
populations34. SNPs were pruned based on LD (r2 < 0.2)
using PLINK35. Yale-Penn subjects were clustered into
different groups by the Euclidean distances to the refer-
ence populations (based on the first 3 PCs). For this study,
subjects that clustered with non-African populations were
removed from the downstream analyses. We then con-
ducted a second PC analysis within the remaining Yale-
Penn subjects and removed any outliers beyond three
standard deviations from the mean. The first 10 PCs were
used in all subsequent analyses to correct for residual
population stratification.
We imputed additional single nucleotide variants

(SNVs) using Minimac3 implemented in Michigan
Imputation Server (https://imputationserver.sph.umich.
edu/index.html)36 based on the 1000 Genomes phase 3
reference panel34. SNVs with Hardy–Weinberg equili-
brium P values <10−5, imputation accuracy <0.8, or MAF
<1% were excluded from downstream analyses. In the
Yale-Penn-1 sample, 14,778,319 SNVs were included in
the association analyses; in the Yale-Penn-2 sample,
9,658,251 SNVs were analyzed. 9,520,174 SNPs common
in two samples were meta-analyzed.

Phenotype imputation
ND scores or the set of MD criteria were incomplete in

a small proportion of the sample: 4.7% (121) of the Yale-
Penn-1 and 4.6% (52) of the Yale-Penn-2 subjects. To
address this without the power reduction that would
result from simply excluding these subjects, we used
PHENIX37, a variational Bayesian method fitting in a
Bayesian multiple-phenotype mixed model, to impute the
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missing criteria. ND and MD were imputed separately in
the two datasets, using the correlation matrix of the
subjects derived from genome-wide efficient mixed model
association (GEMMA)38.

Statistical analysis
We performed association tests for the ND+MD cri-

terion counts (ranging from 0 to 18). All SNVs, both
genotyped and imputed, were tested using a linear mixed
model (GEMMA), adjusted by age, sex, and the first 10
PCs. Analyses were performed separately within each
dataset. The association results were meta-analyzed
across the two datasets, using the inverse variance
method implemented in the program METAL39. Regional
associations were plotted using LocusZoom40.

Functional annotation and enrichment analysis
Functional annotations for the top variants and genes

were explored from the literature and from expression
databases, including Gene-Tissue Expression (GTEx,
https://www.gtexportal.org/home/) for gene-tissue
expression41 and BrainSpan (http://www.brainspan.org/)
for information regarding the transcriptome across human
brain development42. Genes co-expressed with the target
gene were identified using COXPRESdb v6.0 (http://

coxpresdb.jp/)43, a coexpression database of DNA-
microarray and RNAseq-based expression data. Disease
enrichment among the co-expressed genes was assessed
using WebGestalt (http://www.webgestalt.org/option.
php)44, a functional enrichment analysis web tool. Gene
ontology (GO) enrichment of the genes mapped to the top
SNVs (P-value < 1 × 10−4 in either dataset or meta-analy-
sis) was analyzed using the web-based gene set analysis
tool Gorilla (http://cbl-gorilla.cs.technion.ac.il/)45. Terms
with false discovery rate (FDR) <0.05 were considered to
be significantly enriched.

Results
In total, 3724 AA subjects (mean age, 42 years [SD, 8.9];

1523 women [40.9%]) were included in the analysis (2596
from Yale-Penn-1 and 1128 from Yale-Penn-2). There
were 173 subjects (4.6%) with partially missing ND or MD
criteria, which were imputed. Among subjects with
imputed phenotype data, the average number of items
that needed to be imputed was 1.2 for ND and 2.1 for MD.
For ND, the imputation correlation was 0.74 for Yale-
Penn-1 and 0.71 for Yale-Penn-2; for MD, the imputation
correlation (between imputed phenotypes and their true
hidden values) was 0.86 for both datasets. The median
comorbid criterion count was 8.1 (interquartile range
[IQR], 4.5–12.5) (Table 1). The distributions of comorbid
criterion counts are shown in Figure S1.

