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Abstract. Tracking of particles, be it a passive tracer or an actively moving bacterium in the growing
bacterial colony, is a powerful technique to probe the physical properties of the environment of the particles.
One of the most common measures of particle motion driven by fluctuations and random forces is its
diffusivity, which is routinely obtained by measuring the mean squared displacement of the particles.
However, often the tracer particles may be moving in a domain or an aggregate which itself experiences some
regular or random motion and thus masks the diffusivity of tracers. Here we provide a method for assessing
the diffusivity of tracer particles within mobile aggregates by measuring the so-called mean squared relative
distance (MSRD) between two tracers. We provide analytical expressions for both the ensemble and time
averaged MSRD allowing for direct identification of diffusivities from experimental data.

1 Introduction

In most cases, living matter is organized in the form
of multicellular aggregates, agglomerates consisting of
many individual cells. Examples range from microcolonies
formed by bacteria [1,2] (see Fig. 1a) to eukaryotic cells
forming aggregates [3–5] and tissues [6].

One of the standard ways to experimentally assess the
mechanical properties of such agglomerates is by per-
forming particle tracking and analyzing the trajectories of
individual cells or embedded passive tracer particles. Sim-
ilar measurements can be performed on a subcellular level
with injected particles or tracing cell organelles as means
of quantifiying the physical properties of the cell cyto-
plasm [7,8]. By assuming a random motion of cells within
agglomerates or tracers in the cell cytoplasm one typically
measures the mean squared displacement (MSD) and thus
gets access to the diffusion constant and the scaling of
diffusion.

However, frequently cell aggregates or individual cells
exhibit spatial translation and rotation [1,2]. This motion
contributes to the MSD of tracers and makes it difficult
to disentangle the diffusivity of the tracers.

In this paper we investigate a quantity that enables
us to measure the diffusion coefficient of tracers within
mobile domains, the so called mean squared relative
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distance (MSRD). It is similar to the standard MSD
except it utilizes the relative distance between two par-
ticles. This results in the MSRD, unlike the MSD, being
insensitive to the translation and rotation of the domain in
which the tracking is happening. The problem of relative
diffusion is more than a century old. From classical works
of Richardson and Batchelor [9–11], to direct applications
in biophysical tracking [12], this topic is extensively stud-
ied. The prototypical quantity of interest is a vector of
relative displacement of two tracers. However, the second
moment of the displacement carries information about
the initial positions of the particles. Normally, when, for
example, measuring two tracers in a turbulent atmosphere
that would not pose any particular difficulty. Let us imag-
ine we want to analyze relative diffusion of two tracers in a
cloud, which itself is rotated and advected by a larger scale
atmospheric currents. In this case, the initial displacement
between the particles matters. Rotation of the cloud would
lead to changes in the relative displacement even if there
is no diffusion inside the cloud. By focusing specifically on
the statistics of the absolute distance between tracers we
circumvent this issue. Interestingly, although previously
introduced at least in some works [13], the statistics of
the relative distance has not been studied in detail before.

2 The mean-squared relative distance of two
random walkers

As an example, let us define the MSRD of two cells within
a bacterial colony. Two cells, a and b, at positions ra(t)
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Fig. 1. Random motion of individual cells within aggregates.
(a) Differential interference contrast microscopy image of a
Neisseria gonorrhoeae micrcolony consisting of ∼2000 indi-
vidual cells. The scale bar is 10 µm. (b) A small fraction
of cells within a microcolony were fluorescently labeled. This
allowed for tracking of their trajectories (red) with the help
of a fluorescence channel of the microscope [1]. (c) Sketch of
a simplified two-dimensional aggregate. Two particles are ini-
tially separated by a distance dab(0). Up to a time τ , they
perform random motion in a circular domain, see solid lines
illustrating the trajectories of particles. However, the aggre-
gate itself rotates (as marked by the black dot on the boundary
of the domain) and its center of mass experiences some ran-
dom motion (gray line). To quantify the diffusivity of particles
we follow their absolute relative distance as a function of time
dab(t), which is independent of the motion of the domain.

