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Abstract: Recently, it has been shown that for out-of-equilibrium systems, there are ad-

ditional constraints on thermodynamical evolution besides the ordinary second law. These

form a new family of second laws of thermodynamics, which are equivalent to the mono-

tonicity of quantum Rényi divergences. In black hole thermodynamics, the usual second

law is manifest as the area increase theorem. Hence one may ask if these additional laws im-

ply new restrictions for gravitational dynamics, such as for out-of-equilibrium black holes?

Inspired by this question, we study these constraints within the AdS/CFT correspondence.

First, we show that the Rényi divergence can be computed via a Euclidean path integral

for a certain class of excited CFT states. Applying this construction to the boundary CFT,

the Rényi divergence is evaluated as the renormalized action for a particular bulk solution

of a minimally coupled gravity-scalar system. Further, within this framework, we show

that there exist transitions which are allowed by the traditional second law, but forbid-

den by the additional thermodynamical constraints. We speculate on the implications of

our findings.
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1 Introduction

The conventional second law of thermodynamics tells us that the entropy of a closed system

increases. If the system can be in one of many possible microstates, we can describe its

state in terms of a density matrix ρ. We can then think of the second law as placing

a restriction on which density matrices ρ(t) are thermodynamically accessible from some

initial ρ(0). The second law is a necessary condition which any state transformation must

satisfy, regardless of the underlying physical laws. Because of this, the second law has broad

applicability, allowing us to understand macroscopic properties of common materials, and

finding application in cosmology, accelerator physics, astrophysical systems, and fields as

diverse as computer science and gravity.

In the latter case, Bekenstein and Hawking famously showed that the event horizon of a

black hole carries entropy given by SBH = A/4GN , where A is the surface area of the black
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hole’s horizon and GN is Newton’s constant [1–4]. The second law of thermodynamics then

demands that the area of the event horizon must always increase, as can be geometrically

proven for any classical processes [5, 6]. This deep connection between thermodynamics and

black hole physics provides one of the most important clues we have to reconciling quantum

theory with gravity. Hence a better understanding of the second law of thermodynamics not

only sheds light on emergent phenomena in many areas of physics, but it may also provide

insight into the fundamental theory underlying the unification of quantum mechanics and

general relativity.

Recently it was found that in addition to the standard second law, there are additional

constraints on how a thermodynamical system can evolve [7–19]. These are akin to having

a family of second laws of thermodynamics [14] which apply to out-of-equilibrium systems.

One might therefore wonder whether these additional second laws also place constraints on

how black holes can evolve. It seems plausible that general black hole dynamics obeys a new

family of second-law-like constraints. Further, these new constraints may then supply us

with additional clues as to what form a consistent theory of quantum gravity should take.

As we will discuss in section 1.1, the additional second laws are related to the distance

between the state of the system and a thermal state, as measured by the quantum Rényi

divergences [20–23]. The latter are an important distance measure in information theory,

and here we show how they can be computed for some class of excited states in a con-

formal field theory (CFT). Specifically, in section 2.1, we will show how for this class of

states, the Rényi divergences can be expressed as a particular partition function obtained

from a Euclidean path integral. Because these divergences place additional second-law-like

constraints on the evolution, in principle, these new techniques provide us with informa-

tion about extra restrictions that quantum thermodynamics places on state transitions

in the CFT.

However, this path integral approach also allows us to evaluate these quantities in

the setting of the AdS/CFT correspondence [24–26] and to explore the implications of

quantum thermodynamics in a holographic setting.1 As noted above, the new second laws

will constrain equilibration processes in the boundary CFT. In the holographic context,

we can ask what these additional second laws correspond to in the bulk gravitational

description. In particular, do they constrain how out-of-equilibrium black holes can evolve

in the bulk. In fact, we will be able to demonstrate that there are transitions, both in the

boundary CFT and in the dual gravitational system, that are possible if only the ordinary

second law holds, but are ruled out by the additional constraints. In contrast to the second

law of black hole thermodynamics which applies broadly to black holes in any setting and

is derived via thermodynamics, our present discussion relies on the holographic framework

and appeals to the microscopic quantum derivations of the new second laws holding in the

boundary field theory. Nonetheless, we expect that the simple constraints that we find for

the evolution of our holographic black holes should have broader applicability, and point

towards the existence of a new class of second-law-like constraints on how black holes can

1Recently, it was argued [27] that in a holographic framework, the second law of thermodynamics in

the boundary theory should be associated with the area increase of the so-called trapping or dynamical

horizon [28–34].
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evolve quite generally. We summarize the main findings of our holographic approach and

the content of the rest of the paper in section 1.2.

1.1 New constraints from Rényi divergences

The traditional second law has a number of different formulations and interpretations,

from Carnot and Clausius, to Boltzmann and Gibbs, and to more modern versions such as

the Jarzynski equality [35, 36], and the eigenstate thermalization hypothesis [37, 38]. The

traditional second law places a single constraint on the evolution of a system, for example

that the entropy of a closed system can only increase. For out-of-equilibrium systems,

there are many ways to increase their entropy, however, it turns out that not all of them

are allowed. The additional restrictions on how entropy can increase constitute additional

second laws, because like the conventional second law they place constraints on what a state

may evolve into. We shall in particular, focus on the constraints introduced in [14] which

are related to the so-called thermo-majorization criteria [7, 9, 12]. Their mathematical

structure is similar to the traditional second law of thermodynamics, and one that is found

in many quantum resource theories [39–41].

For an open system in contact with a heat bath at temperature T , the second law is

equivalent to the statement that the free energy

F (ρ) = 〈E(ρ)〉 − TS(ρ), (1.1)

must decrease in any cyclic process, with S(ρ) the entropy of the system and 〈E(ρ)〉 =

tr(ρH) its average energy. If we consider the equilibration of a closed system so that the

energy is conserved,2 the decrease in the free energy is equivalent to an increase in the en-

tropy. This version of the second law holds not only for the thermodynamical entropy, but

also the statistical mechanical entropy SB = logN , where N is the number of microstates,

as well as the von Neumann entropy S(ρ) = − tr ρ log ρ (see for example the discussion

in [42]), which generalises the statistical mechanical entropy to the case where the system

is quantum, and where the probability of being in any microstate is not necessarily equal.

Here, we wish to consider quantum systems out-of-equilibrium, where typically the prob-

abilities of being in a microstate are not uniform, hence the von Neumann entropy is the

appropriate one to consider, and our operations can include coarse graining or tracing out

information about the system.

When such a system relaxes to its equilibrium state, there are many intermediate

states, or paths it might take. The traditional second law does not rule any of them out, as

long as the free energy decreases. However, there are additional restrictions which apply,

and have a similar form. Both the usual second law and these restrictions can be thought

of in terms of the distance of the initial state of the system to its equilibrium state, and

this distance can only decrease. We can re-write the traditional second law in terms of the

relative entropy distance to the thermal state, where the relative entropy is defined as

D1(ρ‖σ) ≡ tr ρ log ρ− tr ρ log σ . (1.2)

2Or we might consider the simple case where the Hamiltonian H is trivial, i.e. H = 0.

– 3 –



J
H
E
P
0
7
(
2
0
1
8
)
1
1
1

Then, noting that

D1(ρ‖ρβ) = β (F (ρ)− F (ρβ)) (1.3)

with ρβ = e−βH/Zβ the thermal state, we see that in case the Hamiltonian does not

change (which is the case we consider in this paper), the traditional second law for out-

of-equilibrium systems is equivalent to the statement that the relative entropy distance to

the thermal state has to decrease.

This is actually true for any distance measure. Namely, a distance D, which provides

a measure of how distinguishable two states are, should have the property that it decreases

under the action of some arbitrary dynamics ρ(t) = Λt(ρ), so that

D
(
ρ(t)‖σ(t)

)
≤ D

(
ρ(0)‖σ(0)

)
. (1.4)

We say the measure is contractive under completely positive trace preserving (CPTP) maps.

This is because an experimenter who is trying to distinguish whether a system is in one

of two states could apply the map Λt to the system, thus a measure of distinguishability

should only decrease under her actions. Next, we use the fact that by definition, equilibrium

states satisfy the property that for almost all times3 Λt(ρβ) = ρβ and we thus have

D
(
ρ(t)‖ρβ

)
≤ D

(
ρ(0)‖ρβ

)
. (1.5)

Now the standard discussion [14] applies the above inequality with ρβ being the equi-

librium state into which ρ(t) will evolve (at large t). Note that eq. (1.5) holds even if the

map is non-linear, provided that eq. (1.4) still holds. Furthermore, an interesting exten-

sion [43] comes from realizing that, in fact, eq. (1.5) holds for any equilibrium state ρR of

the system, i.e. for any states which remain invariant under the evolution of interest. For

example, for closed system dynamics where ρ represents the full degrees of freedom of the

system, all thermal states will be preserved and so we may apply eq. (1.5) with ρβ replaced

by ρR, a thermal state with an arbitrary temperature 1/βR. Therefore any contractive

distance measure to any equilibrium state gives a restriction on what is possible for the

evolution in such thermodynamical systems. In contrast, for closed system dynamics where

ρ represents a coarse-grained description of the system, or for an arbitrary pure state in

the support of ρ, one typically has that only ρβ is preserved. Furthermore, the mono-

tonicity property (1.5) holds even though the dynamics is still defined by the Hamiltonian

evolution of the microscopic degrees of freedom (rather than an effective coarse-grained

dynamics). Moreover, we note that there are many different versions of the second law,

some of which are contingent on the particular dynamics, or which only hold for most times

or only on average. Here, we are able to use any version which holds that thermal states

are preserved by the dynamics under appropriate conditions.4 Hence, with an appropriate

choice of distance measure, one finds an entire family of constraints indexed by βR, the

3A more precise statement appears in [43], where we also consider the role of approximation, i.e. Λt(ρβ) ≈
ρβ . We also discuss the role of approximation further in section 4.

4These conditions might include time averaging, or averaging over the initial micro-state, or including

the caveat “for almost all times”.
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inverse temperature of the reference state. To the best of our knowledge, this new family

of thermodynamical constraints has not been studied previously, and we return to this idea

in sections 4.2 and 5, as well as with a more detailed examination in [43].

At this point, we have not made precise the distance measure in eq. (1.5). One might

consider a number of distance measures which are contractive, and hence provide thermo-

dynamical constraints. An important example would be the quantum Rényi divergences

of [20–23, 44] (see also [45, 46]). We shall study in particular those of [20]

Dα(ρ‖ρβ) ≡ sgn(α)

α− 1
log tr

(
ραρ1−α

β

)
, (1.6)

where sgn(α) is defined by

sgn(α) ≡

{
1 for α ≥ 0 ,

−1 for α < 0 .
(1.7)

The relative entropy (1.2) is then defined using eq. (1.6) via the limit: limα→1Dα(ρ‖ρβ).

When [ρ, ρβ ] = 0, the Rényi divergences with α ≥ 0 give necessary and sufficient conditions

for transitions to be possible [14]. In the case where [ρ, ρβ ] 6= 0, the Rényi divergences with

0 ≤ α ≤ 2 provide necessary conditions. Also, there are other quantum versions of the

Rényi divergence which are equivalent to those in eq. (1.6) in the commuting case, and

some of them, as the sandwiched Rényi divergence [22, 23]

D̃α(ρ‖ρβ) ≡ 1

α− 1
log tr

(
ρ

1−α
2α
β ρ ρ

1−α
2α
β

)α
(1.8)

have properties [45, 46] that also allow them to provide constraints on thermodynamical

transitions. We will not consider them further here, except to note that calculating them

is an interesting open question that could be conceivably addressed by extending our path

integral approach.

In the thermodynamic limit when correlations and interactions are not long range, all

the Dα(ρ‖ρβ) ≈ D1(ρ‖ρβ) and thus these additional constraints are all just equivalent to

the traditional second law [12, 14]. However, these additional second laws may still play a

role for a single out-of-equilibrium system when there are long-range correlations. This is

the case that we will consider here, where we perturb the thermal state of a 2d CFT with

a single, correlated deformation.

To give a sense of what these additional constraints correspond to, let us consider a

simpler situation, which more closely mirrors our intuition about entropy. In particular, we

will consider the simple situation with trivial Hamiltonian where, as we explain below, the

new constraints are expressed in terms of Rényi entropies. First, let us recall some prop-

erties of Rényi entropies: Consider the eigenvalues pi of a density matrix ρ corresponding

to microstate i and the Rényi entropies defined for α ∈ R \ {0, 1}

Sα(ρ) ≡ sgn(α)

1− α
log

n∑
i=1

pαi . (1.9)
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For α ∈ {−∞, 0, 1,∞}, we define Sα(ρ) by taking limits of the above expression, i.e.

S0(ρ) = log rank(ρ) , S1(ρ) = −
n∑
i=1

pi log pi ,

S∞(ρ) = − log pmax , S−∞(ρ) = log pmin , (1.10)

where rank(ρ) is the number of nonzero elements of ρ, and pmax and pmin are the maxi-

mal and minimal elements of ρ, respectively. Of course, S1 corresponds to the usual von

Neumann entropy S.

Now as we suggested above, let us consider the simple situation where the Hamiltonian

is trivial, i.e. H = 0. Then we have ρβ = 1/d, where d is the dimension of the Hilbert

space, and thus for positive α: Dα(ρ‖ρβ) = log d − Sα(ρ). Further, if the dimension d

does not change, the decreasing of the Rényi divergence corresponds to increasing the

Rényi entropy and we can think of these additional second laws as just stating that all

these entropies must increase. For systems in equilibrium for which all microstates are

equiprobable, all the Rényi entropies are approximately equal, and in particular, equal to

the ordinary von Neumann entropy. Thus, these additional second laws tell us nothing new

for equilibrium systems. However, for out-of-equilibrium systems, where the probabilities

for being in a particular microstate can be different, these additional second laws place

additional constraints on how a system can evolve. For example, it is conceivable for

a system to increase its Shannon entropy while, at the same time, increasing its largest

eigenvalue (i.e. decreasing S∞(p)), or decreasing its rank (i.e. decreasing S0(p)). However,

these two last possibilities are expressly forbidden by these additional second laws.

1.2 Summary

In section 2.1, we show that the Rényi divergence can be obtained in terms of a Euclidean

path integral for a specific class of excited CFT states. In particular, our discussion there

focuses on the simple example where the excited state is prepared by turning on a relevant

deformation on the thermal cylinder. However, we expect that our path integral approach

should extend to a much broader family of excited states, as we discuss in section 5.

With this example, the trace function tr
(
ραρ1−α

β

)
that computes the Rényi divergences

for α ∈ [0, 1] can be obtained as the CFT partition function ZCFT with the deformation

turned on along a portion αβ of the thermal circle.

The remainder of section 2 is devoted to applying the above path integral construction

in the context of the AdS/CFT correspondence,5 and explicitly evaluating the Rényi di-

vergence with a holographic computation. In the holographic bulk dual, our excited state

corresponds to a Euclidean black brane geometry in presence of a massive scalar field with

non-trivial Dirichlet boundary conditions at the AdS boundary. Following the standard

holographic dictionary, the trace function is given by the bulk partition function

Zbulk ≈ e−Sren (1.11)

evaluated in terms of the renormalized Euclidean on-shell bulk action.
5For a review of the AdS/CFT correspondence see for instance [24] and the textbooks [25, 26].
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We perform this computation perturbatively in the amplitude of the scalar field (or

equivalently in the coupling of the CFT deformation), around the thermal black brane

background. At leading non-trivial order, we have

Sren = − 1

16πGN

∫
d2x

[
M +

∆− 1

4
ϕ(0)ϕ(∆)

]
+O(λ3) . (1.12)

where M = (2π/β)2 is energy or mass density of the AdS black brane. ϕ(0) and ϕ(∆) denote

respectively the non-normalizable and normalizable mode of the bulk scalar field, and are

holographically related to the source λ and the expectation value 〈O∆〉 of the operator

deforming the CFT thermal state. An analogous computation can be performed directly

in the dual two-dimensional CFT in conformal perturbation theory.

Our Euclidean path integral construction leads us to identify

log tr
(
ραρ1−α

β

)
≈ −Sren . (1.13)

In section 3, with the above expression in hand, we explicitly evaluate the holographic

Rényi divergences for α ∈ [0, 1]

Dα(ρ‖ρβ) =
1

α− 1
log

tr
(
ραρ1−α

β

)
(tr ρ)α (tr ρβ)1−α . (1.14)

Here the two traces in the denominator are included to ensure the proper normalization,

since our path integral approach yields tr ρ 6= 1 6= tr ρβ .

The Rényi divergences depend parametrically on the index α, as well as on the pre-

cise states we consider, through the operator conformal dimension ∆ and amplitude of the

source λ. Our construction of Dα satisfies the expected properties of positivity, mono-

tonicity and continuity in α, as well as concavity of (1 − α)Dα [47]. However, for the

class of states which we construct, Dα has various UV divergences in general whose precise

structure is parametrized by the conformal dimension ∆. In the end, we focus much of our

discussion on states in the range 0 < ∆ < 1 for which no such divergences appear.

We find that depending on the specific excited states we are comparing, the mono-

tonicity constraints

Dα(ρ‖ρβ) ≥ Dα(ρ′‖ρβ) (1.15)

for a transition from ρ to ρ′ are or not all equivalent. As an example, we plot in figure 1 one

such direction of the Rényi divergence parameter space. Here we indeed see that curves

of different α have different minima, meaning the additional second laws do forbid some

of the transitions that would be classically allowed. We develop this point in detail in the

discussion section.

In section 4, we examine the implications of these additional thermodynamical con-

straints for closed-system dynamics. In particular, we consider the extension to applying

eq. (1.5) with arbitrary reference states to the present holographic calculations. In section 5

we present some detailed calculations applying the new constraints to our holographic

model and in particular, we show that there are transitions which are classically allowed,
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Figure 1. Sample plot of the Rényi divergences. The different curves correspond to α =

0.2, 0.4, 0.6, 0.8, 0.9, 0.99, 1 from the bottom up.

but which are ruled out by the additional second laws of quantum thermodynamics. Fur-

ther, by scanning different reference states, we are able to recognize that the excited states

do not actually thermalize by unitary time evolution alone. In this closing section, we also

give a broader perspective of the implications of our results and the outlook of the new

second laws in the context of holography and more general gravitational systems.

Finally, appendix A describes some technical details of the holographic computation,

while appendix B presents a different holographic Euclidean construction for a trace func-

tion of the type

tr
(
ραout

out ρ
1−αin
in

)
, (1.16)

where now αin + αout 6= 1. This is a new Euclidean shell solution, which we obtain, in

a Vaidya-like fashion, by gluing together two portions of Euclidean black brane spaces

of different masses along a particular family of geodesics connecting boundary endpoints.

This quantity does not generically satisfy the data processing inequality, but it does in

the situation we consider in the geometric construction of appendix B. There in fact ρin

is a thermal density matrix and (1.16) can be recast in the form of a Rényi divergence

with general reference state, as those studied in section 4. This trace function also satisfies

Lieb’s concavity theorem [48] for the range of the parameters αin, αout for which we are

able to define it.

2 Euclidean quench in amplitude expansion

In this section, we set up the computation of the Rényi divergence (1.6) for a class of

excited states in any conformal field theory. In particular, we focus on excited states which

are prepared by a Euclidean path integral where a relevant deformation is turned on. By

considering holographic CFTs and applying the usual AdS/CFT dictionary [24–26], these

states are related to gravitational backgrounds where a black hole is surrounded by scalar

field excitations. The free evolution (where the source of the relevant operator is removed)

– 8 –
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of these states will then simply involve the collapse of the scalar hair into the black hole

and eventually, the gravitational system will settle down to a “hairless” black hole with a

slightly higher mass (and temperature). Hence by exploiting the holographic framework,

we go on to evaluate the Rényi divergences and examine the constraints which the second

laws of quantum thermodynamics (1.5) may impose on the evolution of these black holes.

