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Abstract

Three independent approaches to measuring cross-language phonological distance are pursued
in this thesis: exploiting phonological typological parameters; measuring the cross-entropy of
phonologically transcribed texts; and measuring the phonetic similarity of non-word nativisa-
tions by speakers from different language backgrounds.

Firstly, a set of freely accessible online tools are presented to aid in establishing parametric
values for syllable structure and phoneme inventory in different languages. The tools allow re-
searchers to make differing analytical and observational choices and compare the results. These
tools are applied to 16 languages, and correspondence between the resulting parameter values
is used as a measure of phonological distance.

Secondly, the computational technique of cross-entropy measurement is applied to texts
from seven languages, transcribed in four different ways: a phonemic IPA transcription; with
Elements; and with two sets of binary distinctive features in the SPE tradition. This technique
results in consistently replicable rankings of phonological similarity for each transcription sys-
tem. It is sensitive to differences in transcription systems. It can be used to probe the con-
sequences for information transfer of the choices made in devising a representational system.

Thirdly, participants from different language backgrounds are presented with non-words
covering the vowel space, and asked to nativise them. The accent distance metric ACCDIST is
applied to the resulting words. A profile of how each speaker’s productions cluster in the vowel
space is produced, and ACCDIST measures the similarity of these profiles. Averaging across
speakers with a shared native language produces a measure of similarity between language pro-
files.

Each of these three approaches delivers a quantitative measure of phonological similarity
between individual languages. They are each sensitive to different analytical choices, and re-
quire different types and quantities of input data, and so can complement each other. This
thesis provides a proof-of-concept for methods which are both internally consistent and falsifi-

able.
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Chapter1

Introduction

In this thesis, I address the question: Is it possible to derive a meaningful quantitative measure
of phonological similarity between individual languages?

Language similarity is a prominent aspect of any discussion of comparative phonology, but
that similarity is usually based on qualitative, not quantitative judgements. I present three dif-

ferent approaches to calculating a metric of phonological language distance.

11 Background

Many of the most interesting questions in language differences are questions about rate of his-
torical change. Do phonological systems evolve at the same rate in all isolated speech com-
munities? Do they evolve at a faster rate in speech communities who have contact with speak-
ers of other languages? Are all aspects of a phonological system equally prone to change? Do
languages borrow phonological features at a constant rate? Do languages borrow lexemes at a
constant rate (e.g. Lees, 1953)? Do creoles evolve at a different rate from other languages (e.g.
Mufwene, 2001)?

‘Rate of change’ as an expression leaves one of the key variables implicit. We want to know
how much something has changed per unit of time — but what is that something? What is it
we are measuring that we can say has changed? For some of these questions, the answer is
relatively straightforward — the rate of lexical borrowing is a measure of percentage of words in
some defined vocabulary which change. For others, no clear system has yet been defined.

This is partly due to the vagueness of the term ‘similarity’. A language’ is more or less similar

to other languages - but what does that mean? Is it the percentage of shared cognates which is
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important (e.g. Lees, 1953), or the phonemic inventory (e.g. Bartelt, 1989, Bardel and Lindqvist,
2006)? This is often left unspecified (as discussed further in Section 2.2), but it is crucial for
gaining complete answers to questions about similarity.

Similar questions may arise in the fields of second language acquisition and bilingualism:
Does similarity affect the likelihood or amount of transfer from an individual’s first language to
their second? Does similarity affect the likelihood or amount of transfer from their second to
first language? Does similarity affect which previous language is the source of transfer to their
third language (e.g. Major, 2008)? To what extent does similarity between languages affect
the magnitude of the cognitive effects of bilingualism (Section 2.1)? Does similarity to a first
language affect second language production under the influence of alcohol (Nevins, pc.)?

Any scientific explanation of a phenomenon ought to be internally consistent and falsifi-
able. Individual subjective judgements of similarity, even by professional examiners of lan-
guage, do not meet these requirements. (See Section 2.2 and Chapter 6 for further discussion.)
Furthermore, any claim of similarity or rate of change should by definition relate to a measurable

property, so a metric of language distance is required to make such claims.

1.2 Overview

In Chapter 2, Ilook at some of the potential areas of application for a phonological distance met-
ric. I examine the current distance measurements in use in diachronic linguistics in Chapter 3.
In Chapter 4, I present a typological database of phonotactic parameters, and evaluate the suc-
cess of a parameter-based metric. In Chapter 5, I present a comparison of four phonological
representation systems as the bases for a cross-entropy based metric. In Chapter 6, I examine
an existing metric of accent distance used in speech recognition, and compare it to the results

of Chapter 4 and Chapter 5. Chapter 7 compares the all three approaches.
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Chapter 2

Applications of a quantitative measure

of language distance

In this chapter, I briefly examine some of the applications of a quantitative measure of phon-
ological language distance. In particular, I look at the fields of bilingualism, second language

acquisition, mutual intelligibility and diachronic linguistics.

21 Bilingualism

Speaking more than one language has been shown to have cognitive effects in both linguistic
and nonlinguistic domains. In the linguistic domain, being bilingual has advantages in, for ex-
ample, learning new words (Kaushanskaya and Marian, 2009), but disadvantages in e.g. retriev-
ing very-low-frequency words (Michael and Gollan, 2005) and vocabulary size (Bialystok, 2009).
In the nonlinguistic domain, being bilingual gives benefits in many aspects of executive func-
tion, including inhibitory control (Bialystok, Martin and Viswanathan, 2005) and spatial work-
ing memory (Luo et al., 2013).

There are known cognitive differences between monolinguals and bilinguals. However, it
is an open question how much of this is a matter of kind and how much a matter of scale. For
example, Green, Crinion and Price (2007) examine neural markers of vocabulary knowledge in
different speaker groups. They find that the markers which correspond to increased vocabulary
in monolingual English speakers are even stronger for English-Italian bilinguals - a difference in
scale. However, they also find that English-Chinese bilinguals show other markers which “may

reflect additional resources required to process tonal distinctions” - a difference in kind.
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If some differences are scalar, rather than binary, we would expect to also see in those cases
differences between bilinguals whose languages are more or less similar to each other; e.g. dif-
ferences between a Spanish-Catalan bilingual and a Spanish-Nahuatl bilingual. But studies at-
tempting to examine the effect of greater or lesser similarity between the speaker’s languages are
hampered by the lack of an objective measure of linguistic distance. For example, in Bialystok,
Luk and Kwan (2005), the authors wish to provide a detailed description of how “the extent to
which children transfer their skill in one language to the other language depends on the similar-
ity of the systems, phonological structure in one case and writing system in the other”. Yet they
lack a method for assessing the similarity of phonological structure, relying on language fam-
ily as a proxy: “For Spanish—English bilinguals, the languages are similar (Indo-European) and
both are written alphabetically in a Roman script; for Hebrew—English bilinguals, the languages
are different (Indo-European vs. Semitic)”. Assuming that languages from the same family are
similar is not always warranted, as we shall see in Chapter 4. From a cursory inspection, we see
that unlike English, neither Spanish nor Hebrew have a tense/lax contrast, nor a rounding con-
trast in their back vowels, nor a velar nasal. Hebrew, like English but unlike Spanish, does not
have a palatal nasal, does have a palato-alveolar fricative, and has initial sC clusters (Bolozky,
2006). So it is not immediately and unquestionably apparent that Hebrew and English are more
phonologically dissimilar than Spanish and English. A more systematic approach is required to
establish phonological distance between these languages.

Furthermore, since there is no clear divide between dialects and languages (Fishman, 1977),
there is no clear divide between bidialectalism and bilingualism. Claimed cognitive effects of
bilingualism “may also be attenuated or aggravated by factors operating within monolinguals,
such as using different dialectal varieties of a language. To date, little is known about the cognit-
ive demands imposed by dialect use” (Kirk et al., 2014). That is, models of bilingualism which
ignore dialectal variation assume that the difference is one ofkind - and that speakers of multiple
‘dialects’ are one kind, and speakers of multiple languages’ are another. A metric of phonolo-
gical distance could establish a threshold for treating speakers as belonging to the same kind for

the purposes of phonological comparison.



2.2. Second language acquisition 27

2.2 Second language acquisition

How linguistic similarity affects performance has been a topic of great interest in second lan-
guage acquisition research (Major, 2008), particularly the effects of a first language (L1) on a
second (L2), but also the effects of L2 on L3 (e.g. Flynn, Foley and Vinnitskaya, 2004, Rothman,
2o11) and L2 on L1. However, similarity has frequently been poorly defined. In many studies,
genetic similarity is assumed to be the same as typological similarity, which is assumed to be
the same as consensus judgements on how easily speakers of one language acquire the other!
(e.g. Ahukanna, Lund and Gentile, 1981, Selinker and Lakshmanan, 1992, Cenoz, 2001, Bardel

and Lindqvist, 2006). An explicit statement of this position can be found in Corder, 1979:

“There are of course technical and theoretical problems in establishing and meas-
uring degrees of language distance, but the assessment of the learning task un-
doubtedly correlates with some notion of genetic relatedness as established by

studies of language typology...

I suggest... that the collective experience of a community of learning different for-
eign languages does lead to a reasonably realistic assessment of the relative mag-
nitude of the learning task of acquiring any particular foreign language, and that
this largely corresponds to the formal linguistic relatedness of the languages in

question to the mother tongue.”

There are some obvious criticisms of this assumption — languages may be typologically sim-
ilar in some aspects whilst being completely unrelated historically; differences in writing system
or cultural factors may impact ease of acquisition; ease of acquisition is not necessarily symmet-
rical between the two languages; and so on.

Even if genetic similarity alone is used, and can be established to be a relevant factor in SLA
independent of the other types of similarity, it is still of limited use as a metric. Phylogenetic
distance can only be measured relative to other languages within the same family, meaning

acquisition of languages not in that limited set can only be treated uniformly.

'Examples of consensus judgements on how easily students learn different languages include hours of study
required by English speakers to gain proficiency from the US Foreign Service Institute (Interagency Language
Roundtable 2015), or different rates of language proficiency allowance’ from the British Foreign Service depending
on the difficulty of learning the language (Corder, 1979).
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2.21  Psychotypology

An alternative measure of similarity, not used interchangeably with the others, is psychotypo-
logy, which is the individual learner’s perception of how similar their languages are. This may
have a much larger impact on their willingness to transfer words and concepts than the other
types (Cenoz, Hufeisen and Jessner, 2001). However, there does not seem to have been a sys-
tematic study of it; Bardel and Lindqvist (2006) argue that psychotypology is unique to the in-
dividual, and a more global psychotypology therefore cannot be established. There is as yet
no established correlation between any individual psychotypology and other types of language
similarity. It is perhaps assumed that learners make the same assumptions discussed above,
and base their judgements on some combination of typological similarity and ease of acquisi-

tion, and possibly any meta-linguistic knowledge they have about the languages’ history.

2.2.2 Individual phenomena

Finally, a topic of SLA research is the effects of similarity between individual phenomena in L1
and L2 on production and on acquisition (e.g. pronunciation of interdentals, Lombardi, 2003,
use of phrasal verbs, Laufer and Eliasson, 1993). It may be that all similarity-related SLA effects
can be accounted for simply by combining the effects of these individual phenomena, and that
global similarity does not have an independent effect. However, this does not negate the use-
fulness of a metric for measuring overall phonological similarity, as a factor which should be

controlled for (Major, 2008, p. 83).

2.3 Mutual intelligibility in L2

The effects of language distance on second language phenomena are not limited to acquisition.
There have been various studies on the effect of language background on mutual intelligibility,
examining whether sharing an L1 with the speaker helps a listener to understand speech in an
La.

The results of these studies have been somewhat mixed. Some studies (e.g. Wijngaarden,

2001, Bent and Bradlow, 2003) found that language background has no bearing on intelligibility,
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whilst others (e.g. Wang and Heuven, 2005, Stibbard and Lee, 2006) found that listeners find
speakers of the same L1 easier to understand in the Lz.

Since the studies do not all use the same set of languages, it is difficult to directly compare
their results. ‘Shared language background’ may be more significant for some pairs of languages
than others; a study that found no difference between Norwegian and Swedish speakers in a
second language might not be particularly meaningful. Without a metric of phonological sim-
ilarity of the Lzs, it is impossible to control for this factor.