and rb(t) have the absolute distance

dab(t) = |ra(t)− rb(t)|. (1)

This quantity is independent of any translational or rota-
tional motion of the cell aggregate. We define the MSRD,
denoted δ(t), as the squared mean of the change of this
distance with time t:

δ (t) = 〈(dab(t)− dab(0))
2〉. (2)

Here, we average over an ensemble of different realizations
of dab(t) while keeping dab(0) fixed. An illustration of the
quantity δ(t) is shown in Figure 1c. For simplicity, but
also in agreement with experimental measurements which
are often taking place in a single focal plane of a micro-
scope, we will consider a two-dimensional scenario. The
generalization to higher dimensions is straightforward.

From Figure 1c it is easy to see that the MSRD is prob-
ably the only measurable quantity similar to the standard
MSD but has the advantage of being insensitive to the
motion of the cell aggregate as a whole. Our goal is to
relate the behavior of δ(t) to the diffusivity of individual
cells.

In order to study the behavior of the MSRD, we
first simulated the trajectories of pairs of Gaussian ran-
dom walks with diffusion coefficients D = Da = Db = 0.5
(given as a unitless quantity) and an initial distance d0 in
an unbounded domain (details of the simulations can be
found in Appendix A). By computing the scalar distance
of the two trajectories, defined in equation (1), we can
compute the MSRD (see Eq. (2)) in the ensemble average
sense (see Fig. 2a). We observe that the MSRD exhibits
two regimes which can be approximated as δ ∼ 4Dt for

small times t, and by δ ∼ 8Dt for large times. The tran-
sition point between the regimes depends on the initial
distance d0 with a later transition corresponding to a
larger d0 (see Fig. 2b) We discuss the origin of the two
regimes later in the text where the corresponding analyt-
ical expression for the MSRD is derived. In the transition
region, the MSRD can be approximated by a power law
with δ ∝ tα, α > 1 (see Fig. 2a). Of particular note, this
transient behavior can be misinterpreted as a signature of
superdiffusion if the time traces are not long enough to
detect the second diffusive regime [14].

As an alternative to the ensemble-average, we computed
the MSRD by time-averaging relative distances for a pair
of very long trajectories. The time averaged MSRD δt is
given by

δt (t) = 〈(dab(t0 + t)− dab(t0))
2〉t0 . (3)

Here, for every lag time t, we average the relative distance
over all starting points t0 along the trajectory. Inter-
estingly, we observe in our simulations that the MSRD
follows a single scaling δt ∼ 4Dt and is independent of
the initial distance d0 (see Fig. 2c)

Often, the time-averaging is applied for the estimation
of the diffusion coefficient in data where the statistics are
not strong enough to deliver a reliable ensemble average.
Examples for such cases are usually experiments in which
a high effort is required to measure the trajectory of a sin-
gle tracer, such as the study of the motion of individual
tracers within cells or single cells themselves [7,8,15–17].
However, as became apparent recently, care should be
taken when interpreting the time-averaged data [18].

Differences between time-averaged and ensemble-
averaged quantities appear quite frequently, for example,
if the tracers of the ensemble are in different dynamic
states [12,19], or if the diffusion coefficient is not spa-
tially homogeneous [20]. Additionally, time-averages and
ensemble-averages can differ for the case of the so called
weak ergodicity breaking which can be linked to power-law
distributed waiting times present in a system of interest
[21]. Examples of such systems are subdiffusive continu-
ous time random walks and Lévy walks [21–23], see also
a recent review [18].