2.1 Rényi divergences from path integrals

Before exploring the Rényi divergences in the holographic context, we consider a particular

Euclidean path integral construction that can be identified as computing tr
(
ραρ1−α

β

)
for

excited states in CFT. While the present discussion focuses on a special class of excited

states, we expect that the path integral approach described below can be extended to a

much broader family of excited states. For further discussion of this matter, see section 5.

First, the reference thermal state has density matrix, which can be identified with a

Euclidean path integral (with appropriate boundary conditions) on a slab of width β in

the Euclidean time direction, i.e.

ρβ = e−βH = β . (2.1)

Now we extend this well-known construction to a particular class of excited states prepared

via an analogous Euclidean path integral in which a relevant deformation is turned on, i.e.

ρ =

∫
Dφ e−SCFT[φ]−

∫
ddxλO∆(x) = β , (2.2)

where the colored shading represents the presence of the deformation. We may alter the

state by varying the amplitude of the (constant) source λ or by choosing different relevant

operators O∆(x). We could think of the excited state (2.2) as the thermal state defined

with respect to a new Hamiltonian consisting of the original CFT Hamiltonian deformed

by the relevant operator, i.e. H ′ = H + λO∆. However, we wish to emphasize that we are

still thinking of this state as an excited state within the same theory, i.e. within the CFT

governed by the Hamiltonian H.

For this particular choice of excited states, the trace appearing in the Rényi divergence

can then be computed by sewing together the two path integrals represented in eqs. (2.1)

– 9 –
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and (2.2),

ZCFT = tr
(
ραρ1−α

β

)
= . (2.3)

That is, the desired trace in eq. (1.6) is evaluated as the partition function in the CFT on

a thermal cylinder of circumference β with the relevant deformation turned on for fraction

of the full span, namely, a period of Euclidean time αβ. This path integral construction

thus allows to compute Dα with index α ∈ [0, 1].

With some abuse of language we refer to this construction as a Euclidean quantum

quench since we are disturbing the system with a time dependent source, i.e.

λ(τ) = [θ(τ)− θ(τ − αβ)]λ . (2.4)

Hence the relevant deformation is abruptly turned on at τ = 0 and just as abruptly turned

off again at τ = αβ. Hence, in some respects, our construction resembles an instantaneous

quench of e.g. [49–51], where the initial excited state is prepared by evolving the system

with one (time-independent) Hamiltonian, but the latter is instantaneously swapped for

another (time-independent) Hamiltonian which then controls the future time evolution.6

Now we turn to the computation of this partition function (2.3) in holography, where

the thermal state is given by a black brane bulk geometry and the relevant operator O
corresponds to a bulk scalar field Φ sourced on the boundary by λ(τ). To obtain analytical

or semi-analytical results we restrict to AdS3/CFT2 and work at first non-trivial order in a

perturbative expansion in the amplitude λ. The next two subsections contain the technical

details of the holographic computation. For the final result, the reader can move directly to

section 2.4, where we also comment on how this bulk computation is directly equivalent to

performing the conformal perturbation theory expansion of ZCFT on the thermal cylinder.

2.2 Bulk setup

Following the discussion above, we consider Einstein gravity in 2+1 dimensions minimally

coupled to a massive scalar field, with Euclidean bulk action

SE = − 1

16πGN

∫
M
d3x
√
g

[
R− 2Λ− 1

2
gµν∂µΦ∂νΦ− 1

2
m2Φ2

]
(2.5)

− 1

8πGN

∫
∂M

d2x
√
γ K ,

where the cosmological constant Λ = −1 and as a result, the radius of curvature in AdS

geometry is also set to one. The boundary term is the usual Gibbons-Hawking-York term,

with the extrinsic curvature defined as Kµν = ∇(µn̂ν) and n̂ being the outward-directed

6Foreshadowing certain technical details of the calculations in section 2.3, we warn the reader that such

instantaneous quenches can lead to UV divergences if the conformal dimension of the relevant operator is

not sufficiently small, e.g. [52–54].
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normal vector to the boundary ∂M. The bulk scalar field is dual to an operator of conformal

dimension ∆, and its mass squared is m2 = ∆(∆ − 2). We are interested in relevant

deformations with 0 < ∆ < 2, corresponding to negative values of m2 all the way down to

the Breitenlohner-Freedman bound (m2 ≥ −1) [55, 56]. The equations of motion following

from the above action are

Rµν −
1

2
gµν

(
R− 2Λ− 1

2
(∂Φ)2 − 1

2
m2Φ2

)
+

1

2
∂µΦ∂νΦ = 0 , (2.6)(

−�+m2
)

Φ = 0 . (2.7)

Now the reference state of our path integral construction is a thermal state of the CFT

on the infinite line at inverse temperature β. The corresponding background solution of

the bulk gravity theory is therefore the Euclidean planar black hole geometry7

ds2 =
1

z2

[
(1−Mz2)dτ2 +

dz2

1−Mz2
+ dx2

]
(2.8)

and a vanishing scalar field, i.e. Φ = 0. Here z ∈ (0, 1/
√
M ],

√
M = 2π/β and the AdS

boundary is at z → 0.

To compute the Rényi divergence (1.6), we consider the backreaction induced by a

spatially homogeneous boundary source λ(τ) for the operator dual to the scalar field Φ.

Turning on this source amounts to imposing the Dirichlet boundary condition

lim
z→0

z∆−2Φ(z, τ) = λ(τ) . (2.9)

To make progress analytically we consider a small amplitude expansion on top of the 3d

bulk Euclidean background. To leading order in the amplitude λ of the deformation there

is no backreaction of the scalar on the geometry and we simply solve for a scalar field in

the black hole background (2.8). The solution satisfying the boundary condition (2.9) can

be written in terms of the Euclidean bulk-to-boundary propagator

K(z, x− x′, τ − τ ′) = C∆
z∆[

2
M

(
cosh(

√
M(x− x′))−

√
1−Mz2 cos(

√
M(τ − τ ′))

)]∆
,

(2.10)

with normalization

C∆ =
∆− 1

π
. (2.11)

This is such that(
−�+m2

)
K(z, x, τ) = 0 and lim

z→0
z∆−2K(z, x, τ) = δ(x)δ(τ) , (2.12)

so that the solution we are looking for is expressed as

Φ(z, τ) =

∫
dx′dτ ′ K(z, x− x′, τ − τ ′)λ(τ ′) . (2.13)

7For example, see [57, 58].
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At second order in λ, the geometry also backreacts, as Einstein’s equations are sourced by

a non-vanishing energy-momentum tensor at this order. Given the linearity in Φ of the

scalar equation of motion and the absence of first order corrections to the metric, there is

however no further correction for the scalar field at second order. The effect of the source

at second order is therefore to modify the background metric gµν by a correction δgµν

gµν → gµν + δgµν . (2.14)

Let’s now consider the explicit ingredients which we will need to evaluate the on-shell

action. Using the equations of motion order by order in the amplitude expansion, the

general form of the on-shell action at second order can be written as

SE =
1

16πGN

{∫
M
d3x
√
g 4−

∫
∂M
d2x
√
γ

[
2K +

(
γijK −Kij

)
δγij −

1

2
Φ n̂·∂Φ

]}
.

(2.15)

The bulk and extrinsic curvature 2K terms are simply the zero order contributions, rep-

resenting the action of the purely gravitational background solution. The remaining con-

tributions incorporate the λ2 corrections to the background value of the action and are

evaluated on the boundary ∂M. δγij denotes the metric induced on the boundary by

the correction δgµν to the bulk background metric. The extrinsic curvature and its trace

appearing in (2.15) are all computed in terms of the background metric.

2.3 Holographic renormalization

In this section, we use the standard holographic renormalization techniques [59, 60] to

evaluate the renormalized on-shell action. For this, we choose the Fefferman-Graham gauge

ds2 =
dρ2

4ρ2
+

1

ρ
ḡij(τ, ρ)dxidxj , (2.16)

where the coordinates xi indicate the boundary directions τ and x. The conformal bound-

ary ∂M is the fixed ρ surface at ρ→ 0. Following the discussion above, when solving in a

perturbative expansion in the amplitude of the deformation λ, the metric has an expansion

of the form

ḡij = gij + δgij +O(λ3) . (2.17)

The background metric in these coordinates (2.16) takes the form

ds2 =
dρ2

4ρ2
+

(1−Mρ)2

4ρ
dτ2 +

(1 +Mρ)2

4ρ
dx2 , (2.18)

where the radial coordinate ρ is related to the z coordinate above through

√
ρ =

z

1 +
√

1−Mz2
, z =

2
√
ρ

1 +Mρ
. (2.19)

For the perturbatively backreacted metric, we consider the general ansatz consistent with

homogeneity in the spatial x-coordinate

ds2 =
dρ2

4ρ2
+

(1−Mρ)2

4ρ
dτ2 +

(1 +Mρ)2

4ρ
dx2 +

1

ρ

[
δgττ (τ, ρ)dτ2 + δgxx(τ, ρ)dx2

]
. (2.20)

– 12 –



J
H
E
P
0
7
(
2
0
1
8
)
1
1
1

Further, the asymptotically AdS boundary conditions imply

δgij(τ, ρ)→ 0 for ρ→ 0 . (2.21)

The latter are consistent with the relevant perturbation that sources the backreaction of

the metric, as can be checked solving the equations of motion in an asymptotic expansion.

The boundary metric in Fefferman-Graham coordinates (2.16) is γ̄ij = 1
ρ ḡij and it

inherits in a natural way the splitting between the background and the leading, second

order in λ, correction induced by the scalar source

γij =
1

ρ
gij , δγij =

1

ρ
δgij . (2.22)

We introduce a regulator surface in the bulk at ρ = ε, which corresponds to intro-

ducing a short-distance cutoff in the boundary CFT. With this cutoff surface in place,

one can evaluate the regulated on-shell action and determine the relevant counterterms.

Considering first the gravitational part of the action (2.15)

S(G)
reg =

1

16πGN

{∫
M
d3x
√
g 4−

∫
∂M
d2x
√
γ
[
2K +

(
γijK −Kij

)
δγij

]}
, (2.23)

the appropriate counterterm to make the regularized action finite is

S
(G)
ct =

1

16πGN

∫
ρ=ε
d2x
√
γ̄ 2 . (2.24)

This is the standard counterterm which renormalizes the background action

S(G)
ren = lim

ε→0

(
S(G)

reg + S
(G)
ct

)
= − 1

16πGN

∫
d2x M +O(λ2) . (2.25)

In a perturbative expansion, this counterterm also renormalizes the leading correction to

the background metric, e.g. see [61]. The outgoing normal to the constant ρ boundary sur-

face is n̂ = −√gρρ∂ρ and the extrinsic curvature computed with the background boundary

metric is

Kij = ∇(ini) = −ρ∂ργij =
1−M2ρ2

4ρ
δij (2.26)

and

γijK −Kij =
4ρ

1−M2ρ2
δij . (2.27)

Thus the order λ2 contribution to the gravitational part (2.23) of the action is

δS(G)
reg = − 1

16πGN

∫
ρ=ε
d2x
√
γ
(
γijK −Kij

)
δγij

= − 1

16πGN

∫
ρ=ε

d2x
1

ρ
(δgττ + δgxx) (2.28)

Expanding (2.24) in the source amplitude:

S
(G)
ct =

1

16πGN

∫
ρ=ε

d2x
√
γ̄ 2 =

1

16πGN

∫
ρ=ε

d2x
√
γ
(
2 + γijδγij

)
+O(λ3) . (2.29)
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The second order contribution in the limit where the regulator is taken to zero gives

δS
(G)
ct =

1

16πGN

∫
ρ=ε

d2x
√
γ γijδγij =

1

16πGN

∫
ρ=ε

d2x

(
δij

ρ
+O(ρ0)

)
δgij (2.30)

and therefore completely cancels (2.28), leaving contributions that because of the asymp-

totycally AdS boundary conditions (2.21) go to zero as ε→ 0.

Therefore up to order λ2 included, the complete renormalized contribution coming

from the gravitational part coincides with the zero-order renormalized result

S(G)
ren = lim

ε→0

(
S(G)

reg + S
(G)
ct

)
= − 1

16πGN

∫
d2x M +O(λ3) , (2.31)

which is the (negative) on-shell action of an AdS3 black brane geometry.

Next we want to evaluate the scalar part of the action, which is purely second order

in the amplitude of the source λ and consists only of boundary terms

δS(Φ)
reg =

1

16πGN

∫
ρ=ε

d2x
√
γ

1

2
Φ n̂ · ∂Φ . (2.32)

For this we only need to know the asymptotic solution, which in the range 0 < ∆ < 2 is8

Φ = ρ
2−∆

2 ϕ(0)(τ) + ρ
∆
2 ϕ(∆)(τ) + . . . (2.33)

with . . . indicating subleading contributions that will not enter in our analysis. Notice that

depending on whether the conformal dimension is in the range 0 < ∆ < 1 or 1 < ∆ < 2

the leading mode will be ϕ(∆) or ϕ(0) respectively, but according to (2.9) we are always

identifying ϕ(0) with the source of the boundary deformation. As the range of ∆ affects

the structure of divergences, we analyze the two cases separately.

1 < ∆ < 2. In this range of conformal dimensions, the divergences of the scalar action

and the associated counterterms are the standard ones. Using the asymptotic form of

the solution, the part of the action directly involving the scalar field has the following

regularized structure

δS(Φ)
reg =

1

16πGN

∫
ρ=ε

d2x
√
γ

1

2
Φ n̂ · ∂Φ

= − 1

16πGN

∫
d2x

1

4

[
ε1−∆ 2−∆

2
ϕ2

(0) + ϕ(0)ϕ(∆) + . . .

]
(2.34)

up to terms that vanish in the limit ε→ 0. This is renormalized by the counterterm action

S
(Φ)
ct =

1

16πGN

∫
ρ=ε

d2x
√
γ

(
2−∆

2
Φ2

)
, (2.35)

which, as ε→ 0, leads to the following scalar renormalized action

S(Φ)
ren = − 1

16πGN

∫
d2x

1

4
(∆− 1)ϕ(0)ϕ(∆) . (2.36)

Combining this with (2.31), up to second order in the amplitude of the source λ(τ), we get

Sren = lim
ε→0

(Sreg + Sct) = − 1

16πGN

∫
d2x

4

[
4M + (∆− 1)ϕ(0)ϕ(∆)

]
+O(λ3) . (2.37)

8We will not treat in the following the special case ∆ = 1, which contains logarithmic terms.
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0 < ∆ < 1. The regulated scalar action in this case is

δS(Φ)
reg =

1

16πGN

∫
ρ=ε

d2x
√
γ

1

2
Φ n̂ · ∂Φ

= − 1

16πGN

∫
d2x

1

4

[
ε∆−1 ∆

2
ϕ2

(∆) + ϕ(0)ϕ(∆) + . . .

]
(2.38)

and together with the corresponding counterterm action

S
(Φ)
ct =

1

16πGN

∫
ρ=ε

d2x
√
γ

(
2−∆

2
Φ2

)
(2.39)

gives as ε→ 0 the scalar renormalized action

S(Φ)
ren =

1

16πGN

∫
d2x

1

4
(∆− 1)ϕ(0)ϕ(∆) . (2.40)

However, working in the alternate quantization, in order for the Ward identities to hold,

this is not sufficient. One also needs to include a Legendre term in the scalar action [62–65]

SLegendre =
1

16πGN

∫
∂M

d2x
√
γ̄
(
Φ n̂ · ∂Φ−∆Φ2

)
=

1

16πGN

∫
d2x

(
2(1−∆)ϕ(0)ϕ(∆) + . . .

)
+O(λ3) . (2.41)

Notice that this term is simply −2
(
δS(Φ) + S

(Φ)
ct

)
, so it is finite and its unique effect on

the renormalized on-shell action for the scalar is to flip the overall sign

S(Φ)
ren + SLegendre = −S(Φ)

ren . (2.42)

Therefore, also in the range 0 < ∆ < 1, once the Legendre term (2.41) is included, the

total renormalized action gives

Sren = lim
ε→0

(Sreg + Sct + SLegendre) = − 1

16πGN

∫
d2x

4

[
4M + (∆− 1)ϕ(0)ϕ(∆)

]
+O(λ3) .

(2.43)

Of course, we observe that this result for the renormalized action takes a form which is

identical to that in eq. (2.37) for 1 < ∆ < 2.

2.4 On-shell Euclidean action

The holographically renormalized on-shell action associated to the configuration in which

we are interested takes the form

Sren = − 1

16πGN

∫
dx dτ

1

4

[
4M + (∆− 1)ϕ(0)ϕ(∆)

]
. (2.44)

at leading non-trivial order in the amplitude of the perturbation.

To extract explicitly the mode ϕ(∆) we should expand the bulk profile (2.13) for z → 0

and read the coefficient of the mode ∼ z∆. That is

ϕ(∆) ∼
(∆− 1)M∆

2∆π

∫
dx′dτ ′λ(τ ′)

[
cosh

(√
M(x− x′)

)
−
√

1− ε̃2 cos
(√

M(τ − τ ′)
)]−∆

(2.45)
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where we introduced the z-coordinate cutoff ε̃ = 2
√
εM and, after performing the integral,

only keep terms that are finite as ε̃ → 0. We are however interested in evaluating (2.44),

which contains an additional integral over dx dτ . It turns out that it is easier to first

perform both integrations over x′, τ ′ and x, τ for finite ε̃ and then extract the relevant

contributions as we send ε̃→ 0. That is, we compute

Sren ' −
L

16πGN

{
2π
√
M + λ2 (∆− 1)2M∆

2∆+2 π
× (2.46)

×
∫ 2πα√

M

0
dτ

∫ ∞
−∞

dx′
∫ 2πα√

M

0
dτ ′
[
cosh

(√
Mx′

)
−
√

1− ε̃2 cos
(√

M(τ − τ ′)
)]−∆

}

where we used translational invariance in x and regulated the overall spatial integral by

introducing L as the spatial volume (i.e. with d = 2, the length of a fixed time slice).

Performing a change of coordinates and defining

I(α,∆)reg ≡
∫ 2πα

0
dτ

∫ ∞
−∞

dx′
∫ 2πα

0
dτ ′
[
coshx′ −

√
1− ε̃2 cos(τ − τ ′)

]−∆
, (2.47)

eq. (2.46) can be re-expressed as

Sren ' −
L

16πGN

{
(2π)2

β
+ λ2 (∆− 1)2

2∆+2π

(
2π

β

)2∆−3

I(α,∆)reg

}
, (2.48)

where we have also used
√
M = 2π/β. As we explain in the next section and in appendix A,

in doing so we introduce an additional divergence ∼ ε̃2(1−∆). This arises from integrating

the non-normalizable mode of the bulk scalar over the boundary, and we simply drop it in

the final result.

Notice however that when integrating ϕ(∆) with the inhomogeneous source λ(τ)

in (2.44), there will be also physical divergences arising. These are associated to the

Euclidean path integral construction we are using, and more in particular to the fact that

we are sharply localizing the profile of the source λ along the Euclidean time circle.

In purely field theoretic terms, the on-shell action reads

Sren = −
∫
dx dτ

[
π c

6β2
+

1

8
λ(τ) 〈O∆(τ)〉

]
(2.49)

where the expectation value of the dual operator is related to the normalizable mode of

the scalar field by

16πGN 〈O∆(τ)〉 = 2(∆− 1)ϕ(∆)(τ) , (2.50)

where ϕ(∆)(τ) is the normalizable mode of the bulk scalar, as given in eq. (2.45). Further,

β = 2π/
√
M and we used the Brown-Henneaux central charge c = 3/(2GN ). Indeed

from the boundary point of view, the computation we are performing is the conformal
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perturbation theory expansion

ZCFT =

∫
Dφ e−SCFT(φ)−

∫
d2xλ(τ)O∆(τ,x)

=

∫
Dφ e−SCFT(φ)

(
1−

∫
λ(τ)O∆(τ, x)

+
1

2

∫ ∫
λ(τ)λ(τ ′)O∆(τ, x)O∆(τ ′, x′) + . . .