Pinet, Iverson and Huckvale (2011) measured the similarity of speakers’ and listeners’ ac-
cents in their mutual intelligibility study using a measure of accent distance called ACCDIST.
This method measures the similarity of the acoustic features of vowels in individual recordings®.
They found that there was a significant correlation between talker-listener accent similarity and
mutual intelligibility. I have therefore decided to compare this semi-acoustic measurement to

the phonological metrics which I have developed. For more details, see Chapter 6.

2.4 Diachronic linguistics

There have been a variety of metrics of linguistic distance proposed in the field of historical
linguistics, which I examine in Chapter 3, to complement the comparative method which forms
the basis of the discipline. An additional metric based on a different set of data can provide
additional insights (Longobardi and Guardiano, 2009). Since the majority of metrics used in
historical linguistics have been based on cognacy, they are not able to be extended to unrelated

languages.

*See Section 6.2
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Chapter 3

Existing metrics in diachronic

linguistics

In this chapter, I will give a brief overview of the comparative method, the principal tool of
diachronic linguistics, and approaches to language distance based on its results. I will then give

brief overviews of two alternative approaches which can be applied to phonology.

31 The Comparative Method

The relationships between languages for which we have no historical (written) record are primar-
ily established using the comparative method. This method is very successful, though not without
its limitations.

Its basis is the Neogrammarian hypothesis “sound laws suffer no exceptions” (Brugmann and
Osthoff, 1878, in Campbell, 1998, p. 18). That is, diachronic changes in sounds are phonologically
regular: all' words containing the relevant sound or sound sequence are affected in unison.

Because of this regularity, sound correspondences can be established between dialects or lan-
guages whose vocabulary is drawn from the same source language. Words with similar meanings
are compared to see which sounds in one language correspond to which sounds in the other. If
these words are found to be of the same origin, they are called cognates.

From these sound correspondences, the proto-sound can be reconstructed. The more re-
flexes (descendent words) which have a given sound or feature in the specific dialects examined,

the more likely that it was present in the ancestral word. There are also universal tendencies

"This does not exclude variation in pronunciation of individual lexical items, but those are exceptional.
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which affect the likelihood of there having been a particular proto-sound. Firstly, certain in-
ventories are more natural than others; for example, Jakobson (1962, p. 528) challenges the tra-
ditional reconstruction of Proto-Indo-European with voiceless, voiced and voiced aspirated stop
series on the grounds that “no language adds to the pair /t/-/d/ a voiced aspirate /d"/ without a
counterpart /th/, whilst /t/,/d/, and /t"/ frequently occur without the comparatively rare /d?/".
Such universal or near-universal implications must be considered. Secondly, some sound changes
are more natural than others — assimilation of place or voicing is more likely than spontaneous
change unrelated to the surrounding segments. Similarly, certain sound changes are more likely
to occur in one direction than the other — a voiceless sound becoming voiced between vowels
is more likely than devoicing between vowels, for example.

From proto-sounds and reflexes, the proto-language can be reconstructed. The validity of
the comparative method has been proven by its successful application to many language fam-
ilies, including the Romance languages, whose proto-language can be compared to written re-
cords of Latin.

For example, let us examine the reflexes of Latin [k] (see Table 3.1).

The Italian sound [k] which begins (capra) goat corresponds to the Spanish sound [k] which
begins (cabra) goat. This is not a coincidence, since the same correspondence holds across mul-
tiple lexical items, and across multiple languages. These sound correspondences imply that
these words are cognate.

The French sound [k] also corresponds to the Italian/Spanish/Portugese [k] — in some words.
In others, the French sound [[] corresponds to their [k]. However, the appearance of this [[] is
predictable - it only appears where the Italian [k] precedes an [a].

We conclude that the proto-sound was a [k], and not an [[], for the following reasons: the
majority of languages examined have a [k]; the appearance of [[] in French is conditional, whilst
[k] in other languages appears throughout; since [[] appears to have been conditioned by [a],
the change to [¢] in (chévre) occurred later, so the Italian/Spanish/Portuguese forms of that
vowel are more conservative, and may be more conservative regarding [k] too.

Comparing these conclusions to the written evidence we have for Latin, we see that the

Italian form is indeed closest to Latin, and the proto-sound was [k], both before [a] and before

[o].
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TABLE 3.1: Reflexes of Latin /k/
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French  Portuguese Spanish  Italian Latin
) k k k k (ka)
[fevr/ /kabra/ /kabra/ [kapra/

goat cheévre cabra cabra capra capra
138/ [kaw/ /kane/

dog chien cdo (perro) cane canis
[fato/ [kaftelu/ /kastiko/  [kastello/

castle chateau castelo castillo castello castellum
[[ate/ /katar/ /kantar/ /kantare/

sing, chant chanter  cantar cantar cantare canere
[fas3/ [késaw/ /kanBjon/ /kantsone/

song chanson cangio canciéon  canzone cantus
k k k k k (ko, ku)
/kor/ /korpu/ /kwerpo/  [korpo/

body corps corpo cuerpo corpo corpus
/kuvrir/ /kobrir/ [kupric/ [koprire/

cover couvrir  cobrir cubrir coprire cooperire
Jku/ Jkwefo/ /kollo/

neck cou (pescoco)  cuello collo collus

Despite its successes, the comparative method is limited in its ability to recover dialectal or

social variation (Campbell, 1998, p. 140), or data beyond a certain time depth. Therefore, several
methods have been developed which use ‘language similarity’ to complement the comparat-
ive method. In Section 3.2, I examine methods based on cognacy, and in Subsection 3.3.1, an
alternative based on synchronic parameters.

3.2 Cognate based similarity

There are several methods which take established cognates as a starting point for computing
language distance. Their results may be used in historical linguistic inquiry, or applied to the

synchronic problems already discussed.

3.2.1 Lexicostatistics

Lexicostatistics describes the similarity between languages as the percentage of basic cognates

which they share. It is primarily used for grouping languages when there is a paucity of data
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(Crowley and Bowern, 2010). Both Crowley and Bowern (2010) and Campbell (1998, p. 180) cri-
ticise the choice of items in most instances as not being particularly scientifically rigorous; it is
difficult, if not impossible, to derive a universal ‘basic vocabulary’ which corresponds to cultures
in both the Arctic and the tropics.

Lexicostatistics has previously been extended to measuring not just the degree of similar-
ity, but the timespan since the separation of two languages, a method called ‘glottochronology’.
This has largely been discredited (Campbell, 1998), since it rests on the dubious assumption the
average retention rate of core vocabulary is constant at around 80% per 1000 years. ‘Core vocab-
ulary’ is a problematic concept, as we have said; beyond that, the borrowing of core vocabulary
may not occur regularly, but in bursts (Crowley and Bowern, 2010); and the exact figure was de-
rived from Lees’s (1953) study of only 13 languages with a written history, hence all with a literary
tradition, and all from the same language family.

Most problematic is the question of which 20% of the vocabulary changes (Crowley and
Bowern, 2010). The same 20% each time, or a different one? After 3000 years, languages which
started with identical core vocabularies could be anywhere between 40% and 80% similar, even
assuming the constant rate theory is correct.

This criticism is not unique to lexicostatistics; it can be levelled at any method which groups
languages based solely on synchronic similarity, such as those in Subsection 3.3.1 and Chapter 5.
Such methods may however provide additional insights into the evolution of established lan-
guage histories. For example, where lexical items have been borrowed, the source languages
may be identified from similarities and differences in syntactic and phonological parameters,

which do not necessarily exactly match the lexicon.

3.2.2 Cognate distance

Rather than comparing the percentage of cognates shared between two languages, the similarity
of the cognates themselves can be measured.

Levenshtein distance, also called edit distance, is a measure of similarity between two se-
quences of characters, based on the number of insertions, deletions and substitutions necessary
to transform one into the other. It can be used to measure the similarity between two cognates,

by representing the cognate as a sequence of phonemes. It was applied to dialects of Irish Gaelic
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by Kessler (Kessler, 1995), and to Dutch by Nerbonne and Heeringa (Nerbonne and Heeringa,
1997)-

McMahon and McMahon (2005) criticise Nerbonne and Heeringa’s work for being insuf-
ficiently phonetically motivated: treating all differences between segments equally, treating
substitution as equal to insertion plus deletion, and providing no framework for matching seg-
ments in the event of, for example, metathesis. With Heggarty (2005), they propose a numerical
method of measuring the ‘phonetic’ similarity of individual segments. The reflexes to be com-
pared are aligned using certain features of the ancestor word, such as the order of consonants
and vowels, or the presence of nasals. This allows them to compare corresponding segments
even when insertions or deletions have taken place. Segment similarity is then measured using
a closed set of articulatory and acoustic parameters, similar to SPE-style distinctive features. The
core parameters for consonants are those of the IPA classification: location and degree of stric-
ture, and voicing. The parameters are weighted by the number of different options which are
cross-linguistically common. For example, two segments having identical voicing is given less
weight than two segments having the same place of articulation, since most languages contrast
only two types of voicing, but more locations.

The relative similarity of a set of dialects can be established by aggregating the similarity
scores of a set of cognates, perhaps chosen from the most common words as established for a
principal dialect. Unfortunately, since this method is completely dependent upon cognates, it
cannot be extended to unrelated languages.

However, a parallel method can be used on the production of a given text by speakers of
different language backgrounds, as I discuss in Chapter 6.

Alternatively, by examining the patterns of occurrence of such features in a text much longer
than a single word, comparisons can be made without cognates, as I discuss in Subsection 3.3.2

and more fully in Chapter 5.

3.2.3 Phylogeny

There are several different approaches which use the results of cognate and sound-change iden-

tification to generate phylogenies.
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Nakhleh, Ringe et al. (Ringe, Warnow and Taylor, 2002, Nakhleh, Ringe and Warnow, 2005,
Nakhleh, Warnow et al., 2005) have used shared ‘linguistic characters’ to generate a ‘perfect
phylogeny’ of Indo-European - that is, a tree with the minimal number of branches, and no du-
plication of innovations. Their characters are multi-state (not necessarily binary) parameters.
One example is a particular merger, which is a binary parameter: did it or did it not occur in
each language? Another is a particular meaning, which is a non-binary parameter: which one
of several cognates is used for this meaning in each language? These characters are drawn from
‘phonological, morphological and lexical evidence’, from various criteria, but not aiming at a sys-
tematic and/or exhaustive exploration of any single domain. Their technique is quite successful
at describing the evolution of a language family which has proceeded in a mainly tree-like fash-
ion.

Gray and others (Gray, Greenhill and Ross, 2007) use the binary presence or absence of in-
dividual cognates in a language as their characters, and search for the most probable tree which
accounts for the data, called a Bayesian Phylogeny.

Finally, there are programs such as NeighborNet, which simply calculate the number of
shared characters between languages and plot the resulting distances as a network, rather than
as a tree. Such characters may be drawn from any or all types of linguistic evidence, such as
those which are used in generating a Perfect Phylogeny or Bayesian Phylogeny.

Whilst phylogenies are a useful visualisation of hierarchical or clustering structures, they
are not intended to provide a numerical measurement of similarity, particularly of relative sim-
ilarity of non-overlapping pairs of items. Neither of the investigations used solely phonological
characters, and therefore neither makes any statement about the similarity of the phonology
of the languages, as opposed to their inter-relatedness. However, this is due to the goals of the

investigations, rather than any inherent restriction.

3.3 Alternative approaches to language distance

3.3.1 Parametric typology

All of the characters used in generating the phylogenies discussed above are derived from the

results of the comparative method. It has generally been held that classifications based instead
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on syntactic or phonological parameters have nothing to do with the lexical classification of
languages — that is, with the history of languages as established by the comparative method.

Sound correspondences are so unlikely to occur by chance that they are valid evidence of
a historical relationship (Ringe, 1992). But it is generally held that typological similarity, par-
ticularly phonetic or phonological similarity, being much more likely, does not provide such
evidence. For example, the fact that Welsh and Zulu both have a voiceless lateral fricative is not
evidence of a relationship between them.

However, more recent work has shown that syntactic typology may provide insights into his-
torical relationships (Nichols, 1992). Longobardi, Guardiano et al. (2009, 2012, 2013) examine the
values of 63 syntactic parameters drawn from the nominal domain across 23 languages (primar-
ily Indo-European, some Semitic and some individual). From this typology, they calculate the
Hamming Distance between language pairs — effectively the proportion of independent para-
metric settings which differ between them — and use this to construct phylogenetic trees. These
trees are similar, but not identical, to those derived with the comparative method; the differ-
ences reflect, at least in part, known contact between people groups. This Parametric Compar-
ison Method (PCM) is claimed to offer valid new insights, casting light on community contacts
which are not visible in the lexicon, or on developments which were previously considered too
far in the past.