In our case, the difference of the ensemble-averaged and
the time-averaged MSRD stems from the difference in the
initial conditions of the random walks. While we picked
the same initial condition d0 for the computation of the
ensemble-averaged MSRD, it follows from the definition
of the time-averaged MSRD (see Eq. (3)) that the ini-
tial condition is constantly changing. This idea is further
supported by performing an additional averaging over the
ensemble-averaged MSRD with respect to randomly cho-
sen initial distances d0. In this case, we observe that the
MSRD shows the same behavior as the time-averaged one
(see Fig. 2d)

Next, we analytically calculate the ensemble-averaged
and time-averaged MSRD. This allows us to explain the
origin of the two regimes of the ensemble-averaged MSRD
and the difference between ensemble-averaged and time-
averaged MSRDs.
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Fig. 2. Mean-squared relative distance for the random
motion of two tracers in an unbounded domain. Here,
Dab = Da +Db = 1 is the sum of the diffusion coefficients of
the individual trajectories. (a) Ensemble-averaged MSRD for
d0 = 4 (dots). For small times t the MSRD follows 2Dabt
dependence and for large times it follows 4Dabt (dashed lines).
Equation (10) predicts the behavior of the MSRD for all times
(solid line). (b) Ensemble-averaged MSRD for different initial
conditions d0 = 5, 100, as given by equation (10). The tran-
sition between the two scaling regimes shift to later times for
larger initial distance d0. (c) Time-averaged MSRD for two par-
ticles with different initial distances d0 = 10, 108 (dots). For
both initial distances the MSRD follows the function 2Dabτ
(dashed line). (d) Ensemble-averaged MSRD for randomly
picked initial values d0 follows the same dependence as the
time averaged result.

3 Ensemble- and time-averaged mean
squared relative distance

In order to calculate the ensemble-averaged MSRD, we
first reduce the motion of two particles (denoted by i =
a, b) to the effective motion of a single particle.

The probability density functions of each particle posi-
tion, ra and rb, defined in cartesian coordinates (x, y), are
given by a Gaussian distribution

pi(x, y, t) =
1

4πDit
exp

(
− (x− xi,0)2 + (y − yi,0)2

4Dit

)
, (4)

with the diffusion coefficient Di and the initial position
(xi,0, yi,0). The probability density function of the distance
vector dab(t) = ra(t)− rb(t) of these two particles, start-
ing with an initial distance d0 = |dab(0)| in y-direction, is
then given by

pab(x, y, t) =
1

4πDabt
exp

[
−x

2 + (y − d0)2

4Dabt

]
. (5)

This corresponds to the probability density function of a
Gaussian random walker with a starting position (0, d0)
and a diffusion coefficient of Dab = Da +Db.

For the particular case of d0 = 0, the probability density
function of the scalar distance dab of a Gaussian random
walk is given by the Rayleigh distribution [24,25],

pray(dab, t) =
dab

2Dabt
exp

(
− d2ab

4Dabt

)
. (6)

For an arbitrary initial distance d0, the probability density
function of the scalar distance dab is given by the Rice
distribution [26],

price(dab, t) =
dab

2Dabt
exp

(
−d

2
ab + d20
4Dabt

)
I0

(
dabd0
2Dabt

)
, (7)

where Ix is the modified Bessel function of the first kind
[27]. The fact that the Rice distribution characterizes
the distribution of the relative distance of two normally
distributed particles is well known (see [28–30]). This
equation is frequently used in radar and sonar signal pro-
cessing. For completeness, we have included the derivation
of the Rice distribution in Appendix B. In order to com-
pute the MSRD, we calculate the first two moments of
this probability density function:

〈dab(t)〉 =

√
π

4
√
Dabt

exp

[
− d20

8Dabt

][
(d20 + 4Dabt)I0

(
d20

8Dabt

)
+d20I1

(
d20

8Dabt

)]
, (8)

〈d2ab(t)〉 = d20 + 4Dabt. (9)

Thus, the ensemble-averaged MSRD is given by

δ = 〈[dab(t)− dab(0)]
2〉

= 〈d2ab(t)〉 − 2d0〈dab(t)〉+ d20, (10)

where dab(0) = d0. Alternatively, one can also compute
the MSRD by taking the probability density function
of the distance vector between the two particles and
computing the mean value of the mean squared scalar
distance:

δ = 〈(dab(t)− dab(0))2〉pab

=

∫∫
dxdy pab(x, y, t)(dab(t)− dab(0))2. (11)

In both cases we arrive at the same result. The calcu-
lated ensemble-averaged MSRD (Eq. (10)) reproduces the
results of the numerical simulations (see Fig. 2a). We can
approximate

δ(t) ∼
{

4Dabt if d20 � Dabt

2Dabt if d20 � Dabt
, (12)

thus the MSRD agrees with the observed limits (see
Fig. 2a). The two regimes of diffusion exist due to the
effect of the initial condition d0. For small times, d0 is
much larger than the relative displacement due to trac-
ers’ diffusion ∆dab, d20 � ∆dab ∼ Dabt. By expanding
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equation (10) in this limit, we can show that the change of
the distance dab for a small displacement ∆dab is approxi-
mated by the projection of ∆dab in the direction of ra−rb,
mimicking a one-dimensional random motion and explain-
ing why the MSRD follows δ ∼ 2Dabt scaling. Later, when
the the limit d20 � Dabt is fulfilled, the distance d0 can be
neglected and the distribution of displacements can be
approximated by the Rayleigh distribution (see Eq. (6)).
In this case, the motion is fully two-dimensional and we
get 〈d2ab(t)〉pray ∼ 4Dabt. While d0 does not affect the
scaling behavior for large or small values of the time t
(compared to d20/Dab), it does determine the transition
time between these two limits, as can be seen in Figure 2b.

In order to compute the time-averaged MSRD, we aver-
age the time-dependent probability density function of
the distances (see Eq. (7)) over a time interval [0, T ] and
call the resulting probability density function p̃rice (see
Appendix C for the derivation). Then, we compute the
mean value of the ensemble-averaged MSRD for this dis-
tribution. The resulting time-averaged MSRD is given by

δt(τ) = 2Dabτ, (13)

(see Appendix C for its derivation). This result agrees with
the behavior observed in simulations (see Fig. 2c) and is
independent of the initial distance d0. We can relate this
result to the ensemble-averaged MSRD. In the calculation
of the running time average, and in the limit of the trajec-
tory length going to infinity, the initial distances between
tracers entering averaging also grow infinitely with time.
Thus, in the corresponding ensemble-average picture we
would be operating in the regime, where the diffusive dis-
placement is much smaller than the initial distance. Hence
the time-averaged MSRD has the same asymptotic as the
first scaling regime of the ensemble-averaged MSRD.

Until now, we neglected the role of boundary conditions
while studying the MSRD. In most cases, the cells will
move within aggregates that are spatially confined (see
Figs. 1a and 1b). In the next section we consider the effects
of a finite domain size.

4 Effects of the finite domain size

Often, tracers move within domains of finite size, for
example individual molecules inside single cells [7,17,31]
or individual cells within cell aggregates [1,32].

To account for such boundary effects, we simulated the
motion of the two Gaussian random walkers within a circle
(see Fig. 1c) with reflective boundaries (details of the sim-
ulations are given in Appendix A). As might be expected,
the behavior of the ensemble-averaged and time-averaged
MSRD starts to be affected by the boundary when the
displacement becomes comparable to the radius R of the
circle (see Fig. 3). For longer times, the MSRD saturates
towards the values δsat,e for the ensemble average and δsat,t
for the time average. The values of δsat,e and δsat,t can
be estimated analytically (see Appendix D). The satu-
ration values depend on the initial positions of the two
particles for the ensemble-average and do not depend on
the initial condition for the time average. The transition

Fig. 3. Mean-squared relative distance for the random motion
of two tracers moving within a circle. (a) Ensemble-averaged
MSRD (dots) following equation (11) (solid line) until the sat-
uration MSRD δsat,e (dotted line). (b) Time-averaged MSRD
(dots) with the scaling 2Dabτ (dashed line) and the saturation
MSRD δsat,t (dotted line).

region towards saturation might be interpreted as a sig-
nature of subdiffusion. While subdiffusion might indeed
occur in cells as a result of tracer particles being trapped
in local environments, it is important to discriminate such
behaviors from the effects of the domain (cell) boundary.
In that respect, the analytical results of the MSRD satu-
ration values δsat,e and δsat,t can provide an estimate on
when to expect the influence of boundary effects.

