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Abstract. A large-eddy simulation based Eulerian-Lagrangian model is 
employed to study bubble plumes in an open channel with crossflow. The 
numerical results are validated with PIV experimental data. Good agreement 
between simulated and observed velocities is found. The impact of the 
crossflow on the structure of the plume and the resulting turbulent structures 
are described.  

1. Introduction
Gas bubble plumes are widely used in environmental applications such as destratification of 
lakes and reservoirs (e.g. [1], [2]), ice prevention, accidental deep sea blowouts of gas, or gas 
leakage from natural vents (e.g. [3], [4], [5]). Crossflow, i.e. ambient current, is usually 
present in many of the aforementioned applications. Lima Neto [6] reported a crossflow of 
0.3m/sec for an aeration project in the iced-covered Athabasca River, Canada. Although the 
effect of crossflows on single-phase plumes and jets has been studied extensively, little is 
known about their effect on multi-phase plumes.  

The understanding of the underlying physics of the interaction between the gas and liquid 
phases has been a challenging task for both Computational Fluid Dynamics modellers and 
experimentalists. In order to capture the three-dimensional structures of multi-phase plumes, 
advanced 2D and 3D numerical simulations have been performed extensively on stagnant 
and/or vertically stratified ambient fluid. Three main approaches have been used in order to 
treat the continuous phase: Reynolds-Averaged Navier Stokes simulation (RANS) with 
different closures, mostly κ-ε model, ([7]); Large-eddy simulation (LES) models that resolve 
directly large-scale turbulent motions and modelling only the unresolved subgrid-scale (SGS) 
effects ([8]); and direct numerical simulation (DNS) approach models that directly resolve 
the entire turbulent spectra. Dispersed phase may be described in the same static reference 
frame as the continuous, leading to the Eulerian-Eulerian (EE) approach ([3]) or in a dynamic 
(Lagrangian) frame, leading to the Eulerian-Lagrangian (EL) approach ([9]). 

Limited numerical studies are published on multi-phase plumes in crossflow. Yapa and 
Zheng [10], Johansen [11] and Zheng et al. [12] have developed integral models to simulate 
oil and gas blowouts in crossflow and stratified environments. Le Moullec et al. [13] applied 
a three-dimensional EE two-phase numerical approach for the simulation of a crossflow gas-
liquid wastewater treatment reactor using the CFD code FLUENT, testing two different 
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turbulence models: κ-ε and Reynolds Stress Model (RSM). Even though time-averaged 
horizontal velocity along the length of the reactor and vertical velocities at specific heights 
were presented, the study is focused on the mixing and flow within the reactor and not on the 
gas-liquid physics. Wang et al. [14] presented instantaneous snapshots of the interface of 
deforming liquid bubbles and drops in a gas cross-flow, using a second-order hybrid level 
set-volume constraint method for numerically simulating a co-flowing liquid jet in gas 
deforming bubbles. Chen et al. [15] applied a LES based model in order to simulate double-
plume formation by oceanic CO2, including seawater entrainment, gravity waves and peeling 
out of the plume. Momentum, mass and heat transfer phenomena are described using 
empirical formulae. The simulated double-plume structure after the CO2 injection and 
temperature field contours are shown. Decrop et al. [16] extensively studied negatively-
buoyant, vertically downward injected turbidity plumes, i.e. mixtures of water and sediment 
particles, in crossflow using two-phase Large-eddy simulations. 

Eulerian-Lagrangian based Large-Eddy Simulation (EL-LES) employs Lagrangian 
Particle Tracking (LPT) to simulate the dispersed phase. Each bubble is represented by a 
Lagrangian marker which describes a trajectory across the Eulerian mesh according to its 
own motion equations. EL gives detailed information about every bubble's position, force 
and velocity. It is more expensive than EE because each particle requires the calculation of a 
set of equations and a mapping procedure between the Lagrangian and Eulerian coordinates. 

In this paper the refinements to an in-house large-eddy simulation (LES) based CFD code 
to allow its application to study bubbly flows are reported. This is a very challenging case 
for CFD modellers due to the interaction between two strong sources of advection: the bulk 
velocity of the channel flow and the buoyancy of the plume. The effect of the lateral current 
on the plume is shown by the turbulent structures as a result of the interaction of the plume 
with the surrounding liquid. 