Genome-wide significant association
GWAS was performed in each dataset, followed by

meta-analysis (Figure S2; SNVs with P-values < 1 × 10−4

(in either individual sample or the meta-analysis) are lis-
ted in Table S1). No GWS signals were detected in either
sample analyzed individually. In the meta-analysis, a sig-
nificant association was detected in GRIA4 (rs68081839, a
single nucleotide deletion, −/T; the frequency of the risk
allele (−) is 0.68, beta coefficient [β]= 0.69 [95% CI,
0.43–0.89], P= 1.53 × 10−8, Fig. 1). This variant was well
imputed in both Yale-Penn-1 (INFO= 0.91) and Yale-
Penn-2 (INFO= 0.87) samples. rs68081839 was nomin-
ally associated in both the Yale-Penn-1 (P= 1.17 × 10−5)
and Yale-Penn-2 (P= 2.95 × 10−4) samples.

Conditional analyses of rs68081839
We tested the association of rs68081839 with FTND

scores (controlling for MD criterion counts) and MD
criterion counts (controlling for FTND scores) to deter-
mine whether the association was being driven by a single
disorder. Both traits were nominally associated with
rs68081839 (P= 7.11 × 10−3 for ND and P= 7.34 × 10−6

for MD), indicating an additive or synergistic association
for ND–MD comorbidity: i.e., the risk allele contributes to
the risk of each trait taken individually. To test whether
the association effect was age- or sex-related, we split the

Table 1 Demographic characteristics of the samples

Yale-Penn-1 Yale-Penn-2 Total

Sample size (female %) 3227 (47.1) 1717 (41.7) 4944 (45.2)

GWAS

Tobacco exposed (female

%)

2596 (44.3) 1128 (33.2) 3724 (40.9)

Age, mean (SD), years 41.5 (8.2) 42.0 (10.4) 41.7 (8.9)

Subjects with partial

missing (%)

121 (4.7) 52 (4.6) 173 (4.6)

–with partial missing of

ND

20 11 31

–with partial missing of

MD

101 41 142

Imputation correlation of

ND

0.74 0.71

Imputation correlation of

MD

0.86 0.86

Median (IQR) of ND+MD 7.9 (4.5–12.5) 8.8 (3.8–12.4) 8.1 (4.5–12.5)

Median (IQR) of ND 5 (3–6) 4 (3–6) 5 (3–6)

Median (IQR) of MD 5 (0–8) 6 (0–8) 5 (0–8)

Correlation between ND

and MD

0.15 0.20 0.16

ND nicotine dependence, MD major depression, IQR interquartile range
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sample into older (>40 years old) and younger groups
(≤40), adjusting for sex and 10 PCs, and into male and
female groups, adjusting for age and 10 PCs. Similar
associations between rs68081839 and ND+MD were
observed with each of these approaches, indicating a
consistent effect in all of the subgroups (Fig. 2). We also
tested whether rs68081839 has pleiotropic effects with
other substance dependence traits including alcohol,
cocaine, marijuana, and opioids, and found no evidence
for association (all P-values >0.5).

Functional assessment of GRIA4
GRIA4 codes for subunit 4 of the AMPA glutamate

receptor and it is implicated in glutamate signaling and
neuroplasticity46,47. It is involved in several KEGG path-
ways (e.g., amphetamine addiction, nicotine addiction, the
cAMP signaling pathway, neuroactive ligand–receptor
interaction, glutamatergic synapses, dopaminergic synap-
ses48). We explored the gene expression profiles of GRIA4
in different tissues from GTEx41, where it is shown to be
widespread and primarily expressed in human brain
(Figure S3). We then evaluated the spatio-temporal
transcriptome of GRIA4 in human brain42. High expres-
sion of GRIA4 across several brain regions was observed
in adulthood, increasing from the early fetal periods
(Figure S4). The consistent high level of expression in
brain supports the functional relevance of GRIA4 in
psychiatric traits.
To investigate the functional relevance of GRIA4 fur-

ther, the top 100 genes co-expressed with GRIA4 were
derived from COXPRESSdb43 (Table S2). These include
NLGN1, KCND2, ELAVL4, NXPH1, GRM5, and GABRB1.
We assessed the disease enrichment of the co-expressed
genes using web-based tool WebGestalt44 and found that
mental disorders, depression, bipolar disorder, and anxi-
ety disorder were significantly enriched (FDR < 0.05,
Table S3).