)
= ZCFT

∣∣∣
λ=0

(
1 +

1

2

∫ ∫
λ(τ)λ(τ ′)〈O∆(τ, x)O∆(τ ′, x′)〉+ . . .

)
, (2.51)

where we used 〈O∆〉λ=0 = 0 and on a cylinder

〈O∆(τ, x)O∆(τ ′, x′)〉λ=0,cyl =
1

2∆

(
2π

β

)∆ [
cosh

2π(x− x′)
β

− cos
2π(τ − τ ′)

β

]−∆

. (2.52)

With the identification (2.50), the holographic and conformal perturbation theory results

δZbulk and δZCFT thus only differ by overall multiplicative terms and in that the holo-

graphic procedure directly renormalizes the divergences associated to contact points in the

two-point function.

3 Holographic Rényi divergences

For the Rényi divergence of an excited state ρ prepared by Euclidean path integral turning

on a relevant deformation in the thermal state ρβ , the holographic construction of the

previous section leads us to identify

log tr
(
ραρ1−α

β

)
≈ −Sren , (3.1)

with Sren given by the expression in eq. (2.48), together with the integral in eq. (2.47).

As we anticipated, to explicitly evaluate Sren and the Rényi divergence we find it more

convenient at the technical level to first compute the related quantity given in eq. (2.47)

I(α,∆)reg =

∫ 2πα

0
dτ

∫ ∞
−∞

dx′
∫ 2πα

0
dτ ′
[
coshx′ −

√
1− ε̃2 cos(τ − τ ′)

]−∆
, (3.2)

to all orders in ε̃, and then to extract from it what will be the relevant contributions to (3.1)

as we take ε̃→ 0.

We evaluate explicitly the integral I(α,∆)reg in appendix A. As we remove the regu-

lator ε̃, the integral is finite for all 0 < ∆ < 1. For ∆ > 1, it contains two different types

of divergences. The first is the same divergence that we discussed in section 2.4, which is

of the form ∼ ε̃2(1−∆), and its coefficient is linear in α. This arises from the fact that the

integrand in (2.47) is the full bulk-to-boundary scalar field propagator, rescaled by a factor

z∆. As such, it contains also the contribution of the non-normalizable mode of the bulk

scalar, which is responsible for the ∼ ε̃2(1−∆) divergence. We drop this divergent contri-

bution, which is absent in the holographically renormalized Sren, in what we define below
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as the renormalized quantity I(α,∆). This corresponds to a particular choice of contact

terms in the boundary theory. The fact that these divergences are physically unimportant

is also evident since generally they would not contribute to Dα(ρ‖ρβ) even if they were not

removed at this stage. However, we must add that there remains a residual effect at α→ 1

for ∆ ≥ 1. These details are explained below.

The second type of divergence has the form ∼ ε̃3−2∆. This is a physical divergence

arising from the specific form of the excited states we are considering in our analysis. In

the Euclidean path integral construction, it is associated to the fact that we are working

with source λ(τ) that gives a sharp discontinuity in the Euclidean path integral. However,

we also note that this divergence is absent in the limit α→ 1 (see figure 11 in appendix A),

where the path integral becomes smooth.

At the practical level, we define the renormalized quantity as

I(α,∆) = I(α,∆)reg +
2∆+1π2α

1−∆
ε̃2(1−∆) , (3.3)

by subtracting the contribution arising from the non-normalizable mode of the scalar field

(see eq. (A.14) in appendix A). For α = 1, this can be evaluated analytically and gives

I(1,∆) =
2π3/2Γ

(
1−∆

2

)
Γ
(

∆
2

)2
Γ(∆)Γ

(
1− ∆

2

) . (3.4)

For α < 1, we find it convenient to write the regulated expression as

I(α,∆)reg =
22−∆√πΓ(∆)

Γ
(
∆ + 1

2

) ∫ 2πα

0
dp (2πα− p)F

[
∆,∆,∆ +

1

2
,

1 +
√

1− ε̃2 cos p

2

]
, (3.5)

and perform the remaining integration numerically.

The trace function (3.1) we are interested in is then evaluated in terms of the renor-

malized quantity I(α,∆) simply as

log tr
(
ραρ1−α

β

)
≈ c

24π
L

{
(2π)2

β
+ λ2 (∆− 1)2

2∆+2π

(
2π

β

)2∆−3

I(α,∆)

}
, (3.6)

where c = 3/(2GN ). The density matrices ρ and ρβ computed in this way are not normal-

ized to one, as can be immediately seen taking the limit α→ 1

log trρ ≈ c

24π
L

{
(2π)2

β
+ λ2 (∆− 1)2

2∆+2π

(
2π

β

)2∆−3

I(1,∆)

}
, (3.7)

and α→ 0

log trρβ ≈
c πL

6β
(3.8)

of the expression above. Hence to account for this normalization in the Rényi divergences,

we write the following expression

Dα(ρ‖ρβ) =
1

α− 1
log

tr
(
ραρ1−α

β

)
(tr ρ)α(tr ρβ)1−α

≈ λ2 c L

6πβ

(∆− 1)2

2∆+3

(
2π

β

)2(∆−2) I(α,∆)− αI(1,∆)

α− 1
. (3.9)
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Figure 2. Holographic Rényi divergence for a cutoff ε̃ = 0.0001 and inverse temperature β = 2π.

α = 0.2, 0.4, 0.6, 0.8, 0.9, 0.99, 1 from the bottom up. We rescaled the ∆-independent prefac-

tor λ2 c
3π225L.

The second line above gives the leading order result for the holographic Rényi divergences,

which we see is second order in the amplitude λ of the deformation. We should note that

since this amplitude is dimensionful, our perturbative expansion is properly described in

terms of the dimensionless quantity
(

2π
β

)∆−2
λ.9

In figure 2, we plot a number of representative curves for the Rényi divergences as a

function of the conformal dimension ∆, setting for convenience β = 2π. As noted above,

when we take the regulator ε̃→ 0, we find a single UV divergence of the from ∼ ε̃3−2∆ for

most values of α (and ∆ ≥ 3/2). However, there is also a residual divergence of the form

∼ ε̃2(1−∆), which appears at α = 1, as we show next.

In the limiting case α = 1, the Rényi divergence becomes the relative entropy, which

in turn can be written as the difference of ordinary free energies

D1(ρ‖ρβ) = tr ρ log ρ− tr ρ log ρβ = β (F (ρ)− F (ρβ)) , (3.10)

and can also be computed explicitly. Namely,

D1(ρ‖ρβ) ≈ λ2 c L

6πβ

(∆− 1)2

2∆+3

(
2π

β

)2(∆−2) {
∂αI(α,∆)

∣∣
α=1
− I(1,∆)

}
= λ2π cL

3β

(∆− 1)2

8

(
2π

β

)2(∆−2)
{

Γ(1−∆
2 )Γ(∆

2 )2

2∆
√
πΓ(∆)Γ(1− ∆

2 )
− ε̃2(1−∆)

1−∆

}
, (3.11)

9Let us add that while the condition (2π/β)∆−2 λ � 1 is required for the validity of our perturbative

expansion, it also ensures that the excited state (2.2) will have a (relatively) simple interpretation in terms

of the CFT excitations. Otherwise the relevant perturbation will drive the new state in the initial theory far

away from the conformal phase, i.e. far from the thermal state (2.1). In the dual gravitational description,

the latter means that the dual scalar field grows in the region outside the event horizon to such an extent

that its backreaction will significantly deform the black hole geometry (and that any nonlinearities in the

scalar potential will become important), e.g. see discussion in [111, 112].
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Figure 3. Holographic Rényi divergence with λ = λ̃/|∆ − 1| and λ̃(2π/β)∆−2 fixed, for a cutoff

ε̃ = 0.0001 and inverse temperature β = 2π. α = 0.2, 0.4, 0.6, 0.8, 0.9, 0.99, 1 from the bottom up.

We have rescaled the ∆-independent prefactor λ̃2 c
3π225L.

where we used eq. (A.17):

∂αI(α,∆)
∣∣∣
α=1

= −2∆+1π2

1−∆
ε̃2(1−∆) + 2I(1,∆) . (3.12)

The double zero at ∆ = 1 appearing in the numerator of (3.9) forces all curves Dα to

have the same unique minimum. This prefactor comes from the bulk-to-boundary normal-

ization (2.11) and the on-shell action computed in holographic renormalization (2.44). In

such a case, the monotonicity constraints

Dα(ρ‖ρβ) ≥ Dα(ρ′‖ρβ) (3.13)

are equivalent for all α ∈ (0, 1], as can be seen from figure 2. According to the second

laws of quantum thermodynamics [14], a transition between a state prepared via a relevant

deformation of conformal dimension ∆ and one with ∆′ is therefore possible only if ∆ <

∆′ < 1 or 1 < ∆′ < ∆.

However, implicitly we assumed above that the coefficient λ (or rather the dimension-

less quantity (2π/β)∆−2 λ, as in producing the plot we have set β = 2π) was the same for

both deformations. It is important to remember that we still have the freedom of varying

the amplitude of the source λ, and thus of modifying the quantum α-free energies in a

non-trivial way. For fixed α, the plot of Dα(ρ‖ρβ) is in fact effectively three-dimensional,

as a function of both dimensionless parameters ∆ and λ(2π/β)∆−2. For example, we could

for instance have considered the source amplitude of the form λ = λ̃/|∆ − 1| and held

λ̃(2π/β)∆−2 fixed. This would effectively rescale the formula above by a factor (∆ − 1)2

and give the result plotted in figure 3. As curves of different α now have distinct minima, in

these directions the second laws are not equivalent and would pose non-trivial constraints

for a Lorentzian evolution allowing transitions between states associated to different rele-

vant deformations — see further discussion in section 5.
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Figure 4. Dα (left) and (1 − α)Dα (right), which is concave in α. Here λ = λ̃/|∆ − 1| and

λ̃(2π/β)∆−2 fixed. In both plots ∆ = 0.3, 0.6, 0.9, 1.2, 1.4 and ε̃ = 0.001 to be able to fit all curves

in the same plot. (In the right panel we excluded the curve ∆ = 1.8, which has much bigger

magnitude than the others.) The inverse temperature is β = 2π and in all curves we rescaled an

overall factor λ̃2 c
3π225L.

Also notice that we find that our result consistently satisfies the expected properties

of Rényi divergences for 0 ≤ α ≤ 1 [47]:

• Positivity : Dα ≥ 0;

• Monotonicity in α: Dα is nondecreasing in α;

• Continuity in α;

• Concavity : (1− α)Dα is concave in α.

This can be directly seen from figure 4, where we plot the α dependence of Dα and (1−α)Dα

for various representative values ∆.

Before proceeding, we wish to return to the UV divergences in our results. First

recall that the regulated integral (3.2) contained a divergence of the form ε̃2(1−∆), which

we removed in eq. (3.3). However, we would first like to note that since the divergence

that we removed there is linear in α, it would have canceled out in the Rényi divergence

(3.9) even if we worked directly with the regulated integral I(α,∆)reg. Again this simply

reflects the fact that this divergence is physically unimportant and can be removed with a

particular choice of contact terms in the boundary theory. However this description is not

complete since, as we see in eq. (3.11), there is a residual ε̃2(1−∆) divergence at α = 1.10

As explained in appendix A, the divergence in the regulated integral actually has a step-

function-like coefficient, which makes a rapid transition in the vicinity of α = 1 and so the

previous cancellation fails there (and in a narrow band of width δα ∼ ε̃ about α = 1) —

see figure 12. As shown in eq. (3.11), this divergence then appears in the relative entropy

D1(ρ‖ρβ), but further in quantities like the energy and entropy of the excited states with

∆ ≥ 1 — see eqs. (4.19) and (4.20) below.

10This softens to a logarithmic divergence at precisely ∆ = 1.
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Of course, as we already commented, for states prepared with operators of higher

conformal dimensions, namely ∆ ≥ 3/2, there is an even more pervasive divergence pro-

portional to ε̃3−2∆ — again this softens to logarithmic at precisely ∆ = 3/2. For these

states, the Rényi divergence (3.9) contains this divergence for all values of α except at

α = 1. As described above, these UV divergences can be understood as an effect of the

source λ(τ) that changes instantaneously from zero to some fixed value in our path integral

construction (2.3).

The final conclusion is that any of our results for ∆ ≥ 1 do not have a physical

interpretation unless we imagine that there is a finite UV regulator in place. However,

we must also recall that we have formulated our calculations in a perturbative framework

in the (dimensionless) expansion parameter (2π/β)∆−2λ. Hence even with a finite UV

regulator, if the O(λ2) term is proportional to 1/ε̃a (for some positive a), then we must limit

our calculations to (2π/β)∆−2λ� ε̃a. That is, there is a tension between our perturbative

expansion and these UV divergences.11 Therefore in our further examination and discussion

of the Rényi divergences in the next two sections, we will limit our attention to excited states

corresponding to conformal dimensions ∆ < 1, which do not exhibit any UV divergences

and remain well defined in the limit ε̃→ 0.

4 Closed-system thermodynamics and further considerations

Before we discuss the results, a few more detailed points about the role of Rényi divergences

in the context of closed systems are worth making. The first, is that one is sometimes

interested in smoothed Rényi divergences [10, 12, 14, 66]. Namely, there are cases where

we are not just interested in exact transformations of a state into another, but just in

approximate ones. For example, if we are trying to extract work from a state transition,

we may only be able to extract a small amount if we want to be completely certain that

we extracted work, but if we are willing to tolerate an ε-small probability of failing, then

we may be able to extract a lot more. This is also the case if we only care about average

work. Likewise, if we are considering state transitions, as in eq. (1.4), we may not care

that we produce the exact state we want, and so may be content with an approximate

transformation which still produces a state close to the desired one. The term smoothing

is used to denote the process of minimising the quantities under consideration over initial

or final states which are in an ε-sized ball of the states of interest. Here, we restrict to

considering exact transitions, and leave the case of approximate transitions to further study.

Perhaps more importantly for the case of closed systems, we may also want to consider

versions of the second law which pertain to dynamical processes which only approximately

preserves thermal states. Indeed, requiring that a map is linear and exactly preserves

thermal states at all temperatures is a severe restriction on the map. In particular, such

maps will generically only approximately thermalize an arbitrary state [43]. If we were to

11Examining figures 2 or 3, we also note that the Rényi divergences also appear to diverge in the limit

∆ → 0. For α = 1, this divergence can be explicitly seen as a 1/∆ pole in eq. (3.11). These divergences

are independent of the UV regulator, but they will also limit our perturbative calculations for very small

values of ∆.
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extend our discussion to include approximately thermalizing maps, then the quantity of

interest is [43]

Dε
α(ρ‖ρR) := inf

σ∈Bε(ρR)
Dα(ρ‖σ) (4.1)

where infimum is taken over an ε-ball around ρR. Computing the thermodynamical con-

straints that this quantity imposes is beyond the scope of the present work, but will be

discussed further in [43]. However, one should keep in mind that transitions which are

forbidden by maps which exactly preserve thermal states might be allowed by maps which

are only approximately thermalizing.

Thirdly, it is worth noting that the derivation of the thermodynamical constraints

given by thermo-majorization and the Rényi divergence was originally done in the context

of a system in contact with a thermal reservoir of arbitrary temperature [14]. Here instead

we want to consider a closed system, which will equilibrate to a thermal state of the same

energy, i.e. to a thermal state with inverse temperature β′ such that tr(ρH) = tr(ρβ′H).

Nonetheless, eq. (1.5), the monotonicity of a distance measure to a reference thermal state,

can hold for any temperature of the thermal state. This should be clear from its derivation,

and holds provided the dynamics are such that any thermal state is a fixed point. This is

typically the case when ρ represents all the degrees of freedom of the system. This means

that for such closed system dynamics, varying both α and β provides a new two-parameter

family of constraints. On the other hand, when ρ represents a coarse grained description

of the system, one expects that only ρβ is preserved by the dynamics. We examine both

of these possibilities more closely below for our holographic model in sections 4.2 and 5.

4.1 Work function

For closed systems, another quantity of interest is

Wα,β(ρ) ≡ T
(
Dα(ρ‖ρβ)−Dα(ρβ′‖ρβ)

)
. (4.2)

For α = 1, we have W1,β = TδS, where δS is the change in entropy of the state as it

equilibrates to ρβ′ . It is the work which could be extracted from its increase in entropy,

were we to put it in contact with a bath of temperature T . Indeed, the ordinary free

energy constrains how a state evolves during a thermodynamical process, and determines

how much work can be extracted from a state transformation (the latter is in fact a special

case of the former).

Likewise, the Rényi divergences constrain state transformations and Wα,β(ρ) tells us

how valuable a resource a particular state is. For example, the quantity inf Wα,β is the

work distance [14], which gives the deterministic work which could be extracted as the

system equilibrates were we to couple it to an ancilla at temperature T . We can however,

say more. If we have two states, such that Wα,β(ρ1) ≥ Wα,β(ρ2) for all α, β, then we can

conclude that ρ1 is a better thermodynamical resource during its equilibration. To see this,

consider a third ancillary system in state ρa which we want to force to make a transition

to ρ′a. Then if the transition ρa ⊗ ρ2 → ρ′a ⊗ ρβ′2 is possible, i.e.

Dα(ρa‖ρβ) +Dα(ρ2‖ρβ) ≥ Dα(ρ′a‖ρβ) +Dα(ρβ′2‖ρβ) ∀ α, β , (4.3)
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then the transition ρa ⊗ ρ1 → ρ′a ⊗ ρβ′1 is less constrained. We may trivially re-express

eq. (4.3) as follows:

Dα(ρ2‖ρβ)−Dα(ρβ′2‖ρβ) ≥ Dα(ρ′a‖ρβ)−Dα(ρa‖ρβ) , (4.4)

and we see that βWα,β(ρ2) is on the left hand side and determines how useful ρ2 is as

a thermodynamical resource to induce transitions in an ancilla in the sense of imposing

more or less constraints. The larger the Wα,β(ρ2), the more freedom we have to induce a

transition ρa → ρ′a.

AlthoughWα,β provides constraints for any reference state ρβ , in the case where it is the

equilibrium state, we have β′Wα,β′(ρ) = Dα(ρ‖ρβ′). Thus the Rényi divergence has a more

direct physical interpretation in terms of the work function when the reference state is ρβ′ .

With the perturbative expansion in which we are working, we have βWα,β(ρ) ≈ Dα(ρ‖ρβ),

because the extra term in eq. (4.2), i.e. Dα(ρβ′‖ρβ), is higher order than Dα(ρ‖ρβ). In

particular, we will show below (see eq. (4.21)) that the final equilibrium temperature 1/β′

differs from 1/β by an O(λ2) correction, i.e.

1

β′
=

1

β

{
1 + κ

(
2π

β

)2(∆−2)

λ2

}
, (4.5)

where κ is some numerical factor. Now substituting this expression into

Dα

(
ρβ′‖ρβ

)
=

1

α− 1
log

tr
(
ραβ′ρ

1−α
β

)
(tr ρβ′)α(tr ρβ)1−α

=
πcL

6

1

α− 1

{
1

αβ′ + (1− α)β
− α

β′
− 1− α

β

}
' π cL

6β
ακ2

(
2π

β

)4(∆−2)

λ4 (4.6)

That is, Dα

(
ρβ′‖ρβ

)
∼ O(λ4), and thus it is beyond the order to which we are evaluating

the Rényi divergence in our perturbative expansion.