It is commonly accepted that the phonology of a language changes more rapidly than its
syntax (though without a consistent metric, this a somewhat empty statement). If true, apply-
ing the PCM with phonological parameters will not reveal older history than the comparative
method. Nonetheless, it may offer a valid way of talking about language distance without mak-
ing any claims about history. And since it does not rely on cognates, it offers an alternative
avenue of exploration for those situations in which the comparative method cannot be applied,
such as predicting the mutual intelligibility of L2 speakers with unrelated first languages.

The application of parameter-based measurements to phonology is discussed in Chapter 4.

3.3.2 Entropy

The typological approach requires a phonological analysis of the language as a whole to be per-

formed. However, it would also be useful to have a metric which only requires a small quantity
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of transcribed speech, and not necessarily a sample chosen to be representative of any particular
property. For this reason, I am also looking at a metric based on cross-entropy.

Juola (1998) derives an Indo-European family tree from the similarity of translations of a
written text”. The similarity of two strings of characters is calculated using their cross-entropy.
Cross-entropy is a measure of how effectively a probabilistic model of one text can predict each
subsequent orthographic letter of the other. The resulting tree closely aligns with the results of
the comparative method.

Juola’s experiments were limited to languages which share an orthography, but this tech-
nique can be expanded to any representation of speech as a series of discrete characters. The

application of cross-entropy to phonology is discussed in Chapter 5.

*Translations of the Bodleian declaration, as gathered by the Oxford University librarians, in one experiment,
and translations of samples from the book of Genesis in another.
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Nidaba : A segment distribution
database for measuring language

distance

41 Introduction

In this chapter, I investigate typological distance. The scope of the investigation is segmental
phonology; in particular, syllable structure and its phonotactic consequences, as well as invent-
ory structure.

In Section 4.2, I discuss mathematical approaches to measuring similarity in parametric or
constraint-based systems. I have chosen 52 phonological parameters whose values can either
be determined from lexical data or are prerequisites of such phonemic transcriptions.

In order to ensure consistency in the values assigned to parameters, and to provide tools for
other researchers in this area, I have constructed a typological database of phonotactic distri-
butions, called Nidaba ( Section 4.3 on page 44). Section 4.4 on page 48 is a case study in which
Nidaba is used to analyse Sylheti, an Indo-Aryan language. Section 4.5 on page 60 compares
Nidaba to existing databases and computational tools. The data available through Nidaba are
described in Section 4.6 and Section 4.7.

Section 4.8 on page 65 lists the 52 parameters and their values for 16 sample languages,

and Section 4.9 on page 99 contains the resulting distances between language pairs.
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4.2 Mathematical approaches

The phonological space which a language can exploit may be described using either constraints
or parameters. These define the set of possible derivations, or in a derivation-free theory, the set
of possible inputs and/or outputs (Odden, 1995). Optimality Theory is formulated in terms of
constraints, for example, whereas Government Phonology and various typological studies such
as Hayes (1995) are formulated in terms of principles and parameters.

In the following sections, I discuss the mathematical methods which can be used to measure

similarity in constraint- or parameter-based systems.

4.21 Constraints and correlation coefficients

Firstly, I examine methods for measuring similarity in constraint-based systems. There are two
correlation coefficients that can be used to measure the agreement between sets of ranked items
(such as phonological constraints drawn from a universal set). Kendall’s tau is a coefficient of
concordance: it measures the proportion of pairs of ranked items which appear in the same
order (are concordant) in both sets. Spearman’s rho can be viewed as a coefficient of weighted
concordance. Items whose ranks are inverted contribute more to disorder if their ranks are more
different. Both measurements are symmetrical about o, and range from -1 to +1. However, they
do not give the same values except when there is perfect order or perfect disarray. Although
Spearman’s coefficient is probably more widely known than Kendall’s, Kendall’s Tau has a more
obvious interpretation for linguistic purposes: it directly examines which of a pair of constraints

is more highly ranked, without reference to how many other constraints intervene.

Spearman’s Rho is defined as:
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where n the number of items in a set, d is the difference in rank between each pair of items.

Kendall’s Tau for measuring agreement between sets including tied items is defined as:
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where

U= %Z(u(u— )V = %Zv(v— 1)

S is the total score of concordant (+1) and discordant (-1) pairs; u is the number of tied pairs
from the first set, v the number of tied pairs from the second, and n the total number of pairs in

a set.

Data requirements

If the metric is to be capable of distinguishing accurately between all known human languages,
the probability of the parameters having identical values in both sets by chance should prefer-
ably be beneath the 5% threshold. To quote Ringe (1992): “resemblances between languages
do not demonstrate a linguistic relationship of any kind unless it can be shown that they are
probably not the result of chance.”

There is a minimum number of constraints required for similarity in rankings to be signific-
ant. For Spearman’s rho rs = 1 (identically ranked constraints in both languages) to occur with
a probability of less than 0.05, five constraints must be used. As the rankings become more dis-
ordered, more constraints are needed for 75 to be significant. For example, a moderately strong
correlation of r¢ = 0.5 requires at least 13 constraints to be considered more than a chance

result.

4.2.2 Parameters and Hamming Distance

Having looked at approaches for constraint-based systems, we turn to measuring the similarity
of parametric descriptions of languages. As we saw in Subsection 3.3.1, Longobardi and Guardi-
ano (2009) do so with the Hamming Distance.

Hamming Distance

The Hamming Distance is the proportion of differently valued parameters:

d
t+d

H:
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where d is the number of differently-valued parameters, and ¢ is the number of identically-

valued parameters.

Data requirements

For similarity in Hamming Distance to be significant, it must be calculated from at least 15 in-
dependent binary parameters, which I derive as follows.
Out of n binary-valued parameters, the probability of k£ of them sharing values between two

languages is:

I3

k
C
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Since the subset of parameters which share values is not predetermined, there are multiple

[\]

different combinations of parameters which could give rise to the same outcome. The probabil-
ity is therefore the sum of the number of ways of choosing 1...k from 7 (the cumulative binomial
probability).
Assuming the number of known human languages to be approximately 7000 (Lewis and
Gary, 2017), the 5% probability threshold for identifying individual languages is determined by:
»C  0.05

k2 2 1070
2" <7000 0

and the threshold for a “borderline useful” result is:

e

k2 1074
271

The binomial coefficient is symmetrical:

so the probability of all the parameters having the same value is the same as that of none of them
being the same; the probability of only one parameter being identically-valued is the same as

only one of them being differently-valued, and so on.
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For a simple binary test of whether two languages are the same or not - where a completely
identical set of parameters implies that they are - at least 15 parameters are necessary, using
these figures.

This minimal parameter set would obviously not be useful in comparing the degree to which
languages are similar. The greater the proportion of parameters differing in value, the smaller
the Hamming Distance, and the larger the size of the parameter set needed for the Hamming
Distance to be significant. Longobardi and Guardiano (2009) used a set of 63 parameters, which
allows for between o and 13 parameters differing in value whilst maintaining significance, as-
suming that the parameters are all independent. However, this is not necessarily a valid as-
sumption: some parameters are made redundant (or set to a default value) by particular values
of others. In fact, only 16 of the 63 parameters have no such dependencies. Longobardi and
Guardiano handle this by only including them if they are currently independently set; only a
third of the language pairs examined have probabilities low enough to be significant, but with
over a hundred pairs, this is still a useful result.

Subsequent experiments using the PCM have used an updated parameter set - for example,
Longobardi, Guardiano, Boattini et al. (2012) uses 56 parameters, of unrecorded dependencies.
This allows for highly-related language pairs to have up to 10 parameters differing in value, whilst

being at a significantly low probability.

4.2.3 Interchangeability of representations

In the abstract, parameters and constraints are logically intertranslatable: to say that three items
are ranked A>B>C is the same as “Is A > B? Yes.” “Is B > C? Yes.” “Is A > C? Yes.” '

Therefore, whilst one formulation or another may be preferable for explanatory reasons, if
a metric of language distance can be produced for one, it will be applicable to both. Since most
existing typological data is formulated in terms of parameters, rather than constraints,” my im-
plementation in Chapter 4 is likewise based on parametric data. However, there is in principle
nothing to prevent grammars based on constraint rankings from being compared using Spear-

man’s Rho or Kendall’s Tau, as outlined above.

'For more information on translating between constraints and binary parameters, see comparison sort algorithms
in e.g. The Art of Computer Programming: Volume 3: Sorting and Searching (Knuth, 1973).
*c.f. Gordon’s (2002) typology of stress
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4.3 Nidaba overview

A set of typological parameters used as input to the Hamming Distance metric ideally has the
following characteristics: Firstly, there is a reproducible methodology for deciding parameter
values, which gives consistent results when applied by different researchers, and is extensible to
new languages. Secondly, the parameter set is flexible, and can be adapted to different theoret-
ical positions, so the consequences of those positions for Hamming Distance can be contrasted.

To aid in this, I have written a database and lexical analysis tool, called Nidaba. Its core
functions are the search and comparison of segmental patterns in transcribed lexicons.

Nidaba contains wordlists drawn from a variety of sources, which have been transcribed
phonemically, either by myself or the original authors. (The principles used in determining
phonemic representation for a given analysis of each language are stored in Nidaba, and altern-
ative mappings can be uploaded by other researchers if they prefer another analysis.) For each
language where such data is available, the frequency of each lexical item is listed, principally
drawn from film subtitle data (see Section 4.7). From this source data, consonant or vowel se-
quences can be extracted from different positions within the word (see Subsection 4.3.2). The
syllabic parameter values can be derived from these sequences. The values of the vowel and
consonant parameters are derived from the phonemic transcription chosen.

The values so derived have been manually checked against other sources where these exist,

and any discrepancies noted.

4.31 Input data

To analyse a language with Nidaba, two sets of input data are required: firstly, a list of lexical
items in some transcription system, together with any data the researcher would like to tag items
with (e.g. English gloss, part of speech, origin ofloan items, frequency in some corpus); secondly,
a conversion to IPA transcription.

Initially, this conversion will be a simple phonetic mapping. This stage allows the researcher
to confirm the phonetic inventory of their initial transcription, identifying any typographical er-
rors (e.g. [c] in place of [k]). The mapping system can handle combinations of characters, using
alongest-match-first approach. This allows for lexicons derived from semi-regular orthographic

systems, containing digraphs or loan words which follow different pronunciation rules.
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Once a lexicon has been uploaded, the researcher can compare the occurrence of different
segments in different positions (word initial, medial and final), which can assist in identifying
allophones. Once the researcher has completed a phonemic analysis, the list of lexical items
can be retranscribed with a new, phonemic, mapping, for use in further analysis.

By combining word lists with transcription conversions, we derive a ‘doculect) a particular

documentation of a dialect, which is transcribed in the IPA (nidaba.co.uk/Contents/Doculect).

Since a word list can be associated with multiple conversions, this allows a choice of analysis
without any data loss; for example, I have chosen not to use the linking R of the DISC transcrip-
tion in my IPA representation of English, but another researcher can include it in their own

analysis by using a different conversion (nidaba.co.uk/Contents/TranscriptionConversion).

4.3.2 Pattern retrieval

Since IPA symbols have static values, they can be pre-assigned place and manner values, and
sorted into vowels and consonants3. Using pre-constructed regular expressions*, Nidaba auto-
matically locates certain combinations of word edges, vowels and consonants.

For any given doculect, the researcher can view word initial, medial or final sequences of
vowels or consonants. These sequences are displayed with the number of lexical items in which
they are found, and a link to all known examples. This latter feature can help in discovering
commonalities, such as all examples of a given sequence deriving from the same morpheme.

From this basic overview, more detailed searches can be conducted. The researcher can
specify properties of sequences such as length, number of items, or sonority profile; place, man-
ner and/or voicing features; and part of speech or other lexical tags, such as loan words of a
particular origin.

Nidaba also generates composite properties for each sequence from the relevant lexical
items. For example, if corpus frequency data is available, Nidaba will give the total frequency of
a sequence summed over all items.

If lexical items have associated frequency data, Nidaba can produce total and average fre-
quency statistics for any given pattern retrieved. If token frequency is not available - for example,

in an unwritten and unbroadcast language - Nidaba also produces the number of items in which

$Mapping IPA symbols to a user’s feature set of choice is an extension goal.
*i.e. search patterns to be located in a longer text
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a given sequence occurs in the lexicon, and what those items are. Each sequence is linked to its
list of source words, to verify the original context.