Gene ontology enrichment analysis
The top SNVs (P < 1 × 10−4) were mapped to 223 genes

(Table S1). GO enrichment analysis using the GOrilla web
tool45 showed these genes to be enriched for cell adhe-
sion, calcium ion binding, synapse, and plasma membrane
(Table 2). We also tested the tissue expression enrichment
using DAVID49,50; it showed significant enrichment in the
brain (P= 5.44 × 10−6, FDR= 6.29 × 10−3). Disease
enrichment analysis using WebGestalt showed that the
top genes are enriched in various psychiatric disorders
including bipolar disorder, anxiety disorder, depression,
and substance-related disorders (Table S4). Taken toge-
ther, the enrichments in signal transduction, synapse, and
mental disorders support the interpretation that the
polygenic risk of ND+MD is related to neural functions.

Discussion
ND and MD are among the most common psychiatric

disorders worldwide and are associated with substantial
morbidity and mortality51. The association between ND
(as well as smoking) and MD has been well established,
and both shared and distinct etiologies have been postu-
lated. GWAS have identified risk or protective variants for
ND and MD individually. To our knowledge, this is the
first study of the shared genetic risks for ND and MD
comorbidity. To accomplish this, we employed a dimen-
sional approach using our phenotype data collected using
the SSADDA. We found one SNP to be significantly
associated with ND+MD comorbidity (β= 0.69 [95% CI,
0.43–0.89], P= 1.53 × 10−8, Fig. 1). rs68081839 is a single
nucleotide deletion in the GRIA4 gene. Conditional ana-
lyses showed that the association was not driven by ND or
MD alone; instead, there is an additive or synergistic effect
of ND and MD. In our dataset, the contribution from MD
is greater than that from ND (Fig. 2). There was no evi-
dence of pleiotropy with other substance dependence
traits (based on direct testing for association).
GRIA4 (glutamate ionotropic receptor AMPA type

subunit 4)—also referred to as GluR-D or GluR4—is a
member of the AMPA-selective glutamate receptor family
(AMPARs). AMPARs are expressed ubiquitously in the
central nervous system and are the predominant

Fig. 1 Regional Manhattan plot of rs68081839

Fig. 2 Conditional analysis of rs68081839 and associations in
different groups. Association with ND was adjusted for MD; then,
association with MD was adjusted for ND
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excitatory neurotransmitter receptors in the mammalian
brain. They are localized at the postsynaptic membrane
and are essential for synaptic plasticity52. The most
thoroughly characterized examples of synaptic plasticity
are long-term potentiation (LTP) and long-term depres-
sion (LTD), widely believed to be the cellular basis of
learning and memory53. Further studies have shown that
LTP and LTD participate in pathological processes such
as Alzheimer’s disease, schizophrenia, and addiction52,54.
GRIA4 functions as a ligand-gated ion channel in the
central nervous system and plays an important role in fast
excitatory synaptic transmission46. Expression of GRIA4 is
sufficient to alter the signaling requirements for LTP
during a critical period of synapse development47, and the
membrane proximal region of GRIA4, needed for receptor
trafficking and synaptic plasticity, is essential for long-
term fear memory formation55.
Changes in GRIA4 expression have been associated with

both depression and stress. Postmortem studies showed
GRIA4 upregulation in depressed patients. Expression of
GRIA4 in Brodmann area 10 and amygdala was increased
in subjects who died by suicide during an episode of MD
compared to subjects who died by suicide without
depression, or controls who died suddenly from other
causes and had no history of suicidal behavior56. Higher
expression of GRIA4 in the dorsolateral prefrontal cortex
in female patients with MD than that in female controls
has been reported57. In relation to stress, Gria4 was
upregulated in the hippocampus in stressed rats, and this
could be reversed by the antidepressant drug venlafaxine.
Gria4 expression was also increased by chronic treatment
with corticosterone, the major stress hormone58. An
opposite effect was observed in the ventral (but not

dorsal) hippocampus in rats which were treated by neo-
natal handling59.
Synaptic plasticity is known to play a key role in drug