Notice also that if Wα,β(ρ1) ≥ Wα,β(ρ2) for a range of α (but not necessarily all α),

then the ordering of Wα,β still gives us physically relevant information about the relative

usefulness of ρ1 and ρ2. In particular, it tells us that for a family of constraints, ρ1 is a better

resource than ρ2. In the case where [ρ1, ρβ ] = [ρ2, ρβ ] = 0, and when the reference state is

the equilibrium state, we could in fact find an ancilla with Wα,β(ρ2) ≤Wα,β(ρa) ≤Wα,β(ρ1)

for 0 ≤ α ≤ 1 and Wα,β(ρa) = 0 elsewhere, and because the Rényi divergences are necessary

and sufficient conditions in the commuting case [14], we would be able to induce a transition

in the ancilla using ρ1 but not ρ2.

However, in general, the positivity of Wα,β(ρa) −Wα,β(ρi) only gives necessary con-

ditions that the transition of the ancilla needs to satisfy. There may also be additional

constraints coming from other quantum Rényi divergences (e.g. the sandwiched Rényi di-

vergences of eq. (1.8), or the decohered divergences of [14]). In fact, for the set of states

ρ that we are considering, we can compute Wα,β(ρ) not only for different α but also for

different values of reference state inverse-temperature β — see below.
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This rich set of constraints means we should be careful to only compare the relative

usefulness of two states in terms of the strength of the constraints they impose. So, while

it is physically meaningful to compare the Wα,β(ρ) of various states in a particular range

of α, β in terms of the strength of some second laws, these are necessary conditions and

not sufficient ones. We return to this in discussing our holographic Rényi divergences in

the following section.

4.2 General reference states

Here, we return to the idea introduced in section 1.1 that the Rényi divergence must de-

crease in physical processes but that we may use any equilibrium state as the reference state

— see discussion around eq. (1.5). We will show below that it is straightforward to extend

our holographic calculations in sections 2 and 3 to incorporate this generalization. We are

then able to use these new results in section 5 to explore how varying the reference state

modifies the constraints imposed on our holographic model by demanding the monotonic

reduction of the Rényi entropies.

As described in section 2.1, our example focuses on a special family of excited states

(2.2), which are defined by a path integral on an interval in Euclidean time, i.e. we can

think of these states as thermal states defined with a modified Hamiltonian H ′. Now in

the partition function (2.3), both the thermal reference state and the excited state are

defined with the inverse temperature β. However, even if the reference thermal state was

chosen with βR (which is unrelated to β), then the partition function takes essentially

the same form of a path integral on a thermal circle (with the deformation turned on for

some fraction of the full circumference) and in principle then, it remains straightforward

to evaluate the Rényi divergences for this general situation.

In the case with a new reference state ρR with inverse temperature βR, eq. (2.3) is

replaced by

Z ′CFT = tr
(
ραρ1−α

R

)
= . (4.7)

Here, we see the total circumference of the thermal circle is given by

C = (1− α)βR + αβ . (4.8)

The interval over which the deformation is present is still ` = αβ and hence the fraction

of the total thermal circle in which H ′ acts is

f =
`

C
=

αβ

(1− α)βR + αβ
. (4.9)

Now, let us set aside our perturbative calculations for the moment, and imagine that the

partition function in eq. (2.3) can be evaluated and takes the form ZCFT = P (β, α). Then

if the strength and conformal weight of the deformation are chosen with the same values in
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eq. (4.7), we will find Z ′CFT = P (C, f). Hence for this class of excited states, if we succeed in

the initial Rényi divergence Dα(ρ‖ρβ), then evaluating the generalized quantities Dα(ρ‖ρR)

is straightforward.

Let us illustrate the latter observation using our explicit perturbative calculations in

sections 2 and 3. In particular, beginning with eq. (3.6), the above prescription yields for

our generalized construction (4.7),

log tr
(
ραρ1−α

R

)
≈ c

24π
L

{
(2π)2

C
+ λ2 (∆− 1)2

2∆+2π

(
2π

C

)2∆−3

I(f,∆)

}
, (4.10)

where C and f are given by eqs. (4.8) and (4.9), respectively. Of course here, the calculation

is still perturbative in the source amplitude λ. Further, eq. (3.7) is unchanged since we are

using the same excited state, but eq. (3.8) is simply replaced by

log tr ρR =
π cL

6βR

(4.11)

for the new reference state. Combining these ingredients then yields

Dα(ρ‖ρR) =
1

α− 1
log

tr
(
ραρ1−α

R

)
(tr ρ)α(tr ρR)1−α (4.12)

≈ Dα(ρβ‖ρR) +
λ2

α− 1

c L

6πβ

(∆− 1)2

2∆+3

(
2π

β

)2(∆−2)

×

 I
(

α
(1−α)x+α ,∆

)
((1− α)x+ α)2∆−3

− α I(1,∆)

 ,
where we have introduced x ≡ βR/β and

Dα(ρβ‖ρR) =
π cL

6

1

α− 1

{
1

(1− α)βR + αβ
− α

β
− 1− α

βR

}
(4.13)

=
π cL

6βR

α (1− x)2

(1− α)x+ α
.

Of course, it is straightforward to see that with x = 1 (i.e. βR = β), the above expression

vanishes and eq. (4.12) reduces to the Rényi divergence given in eq. (3.9).

Now as argued below eq. (1.5), in principle, we have a two-parameter family of new

constraints based on the decrease of Dα(ρ‖ρR), i.e. we demand that this quantity decreases

for all values of α and x. However, it is important to keep in mind that implicitly this

argument relies on the fact that we are considering the evolution in a closed system, and in

particular, in which any thermal state remains unchanged. That is, the system cannot be

in contact with an external heat bath since then a general reference state ρR would not be

a fixed point of the dynamics.12 For such closed-system dynamics, the usual conservation

12Of course, one could pick an external thermal bath for which the inverse temperature matches some

particular βR, and then the Dα(ρ‖ρR) with that precise βR would provide constraints on the evolution, but

not for any other value of βR.
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of energy becomes an important constraint to consider before examining Dα(ρ‖ρR). In

particular, we see above that the new Rényi divergences (4.13) include a non-vanishing

contribution at O(λ0), which is equivalent to the Rényi divergence comparing two purely

thermal states, as in eq. (4.6). Now let us consider a particular excited state ρ1 evolving

towards its equilibrium, and we wish to ask if a second state ρ2 can appear in its evolution.13

If the corresponding temperatures, β1 and β2, are not equal, then the difference between the

Rényi divergences appears to be dominated by the O(λ0) contributions noted above. But if

β1 6= β2, we already know that the energies of the corresponding thermal states is different,

and so we can immediately rule out the transition from ρ1 to ρ2 using energy conservation.

Therefore, for closed-system dynamics, the new broader family of constraints provided

by Dα(ρ‖ρR) can only provide nontrivial constraints on the evolution from ρ1 to ρ2 in the

setting of our holographic model when examining excited states with equal or nearly equal

temperatures, i.e. β2 − β1 ' O(λ2), since only in these cases can we match the energies of

the two excited states — see further discussion below. In this case, the difference of the

corresponding Rényi divergences will be of order λ2 (irrespective of the choice of βR), and

in comparing two states in our holographic model (with nearly equal temperatures), we

can consider the constraints for all values of α and also for all values of x = βR/β. As an

example, in figure 5, we plot

δDα(ρ‖ρR) ≡ Dα(ρ‖ρR)−Dα(ρβ ||ρR) , (4.14)

i.e. the O(λ2) correction in the Rényi divergence (4.12), for excited states all with fixed β

and fixed (2π/β)∆−2λ. Again, this is the contribution that would be relevant in comparing

the Rényi divergences of excited states with the same β. However, the two panels show

the results for two different reference temperatures, i.e. x = 0.1 (left) and x = 3 (right).

These plots can be compared to the left panel of figure 4, which corresponds to the x = 1

case. Both of the new graphs show curves for different ∆ which now cross whereas they

did not in figure 4 and hence we should expect that with general reference states, the

Rényi divergences should constrain the dynamics more strongly than if when we only

consider x = 1.

As we noted above, energy conservation plays an essential role in constraining the

evolution of excited states when considering closed-system dynamics. Further, the standard

second law dictates that the (coarse-grained) entropy must increase. Hence in exploring

the generalized Dα(ρ‖ρR) constraints (see section 5), we should first consider whether or

not these two classical constraints are satisfied. Therefore we discuss here how these two

quantities can be extracted from eq. (4.12) for the excited states in our holographic model.

Taking the limit α→ 1 of Dα(ρ‖ρR) yields the relative entropy (1.2), and as in eq. (1.3)

with a thermal reference state with temperature 1/βR, this becomes

D1(ρ‖ρR) = βR (F (ρ)− F (ρR))

= (βRE(ρ)− S(ρ))− (βRE(ρR)− S(ρR)) . (4.15)

13Of course, we are considering ρ1 and ρ2 within the class of excited states constructed in eq. (2.2).
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Figure 5. δDα(ρ‖ρR) = Dα(ρ‖ρR) − Dα(ρβ‖ρR) for x = 0.1 (left) and x = 3 (right). Here

λ = λ̃/|∆− 1| and λ̃(2π/β)∆−2 fixed. In both plots ∆ = 0.3, 0.6, 0.9, 1.2, 1.4, β = 2π and ε̃ = 0.001.

(In the left panel we excluded the curve ∆ = 1.8, which has much bigger magnitude than the

others.) In all curves we rescaled the prefactor λ̃2 c
3π225L.

Now the thermal free energies are easily identified using the energy and entropy of the BTZ

black brane, i.e.

E(ρβ) =
π cL

6β2
, S(ρβ) =

A

4GN
=
π cL

3β
. (4.16)

For example, using these expressions, we can evaluate

D1(ρβ‖ρR) = (βRE(ρβ)− S(ρβ))− (βRE(ρR)− S(ρR))

=
π cL

6

(
βR

β2
− 2

β
+

1

βR

)
(4.17)

and verify that this indeed matches the α → 1 limit of the expression in eq. (4.13). More

generally then, we can extract the energy and entropy of our excited states ρ by taking the

α→ 1 limit in eq. (4.12), which yields

D1(ρ‖ρR) = D1(ρβ‖ρR) + λ2 c L

3πβ

(∆− 1)3

2∆+3

(
2π

β

)2(∆−2){ 2∆− 1

2(∆− 1)
x− 1

}
I(1,∆) (4.18)

where we used eq. (3.12), and D1(ρβ‖ρR) is given above in eq. (4.17).14 Above, we identified

the term proportional to 1/βR in D1(ρβ‖ρR) as the free energy contribution of the reference

state. Now the energy is given by collecting the terms proportional to βR in eq. (4.17) and

to x = βR/β in eq. (4.18), which yields

E(ρ) =
π cL

6β2

{
1 + λ2 2∆− 1

π2

(∆− 1)2

2∆+3

(
2π

β

)2(∆−2)

I(1,∆)

}
. (4.19)

Similarly, collecting the terms independent of βR and x gives the entropy,

S(ρ) =
π cL

3β

{
1 +

λ2

π2

(∆− 1)3

2∆+3

(
2π

β

)2(∆−2)

I(1,∆)

}
. (4.20)

14As discussed at the end of section 3, we are implicitly assuming that ∆ < 1 here. Otherwise, a UV

divergent term proportional to x ε̃2(1−∆) appears in eq. (4.18), indicating that the energy of the states with

∆ ≥ 1 diverges in the limit ε̃→ 0.
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We will make use of these expressions in section 5 when we explore the generalized con-

straints provided by Dα(ρ‖ρR). In particular, in considering a potential transition from

ρ1 → ρ2, the first step will be to ensure that energy conservation and the traditional second

law are satisfied, i.e. E(ρ2) = E(ρ1) and S(ρ2) ≥ S(ρ1).

We can also extend the discussion introduced at the beginning of this section of using

the Rényi divergence to examine the utility of different states as a thermodynamical re-

source. That is, we can evaluate the work function in eq. (4.2) but now with a new general

reference state ρR. Recall that our physical interpretation of Wα,βR is that it provides a

contraint on how the equilibration of ρ can be used to induce a transition on an ancilla ρa.

This constraint holds not only if ρa is itself in contact with another heat bath at inverse

temperature βR, but also for all values of βR if the ancilla is not in contact with a heat bath.

In this case, the additional ingredient needed in eq. (4.2) is Dα(ρβ′‖ρR), where ρβ′ is

the final equilibrium state reached by our excited state. As this Rényi divergence is again

comparing two thermal states, it takes the form appearing in eq. (4.13). Given eq. (4.19)

for the energy of the excited state, we can determine the final temperature by equating

E(ρ) = E(ρβ′) = πcL/(6β′2), which yields

1

β′
=

1

β

{
1 +

2∆− 1

2π2

(∆− 1)2

2∆+3

(
2π

β

)2(∆−2)

λ2 I(1,∆)

}
. (4.21)

Using this equilibrium temperature and eq. (4.13), we find

βR Wα,R =
λ2

α− 1

c L

6πβ

(∆− 1)2

2∆+3

(
2π

β

)2(∆−2)

(4.22)

×

 I
(

α
(1−α)x+α ,∆

)
((1− α)x+ α)2∆−3

− α I(1,∆)

(
∆ +

1

2
−

∆− 1
2

((1− α)x+ α)2

) .

Recall that x = βR/β. In this case, the O(λ0) term in eq. (4.12) has been canceled by

the same term which appears in Dα(ρβ′‖ρR), and as we see above, the resulting work

function is O(λ2) irrespective of the choice of the reference state ρR. Hence in comparing

different excited states, ρ1 and ρ2, for their usefulness as a thermodynamic resource, it

seems that we can make interesting comparisons even when β1 6= β2. In this case, we can

interpret Dα(ρβ′‖ρR) as accounting for how useful a resource the equilibrium state ρβ′ is.

The fact that we subtract it off in the expression for Wα,R reflects the fact that we are only

inducing the transition in the ancilla during the equilibriation process, and once the state

has reached equilibrium, we no longer use it as a resource.

5 Discussion

Path integrals and Rényi divergences. With the path integral approach for eval-

uating Rényi divergences introduced in section 2.1, we have taken the first step towards

studying quantum thermodynamics in quantum field theory. Our construction considers

a special class of excited states (2.2) in a CFT, which are prepared with Euclidean path
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integral by turning on a coupling λ for a relevant operator O of conformal dimension ∆. In

many respects, the resulting partition function (2.3) resembles a global quantum quench

to a CFT, where, however, we are working in Euclidean signature. In physical processes in

which the system achieves equilibrium, the Rényi divergences (1.6) provide an ordering of

these states [14]. That is, given an initial state settling into the equilibrium Gibbs state,

we can use the Rényi divergence to decide whether or not a third state may participate in

this process, i.e. whether the system can pass through this third state as it evolves towards

its final equilibrium. As described in section 1.1, this ordering provides an extension of

the standard thermodynamics rule which demands only that the free energy of the system

must decrease as it evolves towards thermal equilibrium. In section 4, we also discussed the

interpretation of another quantity Wα,β(ρ), given in eq. (4.2), as indicating how valuable a

state can be as a thermodynamical resource. Further, in the context of our present pertur-

bative calculations, we showed that βWα,β(ρ) ≈ Dα(ρ‖ρβ), i.e. from eqs. (4.5) and (4.6),

we deduced that the difference is O(λ4).

As described above, our approach pertains to a very specialized class of excited CFT

states, and one future direction would be to generalize this construction. One simple ex-

tension would be to consider sources λ(~x) with a nontrivial spatial profile. Certainly by

introducing a much more complicated (but local) Hamiltonian (including both spatial and

time dependence) on part of the thermal circle, we can produce a path integral representa-

tion of much more general states. However, identifying the correct Hamiltonian to produce

a desired ρα would be very challenging.

In the preceding, we were considering preparing a state (or a power of the density

matrix) by Euclidean evolution with conventional local Hamiltonians. More generally,

if we are given a particular state ρ, we might consider the entanglement Hamiltonian

H ′ = − log ρ, which is expected to be nonlocal for most states of interest. Further, we

should expect that identifying H ′ is another very challenging problem. However, given the

entanglement Hamiltonian, we are tempted to formally write the following

ρα = e−αH
′

=

∫
Dφ e−S′E[φ] . (5.1)

That is, we would like to express the ‘Euclidean evolution’ by H ′ in terms of a Euclidean

path integral (with appropriate boundary conditions) weighted by a corresponding ‘en-

tanglement action.’ Of course, working with a conventional local Hamiltonian, the con-

struction of the Euclidean path integral is straightforward. However, as noted above, the

entanglement Hamiltonian will typically not be a local operator and so we should certainly

not expect the corresponding S′E[φ] to take a conventional form. But further, beyond the

special cases where H ′ is local (as in our example in eq. (2.2)), it is not immediately clear

that the path integral in eq. (5.1) has a meaningful definition.

In any event, our ultimate goal here should be to find a broader approach and/or new

approaches which allow us to efficiently evaluate Rényi divergences for more general classes

of states and in more general quantum field theories, as well as for a range of α extending

beyond 0 ≤ α ≤ 1. One path we plan to explore further is to generalize the replica method

for relative entropy [67–69] to the case of Rényi divergence. Perhaps, also the techniques

developed in [70–73] may be of some use in this program.
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Holography and Rényi divergences. Our primary interest was to apply the new

techniques in section 2.1 in the context of the AdS/CFT correspondence, which relates our

computation of the Rényi divergences (1.6) in the boundary CFT to a gravitational calcu-

lation in the dual AdS space. As usual, the equilibrium Gibbs state in the d-dimensional

boundary CFT is equivalent to a (static) black hole in a (d+1)-dimensional AdS spacetime,

as described in section 2. Further, according to the holographic dictionary, turning on the

source in the boundary theory excites the dual scalar field in the bulk gravitational theory.

Thus we can think of the excited CFT states as being dual to a black hole surrounded

by a cloud of scalar hair. The natural (Lorentzian) evolution of the latter gravitational

configuration will be that the cloud of scalar field collapses and is absorbed by the event

horizon when we remove the source (i.e. modify the boundary conditions for the scalar)

at t = 0. After a long time then, we expect that the system will settle down to a (static)

black hole with a slightly higher mass (and temperature).

While we did not explicitly study this evolution of the gravitational system, we know

that the Rényi divergences constrain the equilibration process in the boundary theory [14].

Hence one is lead to ask a number questions: What do the constraints which quantum

thermodynamics imposes in the boundary CFT correspond to in the bulk gravity theory?

In particular, do these additional second laws correspond to additional macroscopic laws for

black hole evolution? The Bekenstein-Hawking (BH) formula SBH = A/4GN [1–4] provides

a translation of the conventional second law, which tells us that entropy always increases, to

Hawking’s area increase theorem [5, 6], which says that in any classical processes the area

of the event horizon must always increase. Therefore one might expect that the increase

of the Rényi entropies in an equilibration process (at fixed energy) will have a translation

as new macroscopic laws of black hole evolution.

However, in considering these questions, we must recognize that the BH formula im-

plies that each black hole configuration corresponds to approximately exp[SBH] microstates.

That is, in the full theory of quantum gravity, there are exp[SBH] microstates which pro-

duce essentially the same macroscopic black hole geometry. We certainly expect that the

new Rényi divergence constraints will limit the evolution of black holes at the level of these

microstates. But we must emphasize that the question at hand is whether such constraints

will also translate to new second laws restricting the evolution of macroscopic observables

which characterize the gravitational solutions. That is, whether in their evolution, features

of the spacetime geometry and matter fields are subject to new constraints, which can be

traced back to the Rényi divergences, in the same way that the area increase theorem can

be connected to the second law of thermodynamics for the black holes.