2. Numerical Framework
In this study the in-house finite-difference-based Large-Eddy Simulation code Hydro3D is 
employed. Hydro3D solves the filtered Navier-Stokes equations on a staggered grid for the 
continuous (liquid) phase and has been validated thoroughly for many different flows (e.g. 
[17], [18], [19], [20]). The code is equipped with a Lagrangian Particle Tracking algorithm 
to allow for accurate predictions of the dispersed (bubbles) phase. This approach has been 
successfully applied to bubble plumes and validated in [9] and [21]. 

Hydro3D solves the space-filtered mass and momentum conservation equations for an 
incompressible fluid: 

 
 (1) 

 (2) 

where ui refers to the filtered velocity component in the spatial direction i, t is the time, p the 
filtered pressure, ν the dynamic viscosity and Sij the strain rate tensor. The term τij accounts 
for the unresolved, subgrid-scale (SGS) turbulence, which is calculated through the turbulent 
viscosity νt using the Wall-Adapting Local Eddy-viscosity (WALE) sub-grid scale (SGS) 
model, with WALE constant Cw=0.45 for all simulations. ξi is a source term and accounts for 
the contribution of the dispersed phase to the flow. The derivatives in the governing equations 
are discretized with a two-step Runge-Kutta algorithm for the time derivative and second-
order central differencing schemes for both convective and diffusive terms. The code is based 
on a predictor-corrector fractional step method with the solution of the Poisson pressure 
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equation using a multi-grid method as the corrector. The code is parallelized via domain 
decomposition and sub-domain communicate with the standard Message Passing Interface 
(MPI). 

The bubbles are represented by volumeless Lagrangian points/markers. The physical 
effect of the liquid-gas mixture is accounted for through forcing terms. The assumptions 
made are that the bubbles are rigid and spheric and that there is no direct interaction between 
them (due to the relatively dilute gas mixture). Also, only linear interaction between 
interfacial forces is considered. The motion of individual bubbles (from here onwards called 
particles) is computed by Newton's second law: 

 
  (3) 

where mp is the particle's mass, up,i is the particle's velocity in spatial direction i and Fp,i is 
the sum of the interfacial liquid forces acting on the particle in direction i.  

The integral forces acting on each particle are approximated by semi-empirical formulae. 
According to the most commonly accepted formulation (see [8]), five forces are considered: 
buoyancy, fluid stress, added mass, drag and lift. The expressions for each force are detailed 
in Fraga et al. [9] and should not be repeated for brevity. These forces are calculated based 
on the size of the bubble, its velocity on the previous time step and the velocity field of the 
surrounding liquid.  

In a two-way coupling approach, as it is proposed here, exchange of information is 
required twice. First, the interfacial particle forces are calculated and the particles' velocities 
obtained. This is called forward coupling. Second, the contribution of the dispersed phase to 
the continuous phase is computed and added as a source term, ξi, to the liquid's momentum 
equations (Eq. 2). This is called reverse or backward coupling. Forward and backward 
coupling are achieved by connecting randomly placed Lagrangian particles with fixed 
locations of the Eulerian framework through the PSI-cell (Particle-Source-In Cell) mapping 
technique. By employing the PSI-cell technique, only the fluid nodes of the cells in which 
the Lagrangian particle's center is located receive the momentum source. For the forward 
coupling, the interpolation and/or transfer of quantities between phases is done through the 
smoothed delta functions developed by Yang et al. [22]. The momentum source term, ξi is 
computed as: 

 (4) 

where M the number of bubbles in the influence volume of the fluid node under consideration, 
δ is the delta function at the node's location xj for a stencil length h and Fp,i* is the sum of the 
forces acting on that cell. The calculation of the backward forces is analogous to the forward 
ones, except that in this case the buoyancy force is not included. 

3. Computational Setup 
The bubble plume simulations reported here are an extension of a sets of experiments 
conducted at the Fluid Dynamics Laboratory in the Zachry Department of Civil Engineering 
at Texas A&M University (details can be found in [23]). The setup of the experiments is 
sketched in Fig. 1. In the experiments compressed air was injected at a constant gas flow rate 
at standard conditions through an aquarium airstone located 0.12m above the bottom of a 
glass-walled flume 35m long, 0.9m wide and 1.2m deep. The gas flow rate was set to 
Qg=0.5l/min and the bubble size to Dp=2.5mm with a standard deviation of 0.28mm. The 
approach flow velocity was 0.04m/s. Standard Particle Image Velocimeter (PIV) technique 
was utilized to measure the velocity field of the continuous phase in the plume center plane. 
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Figure 1. Layout of the experimental setup for the bubble plume in crossflow. 