addiction. Indeed, addiction has been conceptualized as a
pathological form of learning and memory, as they share
synaptic plasticity mechanisms. Synaptic plasticity may
contribute to different aspects of addiction, including
craving, withdrawal, and relapse60,61. Altered expression
of GRIA4 and other glutamatergic genes in postmortem
hippocampus was observed after chronic exposure to
alcohol or cocaine62, perhaps contributing to the devel-
opment of craving63. Studies in mouse models showed
that AMPARs and N-methyl-D-aspartate receptors
(NMDAR) in the ventral tegmental area (VTA) are
involved in behavioral sensitization, thus playing key roles
in the development of addiction64,65. For example, a single
exposure to cocaine in vivo can increase the AMPAR/
NMDAR ratio in the VTA, which may be involved in an
early stage of drug addiction66. Along with addictive
substances such as cocaine64 and morphine65, nicotine
activates nicotinic acetylcholine receptors (nAChRs) in
the VTA to reinforce smoking behavior67,68. We therefore
speculate that the synaptic plasticity effects of GRIA4 may
explain its contribution to the risk of ND–MD
comorbidity.
Besides the significant finding at GRIA4, we performed

enrichment analyses taking the genes identified by top
SNPs (P < 1 × 10−4) as a whole. The enriched GO terms
include cell adhesion in biological processes, calcium ion
binding in molecular function, and synapse and plasma
membrane in cellular component (Table 2). A significant
enrichment of tissue expression was reported in DAVID
using the same list of genes. Disease-level enrichment is
more informative than GO level enrichment, in this

Table 2 Gene ontology enrichment of the genes mapped to top SNVs (P < 1 × 10−4)

Category Term P FDR

Biological process GO:0098742—cell–cell adhesion via plasma-membrane adhesion molecules 1.81 × 10−12 2.67 × 10−8

GO:0007156—homophilic cell adhesion via plasma membrane adhesion molecules 6.14 × 10−11 4.52 × 10−7

GO:0098609—cell–cell adhesion 4.14 × 10−8 2.03 × 10−4

GO:0007155—cell adhesion 5.98 × 10−8 2.20 × 10−4

GO:0022610—biological adhesion 6.52 × 10−8 1.92 × 10−4

Molecular function GO:0005509—calcium ion binding 1.43 × 10−6 6.29 × 10−3

Cellular component GO:0045202—synapse 1.60 × 10−6 2.89 × 10−3

GO:0044459—plasma membrane part 2.67 × 10−6 2.42 × 10−3

GO:0005887—integral component of plasma membrane 2.05 × 10−5 1.24 × 10−2

GO:0031226—intrinsic component of plasma membrane 2.23 × 10−5 1.01 × 10−2

GO:0005886—plasma membrane 8.50 × 10−5 3.08 × 10−2

GO:0031224—intrinsic component of membrane 8.92 × 10−5 2.69 × 10−2
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instance: the disease enrichment analyses for the top
genes or top coexpressed genes with GRIA4 shows that
the significant enriched disease traits are mainly related to
mental disorders (Table S3 and S4). All the reported
terms are significant after multiple testing correction
(FDR < 0.05). In GWAS with limited sample size, it is very
common that no significant enrichment can be detected
or the enriched terms cannot be linked to the study trait
in an obvious way. Here, despite the sample size limita-
tion, we observed consistent GO or disease enrichments
using different web-based tools or different gene lists,
indicating that the nominally significant findings (P < 1 ×
10−4) and the coexpressed genes with GRIA4 are robustly
related to the ND+MD trait.
This study has important limitations including modest

sample size and the lack of a replication sample. Further
studies to understand the biological mechanisms of the
genetic risk loci we identified are also warranted.
In conclusion, we identified variation at GRIA4, a gene

that codes for an AMPA glutamate receptor subunit, as a
genetic risk factor for ND and MD comorbidity. This
provides initial evidence that variation in the glutama-
tergic system may underlie the common etiology of these
highly comorbid disorders. Thus, the glutamatergic sys-
tem may thus be a target for treatment of ND69, as it is
already for MD70; especially so in clinical contexts where
the two traits are comorbid.
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