By filtering out sequences only found in relatively few lexical items, or with very low fre-
quency, the researcher can exclude noise arising from errors in input data, loan words or re-

gional variants (nidaba.co.uk/Tools/CompareSets). Because this data is not excluded automat-

ically, users can compare marginal sequences - such as [sf] in sphere - with non-existent se-
quences.

Nidaba has a default set of binary features for every IPA segment known to the database,
covering place, manner and voicing. These features are not hard-coded, and can be straightfor-
wardly replaced with alternatives; I hope to make this functionality available through the web
interface in a future version. These features are available to the pattern retrieval tool, simplifying

the task of examining the contexts in which segments appear.

4.3.3 Comparison

The results of the detailed searches can be automatically compared, making it easy to see which
sequences occur word-initially but not word-finally; in nouns but not in verbs; or in high fre-
quency items but not in numerous ones (e.g. English [d], which is the most frequent word-initial
consonant, but only occurs in a couple of dozen items).

These comparisons are not limited to a single doculect or even language. As well as cus-
tomisable sequence set comparisons, Nidaba also has two default comparison pages designed
to give a quick overview of the similarities and differences between multiple doculects. The
first presents sequences located by a set of default searches, including multi-consonant initial
sequences, word final consonants and sonority violating sequences. The second automatically
calculates parameter values from the results of such searches, and provides researchers with
links to the relevant lexical items.

Finally, Nidaba has a tool for locating subsequences. For example, the researcher can divide
all word-medial consonant sequences into sequences also found word-finally (‘codas’), and any
following consonants (‘onsets’)®. This data can then be fed into the set comparison tool men-

tioned above, and word-internal and word-edge ‘onset’ and ‘coda’ sequences compared.

‘Onset’ and ‘coda’ here being terms of convenience for particular subsets of consonant sequences, not commit-
ments to a particular syllabification.
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4.3.4 Accessing Nidaba

The principal use case is through a web interface, with data stored centrally and potentially
made accessible to other researchers. It is available at the URL nidaba.co.uk.

Data which has been uploaded unrestricted can be viewed by anyone. By contrast, to up-
load data, users need to register for an account. The uploader then maintains control over the
accessibility of their data. They can choose to make their data available to all, or they can share
it with only named collaborators.

The software is open source, and is available at bitbucket.org/selizabetheden/nidaba. Users

can also download the source code to run a local copy of Nidaba, for use with very sensitive data
or without a reliable internet connection. However, this removes access to inter-language com-
parisons, because the database itself is not downloadable. Uploaders are however encouraged
to provide URLs to public domain lexicons elsewhere, which could then be imported into the
local copy of Nidaba.

Finally, users may also wish to run a local copy to make custom modifications, but I would
prefer to receive suggestions for any useful modifications so that they can be implemented in

the main web app.

4.3.5 Further applications

The set of computational tools I have outlined here were primarily designed for collating and
analysing data to provide syllable structure parameter values. However, by making every step
explicit and configurable, Nidaba has several secondary uses, including in experimental set-up

and field work. For example, it can be used to:

- create a set of experimental stimuli from a set of constraints, such as ‘words with a min-

imum frequency of  with branching onsets’
- locate possible errors in transcriptions via unique distributional patterns
- locate cognates using shared glosses or phonemic features
- generate minimal pairs

- collaborate with other researchers during data collection, editing and analysis


nidaba.co.uk
bitbucket.org/selizabetheden/nidaba
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- compare the effects of different phonemicisations
- find data, sources and collaborators for new languages

Nidaba contains functions for set comparison. Rather than manually comparing the res-
ults of searches, a user can specify two separate sets of criteria, and receive a list of segments
which match either or both. The most basic use of this tool is in locating or verifying positional
allophones. However, criteria for comparison can also include type or token frequency, part of
speech, or other factors which may contribute to variation. Comparisons can also be performed
with other doculects.

The segmental properties of a language are not interesting only in isolation, but in how
they relate to languages of the same family, or with which they exchange lexical items. Nidaba
contains multiple tools to aid in the investigation of cognacy and loanword adaptation.

Using the custom tagging system, lexical items can be glossed in multiple languages. Prop-
erties of these glosses can be used in filtering results to establish correspondences between pu-
tatively cognate items. Nidaba also contains a “word comparison” tool for comparing lexical
items across multiple doculects, based on whole or partial overlap in transcription or gloss.

Nidaba contains a tool for generating minimal pairs. This tool provides examples of all in-
stances in which transcriptions differ by only a single segment. Examples are grouped by con-

trasting segments, illustrating not just minimal pairs, but minimal triplets or larger sets.

4.4 Case study: Sylheti

In this section®, I shall demonstrate how Nidaba can be used to analyse a language. I look at
Sylheti, an Eastern Indo-Aryan language spoken in Bangladesh, as well as in London and other

diaspora communities.

4.41 Input data

The input data consists of a lexicon compiled by the SOAS Sylheti Project up to November 2016
(SOAS Sylheti Project, 2015). The lexicon was imported into Nidaba from Fieldworks Language

Explorer with minimal editing (e.g. column labelling). Each complete entry contained a Sylheti

®Parts of Section 4.4 originally appeared in Eden, in press
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transcription, part of speech data, English gloss, and additional tags such as a Bangla (‘Standard
Bengali’) gloss.
Sylheti is for the most part unwritten, with speakers writing in Bangla, the medium of edu-

cation; token frequencies are therefore not readily available, and not analysed here.

4.4.2 Phonemic analysis of consonants

The following consonants were present in the lexicon, once any typographical errors had been
eliminated as discussed above:

TABLE 4.1: Full set of consonants used in Sylheti phonetic transcription

p blt dit 4|F &k g
f s z|s I X h
mj] n) 1 1

I ¢ I

Using Nidaba’s pattern retrieval tool, I identified the subset of these consonants found as
singletons, not neighbouring any other consonants (Table 4.2). Those consonants not found in
all positions (initial, medial and final) are in parentheses; consonants not found as singletons in

any position are replaced with a dash.

TABLE 4.2: Sylheti singleton consonants

(p) bt dit d|F (&) |k g
f s z |- I X (h)
m n - (n)
I (1)

Nasals

One example of a positionally-dependent consonant is the retroflex nasal [n], which is only
found preceding retroflex stops. Given the relative incidence ofhomorganic nasal-stop sequences
to heterorganic sequences for other nasals, and the complete absence of any alveolar nasal-
retroflex stop sequences, I conclude that [n] is an allophone of /n/.

The velar nasal [g] is not found word-initially, and like the other nasals, is most commonly
found in homorganic sequences. Whilst found in many fewer items than the labial or alveolar

nasal — comparing only instances in medial or final position — I do not conclude that it is an
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allophone of /n/. Alarge proportion of word-medial sequences containing [] are heterorganic,
and the majority of word-final occurrences are in isolation. It is found contrasting with both

/m/ and /n/: [gam] sweat; [gan] song and [gay] river.

Retroflex flap and stop

Like the velar nasal, the retroflex flap [{] is also not found word-initially.

By contrast, the voiced retroflex stop [d] is only found word-finally in two items, [bleid]
blade (of grass) and [bered] bread. These are almost certainly borrowed: both items have syn-
onyms with Bangla cognates, and English alveolar stops are borrowed as retroflexes in most
Indo-Aryan languages. Nidaba includes a word comparison tool, which locates all items in the
selected lexicons which share a (partial) gloss, transcription or orthography.

These two consonants are not quite in complementary distribution in word-medial posi-
tion. [d] is found word-medially between two vowels in 11 items, whereas [] is found in 112. [d]
is also found following [n] and as a geminate; and in [mardal] to strain and in [dalda] Dalda, a
brand name. [{] is found preceding [b], [d], [1n], [t], [d], [k], and [[]; following [m]; and in [fif{a]
ant, [laxyi] wood, [zogra] argument and [lengra] lame.

The distribution of these two sounds in Sylheti appears to be similar to that in other Indo-
Aryan languages, such as Bangla and Hindi, including the apparent contrast found in loan words
(Dasgupta, 2003, Masica, 1991, p. 91 & p. 97, Sa, 2001).

Both of these sounds are found contrasting with the voiceless retroflex stop [{]. For example,

[at] eight versus [ay] (third) month and [dali] solider versus [tali] pan.

Affricates

The postalveolar affricate [d3] is not found intervocalically in Sylheti; the Sylheti cognates of
Bangla words containing [d3] are realised with [z] (Ferdous p.c.). This is the same development
found in Assamese and neighbouring Bengali dialects (Masica, 1991, pp. 95-95). With the devel-
opment of fricative [z] from the voiced stop [j] (via [d3]), Sylheti now has a voicing opposition
in its fricatives, unlike most Indo-Aryan languages. For example, [sal] ash versus [zal] net.
Using Nidaba'’s transcription search, I find that [d3] is only present in the contexts [nd3] and

[d3d3]. Appearances in other contexts are as a variant of [z], possibly Bangla: [xo1ldza] (a variant
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of [xo1lza] liver); [radzniti] (a variant of [razniti] politics); [tordzoni] (a variant of [forzoni] ring
finger); and as an English loan [sadzest-xor] to suggest.

[] is found individually predominantly in loan items: [€feri] cherry, [§okolet] chocolate,
[biff] shore (beach), and [proffur] enough. Like [d3], [f] is found in the contexts [nff] and [{]].
Otherwise, it is found only in [laltfe] reason, [ffup] quiet and [ffok] bright. The vast majority
of [[]-initial Bangla glosses in the lexicon correspond to [s]-initial Sylheti items. Nidaba allows
filtering of results based on custom tags, returning only items with e.g. [ff]-initial Bangla glosses.

The majority of nasal-affricate sequences correspond to Bangla nasal (vowel) - affricate se-
quences. It appears that post-nasal position is enough to protect the affricate from lenition,
which accords with the cross-linguistic phenomenon of post-nasal fortition.

Based solely on the distribution of these two affricates in native Sylheti words, I would con-
clude that they behave, and should be treated, identically. However, native speakers produce
loan items differently in the two cases: [d3] is pronounced as [z], but [[] is retained. It may be
that Camden Sylheti is transitioning or has already transitioned to treating [ff] as a phoneme in

its own right.

Other fricatives

The retroflex fricative [s] is only found before the retroflex stop [t]; it is an allophone of either
[s/ or [[/, both of which occur independently.

The glottal fricative [h] is not found in consonant sequences (except for the single item
[brahmi] ¢ype of plant). 1t is found word-initially but not finally, and contrasts with the other
fricative phonemes, e.g. [xasi] knife, [xafi] cough, and [xahi] bowl. [h] predominantly corres-
ponds to Bangla [[], with 61 [[]-initial and 20 [h]-initial Bangla translations of Sylheti [h]-initial
words. Unlike in Assamese, [h] is not an allophone of [x]: [hor] to move contrasts with [xor] to
do.

Instead, [x] and [k] are allophones. [k] is found preceding or following a high vowel, as a
geminate, and in a few loan items, with [x] found elsewhere. Given the existence of a number of
loan items with [k] where [x] would usually be expected (e.g. [nekles], [kamputor]), itis possible
that the allophony rule has become fossilised. For example, the borrowed word [r1fka], rickshaw,

has had metathesis applied, but [k] is retained as though still in the environment of a high vowel.



52 Chapter 4. Nidaba : A segment distribution database for measuring language distance

We may see a split into two separate phonemes over the next few decades, particularly if there

is an influx of English loanwords into Camden Sylheti.

Labials

The voiceless labial stop [p] is found only infrequently, and predominantly in two environments:
following a labial nasal, and word-initially in the sequence [pr]. Items which are cognates with,
or loans of, English items that contain [p] usually have [f] instead. Several items in the lexicon
are recorded with both pronunciations (e.g. [1stemp] / [1stemf], [sappanno] / [saffanno]). I
therefore conclude that [p] is an allophone of /f/. In terms of the development of this allophony,
the fricative /f/ may be pronounced as [¢] or [f]; it may be that exposure to English labiodental

[f] in Camden Sylheti is having an effect.

Phonemic consonant inventory

TABLE 4.3: Sylheti phonemic consonant inventory

blg djt | |k g
f sz ) h
m n |
1 ¢ T

4.4.3 Syllable structure

Once a phonemic mapping has been established, Nidaba can be used to answer other segmental
distribution questions.