In fact, interpreting our results presented in section 3 through the AdS/CFT corre-

spondence goes some way towards an affirmative answer to this question, as we now discuss.

The only reservation is that if we begin with one of our excited states as the initial data

for the bulk equations of motion, we do really not expect the other excited states which

we are able to construct to be representative of subsequent configurations appearing in

the evolution of the gravitational system. However, we can still examine the constraints

implied by the Rényi divergences calculated in section 3.

At this point, let us also remind the reader that while our construction introduces an

equilibrium state with inverse temperature β, the excited state will in fact settle down to a
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final equilibrium with a slightly different inverse temperature β′, as given in eq. (4.21). In

the dual gravitational description, this change arises because absorbing the cloud of scalar

field excitations increases the mass and temperature of the black hole. However, a few

points are worth mentioning here: First, as established with eq. (1.5), when ρ represents

the state of the entire system the monotonicity of the Rényi divergence can hold with any

equilibrium state, i.e. we do not need to consider the reference state to be precisely the final

state emerging from the equilibration of our system.15 Notwithstanding this observation,

the Rényi divergences have a more natural interpretation in terms of the physical equilibra-

tion process when the reference state is chosen to be the final equilibrium state, since then,

Dα(ρ‖ρβ′) = β′Wα,β′ . The monotonicity of this Rényi divergence also holds when ρ rep-

resents a coarse-grained description of the system, provided the dynamics is contractive.

Further, for the particular example which we are considering here, it is straightforward

to show that the change in temperature only effects the final Rényi divergence (3.9) at

higher orders in our perturbative expansion, i.e. at O(λ4). This result relies on the fact

that the change in the inverse temperature (4.5) is O(λ2) and appropriately rescaling β

and α in eqs. (3.6)–(3.8) for the various ingredients which go into the holographic Rényi

divergence (3.9).

If we consider a situation where there is a single scalar field in the bulk, we can only

consider states with different values of λ, since ∆ is fixed by the mass of the scalar field,

as described in section 2.2. In this case, the Rényi constraints do not provide any insights

on the evolution of the black hole which could not be deduced from the ordinary second

law.16 Recall that our holographic calculations were perturbative in the amplitude λ of the

scalar field. The only constraint, as can be seen from eq. (3.9), is that λ can only decrease

in the evolution of the gravitational system. That is, if we begin with the state where the

amplitude is λ0, then the only states (from our class of excited states) which may appear

in the subsequent evolution of the system are those with λ ≤ λ0. Of course, this constraint

is entirely intuitive, i.e. we expect that the amplitude of the scalar hair around the black

hole can not increase during the collapse of the scalar cloud into the black hole. Further,

since Dα(ρ‖ρβ) ∝ λ2 in our perturbative calculations, comparing the free energies, i.e. the

Rényi divergences with α = 1, of the states with different values of λ would be sufficient

to arrive at this conclusion. Therefore having the full family of Rényi divergences provides

no additional insight into the evolution of the gravitational system.

The situation changes if we consider a gravitational theory with more than one scalar

field. As example, let us illustrate this situation by considering the case where there are

15We return to examining this possibility in more detail below.
16Recall that we refer to the decrease of the free energy and the second law in thermodynamic processes

interchangeably. In a process where energy is conserved, the decreasing of the free energy corresponds to

increasing the entropy, i.e. the second law of thermodynamics for closed systems. Given an initial and final

state, the second law places a constraint on what other states our system might evolve into at intermediate

times. The Rényi divergences have a similar interpretation. On the other hand, the difference in free energy

between an initial and final state also determines how valuable a state is, in terms of how much work can be

extracted during equilibration. Likewise in section 4, a similar interpretation exists in terms of the Rényi

divergences and how valuable a state is as a resource for driving other processes — see the discussion in

the next paragraph.
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two relevant operators in the boundary theory with ∆1 = 0.9 and ∆2 = 0.6. These would

be dual to two scalars, Φ1 and Φ2, in the bulk gravitational theory with masses m2
1 = −0.99

and m2
2 = −0.84, respectively. If the two scalars are free fields as in eq. (2.5), then they

would evolve independently in the collapse of the cloud of scalar hair, i.e. excitations in

one field will not evolve to generate new excitations in the other. Therefore let us con-

sider an interacting theory where the bulk action (2.5) is supplemented with the following

scalar potential

U(Φ1,Φ2) =
g

2

(
Φ1Φ2

2 + Φ2Φ2
1

)
. (5.2)

To leading order in our perturbative expansion, this potential will not change the equations

of motion for the individual scalars, however, it will produce interactions in the subsequent

evolution of the excited states. That is, a state in which only Φ1 is originally excited will

evolve to a state where both scalars are excited or possibly where only Φ2 is excited — or

vice versa.

Thus we might ask whether a particular state ρ2 with only the ∆2 = 0.6 excitation

can arise in the evolution of an initial state ρ1 where the ∆1 = 0.9 scalar is excited.17 Let

us begin by comparing the standard free energies (i.e. the Rényi divergences at α = 1).

Whether or not this transition is possible will depend on the relative amplitude of the

scalars — see figure 6. In particular, we should consider the ratio of the (dimensionless)

expansion parameter (2π/β)∆−2 λ for the two states in question, i.e.

γ ≡
(

2π
β

)∆2−2
λ2(

2π
β

)∆1−2
λ1

. (5.3)

Then focusing on α = 1, we see in figure 6 that D1(ρ1‖ρβ) ≥ D1(ρ2‖ρβ) for γ . 0.32. Hence

the standard second law suggests that the transition ρ1 → ρ2 is ruled out for γ > 0.32 but

appears possible for smaller values of γ. However, if we examine the constraints imposed

by Dα(ρ‖ρβ) from the full range of α, we see that the Rényi divergences provide stronger

constraints. In particular, with γ = 0.23 which is well within the allowed regime above,

we see in the figure that Dα(ρ2‖ρβ) ≥ Dα(ρ1‖ρβ) for 0.04 . α . 0.96 and therefore such

a transition is actually ruled out. That is, if we consider γ = 0.23, then the excited state

ρ2 with the scalar Φ2 excited can not appear as the initial state ρ1 where Φ1 was excited

evolves towards the final equilibrium black hole. Hence these additional second laws provide

tighter constraints on which equilibration processes will be ruled out. In particular, the

figure shows that we must have γ . 0.2 in order to ensure that Dα(ρ1‖ρβ) ≥ Dα(ρ2‖ρβ)

for all values of α across the full range from 0 to 1, and so the transition could be allowed

in this case.18

17Let us note here that within our perturbative framework, we can also consider states in which both

scalars are excited and eq. (3.1) would simply extend to log tr
(
ραρ1−α

β

)
≈ −Sren(Φ1) − Sren(Φ2). We can

then examine the Rényi divergences of such mixed states to determine whether or not they are allowed to

appear in the evolution from the initial state.
18Recall that we must also have Dα(ρ1‖ρβ) ≥ Dα(ρ2‖ρβ) for α ≥ 1, however, our path integral calcula-

tions do not allow us to access these higher values of α. There may also be further constrains in the case

where [ρ, ρβ ] 6= 0.
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γ = 0.36

γ = 0.32

γ = 0.23

γ = 0.2

γ = 0.125

0.2 0.4 0.6 0.8 1.0
α

0.5

1.0

1.5

2.0

2.5

3.0

Dα

γ = 0.195

γ = 0.2

γ = 0.205

0.2 0.4 0.6 0.8 1.0
α

-0.04

-0.02

0.02

0.04

δDα

Figure 6. (Left) Dα from perturbative holographic calculations for ∆1 = 0.9 (dashed curve) and

∆2 = 0.6 (solid curves). The different ∆2 = 0.6 curves correspond to different values of the ratio

γ defined in eq. (5.3). In particular, we show γ = 0.125, 0.2, 0.23, 0.32, 0.36 from the lowest to the

highest. (Right) δDα ≡ Dα(ρ1‖ρβ)−Dα(ρ2‖ρβ) for values of γ around γ = 0.2. Since the difference

is positive for γ . 0.2, the transition ρ1 → ρ2 may be allowed in this regime. In both plots, we

rescaled the vertical axis by a factor λ2
1
cL
48π

(
2π
β

)2(∆1−2)

.

In passing, let us also consider the inverse transition ρ2 → ρ1. In this case, we see in

figure 6 that the classical free energy, i.e. D1(ρ‖ρβ), provides the most stringent constraint.

In particular, such a transition is ruled out for all γ . 0.32. Therefore, for these transitions,

the additional Rényi divergence constraints appear to be redundant.

At this point, we wish to discuss the evolution process that is governing how ρ1 settles

into the final equilibrium state in more detail. As noted above, the usual derivation [14]

of the constraints imposed by the Rényi divergence (1.5) involves a system in contact with

a thermal reservoir. Hence, in the present setting, we could imagine that ρ1 is in contact

with a external thermal bath with temperature 1/β′. Even though the reference state ρβ
does not quite have the appropriate temperature (i.e. β′− β ∼ O(λ2)), eqs. (4.5) and (4.6)

imply that our Rényi divergences are only modified at O(λ4) if we try to correct for this

difference. In fact, this reasoning would allow us to choose any reservoir temperature within

O(λ2) of 1/β. However, note that if the reservoir temperature is not 1/β′, there would be

a net energy transfer from the thermal bath and the CFT, which need to be accounted

for in the holographic model. In any event, we can conclude that our previous result

(i.e. transitions are ruled out for γ & 0.2) holds for such equilibration processes involving

an external bath. On the other hand, we could also consider an evolution without any such

external bath, as this is a more natural setup for our holographic model. As pointed out in

the discussion of closed-system dynamics in 4, the first step is to match the energies of the

two excited states under consideration. This matching is easily accomplished by making

a small O(λ2) shift in the temperature 1/β2 of the state with ∆ = 0.6 excitations — see

discussion around eq. (5.6) below. However, Dα(ρ2‖ρβ) is again only modified at O(λ4)

with this shift and hence our constraints also apply when ρ1 thermalizes as a closed system.

However, as discussed in section 4.2, the Rényi divergences with general reference states

ρR may provide even stronger constraints on the evolution for closed-system dynamics and

we examine this possibility in detail below.
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In any event, with the simple example above, we see that the Rényi divergences can

in principle impose new constraints on the collapse of the scalar fields and the evolution of

the black hole,19 which would not be seen if we only considered standard thermodynamic

properties, i.e. the free energies, of the corresponding gravitational configurations.

Holography and thermodynamical resources. Here we turn briefly to our discussion

in section 4 of applying the Rényi divergences to compare different states and determine

which is a better thermodynamical resource. Here, we might consider a holographic theory

with two different scalars as above, or we might consider two different holographic theories

with a single scalar field in the bulk where the scalar masses are distinct.20 In either

case, we would compare two states, where each contains excitations of either scalar, and

examine the strength of the constraints which the work functions (4.2) place on the ability

of these states to drive transitions of an ancillary system. As described above, we have

βWα,β(ρ) ≈ Dα(ρ‖ρβ) with our perturbative calculations. Hence going back to the simple

example above with ∆1 = 0.9 and ∆2 = 0.6, we have

βWα,β(ρ1) ≈ Dα(ρ1‖ρβ) ≥ βWα,β(ρ2) ≈ Dα(ρ2‖ρβ) (5.4)

for the entire range 0 ≤ α ≤ 1 when γ . 0.2. Therefore we can conclude that in this range

(i.e. γ . 0.2), there are transitions of an ancilla that the state ρ1 might be able to induce

but which ρ2 cannot. Once again, we are able again to draw physical conclusions for this

question which can not be drawn from the ordinary free energy, and so having the full

family of Rényi divergences also provides new insights in terms of how the equilibration of

the holographic states could be used to drive other processes.

General reference states, again. Recall that we argued Dα(ρ‖ρR) must decrease in

physical processes for any reference state ρR that is a fixed point of the dynamics, e.g. we

could choose the reference state to be a thermal state with temperature 1/βR, which is

unrelated to 1/β′, the temperature of the final equilibrium state into which ρ will settle

— see also [43] for a detailed discussion. However, this argument alone does not indicate

whether or not these additional constraints are actually useful in constraining the evolution

of the system, i.e. that these constraints can impose tighter constraints than those found

by considering Dα(ρ‖ρβ′) alone. However, using our results from section 4.2, we will show

below that the extended family of constraints does control the evolution more tightly in our

holographic model than the original Rényi constraints. This is natural, since the additional

family of second laws provided by varying the reference state is appropriate when we do

not consider coarse-graining, and thus equilibration will be more constrained.

However, before proceeding with explicit calculations, we would like to make some

general observations about the new constraints. In particular, since the new family of con-

straints is indexed by βR, it is insightful to consider a number of simple limits. The first

19One may worry that with our perturbative calculations, we are really only constraining the evolution of

the matter fields in the bulk. However, the AdS/CFT correspondence puts excitations of the gravitational

(i.e. metric) degrees of freedom and the matter fields on essentially the same footing. Hence we can easily

imagine extending the present class of excited states to states where the metric is also deformed.
20Hence, the corresponding boundary operators have different conformal dimensions.

– 35 –



J
H
E
P
0
7
(
2
0
1
8
)
1
1
1

limit to consider is taking βR → 0, i.e. TR → ∞, for which the spectrum of the reference

state should become flat. That is, at infinite temperature, all microstates are equally prob-

able, and so ρR = 1/d. Hence we find Dα(ρ‖ρR)→ log d− Sα(ρ) and the new constraints

become second laws for the Rényi entropies, i.e. all Rényi entropies must increase. Of

course, this result mimics the simple model with a trivial Hamilitonian discussed at the

end of section 1.1, however, here we have produced second laws for the Rényi entropies

in any system, e.g. with an arbitrarily strongly coupled Hamiltonian. Further, one can

easily see this result in our path integral construction. In particular if βR shrinks to zero

in eq. (4.7), we are only left with the path integral involving the deformed Hamiltonian

H ′ and it produces powers of the corresponding excited state ρ. We should add that in

a situation with only short-range correlations, when we take the thermodynamic limit, all

the Rényi entropies are approximately equal to the von Neumann entropy and we would

recover the standard second law, i.e. these additional second laws yield no new constraints

for the evolution. However, we will see below the long-range correlations in our holographic

model allow us to evade this conclusion here.

The second simple limit which we consider is to take βR → ∞, i.e. TR → 0. In this

case, the reference state becomes a projection operator onto the ground state. This is easily

seen in eq. (4.7) again. In this case, the thermal circle stretches to infinite size, and so

focusing in on the small portion of length αβ which prepares the power of excited state ρα,

we lose sight of the fact that the path integral is on a circle. Instead, we can imagine that

we have an infinite Euclidean path integral with H from τ = −∞ to −αβ/2, which then

prepares the ground state of the CFT on this final time slice. Similarly, we would have

another from τ = αβ/2 to ∞, which is preparing the ground state on the (Euclidean) time

slice τ = αβ/2. Hence the powers of the excited state are then sandwiched between these

two ground states, i.e. Dα(ρ‖ρR) = − log〈0|ρα|0〉/(1 − α). Hence in this limit, the new

constraint indicates that the probability of ρ being in the ground state can only increase.

To conclude these general comments, let us add that this new extension of the Rényi

divergence constraints is reminiscent of the entropy-energy diagrams of closed system dy-

namics discussed in [74, 75]. There, one may also consider the constraints corresponding to

the relative entropy distance to the maximally mixed state or to the ground state, which

are analogous to the βR → 0 and∞ limits considered above. The corresponding monotones

give both energy and entropy as important thermodynamical resources for closed systems.

Recall that in section 4.2, we showed how our path integral approach is easily extended

to evaluate Dα(ρ‖ρR) and then applied this procedure in our holographic model. Here we

would like to begin to explore how varying the reference state modifies the Rényi divergence

constraints imposed in this holographic setting.

As a simple illustration, we return to the example used above in discussing the con-

straints imposed by Dα(ρ‖ρβ). In particular, we consider a bulk theory with two scalar

fields, Φ1 and Φ2, dual to relevant operators with ∆1 = 0.9 and ∆2 = 0.6 in the boundary

theory. In principle, an additional scalar potential (5.2) will allow for transitions between

the two scalar fields and so we wish to examine whether a particular state ρ2 with only Φ2

excited can arise when an initial state ρ1 with only Φ1 excited evolves towards equilibrium.

Now as discussed in section 4.2, to apply the generalized Dα(ρ‖ρR) constraints, we must
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be considering closed-system dynamics in which the evolution respects energy conserva-

tion. Hence we must first ask if the energy of the two states is the same, i.e. we require

E(ρ1) = E(ρ2) where the energy is determined by the expression in eq. (4.19),

E(ρ) =
π cL

6β2

{
1 + λ2 2∆− 1

π2

(∆− 1)2

2∆+3

(
2π

β

)2(∆−2)

I(1,∆)

}
. (5.5)

As commented above, a simple way to achieve this equality is to shift the temperature of

the second state slightly, i.e. we take 1/β1 = 1/β and

1

β2
=

1

β

{
1− λ2

2

2∆2 − 1

2π2

(∆2 − 1)2

2∆2+3

(
2π

β

)2(∆2−2)

I(1,∆2)

(
1− σ

γ2

)}
, (5.6)

where γ is the ratio given in eq. (5.3) and

σ = 2∆2−∆1
2∆1 − 1

2∆2 − 1

(∆1 − 1)2

(∆2 − 1)2

I(1,∆1)

I(1,∆2)
. (5.7)

We note that eq. (4.6) implies that an O(λ2) shift in the temperature like this will

only modify Dα(ρ2‖ρβ) at O(λ4). Hence the previous analysis of the Rényi divergence

constraints in this example is not effected by imposing E(ρ1) = E(ρ2). However, when a

reference state with temperature 1/βR is introduced, the O(λ2) contribution to Dα(ρ2‖ρR)

is modified by this shift. In particular, combining eq. (5.6) with eqs. (4.12) and (4.13)

yields

Dα(ρ2‖ρR) ' Dα(ρβ‖ρR) +
λ2

2

α− 1

c L

6πβ

(∆2 − 1)2

2∆2+3

(
2π

β

)2(∆2−2)
 I

(
α

(1−α)x+α ,∆2

)
((1− α)x+ α)2∆2−3

+α I(1,∆2)

[
2∆2 − 1

2

(
1− σ

γ2

)(
1− 1

((1− α)x+ α)2

)
− 1

]}
. (5.8)

Recall that γ is defined in eq. (5.3). Further, Dα(ρ1‖ρR) is given by eq. (4.12) with the

simple substitution ∆→ ∆1.

To leading order, we have Dα(ρ1‖ρR) = Dα(ρβ‖ρR) = Dα(ρ2‖ρR), and hence compar-

ing these generalized Rényi divergences, we should focus on the differences in the O(λ2)

contributions. In figure 7, we show some examples of δDα ≡ Dα(ρ1‖ρR)−Dα(ρ2‖ρR) with

different values of x. In particular, we have chosen γ = 0.2 for all of these curves, which was

the limiting value for which the transition ρ1 → ρ2 could be ruled out with the standard

Rényi divergences in figure 6, i.e. with ρR = ρβ . The new figure shows that with x < 1,

the constraints are not as strong, however, with x > 1, we produce tighter constraints

than before. In passing, we note that all of the curves in right panel of figure 7 coincide at

α→ 1. This agreement can be understood from the discussion in section 4.2. In particular,

since we matched the energies E(ρ2) = E(ρ1), the difference of the Rényi divergences at

α = 1 reduces to S(ρ2)− S(ρ1) irrespective of the value of βR.