5 Conclusions

In this paper, we presented a tool to measure the diffusion
coefficients of individual tracers within mobile domains.
To mitigate the effect of domain movement, we suggest
looking at the relative distance between pairs of tracer
particles. Therefore, it is required to track the positions
of at least two tracers simultaneously. From these data,
one can measure the mean-squared relative distance of a
pair of particles. The MSRD enables us to quantify the
sum of the diffusion coefficients of motile cells within bio-
logical aggregates (for example bacterial microcolonies,
cell spheroids or tissues), independent of translations
and rotations of the agglomerates. Under the assump-
tion of identical diffusivities of cells, this can be directly
translated into the characteristics of the individual cells.

In order to compute not just the sum of the diffusion
coefficients, but their values, it is necessary to track not
just two but three cells (a, b, c) simultaneously. By com-
puting the three sums Da +Db, Da +Dc and Db +Dc it
is possible to estimate the individual diffusion coefficients
Da, Db and Dc of the individual cells. The method based
on MSRD measurements can, with some limitations, be
used for non-uniform diffusivities, where, for example, the
diffusion constant is a function of the distance from the
center of the aggregate [1].

In this manuscript, we have shown that even in the
simplest case of normal diffusion, analysis of the MSRD
can exhibit some non-trivial behavior. The apparent diffu-
sion constant read out from the ensemble-averaged MSRD
may differ by a factor of 2 or even look like a superdif-
fusion in a transient regime. There is also a factor 2
difference in the long time scaling of the ensemble and
time-averaged values of diffusion constant. We linked these
differences to the initial separation between the tracers.
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Moreover, the domain size may lead to the saturation of
the measured MSRD as a function of time. Our analyt-
ical results provide the guidelines for how the diffusivity
of particles can be reliably extracted from the tracking
data. This approach is viable for generalizing to anoma-
lous (subdiffusion) and heterogeneous diffusion, which
are both frequently encountered in biological settings
[8,33,34]. There are differences between the time-averages
and ensemble averages which contrasts the case of normal
diffusion. These differences are rooted in the underlying
transport mechanisms, more robust and thus might be
diagnostically relevant.
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Appendix A: Simulation details

In order to compute the ensemble-averaged MSRD, we
simulated 2000 pairs of random walks in two dimensions.
The walkers possessed a normally distributed step length
and a constant step time, corresponding to a diffusion
coefficient D = 0.5. In Figure 2d we studied the ensemble-
averaged MSRD for random initial conditions. Therefore,
the start points of the random walks where chosen inde-
pendently of each other such that they were randomly
distributed within a circle of radius R = 1000.

In order to compute the time-averaged MSRD, we sim-
ulated two trajectories consisting of 107 individual steps,
with similar properties as the trajectories simulated for
the ensemble-average.

To consider the effect of boundaries, we included reflec-
tive boundary conditions relative to a circle of radius
R = 200. The initial positions of the random walks were
chosen such that the first walker starts at the center of
the circle and the second one starts at a distance d0 = 4
from the first one.