The properties of items in the lexicon do not necessarily correspond to the properties of
phonological words. For example, the Sylheti lexicon contains both stems and bound morph-
emes. Results can be restricted to free morphemes, using the custom filtering, since bound
morphemes may contain final sequences that never surface. The filtering can be done directly,
if bound morphemes are tagged as such, or using a combination of other tags such as part of

speech data.
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4.4.4 Word final consonants

In this section, I examine sequences found in word-final position in the lexicon. Since the lex-
icon contains both stems and bound morphemes, it contains final sequences such as [fn] be-
longing to bound morphemes [afn-] which do not appear as free morphemes, but only with a
following vowel. The discussion below refers only to free morphemes, and hence consonants
which surface in word-final position.

Nearly 45% of items in the Sylheti lexicon end in a consonant. The following consonants
and clusters were found finally, in order of decreasing frequency: [¢], [1], [n], [[], [t], [m], [t], [x],
[s], [t], [k], [z], [d], [f] (>1% of items); [b], [g], [], [nd], [nd3], [nt] (>0.1% of items). Voiced
obstruents were not permitted in Sanskrit codas (Kessler 1994); this may account for the low

frequency of [b] [d] and [g] relative to their voiceless counterparts.

Word-final consonant sequences

Setting aside sequences found in only one item — and those mostly loan items (e.g. [ebarist],
Everest) — we find the following multi-segment sequences: [nd], [ndz], [nf], [ct] and [cd].

[nd] is found in verbal stems, and in nouns (see Table 4.4). These are mostly cognate with
Bangla nouns which have a nasal vowel, instead of a stop-nasal cluster. NC (nasal-consonant)
clusters were present in the protolanguage of Assamese-Bengali (see Table 4.5), though many
were subsequently lost through a variety of processes (Pattanayak, 1966). Final clusters are not
allowed in modern Bangla, but are in Assamese (Masica, 1991, p. 126). More investigation is
needed to determine whether Sylheti retained the NC clusters like Oriya, or redeveloped them
more recently from a nasalised vowel system like Bangla’s.

TABLE 4.4: Examples of word-final [nd] in nouns

Sylheti English Bangla Sanskrit
[tobond] knot qig1 [badhana] S FY  (bandha)

<

[sand] moon 2K [fad] JdqY  (candra)
[xand] shoulder FH [kddha] HPdY (skandha)

[damand] son-in-law @Sl [dzamata] STHI  (jamatr)
[fand] trap T [phada]
[mgland]  England  2&We




54 Chapter 4. Nidaba : A segment distribution database for measuring language distance

TABLE 4.5: Correspondences involving NC clusters

Sylheti Bengali Assamese English Reconstructed form
£o1) 1) 1Dy colour *rong
ranga - rona red *rong
af hés pati hah duck -
sand fad sondro  moon *ffand

[nd3] is found in a single morphological item, [gomnd3] %% district, and in place names de-
rived from it: [hobigond3] Habiganj, [xorimgondz] Karimganj, [sunamgondz] Sunamganj.

[cd] is found in the nouns [mord] man ¥ [morod], and [docd] pain. The status of these
items is not clear; [beta] is the common term for man, and [bif]/[bedna] pain are listed in the
lexicon both in isolation and, unlike [dord], in related compounds such as [bukut bedna], chest
pain.

[nt] is found in four items which appear to be loan items from English: [koreng] electricity
(current), [resturent] restaurant, [fent] trousers (pants), and [happent] shorts (half pants). Like-
wise, [rt] is found only in [erfort] airport and [[act] shirt.

Sylheti is more tolerant of syllable structure violations than segment quality violations. There
are no cases where [p] is retained but a complex onset or coda is repaired. By contrast, in [hap-
pent], not only is [p] retained, but [f] is adapted to match it. We have seen that [f[] and [d3] are
protected from spirantization in geminates. Sylheti does not allow differing allophones within
a sequence, and has a preference for stops over fricatives in geminates, resulting in these non-
native’ geminates in all three cases. Regarding the other segment quality adaptations, we have
seen that English alveolar stops are borrowed as retroflexes. Nasals and fricatives are normally
borrowed as dental / alveolar (e.g. [britan], [profesar]), but undergo place assimilation to ret-
roflex as in native items. [erfort] and [fart] have been borrowed from a rhotic variety of English
(cf. Masica, 1991, pp. 75—76). In both onset and coda position, [r] is borrowed as dental / alve-
olar, and does not undergo place assimilation. [] is an allophone of /d/, and the sequence */d{/
would be ungrammatical; Sylheti does not have any homorganic stop sequences which differ in
voicing. This results in the unusual sequence [{], otherwise found only in the loan item [xarfon]

curtain and the pronouns [arta] next and [amarta] mine.
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4.4.5 Word initial consonants

The initial consonants of Sylheti, in decreasing order of frequency, are the singletons [b], [f],
[, [s], [m], [f], [h], [g, [d], [¢], [2], (K], [n], {1} [£], [t} [d] (found in 51% of items) and the
sequences [br], [pe], [fr], [kI], [st] and [gr]. There are other sequences, but each is found in
only one lexical item, such as Hindi and Arabic greetings. The infrequent sequences appear
to represent borrowings or re-borrowings from English and Sanskrit. Almost all are nouns, the
most frequently borrowed class of lexical items (Campbell, 1993).

TABLE 4.6: A selection of low-frequency lexical items
with otherwise ungrammatical initial clusters

Sylheti English Bangla Sanskrit
[britan] Britain
[bru] brow o [bhucu] R (bhri)
[brisi] rain i [brifti] quef (vrsti)
[Klas] class
[klanto] tired FE [klanto] hell-d (klanta)
[gram] village ars [gram] TRMH (grama)
[grifJo] ‘hot season’ ar [grifmo] TRYH (grisma)
[prafno] question o [profno] R (prazna)
[protizogita] ~competition #fogfyel  [protidbondbita] tl\_{_dﬁ'rlﬁ'f (pratiyogita)
[profesar] professor
[stiri] wife il [stri] ﬂﬂ:{of (str1)
[ston] breast Gl [fton] {d-q (stana)
[zolfrofat] waterfall QNS [jalaprapata] uurd (prapata)
Repair strategies

Metathesis A repair strategy which maximises retention of the original sounds is metathesis.
Syllable structure requirements are met by transposing vowels and consonants, in this case
to convert CCV.CV sequences to CVC.CV sequences. I have not located any examples of this
strategy being applied to English borrowings; metathesis may no longer be an active repair
strategy in modern Sylheti.

TABLE 4.7: Metathesis between Sanskrit (Old Indo-Aryan) and modern Sylheti

qRaf (pratiy - [forti] every

Y

RIY (prosa) - [forsa] light

S
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Anaptyxis Syllables with a pre-existing coda cannot have their onsets repaired by metathesis,
given Sylheti’s ban on complex codas, since this would simply replaced CCVC sequences with

CVCC sequences. Instead, they are repaired with anaptyxis, the insertion of a vowel.
TABLE 4.8: Anaptyxsis

[bered]  ‘bread’
[felerf]  ‘plate’
[derem]  ‘drain’
[terem]  ‘train’

[gollas]  ‘glass’

Singha and Ahmed (2016) record three different vowels used in epenthesis: [i], [e] and [o].
Given limited examples in both corpora, there is not yet conclusive evidence for whether vowel
choice is determined by vowel harmony (a feature of Bangla and Assamese, e.g. Mahanta, 2008)
or by consonant quality. If the former, [i] requires [i], [e] requires [e], and [a] requires [0]; we
have no examples with the other two vowels as triggers. If the latter, [i] is used with [k], pre-
venting its adaption to [x]; [e] is used following labials and retroflexes (non-back consonants);
and [o] is used following velars (back consonants).

Singha and Ahmed (2016) contains the example /silip?/ slip, which supports their assertion
that Sylheti has vowel harmony; however, this example contains both /p/ and contrastive aspir-

ation, so I am reluctant to include it as reflective of Camden Sylheti.

TABLE 4.9: Prothesis

[1spid]  ‘speed’

[1stof] ‘stop’
[1stemf]  ‘stamp’
[stifon] ‘station’

Prothesis Loan words with an initial sT (s + stop) cluster are repaired through prothesis, the
insertion of a vowel preceding the sequence. This holds for both sCVC(C) words, which cannot
undergo metathesis, and for sCVCV(C) words, which could. This result is consistent with Gos-
wami (2013)’s findings for North Tripura Sylheti. All examples of prothesis use [1], regardless of
the vowel quality of the following syllable, so again epenthetic vowel quality could be determ-

ined by the (here empty) onset. Alternatively, the intervention of a coda between the epenthetic
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vowel and the following one might also play a role in blocking harmony, as in Assamese (Ma-
hanta, 2008). The treatment of sC clusters as coda + onset, with repair being through prothesis
instead of anaptyxis, is cross-linguistically common (Goad, 2012). The location of the boundary
between the two strategies varies. For example, Hindi treats sT- and sm- clusters with prothesis,
and sn-, sl-, s+r and s+glide sequences with anaptyxis. The single example of this in Sylheti is the
repair via anaptyxis of [selet] slate. It is not clear from this limited data if sn- sequences would

be adapted with anaptyxis or with prothesis.

4.4.6 Word-internal consonant sequences

In this section, I examine evidence for word-internal codas and for complex onsets in Sylheti,
derived from the application of Nidaba’s subsequence and set comparison tools.

Using [Jonda] as an example: it contains the word-internal consonant sequence [nd]. [d]
appears word-initially in the lexicon, but [nd] does not. The longest possible internal ‘onset’
sequence in [fonda] is therefore [d], leaving [n] as the preceding coda. The set of word-final
consonants can be compared to the set of internal codas calculated this way. Such a comparison
shows that all word-final consonants that occur singly can also occur as word-internal codas.

Repeating the comparison for word-initial consonants, I find that all word-initial singletons
also appear in word-internal onset position, as well as the previously mentioned retroflex allo-

phones and geminates.

Word-internal complex codas

There are only a few items transcribed with CCC word-internal sequences.

Firstly, there are two bimorphemic items, [dokknor] southern and [vttre] northern. They ap-
pear to be formed by suffixation plus deletion from [dokkin] south and [ottor] north. In Bangla,
there is a preference for disyllabic trochees, which Nagarajan (2014) proposes has been the case
since at least the 17th century. This may account for the deletion. However, there is limited
other evidence of this preference in the Sylheti lexicon, since the creation of disyllables through

epenthesis (see Subsection 4.4.5) is more easily explained as a side-effect of syllable structure
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repair. Furthermore, [kn] is not otherwise valid as either an onset or a coda sequence in Syl-
heti. More detailed studies are required into geminate behaviour under adjective and adverb
formation.

Secondly, there is the bimorphemic item [zol-frofat] water-cascade, waterfall. As discussed
in Subsection 4.4.4, there has been segment quality adaptation of the [p] of YXUId (prapata), but
no apparent syllable structure repair. Being both bi-morphemic and potentially a re-borrowing,
this is not a good candidate for a word-internal complex onset.

The remaining -CCC- items are of the form [ygC], and mostly [ngL]. [gl-] is not found as a
word-initial cluster, and [gr-] only in a few loan items, as discussed in Subsection 4.4.5. Nor is
[-ng] is found as a word-final sequence. There are no minimal pairs contrasting [1g] and [g].
The loan item ‘English’ is pronounced variously with and without the [g], and the Bangla cog-
nates also lack it. A more detailed phonetic study of these items and their variability is required
to determine the phonological status of the [g], but the initial distributional data points towards
it being excrescent, not phonemic.

TABLE 4.10: 1)(g)C sequences

Sylheti English Bangla
[higgi] type of eel
[tengra] type of catfish et
[xangla] type of fish fer
[hamovkbangra]  ‘snail shell’ stork = yCae
[bangladef] Bangladesh
[bangla] Bangla Bkl [banla]
[1gland] England
[lengra] lame (G [lenra]
[bapgglagor] room
[mgrezi]/[1ygrez] English
[1glif] English
[figla] pink
[sigla] bamboo switch

Syllable contact

Of the sequences of two word-medial consonants in the Sylheti lexicon, nearly 50% have falling
sonority; 20% are identical consonants; 5% are non-geminates with level sonority; and 25% have

rising sonority. Some of the rising sequences are loan items from languages with complex onsets
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(e.g. [madrasa]), whereas others have been retained from Sanskrit. Whilst the Syllable Contact
principle holds that sonority should drop across syllable boundaries, it is “often [overridden by]
the prohibition of complex syllable onsets” (Clements, 2009). The incidence of word-medial
rising sonority sequences in Sylheti therefore does not rule out a prohibition on complex onsets

both initially and medially.