As noted above, the constraints become tighter when the reference state is chosen

with x > 1, i.e. the low reference temperature is decreased, 1/βR < 1/β. We illustrate this
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Figure 7. δDα = Dα(ρ1‖ρR) − Dα(ρ2‖ρR) for ∆1 = 0.9 and ∆2 = 0.6 with varying

x = 0.98, 1, 1.02 (left) and x = 0.5, 1, 2 (right). Here γ = 0.2 and we rescaled the curves by a

factor λ2
1
cL
48π

(
2π
β

)2(∆1−2)

.

0.0 0.2 0.4 0.6 0.8α0.00

0.01

0.02

0.03

0.04

0.05

δDα,γ=γmax

x = 1, γ = 0.2

x = 1.1, γ = 0.174

x = 1.2, γ = 0.145

x = 1.3, γ = 0.110

x = 1.4, γ = 0.055

x = 1.43, γ = 0

Figure 8. δDα = Dα(ρ1‖ρR) − Dα(ρ2‖ρR) for ∆1 = 0.9 and ∆2 = 0.6, with varying x and

γ = γmax. For x & 1.43 there is no γ such that δDα is non-negative in the whole range 0 ≤
α ≤ 1, and thus the transition is forbidden. As in the previous plots, we rescaled the curves by a

factor λ2
1
cL
48π

(
2π
β

)2(∆1−2)

.

point in figure 8 where for various values of x, we plot the difference δDα = Dα(ρ1‖ρR)−
Dα(ρ2‖ρR) for γ = γmax, the maximum value for which δDα ≥ 0 for all 0 ≤ α ≤ 1. In fact,

the figure shows the surprising result that we reach γmax = 0 with x ' 1.43 ! For larger

values of x, we find that δDα always dips below zero for some values of α < 1 with γ = 0

(or any other value of γ).

Now if we set γ = 0, we are turning off the source amplitude λ2 and ρ2 reduces to a

thermal state. Further, since we matched E(ρ2) = E(ρ1) by shifting the temperature in

eq. (5.6),21 in fact we have ρ2 = ρβ′ . That is, our excited state reduces to the thermal state

into which we expected ρ1 would evolve. Hence our Rényi constraints with x & 1.43 are in-

dicating that ρ1 will not actually thermalize! We might understand this apparent ‘paradox’

as follows: As we described above, the gravitational description of the evolution certainly

21It is straightforward to check that eq. (5.6) matches eq. (4.21) in the limit γ → 0 (and λ2 → 0).

– 38 –



J
H
E
P
0
7
(
2
0
1
8
)
1
1
1

involves the system settling down to a (static) black hole with no scalar excitations, which

we would naturally interpret in terms of thermalization. However, we are considering the

CFT to be a closed system in the current discussion, i.e. there is no external thermal bath,

and so at a microscopic level, we understand that the system is simply evolving unitarily.

Therefore the excited state is not actually thermalizing. By construction, the excited state

is a mixed state, i.e. a thermal state of the perturbed Hamiltonian H ′, and the gravita-

tional description indicates that after unitary evolution for a long time, this microscopic

state exhibits properties which are very similar to that of a thermal ensemble, e.g. cor-

relation functions would approach thermal correlation functions. From this perspective,

our conclusion is that the Rényi divergences Dα(ρ‖ρR) provides a probe which is powerful

enough to distinguish the excited state ρ1 from the thermal state ρβ′ . An open question

would be whether this distinction is accomplished because Dα(ρ‖ρR) accesses microscopic

information about ρ1 or if it can be still be phrased in terms of macroscopic gravitational

variables. For example, the scalar field will only vanish after an infinite time and so in

principle, measurements with sufficiently high resolution will still detect the decaying scalar

field at any finite time. Therefore such very fine measurements of macroscopic observables

will distinguish the excited state from the thermal state even at late times.

It seems that the strongest constraints for these transitions will come from βR → ∞,

i.e. TR → 0. As discussed above, in this limit, the Rényi divergences involve a projec-

tion of (powers of the excited state) onto the ground state of the system, i.e. Dα(ρ‖ρR) =

− log〈0|ρα|0〉/(1−α). In our holographic model, the ground state is described by the AdS

vacuum geometry in the bulk theory. It would be interesting to examine if one can un-

derstand this projection and its implications for the bulk dynamics more directly, i.e. from

a gravitational perspective. In particular, this may shed light on the previous question of

whether the generalized Rényi constraints and their consequences can be phrased in terms

of macroscopic gravitational observables.

Our results here where the thermalization of certain holographic states is ruled out

also bring to mind the possibility of smoothing, discussed at the beginning of section 4.

In particular, rather than just considering unitary evolution of the excited states, it would

be interesting to include some definition of approximate thermalization and examine the

effect on the Rényi constraints in our holographic model. We hope to pursue these ques-

tions in [43].

We might also consider the inverse transitions from ρ2 → ρ1, i.e. from a state prepared

with the ∆ = 0.6 operator to those prepared with ∆ = 0.9. In this case with x = 1, we

found that the classical (i.e. α = 1) constraints were the strongest and that the transition

would only be possible for γ & 0.32, as shown in figure 6. For x 6= 1, the transition can

now be allowed only if δDα = Dα(ρ1‖ρR) −Dα(ρ2‖ρR) is everywhere non-positive, i.e. we

consider the same difference of Rényi divergences as above but ask of the opposite sign.

From figure 7, we see that the constraints are more stringent for x < 1. Further, it turns

out the most interesting regime is in the vicinity of α = 0. In particular, all of these curves

are anchored at δDα = 0 for α = 0, and the slope at that point is given by

∂ δDα

∂α

∣∣∣∣
α=0

∼
x→0

c L

48πβ

(
2π

β

)2(∆1−2)

λ2
1

(1−∆2)2 (2∆2 − 1) I(1,∆2)

2∆2+1

σ − γ2

x2
. (5.9)
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Figure 9. The converse transition ρ2 → ρ1, here again with ∆1 = 0.9 and ∆2 = 0.6, is forbidden

whenever δDα = Dα(ρ1‖ρR)−Dα(ρ2‖ρR) is positive for some α. (Left) The constraints are stronger

for x < 1 and α → 0. (Right) The limiting case x = 0, which corresponds to Rényi entropies. We

see Rényi’s with α < 1 are more constraining than the von Neumann entropy. All of the curves

here are rescaled by λ2
1
cL
48π

(
2π
β

)2(∆1−2)

.

In fact, it is then the sign of this slope which determines whether the transition is allowed

or not, i.e. the transition is ruled out if the slope is positive. We note that this sign

is independent of the precise value of x but rather this sign is controlled by the factor

(σ − γ2).22 We illustrate this point in the left panel of figure 9 with x = 0.01, where we

see that by taking γ large enough the transition can be allowed. However, the constraint

here is more stringent than found before, i.e. the transition would only be possible with

γ ≥
√
σ ≈ 0.646.

As discussed above at x = 0, the Rényi constraints reduce to constraints on the Rényi

entropies of the excited states. From the right panel of figure 9, we see the behaviour is

more singular at precisely x = 0. In particular, there is now a pole at α→ 0, with residue

proportional to σ − γ2. Hence, this same factor controls whether or not the transition is

possible or not. This illustrates the point that at least for certain transitions (e.g. ρ2 → ρ1),

the Rényi entropies can provide stronger constraints than the usual second law formulated

in terms of von Neumann entropy. However, we must add that strictly speaking on our

example the pole observed above invalidates our perturbative expansion in that region

(i.e. we need to confine our considerations to α somewhat larger than zero). Understanding

the limit α→ 0 and x→ 0 is therefore beyond the scope of the perturbative approximation

we are considering.

Lessons for general black holes? As discussed above, our holographic model provides

explicit examples where the Rényi divergences impose new constraints on the evolution of

the bulk gravitational system, which would not be seen if we only considered the usual

thermodynamic properties of the corresponding bulk configurations. At present, our un-

derstanding of the new constraints on the gravitational evolution is rather indirect. In our

calculations using the path integral approach, we were able to give a geometric or gravi-

22Recall that σ is a fixed constant determined by the conformal dimensions, ∆1 and ∆2, with the expres-

sion given in eq. (5.7). In the present case with ∆1 = 0.9 and ∆2 = 0.6, we have σ ' 0.417.
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tational description of the Rényi divergence using the AdS/CFT correspondence. Let us

re-iterate that our present approach only applies for special states in the boundary CFT,

and hence for special configurations in the bulk gravity theory. However, the Rényi diver-

gences provide a definite ordering of these gravitational configurations, which in principle

constrains the evolution towards a final (static) black hole. What we have not done is

to articulate these new constraints in a concise manner similar to that in which the area

increase theorem encapsulates the standard second law. Therefore we can pose two related

questions:23 The first is how do we frame our calculation of the Rényi divergences directly

as a computation in the gravitational theory, and in particular whether and how these

computations can be extended to general black hole spacetimes, e.g. spacetimes which are

asymptotically flat. The second question is what is the geometric or gravitational manifes-

tation of the full family of constraints imposed by the decrease of the Rényi divergences,

i.e. what is the analog of the area increase theorem, which is the macroscopic expression

of the usual second law of thermodynamics.

In considering the first of these questions, we might look to holographic entanglement

entropy [76, 77] and Rényi entropies [78, 79] in the context of the AdS/CFT correspondence

for some insight. The Ryu-Takayanagi prescription for holographic entanglement entropy

is simply to evaluate the Bekenstein-Hawking formula on an extremal surface with the

appropriate asymptotic boundary conditions. Hence one is only measuring certain features

of the geometry in the background spacetime and in particular, one does not need to

consider modifying the bulk solution. The derivation of this prescription came from a

careful translation of the replica trick in the boundary theory to the bulk gravity theory [79,

80]. In particular, one begins by evaluating the corresponding Rényi entropies (or at least

tr ρα) but in principle, this requires finding a new gravitational solution for each value of

α. These new solutions are generated by introducing a codimension-two brane with the

appropriate boundary conditions and with a tension Tα = (α−1)/(4αGN ) [81]. The latter

is dual to the twist operator inserted in the boundary theory evaluation of tr ρα. Therefore

the holographic Rényi entropy is not measuring geometric features of the given gravity

solution, but rather is measuring the response of the spacetime to the introduction of a

new gravitational source. Hence the entanglement entropy plays a distinguished role in

that the deformation of the spacetime is eliminated in the limit α→ 1 in which the Rényi

entropy reproduces the entanglement entropy.

Above, we saw that the Rényi entropies can constrain certain transitions more strongly

that the usual second law. Therefore it is worthwhile to consider that these holographic

calculations can be extended to black holes. In particular, the horizon entropy of an eternal

black hole in AdS space can be viewed as the entanglement entropy between the two copies

of the boundary CFT in the thermofield double state dual to the black hole. Similarly,

evaluating the Rényi entropy introduces a tensionful brane on the bifurcation surface and

so the spacetime geometry is deformed [78, 82]. At present, we only really understand

23At the beginning of the discussion, we have already asked the complementary question of how to go

beyond the present special states to evaluate the Rényi divergences for a general state in the boundary CFT.

Certainly advances on this question will provide valuable new tools towards addressing the two gravitational

questions above.
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the latter calculation in very symmetric configurations, e.g. spherically symmetric static

black holes, where the defect generated by the brane can be eliminated by extending the

boundary geometry. It remains a challenge to understand the Rényi entropy in more

general circumstances.

More generally, we might ask what insights are provided from the previous comments

for the question of evaluating the Rényi divergences for out-of-equilibrium black hole con-

figurations. Given the close connection of the Rényi divergences and the Rényi entropies,

we may expect that the former do not simply measure features of the geometry in a given

spacetime. Rather it may be that we should be looking to measure the response of the

black hole geometry to a new probe which acts as a source in the gravitational equations

of motion. This leaves open the second question of finding a succinct expression of these

constraints in terms of the gravitational variables. It may even call into question the possi-

bility of formulating a simple description of the constraints. However, the present paper is

only a first step in examining the macroscopic consequences of quantum thermodynamics

for gravitational systems and in particular, for black holes. It is only by extending the

calculations provided here and acquiring experience with more general situations, that we

can expect to produce a proper formulation of the new second laws of black hole thermo-

dynamics anticipated by our work.

While our discussion focused on “geometric” constraints on the classical evolution

of a gravitational system, we should expect that these are a particular limit of the full

(quantum) constraints provided by the Rényi divergences. That is, we expect that the

full expression of these constraints will have an expansion in terms of the Planck length,

i.e. `2P ' GN~, of the form Dα ∼ a0/`
2
P+a1+`2Pa2+· · · , and we are focusing on the (classical

or geometric) a0 term in the present paper. For example, the area increase theorem [5, 6]

is seen as this classical limit of the generalized second law [1, 2, 83].24 However, in a setting

where quantum effects accumulate and become important, e.g. black hole evaporation, the

quantity which increases takes the form Sgen = A/(4GN~) + Sout + · · · where Sout is the

entanglement entropy of the matter outside of the horizon. Hence if our Rényi constraints

can be formulated as a simple expression in terms of gravitational variables, we expect

that they would also have an analogous quantum (or at least, semiclassical) extension.

Undoubtedly, these extended constraints would provide useful new diagnostics to help

understand the black hole information paradox and other puzzles in quantum gravity.

However, we wish to close this discussion with a word of caution. Because of the indi-

rect way in which we examine the additional second laws using holography, it remains an

open question whether they actually correspond to new macroscopic laws for black hole evo-

lution. Certainly, the conventional second law translates the macroscopic law that the area

of a black hole must always increase (in classical processes). However, one logical possibility

would be that the ordering of states provided by the Rényi divergences simply limits the

evolution of the gravitational system only at the level of the underlying microstates. How-

ever, our holographic construction, as well as holographic studies of quantum quenches,

e.g. [54, 71, 88–130], demonstrates that the out-of-equilibrium character of certain mi-

24For a review and recent advances towards a proof of the latter, see [84–87].
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crostates is manifest at the macroscopic level. Therefore our expectation is that the new

thermodynamic constraints will be describable at a macroscopic level in the gravitational

theory. One point of tension, however, is that using a general reference state, the Rényi

constraints revealed that the excited states appear not to exactly thermalize. While not in

contradiction with unitary time evolution at the microscopic level, this result does seem to

clash with the gravitational description where the excited configuration evolves towards a

stationary black hole (without any scalar field excitations). Here, it will be important to

understand better the effect that approximation will have on our calculations. Indeed, we

do not expect states to exactly thermalize, but only do so approximately. One should then

consider both approximate transitions and evolution laws which are both approximately

thermalizing or nonlinear in the sense that they also act on additional microscopic degrees

of freedom. Certainly resolving this puzzle is one of many intriguing questions which we

hope to return to in the future.

Other future directions. In the main text, we explored the constraints of the additional

second laws for a specific class of excited states by working in a perturbative expansion.

As we already mentioned, two important extensions of this approach would be to be able

to work with a broader class of states and to go beyond the limitations of our perturbative

construction. As a first step in this direction, in appendix B, we introduced a different, fully

backreacted, geometric construction that allows evaluating the Rényi divergence for another

class of excited states. These can be thought as being obtained through the insertion of a

shell of CFT operators acting on a thermal state at inverse temperature βin. In the dual

bulk, these insertions support a homogenous shell of non-interacting particles, and produce

an effective inverse temperature βout ≤ βin. Geometrically, this construction is similar in

spirit to the well-known AdS-Vaidya geometry [131], as it involves joining together two

black brane solutions of different mass along a shell comprised of a pressureless perfect

fluid. Contrary to the ordinary Vaidya solutions for null dust though, this new solution is

also well defined in Euclidean signature, since it relies on massive fluid, following timelike

trajectories in Lorentzian time.

As we explain in appendix, the partition function of this Euclidean shell solution can

be interpreted as computing a trace function of the type

tr
(
ραout

out ρ
1−αin
in

)
, (5.10)

where ρout denotes the excited state at apparent temperature 1/βout, ρin is the thermal

state with temperature 1/βin, and the exponents αin +αout 6= 1. While this quantity is not

generically a monotone under the dynamics, it directly defines one in the special case under

consideration in which ρin is thermal. In fact, by simple identifications of the parameters

of the solution, we can write ρ1−αin
in = ρ1−αout

R , in terms of a thermal reference state at

temperature 1/βR. This allows an interpretation of this quantity as a Rényi divergence

from the excited state ρout to a general reference state ρR, as those discussed above, and

studying the monotonicity constraints for different excited states within this class. As

described in the appendix, however, our geometric construction only allows exploring fixed

trajectories in the (α, βR) parameter space of Rényi divergences. It would be interesting
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to understand whether it is possible to overcome these limitations and fully explore the

implications of the second laws in this setting.

Finally, another interesting direction for future research would be as follows: In this

paper we explored the macroscopic requirements imposed by the second laws of quantum

thermodynamics. For this, we developed a method for computing the Rényi divergence for

global states, i.e. of the entire system. One natural question we would like to address is

whether additional, possibly local constraints for gravitational dynamics could be derived

from the Rényi divergence of reduced density matrices. This quantity can be computed by

extending our path integral construction to allow for deformations, and equivalently scalar

fields in the bulk, that only have support in limited spatial regions. For a ball shaped

region A, the properties of positivity and monotonicity for increasing subsystem size of

the relative entropy have been used to derive linearized Einstein’s equations [132] and to

work out new gravitational positive energy theorems [133]. It would thus be interesting to

study whether new constraints also follow from properties of the whole family Dα(ρA‖ρ′A)

of Rényi divergences for subregions.
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A Evaluation of I(α,∆)

In this appendix we study the regulated integral

I(α,∆)reg ≡
∫ 2πα

0
dτ

∫ ∞
−∞

dx′
∫ 2πα

0
dτ ′
[
coshx′ −

√
1− ε̃2 cos(τ − τ ′)

]−∆
, (A.1)

for 0 ≤ α ≤ 1, 0 < ∆ < 2 (but ∆ 6= 1) and ε̃� 1.
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To study the structure of UV divergences arising from contact terms, we first consider

the simpler expression

Ĩ(α,∆)reg ≡ 2∆+1

∫ 2πα

0
dτ

∫ ∞
0

dx′
∫ 2πα

0
dτ ′
[
x′2 + (τ − τ ′)2 + ε̃2

]−∆
. (A.2)

We use the integral representation of the Gamma function to write

Ĩ(α,∆)reg =
2∆+1

Γ(∆)

∫ 2πα

0
dτ

∫ ∞
0

dx′
∫ 2πα

0
dτ ′
∫ ∞

0
ds s∆−1e−s(x

′2+(τ−τ ′)2+ε̃2) (A.3)

and, since the integrand is positive, compute the multiple integral by iterated integrals, as

well as switch the order of integrations. We perform the Gaussian spatial integral and the

double Euclidean time integral∫ 2πα

0
dτ

∫ 2πα

0
dτ ′e−s(τ−τ

′)2
= 2

∫ 2πα

0
dp (2πα− p)e−sp2

= −1− e−(2πα)2s

s
+

2π3/2α√
s

erf(2πα
√
s) (A.4)

to obtain

Ĩ(α,∆)reg =
2∆√π
Γ(∆)

∫ ∞
0

ds
{
−s∆− 5

2

(
1− e−(2πα)2s

)
+ 2π3/2αs∆−2erf(2πα

√
s)
}
e−sε̃

2
.

(A.5)

Using again the integral representation of a Gamma function, the first contribution gives

−
∫ ∞

0
ds s∆− 5

2

(
1− e−(2πα)2s

)
e−sε̃

2
= −Γ

(
∆− 3

2

){
ε̃3−2∆ − (2πα)3−2∆

}
(A.6)

which holds for ∆ > 3/2 and where we have dropped terms that vanish as ε̃ → 0. It can

be analytically continued to all values of 0 < ∆ < 2, except ∆ = 1/2, 3/2 for which the

gamma function has simple poles.