The numerical simulations are carried out under analogous geometrical conditions to both 
experiments. Bubbles are initially randomly distributed over the diffuser and once they make 
their way through the tank and reach the water surface they are removed from the 
computational domain. Boundary conditions for the fluid phase include the use of the no-slip 
boundary condition at all solid walls and a rigid lid at the water surface with a free slip 
condition. Grid size sensitivity was studied previously ([9]) and a constant grid spacing of 
Δx=7.5mm, Δy=4.5mm and Δz=4.1mm was chosen (22.4 Mio gridpoints). In order to provide 
a realistic, fully-turbulent inflow while avoiding extreme computational costs, the velocity 
inlet boundary conditions are generated using a Synthetic Eddy Method (SEM). The outflow 
is treated with a convective outflow boundary condition. 

4. Results and Discussion 
Figures 2 and 3 present profiles of the time-averaged horizontal and vertical velocities 
respectively, of the liquid at two locations downstream the diffuser and along the centreline 
of the computational domain, i.e. at 10cm and 20cm, referenced in Fig.1 as x/s=1 and x/s=2. 
Note the velocities are normalised with the bulk u-velocity, 0.04m/sec and height is 
normalised with the total height of the channel. The LES simulations (solid lines) are 
generally in reasonably good agreement with the measured PIV data (crosses) in terms of 
magnitude and distribution. All the profiles are located just downstream the bubble plume, 
i.e. ambient velocities are influenced by the plume due to crossflow which may explain the 
discrepancies between experimental and numerical results.   

Simulated time-averaged horizontal (left) and vertical (right) velocities contours of the 
surrounding fluid of the bubble column, normalized with the ubulk, are shown in Figure 4. 
The bubbles are also depictured in Figure 4 (left) as small spheres, whereas the area of the 
bubble plume is defined by two black lines. 

The continuous phase (ambient flow) is continuously streamed towards the bubble 
column, where the bubbles transmit kinematic momentum flux to the flow. Once the ambient 
flow passes through the bubble column, it carries downstream the momentum gained from 
the bubble column. This process leads to a vertical motion downstream the bubble column. 
Some entrained fluid is captured within the bubble plume throughout the entire water depth, 
resulting limited separation of the entrained fluid from the bubbles, and that’s what the white-
coloured area under the plume indicates.  
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Figure 2. Vertical profiles of time-averaged horizontal velocities for LES (solid lines) and experimental 
PIV data (crosses) at 10cm (left) and 20cm (right) downstream the release point. 

  

  
Figure 3. Vertical profiles of time-averaged vertical velocities for LES (solid lines) and experimental 
PIV data (crosses) at 10cm (left) and 20cm (right) downstream the release point. 

  
Figure 4. View of horizontal (left) and vertical (right) velocities contours including the bubble plume. 

Figure 5 shows streamlines in selected planes downstream of the plume and visualizes 
large-scale turbulence structures through isosurfaces of the Q-criterion that are coloured by 
the time-averaged vertical velocity. The isosurfaces reveal the presence of a roller that 
originates near the water surface upstream of the plume, a result of the aforementioned 
negative flow. As the roller interferes with the sidewalls it is converted into a pair of 
elongated counter-rotating streamwise vortices. These vortices are driven by the secondary 
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flow and Figure 5 illustrates their origin and fate. Near the bottom of the plume a horseshoe 
vortex is formed but this vortex is rather weak compared to the vortex structure near the water 
surface. The strength and size of the vortex systems depend on a number of parameters 
including the gas flow rate and the strength of the crossflow. More details and some 
animations of this flow will be presented at the conference. 

 
Figure 5. 3-D view of secondary currents represented with Q-criterion. 

5. Conclusions 
Large eddy simulations of a bubble plume were conducted by using a LES Eulerian-

Lagrangian two-way coupling algorithm in an open channel with turbulent crossflow. 
The velocities have been compared with PIV data at two different vertical profiles located 

at the plume’s wake. The numerical results are in good agreement with experimental PIV 
measurements.  

The turbulence structures inducted by the plume in the surrounding liquid are represented 
using Q-criterion isosurfaces. In the presence of a crossflow, the bubbles constitute an 
obstacle for the horizontal motion of the liquid, which is confirmed by the negative values 
upstream the bubble column in the horizontal velocity contour. A complex secondary flow 
in the wake of the plume is triggered by the presence of the plume. The resulting turbulent 
structure is characterised by the formation of two strong counter-rotating vortices at the upper 
half of the channel and weaker horse-shoe vortices close to the bottom. 
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