4.4.7 Vowels

The vowels of Sylheti, in descending frequency of occurrence as single vowels in the lexicon, are
[a,0/0,i/1, €/e, u/v].

[0], [e] and [1] are almost certainly allophonic variants of /5/, /e/ and /i/ respectively, if not
transcription variants. There are only a few items transcribed with these segments. There are no
minimal pairs which distinguish between [e] and any other segment; no minimal pairs distin-
guishing between [i] and [1]; and no minimal pairs distinguishing between [o] and [2]. [u] and
[0] are fairly evenly distributed in initial, medial and final position. However, the only minimal
pair for these items is [-u] (emphatic morpheme) vs [-0] (first person morpheme). Sylheti has
multiple homophonous single vowel morphemes, such as [-0]: locative / second person for type
I verbs / third person for type II verbs. There is therefore no compelling evidence for a contrast
in the absence of native speaker clarification. [u] and [v] are almost entirely predictably dis-
tributed when in sequence with another vowel, so in the discussion that follows, I treat Sylheti
as a five vowel system.

The distribution of vowel combinations in Sylheti implies that the majority of VV sequences
are diphthongs. In descending order of frequency, the observed sequences are: [ai, 2i, ia, va, 20,
oi, a9, av, €, ag, o0a]; [ed, id] at around 1% of VV occurences; and least frequently [eu, iv, €a, vo,
og]. [ie] and [oe] are missing altogether. Given the relative frequency of the vowels in isolation,
VV sequences with i or v as the second member are overrepresented (with the exceptions of [vi]
and [io]), as are the sequences ia and va.

As a first approximation, Sylheti allows diphthongs and short open syllables both word-
internally and finally.

Like all contemporary Indo-Aryan languages (Masica, 1991, p. 128), Sylheti has syllable initial

vowels (e.g. [afne] you), and allows morpheme-internal vowel hiatus (e.g. [gaiox]| male singer).
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The maximum number of morpheme-internal vowel qualities in a sequence is three. These
triple vocoid sequences likewise do not show free combination of vowel qualities: the majority
of them can be sequenced as Vi and Vo diphthongs with following vowels. However, there are
only 54 morphemes containing such sequences in the lexicon, so more detailed conclusions
cannot be drawn from the limited data available.

By combining vowel-final verb stems with vowel-initial suffixes, Sylheti can have sequences
of up to five vowels (three syllables), like Assamese. For example, [xava] to cough may be inflec-
ted [amI xavaiar] I'm coughing.

A fuller analysis of vowel phonotactics in Sylheti will require a detailed examination of the

status of diphthongs and their potential interactions with tone.

4.4.8 Conclusion

I have illustrated the use of Nidaba in examining the inventory and syllable structure of a lan-
guage, and its relationship to neighbouring languages. More information can be found at

nidaba.co.uk.

4.5 Similar databases and tools

In this section, I discuss eight existing databases and computational tools which are similar in

function to Nidaba, and what makes Nidaba unique.

4.51 AusPhon-Lexicon

The AusPhon-lexicon project (Round, 2017) is a ‘data warehouse’ currently containing normal-
ised lexicons for 166 Australian language varieties, with data querying tools including an exten-
ded regular expression language.

Nidaba is effectively an application of this idea, trading depth of analysis for universality:
Nidaba users are required to scrub their own data and produce their own normalisations, but

are not restricted to a given language family.


nidaba.co.uk

4.5. Similar databases and tools 61

4.5.2 World Phonotactics Database

The World Phonotactics Database has broadly similar aims of providing a typology of paramet-
ers (termed ‘features’) which describe syllable structure. However, it does not have any para-
meters dealing with sonority, which forms the basis for many phonotactic formulations (e.g.
Blevins, 1995). The raw data is not available to verify how parameter value choices were made,
which also limits flexibility in adding extra parameters, or making alternative choices using dif-
ferent cues.

Nidaba, by contrast, is primarily concerned with distributional data, including place and
manner information. It aims to provide the tools necessary for users to replicate my results. It
is also intended to be sufficiently flexible that users can make different assumptions about valid

input data, phonemic representation, sonority, or syllable structure, or add new parameters.

4.5.3 P-base

P-base (Mielke, 2008) “is a database of several thousand sound patterns in 500+ languages”.
However, these are not distributional patterns but processes such as nasalisation or devoicing.
Again, the data on which these patterns are based is not available to the user.

Nidaba can be used to duplicate some of the functionality of P-base, by inputting a narrowly
transcribed wordlist, and searching for particular combinations of properties. In this way, the
results of P-base can be verified, and specific examples of its sound patterns found in a lexicon.

However, the primary purpose of Nidaba is to look at more static distributional patterns.

4.5.4 TalkBank

The TalkBank project (MacWhinney, 2000) comprises CHILDES (Child Language Data Exchange
System) and other corpora. Each corpus contains audio and/or video recordings and a transcrip-
tion of the data in CHAT format. This is the input format for the accompanying analysis program
CLAN, which performs various kinds of discourse analysis. Among the analyses is token fre-
quency, which is a useful input to Nidaba. You can also get PHONFREQ, which performs similar

functions to Nidaba’s segment search, but with much less powerful search tools.
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Another accompanying analysis program is Phon (Rose et al., 2006). Phon contains tools for
searching by features, like Nidaba; but its use case is analysing a spoken corpus, not a lexicon,

and it does not contain tools for comparison between different phonemic analyses or languages.

4.5.5 Phonology Assistant

Phonology Assistant (SIL, 2008) provides tools for inventory analysis, given a corpus of tran-
scription data. Whilst Nidaba provides a basic inventory tool, its main focus is instead on distri-

butional data.

4.5.6 Phoible

PHOIBLE (Moran, McCloy and Wright, 2014) “is a repository of cross-linguistic phonological
inventory data”. Its two guiding principles have also been applied to Nidaba, namely that all data
should be encoded in Unicode IPA, and that data from multiple doculects should be faithfully
included. Nidaba also includes much information beyond inventory data, e.g. it cross-references

all phonemes with lexical items, to aid in the treatment of marginal items.

4.5.7 CLTS

CLTS (List, 2017) is “a cross-linguistic database of phonetic notation systems”. When complete,
this will be a useful source for generating or verifying transcription conversions for Nidaba,
which is currently a manual process for individual researchers.

4.5.8 ILSP PsychoLinguistic Resource

ILSP PsychoLinguistic Resource (Protopapas et al., 2012, located at speech.ilsp.gr/iplr/) provides

computational tools for in depth search and analysis of Greek, based on two printed text cor-
pora. Many of tools are similar in function to Nidaba tools: returning subsets of a corpus based
on length, frequency, and syllable structure. The available data for Greek is more extensive than
that in Nidaba, including orthographic / phonological ‘neighbours’ of lexical items, as measured
by Levenshtein distance; stress; and ‘orthographic transparency’ (predictability of grapheme/-

phoneme correspondence); but it is limited to Greek only.
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4.5.9 SYLLABARIUM

SYLLABARIUM (Duiiabeitia et al., 2010) is a web tool for examining syllables in Spanish and
Basque. It provides similar functions to Nidaba in locating type and token frequency of different

syllables, but is limited to orthographic data, and only in those two languages.

4.6 Languages
Nidaba contains phonemically transcribed” word lists for the following languages:
- Ambel, an Austronesian language (fieldwork of Laura Arnold)
- Cheke Holo, an Oceanic language (White, Kokhonigita and Pulomana, 1988)
* Dutch (CELEX: Baayen, Piepenbrock and Rijn, 1993)
- English (CELEX: Baayen, Piepenbrock and Rijn, 1993)
- French (Lexiques: New, Pallier et al., 2001)
* German (CELEX: Baayen, Piepenbrock and Rijn, 1993)
- Greek (GreekLex: Ktori, Heuven and Pitchford, 2008)
- Hrusso Aka, a Tibeto-Burman language (fieldwork of Vijay D’Souza: D’Souza, 2015)
- Lithuanian (Tang and Harris, In prep(a))
- Matbat, an Austronesian language (Remijsen, 2015)
- Portuguese (PorLex: Gomes and Castro, 2003)
- Polish (Tang and Harris, In prep(b), Howell et al., 2017)
* Romanian (Tang and Harris, In prep(c), Howell et al., 2017)
» Spanish (EsPal: Duchon et al., 2013)
» Sylheti, an Indo-Aryan language (SOAS Sylheti Project, 2015)

- Welsh (Ellis et al., 2001)

"The exact type of transcription varies widely between projects. Many have been derived by applying pronunci-
ation rules to orthography, with resulting oddities, including Greek, Lithuanian, Polish, Romanian and Spanish.
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4.61 Phonemic inventories

For the following languages, the source (or at least reference) of the phonemic transcription
is separate from the source of the lexicon: Cheke Holo (Corretta, pc.); Dutch (CELEX: Burnage,
1990); English (CELEX: Burnage, 1990); German (CELEX: Burnage, 1990); Sylheti (Eden, in press);
and Welsh (Pronunciation data from Williams, Jones and Uemlianin, 2006, converted into tran-
scription by Florian Breit). In the case of English, I adapted the DISC transcription system to

remove nasal vowels: &: - p; d: - p; & - ax; D > .

4.7 Frequency data

For every parameter and diagnostic discussed in Section 4.8, it is necessary to consider how to
treat loan words and other marginal examples. Neither dismissing them completely nor treat-
ing them as contributors to phonotactics equivalent to the core vocabulary of the language ad-
equately captures the facts.

For this reason, Nidaba contains corpus frequency information on the lexicons of the lan-
guages, where it exists. This allows parameter values to be set for a minimum frequency threshold,
or number of distinct lexical items in the input. For the parameters below, this threshold has
been set at one hundred occurrences per million tokens, or five Zipf® (Heuven et al., 2014).

Since film subtitle corpora have been shown to be superior sources of frequency norms than
traditional written corpora (New, Brysbaert et al., 2007, Brysbaert and New, 2009), I have where
possible combined phonemic word lists with frequencies in subtitles via the written forms com-
mon to both sources. Lexiques (French), EsPal (Spanish) and the Lithuanian, Polish and Ro-
manian corpora contain frequency counts drawn from subtitle data (New, Pallier et al., 2001,
Duchon et al.,, 2013, Mandera et al., 2014). Dutch frequency data was drawn from Keuleers,
Brysbaert and New, 2010, British English from Heuven et al.,, 2014, and German from Brysbaert,
Buchmeier et al., 2011. European Portuguese frequency data was approximated using Brazilian
Portuguese subtitle data (Tang, 2012).

For Greek and Welsh, such subtitle corpora have not yet been compiled. The GreekLex data-
base contains frequency counts drawn from the Hellenic National Corpus, a collection of written

Modern Greek texts (Ktori, Heuven and Pitchford, 2008). Welsh frequency data was taken from

8The Zipf scale is a logarithmic scale, related to frequency per million words by the formula: fpmw = 10%P3
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the Cronfa Electroneg o Gymraeg, based on a million words of written Welsh prose (Ellis et al.,
2001).

For languages such as Sylheti, which lack a written form distinct from the majority language,
no token frequency data has as yet been provided; only the number of distinct lexical items can

be derived. This is also the case for Ambel, Cheke Holo, Hrusso Aka, and Matbat.

4.8 Parameters

Having developed a program to aid in establishing parameter values, in this section, I describe
an example set of parameters, and their values for 16 languages. These will be used to calculate
Hamming Distance in Section 4.9.

The contents of this section are as follows: Choosing parameters; Diagnostics; Syllable struc-
ture parameters (CVsyllable, Consonant cluster analyses, Syllabic consonant parameters, Sonority
reversal parameters, Sonority distance parameters); Vowel inventory parameters; Consonant in-
ventory parameters (Laryngeal parameters, Obstruent place parameters, Nasal place parameters,
Fricative place parameters, Manner parameters).

Subsection 4.8.3 describes syllable structure parameters, Subsection 4.8.4 on page 83 de-
scribes vowel inventory parameters, and Subsection 4.8.5 on page 87 describes consonant in-

ventory parameters. Tables summarising the values are found at page 97.

4.81 Choosing parameters

We saw in Subsection 3.2.3 that historical relationships could be modelled using parameters
chosen to reflect known innovations in Indo-European. To instead model phonological simil-
arities between languages, the parameters must reflect typological observations. There are of
course many different strategies which could be employed to do so. My intention is that the
functionality provided by Nidaba will allow other researchers to adopt different strategies for
different purposes.