For the second term in (A.5) we perform the change of variable s = z2 and use∫ ∞
0

dz zγerf(az)e−b
2z2

=
a√
π
b−γ−2Γ

(γ
2

+ 1
)
F

[
1

2
,
γ

2
+ 1,

3

2
,−a

2

b2

]
, (A.7)

which holds for Re(b2) > 0 and Re(γ) > −2. Thus for ∆ > 1/2 (but ∆ 6= 1) we obtain∫ ∞
0

ds s∆−2erf(2πα
√
s)e−sε̃

2
= 4
√
παε̃1−2∆Γ

(
∆− 1

2

)
F

[
1

2
,∆− 1

2
,

3

2
,−
(

2πα

ε̃

)2
]

≈ Γ(∆− 1)ε̃2(1−∆) + (2πα)2(1−∆) Γ(∆− 1
2)

(1−∆)
√
π
, (A.8)

where we dropped terms that vanish as ε̃→ 0. This can be continued to ∆ < 1/2 and all

together we find

Ĩ(α,∆)reg = −2∆+1π2α

1−∆
ε̃2(1−∆) − 2∆√π

Γ(∆− 3
2)

Γ(∆)
ε̃3−2∆

−2∆−1√π(2πα)3−2∆ Γ(∆− 3
2)

(1−∆)Γ(∆)
(A.9)

– 45 –



J
H
E
P
0
7
(
2
0
1
8
)
1
1
1

plus terms that vanish as we remove the UV cutoff ε̃. The integral has two types of UV

divergences: a divergence ∼ ε̃2(1−∆), which is linear in α, and a divergence ∼ ε̃3−2∆, which

is independent of α. As we discussed in section 2.4, the first type of divergence corresponds

to the integral over the boundary of the non-normalizable mode of the bulk scalar field.

This is precisely the divergence that is renormalized in the holographic computation of

ϕ(∆) and that we will therefore drop from the result. The second divergence instead arises

from the step function profile of the source λ along the Euclidean time circle in our path

integral construction.

We now go back to the original integral (A.1). We use the gamma function integral

representation to write[
coshx−

√
1− ε̃2 cos(τ − τ ′)

]−∆
=

1

Γ(∆)

∫ ∞
0

ds s∆−1e−s(coshx−
√

1−ε̃2 cos(τ−τ ′)) (A.10)

and perform the spatial integral, to obtain

I(α,∆)reg =
2

Γ(∆)

∫ 2πα

0
dτ

∫ 2πα

0
dτ ′
∫ ∞

0
ds s∆−1K0(s)es

√
1−ε̃2 cos(τ−τ ′) . (A.11)

For α = 1, the Euclidean time integrals can be performed explicitly and for ∆ 6= 1 give

I(1,∆)reg = 2
(2π)2

Γ(∆)

∫ ∞
0

dss∆−1K0(s)I0(s
√

1− ε̃2)

= −2∆+1π2

1−∆
ε̃2(1−∆) +

2π3/2Γ(1−∆
2 )Γ(∆

2 )2

Γ(∆)Γ(1− ∆
2 )

(A.12)

up to terms that vanish as ε̃→ 0. It contains the same leading divergence ∼ ε̃2(1−∆) as in

eq. (A.9), but no additional divergences.

For α < 1, we perform a simple change of variables and write the remaining integrals as

I(α,∆)reg =
4

Γ(∆)

∫ 2πα

0
dp (2πα− p)

∫ ∞
0

ds s∆−1K0(s)es
√

1−ε̃2 cos p (A.13)

=
22−∆√πΓ(∆)

Γ
(
∆ + 1

2

) ∫ 2πα

0
dp (2πα− p)F

[
∆,∆,∆ +

1

2
,
1 +
√

1− ε̃2 cos p

2

]
.

In both eqs. (A.12) and (A.13), we subtract the same divergence ∼ ε̃2(1−∆) as appears

in eq. (A.9). Recall that the latter divergence arises from the boundary integral over the

non-normalizable mode of the scalar field. We then consider the renormalized quantity

I(α,∆) = I(α,∆)reg +
2∆+1π2α

1−∆
ε̃2(1−∆) . (A.14)

Notice that in any case the coefficient of the divergence ∼ ε̃2(1−∆) is linear in α and therefore

such a divergence automatically drops out of the Rényi divergence result defined in (3.9)

in terms of normalized density matrices.

We are unable to perform the final integral (A.13) analytically and we evaluate it

numerically. In figure 10 we plot the resulting I(α,∆) as a function of ∆ for different
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Figure 10. (Left) I(α,∆) for α = 0.2, 0.4, 0.6, 0.8, 1 from the bottom up between 0 < ∆ <

1. In gray dashed the known asymptotic 2(2πα)2/∆ as ∆ → 0. (Right) I(α,∆) for α =

0.2, 0.4, 0.6, 0.8 from the top down for 1 < ∆ < 2. In gray dashed the universal divergence

−2∆
√
πΓ
(
∆− 3

2

)
ε̃3−2∆/Γ(∆) as ε̃→ 0. In both plots we set the cutoff ε̃ = 0.0001.

1.2 1.4 1.6 1.8 2.0
Δ
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Figure 11. (Left) I(α,∆) for α = 0.9, 0.99, 0.999, 0.9999, 1 from the bottom up for 1 < ∆ < 2.

(Right) I(α,∆) for ∆ = 1.55, 1.6, 1.65 from the top down. In both figures ε̃ = 0.0001.

α in the range 0 ≤ α ≤ 1. For 0 < ∆ < 1, I(α,∆) is finite and positive. It increases

monotonically in α and asymptotes to 2(2πα)2/∆ as ∆→ 0. It has a pole at ∆ = 1, where

it diverges and changes sign, making I(α,∆) negative for 1 < ∆ < 2.

As we take ε̃→ 0, the integral has the same universal divergence ∼ ε̃3−2∆ of eq. (A.9)

for values of conformal dimensions ∆ > 3/2. However as α approaches 1, the divergence in

ε̃3−2∆ smoothly transits into the finite result I(1,∆). We plot this behavior in figure 11,

both as a function of ∆ for α close to 1 (left panel) and for fixed ∆ > 3/2 as a function of

α (right panel).

To evaluate the Rényi divergence in the limit α→ 1 in the main text, we also compute

the first derivative of I(α,∆) with respect to α

∂αI(α,∆)reg =
8π

Γ(∆)

∫ ∞
0

dss∆−1

∫ ∞
0

dxe−s coshx

∫ 2πα

0
dp es

√
1−ε̃2 cos p

=
23−∆π3/2Γ(∆)

Γ
(
∆ + 1

2

) ∫ 2πα

0
dpF

[
∆,∆,∆ +

1

2
,

1 +
√

1− ε̃2 cos p

2

]
. (A.15)

For α→ 1, it gives

∂αI(α,∆)reg

∣∣∣
α=1

= 2I(1,∆)reg , (A.16)
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0.2 0.4 0.6 0.8 1.0 1.2 1.4
α

0.5

1.0

1.5

2.0

2.5

3.0

∂αI(α,Δ)reg/div.

Figure 12. I(α,∆)reg (left) and ∂αI(α,∆)reg (right) rescaled by the divergent term

− 2∆+1π2

1−∆ ε̃2(1−∆), as a function of α ∈ [0, 1.5]. In both plots ε̃ = 0.001 and ∆ = 5/4.

and

∂αI(α,∆)
∣∣∣
α=1

= −2∆+1π2

1−∆
ε̃2(1−∆) + 2I(1,∆)

= −2∆+1π2

1−∆
ε̃2(1−∆) +

4π3/2Γ(1−∆
2 )Γ(∆

2 )2

Γ(∆)Γ(1− ∆
2 )

. (A.17)

Notice in particular, that ∂αI(α,∆)|α=1 contains the divergence ∼ ε̃2(1−∆) for ∆ > 1, even

though I(1,∆) is finite. As an example, in figure 12 we plot up to α = 1.5 the functions

I(α,∆)reg and ∂αI(α,∆)reg divided by the divergent term in eq. (A.17). From that, we

see indeed that the leading divergence in I(α,∆)reg is always linear in α, but at finite ε̃

smoothly changes slope around α = 1.

Finally notice that for the values of ∆ for which the integral is finite as we remove the

cutoff, we can also write the expression we obtained in eq. (A.13) as

I(α,∆) =
22−∆√πΓ(∆)

Γ
(
∆ + 1

2

) ∫ 2πα

0
dp (2πα− p)

∞∑
m=0

[(∆)m]2(
∆ + 1

2

)
m

(
cos p2

)2m
m!

(A.18)

=
22−∆√πΓ(∆)

Γ
(
∆ + 1

2

) ∞∑
m=0

[(∆)m]2

m!22m
(
∆ + 1

2

)
m

×
∫ 2πα

0
dp(2πα− p)

{
m−1∑
k=0

2

(
2m

k

)
cos[(m− k)p] +

(
2m

m

)}
.

To exchange the integral and the series we further restricted to ∆ < 1/2, such that the

Gauss hypergeometric series is absolutely and uniformly convergent ∀p, and used a sum

representation of (cos p2)2m. Performing the integration over p

I(α,∆) =
22−∆√πΓ(∆)

Γ
(
∆ + 1

2

) ∞∑
m=0

[(∆)m]2

m!22m
(
∆ + 1

2

)
m

×

{
m−1∑
k=0

4

(
2m

k

)
sin2[(k −m)q]

(k −m)2
+

(
2m

m

)
2π2α2

}
(A.19)
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Figure 13. Numerical integration of I(α,∆) for α = 0.4 and ε = 0.0001 compared to the series

representation (A.21) truncated at m = 3000 (brown dots). In light orange α2I(1,∆), which well

approximates the full result for small ∆. The series representation we worked out strictly holds for

∆ < 1/2, but it is found to well approximate the result also for slightly larger conformal dimensions.

and summing the series

∞∑
m=0

[(∆)m]2

m!22m
(
∆ + 1

2

)
m

(
2m

m

)
=

Γ
(

1−∆
2

)
Γ
(
∆ + 1

2

)
2∆Γ

(
1− ∆

2

)
Γ
(

1+∆
2

)2 , (A.20)

we obtain the following expression

I(α,∆) = α2 2π3/2Γ(1−∆
2 )Γ(∆

2 )2

Γ(∆)Γ(1− ∆
2 )

+

∞∑
m=0

23+∆Γ(∆)2[(∆)m]3

m!Γ (2∆ + 2m)

m−1∑
k=0

(
2m

k

)
sin2[(k −m)πα]

(k −m)2
.

(A.21)

For α = 1 the coefficients of the series over m all vanish and the first term gives the finite

part of eq. (A.12). For general values of α we compare the truncated sum to the numerical

integral in figure 13.

B Euclidean shell solution

In this appendix, we construct a new Euclidean geometry involving a shell of pressureless

fluid or dust, and examine its interpretation as a trace function. Upon Wick rotation, the

corresponding Lorentzian solution of 3d gravity describes a homogeneous (but infinitely

thin) shell of pressureless fluid which falls into a BTZ black brane — see figure 16 below.

An interesting feature of this solution will be that it takes into account the gravitational

backreaction of the shell, in contrast to our perturbative calculations in section 2. The

construction essentially involves joining together regions of two different (Euclidean) black

brane solutions with masses, Min and Mout. In this regard, the new solution resembles the

well-known Vaidya solution [134, 135] or its extension to AdS boundary conditions [131].

Of course, a key difference is that these Vaidya solutions describe an infalling shell of

null fluid, while our construction relies on conventional pressureless fluid, which follows
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timelike trajectories in the Lorentzian version.25 The AdS-Vaidya solution has been used

extensively in holographic studies, e.g. to explore features of the thermalization process in

strongly coupled gauge theories [88–100, 102–105].

As explained below, in the context of the AdS/CFT correspondence, the Euclidean

shell solution describes a bulk partition function which can be interpreted as computing a

boundary trace function of the type

Zbulk ≈ tr
(
ραout

out ρ
1−αin
in

)
, (B.1)

where ρin, ρout are two thermal density matrices at inverse temperatures βin = 2π/
√
Min

and βout = 2π/
√
Mout. To be more precise, ρout is an excited state built by acting on ρin

with a shell of CFT operators in order to produce an apparent temperature 1/βout. We

discuss this interpretation in greater detail below, in section B.4.

In section B.1, we construct coordinates adapted to geodesics moving in the radial

and (Euclidean) time directions of the (Euclidean) black brane geometry. We then con-

struct the Euclidean shell metric in section B.2 by gluing two such geometries together

along the appropriate geodesics. Next, we evaluate the renormalized on-shell action of our

new solution in section B.3. We conclude in section B.4 by describing the trace function

interpretation of the corresponding partition function in the boundary CFT.

B.1 Geodesic slicing of AdS black brane

To begin, we recall that the Euclidean AdS3 black brane is described by the following metric

ds2 = (r2 −M)dτ2 +
dr2

r2 −M
+ r2dx2 , (B.2)

with τ ∈ [−β
2 ,

β
2 ], r ≥

√
M and β = 2π/

√
M . As commented above, we will construct the

Euclidean shell solution by gluing together regions from two such solutions with masses Min

and Mout, along space-like geodesics. In particular, we wish to consider space-like geodesics

which are moving in the (r, τ)-plane, and are anchored at the endpoints of intervals on the

asymptotic boundary (i.e. r → ∞) which are centred at τ = 0. By examining Israel’s

junction conditions, we will show that our construction yields a solution of Einstein’s

equations with negative cosmological constant in presence of a pressureless perfect fluid.

First, we will find new coordinates for the metric (B.2), which are adapted to the geodesics

of interest.

The geodesics anchored on the boundary at endpoints (−τ0, x0) and (τ0, x0) are

given by

τ(λ) =
1√
M

arctan
(

tan(
√
Mτ0) tanhλ

)
(B.3)

r(λ) =

√
M coshλ

sin(
√
Mτ0)

. (B.4)

25We note that a Euclidean version of the AdS-Vaidya solution was constructed in [88], by taking the

Vaidya metric to be a limit of a family of “spacelike Vaidya” geometries that admitted a well-defined Wick

rotation to Euclidean signature. This is not the construction that we use here.
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Figure 14. Surfaces of constant r and s in the Euclidean AdS3 black brane (B.2).

in terms of an affine parameter λ ∈ (−∞,∞). Alternatively, solving for λ(r) we can express

the geodesic as the τ(r) curve

τ(r) = ± 1√
M

arctan

(
1

cos(
√
Mτ0)

√
sin2(

√
Mτ0)− M

r2

)
, (B.5)

where the minus sign branch covers the range −τ0 ≤ τ ≤ 0 and the plus sign 0 ≤ τ ≤ τ0.

For 2τ0 ∈ [0, π/
√
M ] these geodesic span half of the original geometry, corresponding to

τ ∈ [−π/(2
√
M), π/(2

√
M)], and each geodesic can be specified in a unique way in terms

of the radial value at the turning point

s0 ≡ r(λ = 0) =

√
M

sin(
√
Mτ0)

. (B.6)

We can thus replace the time slicing with one given in terms of these geodesics by perform-

ing the change of coordinate τ → s defined through

τ = ± 1√
M

arctan

(√
M

r

√
r2 − s2

s2 −M

)
. (B.7)

Notice that the change of coordinates is defined patchwise with the plus sign covering the

patch τ ∈ [0, π/(2
√
M)]. We draw such slicing of the geometry in figure 14.

The new coordinate has range s ≥
√
M and, for both signs in eq. (B.7), leads to the

metric

ds2 =
r2(r2 −M)

s2(s2 −M)(r2 − s2)
ds2 − 2r

s(r2 − s2)
dsdr +

dr2

r2 − s2
+ r2dx2 . (B.8)

Notice that surfaces at constant s have an induced metric that does not depend on M .

B.2 Euclidean shell geometry

We have parametrized the metric (B.2) in terms of a new set of coordinates (s, r, x). In

analogy to the Lorentzian case, we then cut-and-paste two black branes with different
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masses along a s = s0 = constant surface and define a Euclidean shell geometry with

ds2 =
r2(r2 −M(s))

s2(r2 − s2)(s2 −M(s))
ds2 − 2r

s(r2 − s2)
ds dr +

dr2

r2 − s2
+ r2dx2 , (B.9)

where

M(s) = Min + θ(s− s0)(Mout −Min) . (B.10)

The resulting geometry is a cigar in which a geodesic shell at s0 separates an inside region

where the geometry matches the black brane geometry (B.8) with mass Min, and an outside

region with the local metric given in terms of the black brane geometry (B.8) with mass

Mout. This is schematically represented in figure 15. Notice that by construction the

geometry is defined for a shell location s0 ∈ [Max(
√
Min,

√
Mout),∞).

The metric defined in this way satisfies Einstein’s equations with a stress tensor with

only non-vanishing component

T rr = −s(r
2 − s2)M ′(s)

2r2
= −s(r

2 − s2)(Mout −Min)

2r2
δ(s− s0) . (B.11)

This is the stress tensor of a pressureless perfect fluid

Tµν = ρ uµuν (B.12)

with

ρ = −sM
′(s)

2r2
= −s(Mout −Min)

2r2
δ(s− s0) (B.13)

and uµ the three-velocity associated to the geodesic with s = s0. We note that for the

solution to have a proper continuation to Lorentzian signature, we would require Mout >

Min (i.e. this constraint ensures that the Lorentzian shell has positive energy). One can also

check explicitly that the stress tensor is conserved, ∇µTµν = 0, and that Israel’s junction

conditions [136] are satisfied.26

We are primarily interested in the Euclidean construction per se, but one can also work

out the analytic continuation of this geometry to Lorentzian signature. In the case of a

26Indeed the induced metric and extrinsic curvature are well defined as one approaches the spacelike

surface s = s0 from the two sides of the shell, and the induced metric is continuos across the surface. The

discontinuity in the extrinsic curvature

∆[δijK −Ki
j ] ≡ lim

ε→0

(
δijK −Ki

j ]s0−ε − [δijK −Ki
j ]s0+ε

)
= δirδ

r
j

√
s2

0 −Mout −
√
s2

0 −Min

r
(B.14)

matches the surface stress tensor Sij , that is the pull back T ij of the stress tensor integrated over a small

region around the surface s = s0

Sij = lim
ε→0

∫ s0−ε

s0+ε

T ij dn̂(s) = δirδ
r
j lim
ε→0

∫ s0−ε

s0+ε

M ′(s)

2r
√
s2 −M(s)

ds

= δirδ
r
j

√
s2

0 −Mout −
√
s2

0 −Min

r
. (B.15)
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Figure 15. A pictorial representation of the Euclidean shell geometry of eq. (B.9).

Figure 16. Representation of the analytic continuation to Lorentzian of a single Euclidean black

hole geometry (left) and of the Euclidean shell geometry constructed here (right). In the latter

case, the continued geometry describes the backreaction to the presence of the homogeneous shell

of dust that falls into a black brane geometry from a radial location r = s0.

single Euclidean black hole geometry, cutting it at the surface of time reflection symmetry

(i.e. along τ = 0 and τ = βin/2), the solution can be continued to the maximally extended

Lorentzian solution. Here our Euclidean shell solution can be continued in an analogous

way, and the resulting geometry will describe a homogeneous shell of pressureless dust

(non-interacting particles) that falls into a black brane from a radial location r = s0 (see

figure 16).