Appendix B: Derivation of the Rice
distribution

The Rice distribution can be derived by considering the
probability density function of the scalar distance of a
random walk from the origin of the coordinate system,
given in equation (5). By computing the distribution of
the distances dab and transforming the integral to polar

coordinates, one can compute the distribution, which is
defined to be the Rice distribution:

price(dab, t) =

∫∫
dxdy pab(x, y, t)δ(dab −

√
x2 + y2)

=

∫∫
dRdφRpab(R cosφ,R sinφ, t)δ(dab−R)

=
dab

2Dabt
exp

[
−d

2
ab + d20
4Dabt

]
I0

(
dabd0
2Dabt

)
. (B.1)

Here, I0 is the modified Bessel function of the first kind
[27].

Appendix C: Time-averaged MSRD

The probability density function of the time-dependent
scalar distance d(t) of two particles, performing a Gaus-
sian random walk, is given by the Rice distribution (see
Eq. (7))

In order to compute the time averaged mean squared
displacements of d(t), we take this time-dependent dis-
tribution of distances and compute its mean over a time
interval t ∈ [0, T ], given by

p̃rice = lim
T→∞

∫ T
0

dt price (d, t)

T
. (C.1)

The resulting equation, called p̃rice, represents the prob-
ability density function of having two particles with a
distance d at some point in the given time interval
t ∈ [0, T ].

By performing the substitution u = t/T , this equation
takes the form

p̃rice = lim
T→∞

∫ 1

0

du
dab

2DabuT
exp

[
−d

2
ab + d20

4DabuT

]
×I0

(
dabd0

2DabuT

)
. (C.2)

The equation under the integral,

w(T ) =
dab

2DabuT
exp

[
−d

2
ab + d20

4DabuT

]
×I0

(
dabd0

2DabuT

)
, (C.3)

is uniformly convergent [35], so that we can exchange the
limit and the integral. For T →∞ the function within the
integral converges

lim
T→∞

w(T ) = 0. (C.4)

This tells us that for an infinitely long time interval
t ∈ [0,∞] all distances d are equally likely and that there
are no memory effects of the initial distance d0.

In the next step we compute the mean of the MSRD
δ(d, τ) for such an uniform distribution in the time interval
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t ∈ [0, g] and then compute the limit g →∞. This is given
by

δt(τ) = lim
g→∞

∫ g
0

dd δ(d, τ)

g
= 2Dabτ. (C.5)

Again, we used a substitution of the form u = d/g to
simplify the integral. This is the time-averaged MSRD.

Appendix D: Additional calculations for
radial boundary conditions

For large times, the positions of two particles (i = a, b)
within a circle of radius R are uncorrelated and homoge-
neously distributed

pcirc(ri) =
1

πR2

{
1, ri ≤ R
0, ri > R

. (D.1)

The probability density function for two independent
particles is then given by

pab,circ(ra, rb) = pcirc(ra)pcirc(rb). (D.2)

In order to compute the ensemble averaged saturation
value of the MSRD, δsat,e, we define the distance of the
two particles in polar coordinates (R1, φ1) and (R2, φ2)

dab = |ra − rb|

=

√
(R1 cosφ1−R2 cosφ2)

2
+(R1 sinφ1−R2 sinφ2)

2
,

(D.3)

so that

δsat,e(R, d0) = 〈(dab(t)− dab(0))
2〉pab,circ

= R2 + d20 − 2d0f, (D.4)

where

f(R) =
8

π2R4
×
∫ R

0

dR1

∫ R

0

dR2

[
R1R2|R1 −R2|

×E
(
− 4R1R2

(R1 −R2)2

)]
, (D.5)

and with E(x) being the complete elliptic integral of
x. Here, we define dab(0) = d0. This integral can be
computed numerically.

The time-averaged saturation value of the MSRD is
calculated by assuming that the initial positions of the
particles are homogeneously distributed within the circle
area A and thus we integrate d0 = |r0,a − r0,b| over all
positions of the two particles within the circle:

δsat,t(R) =

∫
A

dr0,a

∫
A

dr0,b δsat,e(d0)

= 2R2 − 2f2. (D.6)

Again, the resulting value of the MSRD δsat,t can be
computed numerically.
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