For the set of parameters below, I am following the principle that they are to be chosen
independently of the expected result. That is, I am attempting to include or exclude no para-
meters on the basis of existing knowledge of a language relationship, or of ease of acquisition, or

any other similarities between languages. For this reason, I have limited the parameters to two
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particular areas, and attempted to exhaustively cover those areas. This should prevent cherry
picking of ‘relevant’ values.

I have 27 syllable structure parameters, and 29 inventory parameters. The syllable struc-
ture parameters have been chosen to provide, as far possible, a typology of syllable and sonority
types, as explained below.

The vowel and consonant parameters have been chosen to reflect those choices which char-
acterise the greatest number of languages. The ideal parameter for this purpose would be one
which equally partitions known languages, and so is true for 50% of languages and false for
the other 50%, though the majority of the parameters have more unequal distributions. In the
ideal case, two languages sharing a true value for a given parameter and two languages sharing
a false value are equally likely scenarios, both of which would count equally towards the metric.
For further discussion, see Subsection 4.9.3. The inventory parameters also generally reflect the

options described by most systems of distinctive features.

4.8.2 Diagnostics

Due to the nature of the source data (i.e. lexical databases containing phonemic representa-
tions), I will be limiting my diagnostics for syllable structure to distributional information. I will
not be using diagnostics which are based upon acoustic data, or experimental results such as the
propensity of speakers to insert additional vowels when prompted, or of listeners to misperceive
clusters found only in loanwords. Similarly, the inventory parameters are mostly focussed on
contrasts, or on very broad place and manner categories which do not require detailed acoustic
experiments.

Where possible, I have cited additional sources beyond Nidaba to verify its accuracy.

4.8.3 Syllable structure parameters

The syllable structure parameters which I am examining fall into four sets: those relating to
deviations from a CV syllable; those relating to syllabic consonants; those relating to sonority
profiles; and those relating to sonority distance.

Those parameters which might be expected for reasons of symmetry, but which are miss-

ing, are those which have been found to be uniformly valued in all languages. Any parameter
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for which one of its values is the empty set can be restated as an unconditional universal (Green-
berg, 1966). Universals are by definition irrelevant to a measurement of difference, and so will
not contribute to the metric. However, it is perfectly possible to verify these universals using
the data present in Nidaba.

It is not my intention to take a position on the mental representation of the syllable, or even
whether the syllable is more than a convenient fiction. Nonetheless, I hope that the typological
observations below may be relevant to a broad set of theoretical positions, and that the data in
Nidaba will allow readers who disagree to create additional or replacement parameters of their
own. The use of terms such as ‘coda’ is therefore purely conventional, and the following para-
meters and resultant distance measurements are a proof of concept, not a finished product. One
of the major applications of this study is in comparing the consequences of different theoretical

positions for language distance, as is explored in Chapter 5.

CV syllable

I begin with parameters relating to the segmental positions in the syllable. The most common
syllable structure cross-linguistically is consonant-vowel, or CV: the words of many languages
can be divided into alternating CV sequences, whilst there are no, or very few, languages which
contain only VC alternating patterns (Hyman, 2008); that is, which forbid word-initial conson-
ants, or which require word-final consonants (Dam, 2004).

Marked syllable structures consist, firstly, of syllables with one segmental change: a missing
onset; an additional initial consonant (branching onset); an additional nuclear position (com-
plex nucleus) or a final consonant (coda). I shall assume that a syllable minimally consists of a
nucleus.

In some cases, the sequence is doubly distinct from a CV sequence, and we observe three or
more initial consonants; two extra nuclear positions?, as Remijsen and Gilley (2008) argue for
in Dinka, a Nilo-Saharan language; or two or more final consonants.

I will not be including parameters examining whether a language has the unmarked struc-
ture, since in almost every case such a structure is arguably universal, and hence not useful for

measuring similarity.

9Since my sample of languages does not however contain any which contrast three nuclei lengths, I will not be
including a parameter examining this
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Finally, the marked structures can be combined. The combination of the nuclear and coda
structures (the rime) may be restricted, where the interaction between onset and nucleus or
onset and coda is not (J. Harris, 1994, p. 47).

The traditional domain to examine for syllable structure is the word, and I have included
parameters for the presence of these marked structures at word edges. However, codas may ap-
pear word-internally but not word-finally, or vice versa (Kaye, 1990), so these parameter values
cannot be straightforwardly generalised to statements about syllable structure. My paramet-
ers referring to word-edge phenomena have been named with ‘onset’ or ‘coda’ for brevity and
memorability, rather than as theoretical statements.

In any given language, the phonotactics of morphemes may pattern with word edges, or with
the internal structure of morphemes, or be divided between the two types (J. Harris, 1994). Ni-
daba lacks morphological marking in its requirements for lexicons, and so parameters address-
ing phonotactic behaviour at morpheme boundaries are absent from the current parameter set.
However, the code has been designed to be easily extensible to cover this data in future, as it has
with other non-segmental properties such as tone.

For the parameters which follow, I summarise the question to be answered, discuss the dia-
gnostics required to answer it, and note where the cross-linguistic pattern differs from the gen-

erally unmarked syllable structure.

Consonant cluster analyses

There are multiple parameters for which distinguishing between affricates and consonant clusters

or between diphthongs or vowel hiatus is required. The relevant diagnostics are set out below.

Affricates To set the value of parameters 4.8.3.2, 4.8.3.5 and 4.8.3.6 below, it is often necessary
to decide whether a sequence of two consonants forms an affricate or a cluster.

Using only distributional information, that means deciding if the sequence is distributed
like singleton consonants or like clusters. It will be labelled an affricate if it can occur in final po-
sition where only otherwise only single segments occur; if it can occur in initial position where
otherwise only single segments occur; and if it can occur in initial position in combination with

another consonant, where three-segment sequences do not otherwise occur. Alternatively, the
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potential affricate may contrast with same quality consonant-consonant sequences, as in Polish

(Rubach, 1994).

Glides and diphthongs A sequence of two vocoids may constitute either two vowels in separ-
ate syllables, with hiatus; a diphthong (with an on-glide or off-glide) constituting a single nuc-
leus; or a VC or CV sequence. The diagnostics must therefore distinguish between these three
categories, for parameters 4.8.3.2, 4.8.3.3 and 4.8.3.4, below.

Diphthongs should pattern with (long) monophthongal nuclei. They should be found pre-
ceded by all possible onsets, and followed by all possible codas, with exceptions conforming to
monophthongal phonotactics. Nidaba’s corpus frequency and word count tools permit ‘acci-
dental’ gaps to be spotted, i.e. where the expected frequency of certain phonotactic patterns,
given the observed frequencies of their constituent segments or parallel patterns, is so low that
they have failed to appear in a non-exhaustive lexicon, and no conclusions can be drawn from
their absence. If a potential diphthong is never found following a branching onset in a language
which has them, then it should be analysed as a CV sequence. Likewise, if it is never found pre-
ceding a coda, then it should be a VC. If a glide is found preceding (or following) a long vowel
or diphthong, then it is consonantal, and forms part of the onset (or coda). If the only observed
diphthongs are word-initial, with on-glides, then these are better analysed as CV sequences than
VV, particularly if there are consonantal glides observed elsewhere, or these are the only vowel-
initial sequences in the language. The same applies to word-final sequences with off-glides.

If there are no restrictions on which vowels can occur together, then the vocoid sequences

are not diphthongs (J. Harris, 1994).

(1)  Obligatory onset parameter

Does the language have vowel-initial words?

Since CV is the unmarked syllable, vowel-initial syllables are marked (Itd, 1989). Whilst most
languages do have vowel-initial words, these will all have consonant-initial words, whereas the

presence of consonant-initial words does not imply vowel-initial words.
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The diagnostics used are: Are there words which always begin with a vowel? An example
would be Spanish, which contains words which are always pronounced without initial constric-
tion (Rakow and Lle6, 2011, p. 215). Are there words which sometimes begin with a vowel? An ex-
ample would be English, which usually inserts glottal stops post-pausally with otherwise vowel-
initial words (Cruttenden, 2014). Are there words which, whilst phonetically not beginning with
a vowel, are pronounced with a default consonant which plays no other role in the phonology
of the language? An example of such alanguage is German, which uses a glottal stop only word-
initially in otherwise vowel-initial words (Benware, 1986, p. 28). In both of the latter cases, the
glottal stop does not have a phonemic role. For all three cases, the language is categorised as

having phonemically vowel initial words.

All the languages in my sample have vowel-initial words.

(2)  Double onset parameter

Does the language have two consonants word-initially?
This is so if there are any words with two consonants word-initially, and these are true
clusters and not affricates (see Subsection 4.8.3). If the second consonant in all such examples

is a glide, it should belong to the onset and not the nucleus (see Subsection 4.8.3).

Ambel, Cheke Holo, Dutch, English, French, German, Greek, Hrusso Aka, Lithuanian, Polish,
Portuguese, Romanian, Spanish and Welsh have two initial consonants. Matbat has two conson-
ants sequences word-initially; whilst these sequences do occur internally, there is only one ex-
ample in the lexicon which occurs following a word-internal coda. Sylheti does not have branch-
ing onsets, except morpheme-initially in loan items from Sanskrit, English or other branching

languages, many of which are nativised with vowel epenthesis (Eden, in press).

(3) Complex nucleus parameter

Does the language have syllables with complex nuclei?

Firstly, does the language contrast long and short vowels of the same quality?
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This diagnostic is thus phrased to simplify the classification of systems such as German,
where the two classes of sounds are alternatively analysed as short vs long (with vowel quality

a phonetic effect) or tense vs lax (with vowel length a phonetic effect)(Benware, 1986, p. 50).

Secondly, does the language contain diphthongs?

See Subsection 4.8.3 for diagnostics.

Of the languages in my sample, only the Dutch, German and Welsh lexicons contain long
vowels which contrast with short vowels of the same quality. Whilst most German vowels differ
in quality as well as length, [€] and [a] have both been transcribed in this lexicon with length
contrasts (Burnage, 1990). Likewise for the Dutch lexicon, in which words of French origin give
rise to a length contrast in [g]. Welsh has a full set of vowel contrasts, with every vowel quality
having long and short counterparts (Jones, 1984).

All three of the languages above also contain diphthongs, as do English, French, Lithuanian,
Portuguese (Mateus and d’Andrade, 2000) , Romanian (Chitoran, 2002), Sylheti and Spanish
(Harris and Kaisse, 1999).

Ambel, Cheke Holo, Greek, Hrusso Aka, Matbat, and Polish do not have diphthongs. There
are no restrictions on Cheke Holo vocoid sequences - all combinations of the five vowels are
found word-medially - so I take these to be V.V sequences, not diphthongs. Hrusso Aka has

consonantal glides, but no diphthongs, following the criteria above (D’Souza, 2015).

(4) Codaparameter

Does the language have word-final consonants?

See Subsection 4.8.3 for determining if final glides are consonantal or not. See 4.8.3.17 for

languages with a limited set of word-final consonants.

Cheke Holo does not have word final consonants. The remaining languages in my sample

do.

(5)  Triple onset parameter

Does the language have three consonants word-initially?
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This is so if there are any words with three or more consonants word-initially, which are
true clusters (rather than an affricate combined with another consonant, see Subsection 4.8.3).
None of the consonants must form a syllable peak (see 4.8.3.7).

Dutch, German, Greek, English, French, Lithuanian, Romanian and Welsh have word-initial
sequences of three segments where the first is a sibilant'®. Polish and Portuguese have other
three-segment initial sequences (see 4.8.3.14). Ambel, Cheke Holo, Hrusso Aka, Matbat, Sylheti

and Spanish do not.

(6) Double coda parameter

Does the language have multiple consonant segments word-finally?

This is so if there are any words with two or more consonants word-finally, which are true
clusters (rather than affricates, see Subsection 4.8.3). None of the consonants must form a syl-
lable peak (see 4.8.3.7).

Dutch, English, French, German, Lithuanian, Polish, Romanian and Welsh have multiple
consonants word-finally.

Greek, Hrusso Aka, Matbat, Portuguese, Spanish and Sylheti do not, bar the exceptionslisted
in 4.8.3.17.

This parameter is not applicable to Cheke Holo.

(7)  Superheavy rime parameter

Does the language have word-final superheavy rimes?

Are there any words which end in a complex nucleus followed by a final consonant? (As
diagnosed in the Complex Nucleus and Word-Final Consonant parameters.)