B.3 Renormalized on-shell action

To evaluate the on-shell renormalized action associated to the Euclidean shell geometry

constructed in the previous section, we consider separately the two disconnected geometric

patches inside and outside the shell, plus a perfect fluid shell

S = Sout + Sin + Sshell . (B.16)

The on-shell action for a perfect fluid is proportional to its pressure [137]

Sshell =

∫
d3x
√
g P (B.17)

and thus vanishes in the present case of a shell of pressureless dust.
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The complete Euclidean bulk action to be evaluated on-shell for the region M outside

the geodesic shell is

Sout = Sbulk + SGHY + Scorner (B.18)

= − 1

16πGN

∫
M
d3x
√
g (R− 2Λ)− 1

8πGN

∫
∂M

d2x
√
γK − 1

8πGN

∫
∂∂M

dx
√
hΘ ,

with Λ = −1. The Gibbons-Hawking-York term has in this case two contributions, as ∂M
is the union of the surface extending at r = r∞ (with r∞ being a IR-bulk regulator) and

of the surface s = s0. The extrinsic curvature Kµν = ∇(µn̂ν), with n̂ the outgoing normal

vector to the boundary ∂M, jumps at the union of this two surfaces. This gives origin to

the corner terms part of the action, that is evaluated at the non-smooth boundaries ∂∂M
of ∂M. The corner action is obtained in terms of

Θ = arccos |n̂(s0) · n̂(r∞)| (B.19)

with n̂(r∞) and n̂(s0) the unit outgoing normal repectively to the r∞ and s0 surfaces [138,

139]. The sign of the angle depends on whether the normals are converging, Θ > 0, or

diverging Θ < 0.

As we work with different patches of the shell geometry, which locally are each equal

to a Euclidean black brane, we find it more convenient to work in the (τ, r, x) coordinates

of the metric (B.2). Also, all integrals extend in the homogeneous x-direction. Its measure

can be simply factored out and expressed in terms of an IR regulator L.

The (radially IR-regulated) regionM corresponds to r∞ > r > rs0(τ) and −τ∞ > τ >

τ∞. Here rs0(τ) parametrizes the surface described by the geodesic with opening 2τ0 on

the boundary and turning radius s0, as obtained inverting eq. (B.5) and using eq. (B.6)

rs0(τ) =

√
M cos(

√
Mτ)√

s2
0 − sin2(

√
Mτ)

. (B.20)

Instead τ∞ is the time coordinate along such a geodesic corresponding to the regulated

radial position r∞

τ∞ =
1√
M

arcsin

(√
M

s0

√
r2
∞ − s2

0

r2
∞ −M

)
. (B.21)

The action associated to the bulk M is then

Sbulk
reg =

L

16πGN

4(r2
∞ −M)τ∞ +

√
M cot(

√
Mτ0) log

sin2
(√

M(τ0 − τ∞)
)

sin2
(√

M(τ0 + τ∞)
)
 .

(B.22)

The GHY term has a contribution evaluated at the AdS boundary r = r∞, to which

the time integral provides only the measure 2τ∞ of the time interval at that radial location.

The outgoing normal at the AdS boundary r = r∞ is

n̂(r∞) =
√
grr dr =

1√
r2
∞ −M

dr , (B.23)
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which leads to

SGHY(r∞)
reg = − L

16πGN

[
4(2r2

∞ −M)τ∞
]
. (B.24)

Both actions vanish in the limit of zero size interval τ∞ → 0 at the regulated

boundary r = r∞.

The second contribution comes from the geodesic shell itself. The corresponding surface

can be described in terms of eq. (B.20), with outgoing normal

n̂(s0) =
√
r2 − s2

0 dτ −
√
s2

0 −M
r2 −M

dr , (B.25)

and induced metric

γij =

(
1

r2−s20
0

0 r2

)
, (B.26)

where we used eq. (B.20) in order to eliminate τ . Computing the associated extrinsic

curvature along this surface, the contribution from the shell to the GHY action is

SGHY(s0)
reg = − L

16πGN

√M cot(
√
Mτ0) log

sin2
(√

M(τ0 − τ∞)
)

sin2
(√

M(τ0 + τ∞)
)
 . (B.27)

This term precisely cancels the logarithmic divergence in Sbulk.

Finally the corner contribution accounting for the discontinuity in the boundary region

is localized at r∞ and ±τ∞ and extends in the homogeneous x direction. The induced

metric is just hxx = gxx = r2
∞. The two normals along the s0 and r∞ surfaces diverge one

from the other and therefore the corresponding angle Θ defined in eq. (B.19) is to be taken

negative. The contribution of a single corner is

Scorner(±τ∞)
reg =

L

16πGN

[
2r∞arccos

(√
s2

0 −M
r2
∞ −M

)]
. (B.28)

and since the two corner contributions come with the same sign, the total corner action is

two times eq. (B.28), which rewritten in terms of τ∞ reads

Scorners
reg =

L

16πGN

[
4r∞arcsec

(√
1 +

r2
∞
M

tan2(
√
Mτ∞)

)]
. (B.29)

It is easy to see this contribution vanishes as τ∞ → 0, while the sum of the angles associated

to the corners becomes exactly π for a geodesic that cuts in two halves the full black hole

space: τ0 = τ∞ = π/(2
√
M).

Taking all these contributions into account, the regularized action for the geometry

associated to the region outside the shell is

Sout
reg = − L

16πGN

{
4r2
∞τ∞ − 4r∞arcsec

[√
1 +

r2
∞
M

tan2(
√
Mτ∞)

]}
. (B.30)
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The regulated action of a full black brane instead is

SBH
reg = − 1

16πGN

∫
M
d3x
√
g (R− 2Λ)− 1

8πGN

∫
∂M

d2x
√
γK = − L

16πGN

4π√
M
r2
∞ ,

(B.31)

and thus the action associated to the region inside a geodesic shell is obtained from the

result above as

Sin
reg = SBH

reg − Sout
reg (B.32)

= − L

16πGN

{
4r2
∞

(
π√
M
− τ∞

)
+ 4r∞arcsec

[√
1 +

r2
∞
M

tan2(
√
Mτ∞)

]}
.

Some comments are in order, for τ∞ = 0 Sin
reg = − L

16πGN
4π√
M
r2
∞ gives the full black brane

action. On the other hand, when the shell divides exactly in two halves the black brane

geometry, that is for τ∞ = π/(2
√
M), Sout

reg and Sin
reg do not coincide, but have corner

contributions that differ by 2π

Sout
reg

(
τ∞ =

π

2
√
M

)
= Sin

reg

(
τ∞ =

π

2
√
M

)
+ 2r∞ 2π. (B.33)

This discrepancy is related to the usual issue of the (non)additivity of the Euclidean grav-

itational action [139]. In the present case, our choice can be understood by regulating the

junction between the two black brane geometries by introducing a finite width shell of the

pressureless fluid (e.g. see [140]), as we comment below.

Using the results derived so far and taking the inside and outside geometries to have

different masses, we can straightforwardly write the regulated on-shell action of the shell so-

lution:

Sreg = Sin
reg + Sout

reg

= − L

16πGN

{
4r2
∞

(
π√
Min
− τ∞,in + τ∞,out

)

+ 4r∞arcsec

[√
1 +

r2
∞
Min

tan2(
√
Minτ∞,in)

]

− 4r∞arcsec

[√
1 +

r2
∞

Mout
tan2(

√
Moutτ∞,out)

]}
. (B.34)

To renormalize the quadratic divergences, we use the standard bulk counterterm

Sct =
1

16πGN

∫
r=r∞

d2x 2
√
γ (B.35)

=
L

16πGN

[
4r∞

√
r2
∞ −Moutτ∞,out + 4r∞

√
r2
∞ −Min

(
π√
Min
− τ∞,in

)]

– 56 –



J
H
E
P
0
7
(
2
0
1
8
)
1
1
1

and obtain

Sren = Sreg + Sct (B.36)

= lim
r∞→∞

− L

16πGN

{
2Moutτ∞,out + 2Min

(
π√
Min
− τ∞,in

)

+ 4r∞arcsec

[√
1 +

r2
∞
Min

tan2(
√
Minτ∞,in)

]

− 4r∞arcsec

[√
1 +

r2
∞

Mout
tan2(

√
Moutτ∞,out)

]}
.

While the result is finite as we remove the cutoff, we here have not explicitly evaluated

the limit of the trigonometric functions, as to have an expression with a well defined limit

when the boundary time interval is sent to zero. Eliminating τ∞,in and τ∞,out in favour of

s0 using eq. (B.21), the complete renormalized action then gives27

Sren = Sreg + Sct

= lim
r∞→∞

− L

16πGN

{
2
√
Mout arcsin

(√
Mout

s0

√
r2
∞ − s2

0

r2
∞ −Mout

)

− 4r∞arccos

[√
s2

0 −Mout

r2
∞ −Mout

]
+ 2
√
Min

[
π − arcsin

(√
Min

s0

√
r2
∞ − s2

0

r2
∞ −Min

)]

+ 4r∞arccos

[√
s2

0 −Min

r2
∞ −Min

]}
. (B.39)

B.4 Trace function interpretation

We would here like to interpret the geometric construction of the previous sections in

terms of the boundary CFT. For that we find it instructive to briefly recall what is the

CFT dual of the familiar AdS3-Vaidya solution, interpolating between vacuum AdS and a

black hole geometry across the location of an infalling shell of null dust. The CFT dual

state was worked out in [106] and it is obtained through the insertion of a discretized shell

27When M(s) describes a thick shell of width 2δ centered around s0, the geometry (B.9) continuously

interpolates between the two values of the mass function across the shell. In this case, there are no corner

terms in the action and the GHY term only has a contribution from the AdS boundary, which yields

SGHY =
L

8πGN

∫
ds

{
2r∞
s

M(s)− 2r2
∞√

(r2
∞ − s2)(s2 −M(s))

+
r∞
√
r2
∞ − s2M ′(s)

(r2
∞ −M(s))

√
s2 −M(s)

}
. (B.37)

In the thin shell limit δ → 0, the only non-vanishing contribution from the region where the shell is present

is given by the term proportional to M ′(s), which can be evaluated with an integration by parts, exactly

reproducing the corner contributions in eq. (B.39),

∫ s0+δ

s0−δ
ds

r∞
√
r2
∞ − s2M ′(s)

(r2
∞ −M(s))

√
s2 −M(s)

→ 2r∞

arccos

√
s2

0 −Mout

r2
∞ −Mout

− arccos

√
s2

0 −Min

r2
∞ −Min

 . (B.38)
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of local operators at some t = t0 in the vacuum state. Although the system remains in a

pure state throughout, at times after the shell is injected, it appears for most observables

to be a thermal state, with an effective temperature fixed by the energy injected [89–

92]. Implicitly, this description assumes that an external operator is turned on for an

instant at t = t0 to excite the vacuum state (i.e. we have a quantum quench where the

CFT Hamiltonian is momentarily deformed). Alternatively, we can think that we have an

excited state that is evolved by the undeformed Hamiltonian [141]. However, in this case,

the correct bulk solution would involve a null shell which emerges from a white hole in the

past, reflects off of the asymptotic boundary at t = t0 and then collapses to form a black

hole in the future. In the boundary theory, we would have an excited state where the UV

degrees freedom seem to be thermalized but then the excitation momentarily coheres at

t = t0 before dissipating into an apparent thermal ensemble again.

Our interpretation of the Euclidean shell solution is similar in spirit. From the bound-

ary point of view, we can think of it as a CFT on the thermal cylinder with appropriate

insertions, which support the homogeneous shell of non-interacting particles in the bulk.

As in AdS-Vaidya case, we can think that the insertions have effectively modified the tem-

perature past the shell. However, rather than including the boundary insertions, we can

think purely in terms of the excited CFT state. In particular, here we have excitations

on top of the thermal field double (TFD) state with temperature 1/βin, which produce an

apparently thermal state with a temperature 1/βout. The bulk shell is not reflected at the

asymptotic boundary but this reflects the fact that the corresponding boundary partition

function ties together two different states, the original TFD and the excited state.

Following this reasoning, we interpret the boundary partition function associated to

our Euclidean shell geometry as computing a trace of the form

log tr
(
ραout

out ρ
1−αin
in

)
= −Sren , (B.40)

by identifying

αoutβout ≡ 2 τout , αinβin ≡ 2 τin , (B.41)

and where βin = 2π/
√
Min and βout = 2π/

√
Mout. The matrix ρin is a thermal density

matrix at inverse temperature βin, while ρout is an excited state at an apparent inverse tem-

perature βout. The exponents αout, αin are not independent in this geometric construction,

but related by the constraint

s0 =

√
Mout

sin(παout)
=

√
Min

sin(παin)
. (B.42)

Observe however that, since ρin is a thermal density matrix, the trace (B.40) is of the type

of those studied in section 4.2 for general reference states. In fact, we can write explicitly

log tr
(
ραout

out ρ
1−αin
in

)
= log tr

(
ραout

out ρ
1−αout
R

)
, (B.43)
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introducing the reference inverse temperature

βR =
1− αin

1− αout
βin (B.44)

=
1− 1

πarcsin
(√

Min
Mout

sin(παout)
)

1− αout

2π√
Min

. (B.45)

As s0 → r∞, both αout and αin go to zero, and we recover

log tr ρin =
c πL

6βin
. (B.46)

As s0 decreases, αout and αin increase. Since our Euclidean shell geometry is only well

defined for s0 ∈
[
Max(

√
Min,

√
Mout), r∞

]
, we find that the range of αout, αin we can

cover isαout ∈
[
0, 1

2

]
, αin ∈

[
0, 1

πarcsinβout

βin

]
, for Mout ≥Min

αout ∈
[
0, 1

πarcsin βin
βout

]
, αin ∈

[
0, 1

2

]
, for Mout ≤Min

. (B.47)

Even if the values αout = αin = 1 are formally not included in the geometric construction

of the trace function (B.40), we still assume that

log tr ρout =
c πL

6βout
, (B.48)

consistently with the symmetry of our construction that would leave us with the full out

geometry when the in geometry has shrunk to zero size.

Normalizing the density matrices accordingly, we define

Dαout,αin(ρout‖ρin) ≡ 1

αout − 1
log

tr
(
ραout

out ρ
1−αin
in

)
(tr ρout)

αout (tr ρin)1−αin
(B.49)

= lim
r∞→∞

c r∞
6π(αout−1)

{
arccos

[√
s2

0−Min

r2
∞−Min

−arccos

[√
s2

0−Mout

r2
∞−Mout

]]}

≈ c

3

1

αout − 1

{
cot(παout)

βout
− cot(παin)

βin

}
. (B.50)

Upon normalization, the trace function Dαout,αin is therefore fully given by the corner terms

in the action. It is identically vanishing for Min = Mout, for which indeed ρin = ρout and

αin = αout. We plot it in figure 17 for Mout ≥ Min, both as a function of αout ∈ [0, 1/2]

and Mout. Notice this is the parameter range for which we expect a physically sensible

Lorentzian continuation of the geometry with a shell of positive energy density.

In order to study the monotonicity constraints

Dα(ρ‖ρR) ≥ Dα(ρ′‖ρR) (B.51)
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Dαout,αin
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Mout
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1.0

1.5

Dαout,αin

Figure 17. (Left) Dαout,αin
for Min = 1,Mout = 5, 10, 15, 20, 25 from the bottom-up. (Right)

Dαout,αin
as a function of Mout for Min = 1 and αout = 0.1, 0.2, 0.3, 0.4, 0.5 from the bottom-up.

We rescaled the prefactor c/3.

0.0 0.1 0.2 0.3 0.4 0.5 α

2

4

6

8

βR

Min = 2

Min = 4

Min = 6

Min = 8

Min = 10

Figure 18. Reference inverse temperatures βR that can be accessed with this Euclidean geometric

construction as a function of α for Mout = 10 and varying Min ≤Mout.

with respect to a thermal reference state ρR, we need to consider the quantity

Dα(ρ‖ρR) = Dαout,αin(ρout‖ρin) (B.52)

=
c

6π

√
Mout

α− 1

{
cot(πα)−

√
1

sin2(πα)
− Min

Mout

}
, (B.53)

where we identify α = αout, ρ = ρout and βR = 2π/
√
MR is given by eq. (B.45) in terms of

α,Min,Mout. The excited state ρ = ρout is specified in this geometric construction by both

the mass of the background geometry Min and that of the shell Mout−Min, or equivalently

by the pair (Min,Mout). If we want to keep fixed the excited state, for each given α we

thus have a different value of reference temperature fixed by eq. (B.45). This construction

alone therefore does not allow to explore the full (α, βR) parameter space of constraints,

but only fixed trajectories in that plane, as those plotted in figure 18.

Still, varying the excited state (Min,Mout), we can study some of the second

laws (B.51). As an example, we plot in figure 19 (right panel) the Rényi divergence (B.52)

for two different excited states (Min,Mout) ≈ (1.2, 2.9), (1.4, 17.3). The two curves can
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βR

Figure 19. (Left) Reference inverse temperature βR for (Min,Mout) ≈ (1.2, 2.9), (1.4, 17.3) re-

spectively in orange dashed and blue, as a function of α. The two curves cross at (βR, α) =

(2π, 0.2). (Right) Dα(ρ||ρR) for the two excited states. The monotonicity constraint (B.51) at

(βR, α) = (2π, 0.2) therefore forbids transitions from the state (Min,Mout) ≈ (1.2, 2.9) to that with

(Min,Mout) ≈ (1.4, 17.3). We rescaled the prefactor c/3.

be compared at the point (βR, α) = (2π, 0.2) (see left panel), and the corresponding

monotonicity constraint (B.51) rules out transitions from (Min,Mout) ≈ (1.2, 2.9) to

(Min,Mout) ≈ (1.4, 17.3).

In general, at each point in the (βR, α)-plane there will be an infinite number of curves

that cross, associated to all pairs (Min,Mout) that solve eq. (B.45), and thus an infinite

number of excited states that can be compared. The constraints (B.51) will define an

ordering for all of them. It is however important to stress once more that within this

geometric interpretation, we are not able to compare the relative strength of the various

constraints, as we cannot vary α and βR independently. Further, we are unable to take the

limit α→ 1, which would allow us to access the usual thermodynamic constraints.

Above, exploiting the fact that ρin is a thermal state, we were able to recast the

quantity (B.49) in the form of a Rényi divergence. We would here like to briefly discuss a

more general property that holds for a quantity of the form (B.49). According to Lieb’s

concavity theorem in fact the trace function

fαout,αin(ρout‖ρin) ≡ tr
(
ραout

out ρ
1−αin
in

)
(B.54)

is jointly concave for αin, αout ∈ [0, 1], αout ≤ αin [48]. Joint concavity means that for any

two pairs of normalized density matrices (ρout, ρin), (ρ′out, ρ
′
in) and any 0 < κ < 1:

fαout,αin

(
(1− κ)ρout + κρ′out‖(1− κ)ρin + κρ′in

)
≥

(1− κ)fαout,αin(ρout‖ρin) + κfαout,αin(ρ′out‖ρ′in) . (B.55)

Equivalently, the quantity with opposite sign is jointly convex. Since the logarithm is

monotonic and operator concave on (0,∞), the quantity, which we defined in eq. (B.49), is

jointly convex. In our construction we would expect joint convexity to hold for Mout ≤Min,

that is the range of masses where the geometric construction does not have a physically
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sensible Lorentzian continuation. Join convexity is a useful property to have if optimising

this quantity. Together with unitary invariance and invariance under tensor products, joint

convexity implies the data processing inequality (see for instance Thm. 5.16 in [142]). In

the case of the Rényi divergence, these properties allow one to prove its monotonicity under

CPTP maps, but do not hold for generic αout, αin. Take for instance ρout = ρin a pure

state, so that the quantity of eq. (B.49) is zero. Then tracing out a share of each state

will make this quantity increase unless αout = αin (just as the Rényi entropy defined in

eq. (1.9)).

Note that joint concavity (convexity) implies concavity (convexity) for each of the

arguments of the above function, and furthermore implies that supαin
−fαout,αin is concave,

which suggests that this quantity can translate into entropic like quantities under a suitable

restriction of the reference set of states. Exploring the properties of fαout,αin when the range

of parameters are restricted is a potentially interesting line of research.
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