Welsh has word-final consonants following diphthongs and long vowels". Dutch, English,
French, German, Lithuanian, Portuguese, Romanian, Sylheti and Spanish have word-final con-

sonants following diphthongs.

'°I am discounting the French word ‘croissant, found in both English and Dutch lexicons, and the prefix ‘pseudo’,
because the pronunciations listed are inaccurate (see e.g. Cambridge Dictionary, 2015); native speakers do not use
[krw-] or [ps-]. English and Dutch are therefore listed only with sibilant-initial triples.

"Although only in monosyllables.
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Syllabic consonant parameters

Segments in a syllable tend to be organised according to the sonority scale. From least to most
sonorous, the scale is usually (e.g. Clements, 1990) given as:

obstruents -  mnasals -  liquids - glides -  vowels

Whilst the existence of such an organising principle is widely recognised, the exact phon-
etic basis of the scale, if any, is disputed (J. Harris, 2006). Options include intensity (Parker,
2002) resonance (Clements, 2009), or “universal markedness restrictions” (Berent, Harder and
Lennertz, 2omn). Since there is disagreement in the motivation of the scale, there is also dis-
agreement about the details. Some versions of the scale are more fine-grained (e.g. Blevins,
1995, Baertsch, 2002), dividing obstruents into stops and fricatives, dividing liquids into laterals
and rhotics, or dividing categories by voicing or place of articulation. Since Nidaba is configur-
able, it is possible to define an alternative sonority ranking to be applied to the lexicons, and
thereby produce an alternative version of the parameter values below. For more radical depar-
tures from the sonority scale, the detailed information and tools provided by Nidaba will aid in
the exploration of other principles of syllabic organisation. Nidaba is also designed to be ex-
tensible, so such an alternative based on e.g. perceptual distance between adjacent segments
(J. Harris, 2006) could be implemented without requiring alteration of the existing codebase.

The sonority sequencing principle (SSP) states that syllables are organised with sonority
minima at syllable edges, and a monotonic increase in sonority towards the centre (e.g. Ki-
parsky, 1979, Clements, 1990, Zec, 1995). All languages have syllable peaks which are vowels, but
some languages also permit other segments.

In order to determine whether a consonant is the highest sonority segment of a syllable, it is
necessary to decide what the syllables of the word actually are. All four sonority types discussed
below rely on the same distributional diagnostics: Can the consonant occur as the highest son-
ority segment in a prosodic word? If so, then it must constitute a syllable peak; there is at least
one syllable in that word which does not have a vocalic nucleus. Do syllabic consonants pat-
tern with vowel nuclei? If they are true syllable peaks, they should occur in a position which
is preceded by an onset and/or followed by a coda. Finally, does a syllabic C contrast with CV
or VC? This last diagnostic distinguishes surface and underlying syllabic consonants, consistent

with the methodology used for the World Phonotactics Database (Dawson and Donohue, pc.),
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but contrary to Bell (1978). According to this diagnostic, Cantonese does allow syllabic nasals,
where English does not, since English syllabic nasals can always alternate with [aN]. This should
be represented in the phonemic transcription of lexical items in the database.

I outline four syllabic consonant parameters below. All four are false for all sixteen languages

in my sample, so will not contribute to relative language distance.

(8)  Syllabic liquid parameter

Can a liquid be a syllable peak?

For example, Sanskrit had syllabic liquids as its only syllabic consonants (Donohue et al.,

2013).

(9)  Syllabic nasal parameter

Can a nasal be a syllable peak?

Despite their lower position on the sonority scale, nasals are more common as syllable peaks
than liquids (Bell, 1978). That a language has syllablic nasals does not imply that it has syllabic

liquids - for example, Swahili (Donohue et al., 2013).

(10)  Syllabic fricative parameter

Can a fricative be a syllable peak?

Syllabic fricatives are claimed to exist in Liangshang Yi, which does not have syllabic liquids
or nasals (Ladefoged and Maddieson, 1990). Whilst other Chinese languages debatably also have
syllabic fricatives, under some analyses these are allophones of vowels. Ultimately, the output
of Nidaba is dependent on the phonemic transcriptions (or retranscriptions) of the input data.
By allowing a variety of analyses for the same narrowly transcribed or orthographic input data,
Nidaba allows users to choose the analysis they feel is most appropriate, and in doing so compare

the results of using different analyses.
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(1)  Syllabic stop parameter

Can a stop be a syllable peak?
It is claimed that any segment may be a syllable peak in Tashlhiyt Berber (Ridouane, 2008),
among other languages. In each of these languages, fricatives may also be syllable peaks, but
the sample is too small to conclude that there is a implicational universal, particularly when no

other type of syllabic peak implies the presence of another type.

Sonority reversal parameters

The Sonority Sequencing Principle is not obeyed in the clusters of certain languages. The viol-
ations are frequently initial fricative + stop (usually [s] + stop, hereafter sC) clusters, giving a
dip in sonority. Explanations for the behaviour of sC clusters include describing [s] as extrasyl-
labic (Green, 2003), and describing it as a rime with an empty nucleus (Kaye, 1992). One of the
additional types of evidence on which these hypotheses are based are apparent syllable struc-
ture violations, such as s-initial three-segment ‘onsets’ in English, which otherwise only permits
two-segment onsets. I have referred to these three-segment sequences as ‘triple onsets’ below,
but this is purely conventional.

My parameters therefore cover whether SSP and other syllable structure violations are per-
missible generally (as in Russian, e.g. Davidson and Roon, 2008) or are limited to a small set of
segments.

These parameters can be derived automatically from the phonemic representations in Ni-

daba (see Subsection 4.3.2).

(12)  Word-initial sonority sequencing principle violation parameter

Does the language contain word-initial sequences which are not monotonically increasing?

Dutch, English, French, German, Greek, Lithuanian, Polish, Romanian and Welsh contain
word-initial sequences which are not monotonically increasing.

Ambel, Cheke Holo, Hrusso Aka, Matbat, Portuguese, Spanish, and Sylheti do not.

(13) Initial sonority violations set parameter
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Are initial violations of the Sonority Sequencing Principle limited to a fixed subset of permissible

onset segments?

The set members are identified by working from the sonority peak outwards. In a fricative-
stop sequence, the fricative would be part of the set, and the stop would not.

The following (Indo-European) languages only permit s-initial onsets to violate the SSP:
Dutch, English, French and Welsh. German and Lithuanian permit [[] as well as [s]; this is lim-
ited to only a few lexical items in Lithuanian, only one of which — ($tai) sere — is high frequency.
Romanian permits [z] as well as [s] and [[] in voiced contexts. Greek permits [s], [f] and [x] in
low frequency items, but in high-frequency items, only [s].

Whilst not without some combinatorial restrictions, word-initial violations of the sonority
sequencing principle in Polish are not limited to a fixed subset of onset segments (Gussmann,
2007).

This parameter is not applicable to Ambel, Cheke Holo, Hrusso Aka, Matbat, Portuguese,

Spanish, or Sylheti.

(14)  Onset structure violations set parameter

Is there a set of segments which participate in violations of the normal onset structure of the

language? (Hereafter the ‘Onset structure violations set’.)

Examples of segmental exceptions are two consonants word-initially in a language which
otherwise only permits one, or three consonants word-initially in a language which otherwise
only permits two. The members of the Onset structure violations set may or may not also be
participants in normal onset structure. For example, in English, the Onset structure violations
set is {[s]}. This is the only segment which can begin a sequence of three consonants word-
initially.

German has triple onsets with [s] or [[] including all frequency and all incidence sequences;
in high frequency or high incidence sequences, just [[].

Dutch, English, French, Greek, Lithuanian and Welsh have triple onsets beginning with [s].
Romanian has triple onsets beginning with [s], and also, in a single low frequency sequence

[zdr-], [z]-
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Polish allows multiple consecutive branching onsets, but this is not restricted to a particular
set of segments (Gussmann, 2007). European Portuguese has vowel elision which results in quite
permissive sequences of three or more consonant segments initially (Mateus and D’Andrade,
1998), but this is not reflected in the Porlex lexicon (Gomes and Castro, 2003) in Nidaba. How-
ever, the lexicon does contain examples of obstruent-liquid-glide sequences preceding diph-
thongs (e.g. (frieira) chilblain), which are not limited to specific obstruents, liquids or glides*.

Ambel, Cheke Holo, Hrusso Aka, Matbat, Spanish and Sylheti have no triple onsets.

In Lithuanian, [[] is found in the initial SSP-violating set, but not triple onsets.

(15)  Word-final sonority sequencing principle violation parameter

Does the language contain word-final sequences which are not monotonically decreasing?

Dutch, English, French, German, Greek, Polish, Romanian and Welsh contain such sequences.
Spanish has final (-ts) as a plural of items originating in English and French (e.g. robot, complot);
all other sequences are below the frequency threshold.

Hrusso Aka does not contain word-final sequences; such sequences in the lexicon are only
found in a few particular items, such as English words (e.g. (Oxford), (dialect}). Lithuanian does
not have any such sequences with a frequency above 100 per million items. Portuguese has final
[ks] ({=x)) in eight loan words, and a few other items with stop-[s] sequences, all with very low
token frequency. There are no such sequences in Ambel, Matbat or Sylheti.

This parameter is not applicable to Cheke Holo.

(16)  Final sonority violations set parameter

Are violations of the Sonority Sequencing Principle limited to a fixed subset of permissible coda

segments?

As for the initial SSP violations set, the members of the final SSP violations set are identified

by working from the syllable peak outwards.

*Mateus and d’Andrade (2000) describe the third segment as behaving phonetically as a glide, and not patterning
as part of the following rime, but they conclude that it should be treated as the nucleus of its own syllable, not as part
of the onset. However,  am not changing the parameter value for Portuguese on this basis. Instead, I am adhering to
the distributional information in Nidaba for consistency between languages.
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Dutch, German, Greek and Welsh permit word-final sequences which increase in sonority
to [s]. English also permits [z], in (*wards) e.g. towards, backwards.

In Romanian, the set of final sonority-violating segments is {[s], [m]}, found in the se-
quences [ks], [sm] and [tm].

In French, final sonority-violating sequences can be divided into three groups: sequences
ending in liquids {[#], [1]} which are found word-initially; sequences starting with []'%; and
[ks]. There also exist low frequency sequences ending in [m]. These groups do not form a single
fixed subset of permissible coda segments.

In Polish, all segments that appear word-finally also appear as the endpoint of rising sonority
sequences, except [[] and [z], and minimally sonorous stops and affricates. This parameter is
therefore false for Polish.

This parameter is not applicable to Ambel, Cheke Holo, Hrusso Aka, Lithuanian, Matbat,

Portuguese, Spanish or Sylheti.

(17)  Coda structure violations set parameter

Is there a set of segments which participate in violations of the normal coda structure of the

language? (Hereafter the ‘Coda structure violations set’.)

For example, a language may have only single consonant codas, except in the case of [s],
which can attach to the end of any syllable, creating final sequences. In this instance, the Coda
structure violations set is {[s]}.

The Coda structure violations set should be determined on the basis of monomorphemes
where possible; it should be an observation of phonological behaviour, not simply a list of pos-
sible affixes.

Dutch permits two consonants word finally, except for the set {[s], [t]}, which can create
three segment sequences.

English permits two consonants word finally in monomorphemes, with the majority of three-

segment sequences containing the past tense or plural affixes. However, the coda structure is

The sonority of rhotics is a contentious topic; the French rhotic in particular varies in quality between a fricative
and an approximant, and phonologically behaves as a sonorant (Wiese, 2001). Under this analysis, final sequences
starting with [8] do not violate the sonority sequencing principle. Since this does not make any material difference
to the final parameter value, however, it is not treated in further detail here.
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also violated in (next, text) and (against), as well as lower frequency items (*tempt) (e.g attempt)
and (glimpse). Adhering to the minimum frequency limit of 5 Zipf, the coda set is therefore
{[e]}-

French permits three consonants word finally. These sequences all take the form of a valid
word-final consonant, followed by a sequence otherwise found word-initially (as outlined for
two-segment sonority violating sequences in 4.8.3.13). These are described in Dell (1995) as a
single coda followed by a complex onset; the overlap between these and word-initial branching
onsets can be observed using Nidaba’s set comparison tools.

German permits a single consonant following long vowels, or two following short vowels
(Wiese, 2000). The exceptions to this are alveolar obstruents [s] and [t] (e.g. (links, sanft)), and
the sequence [st] (e.g. (selbst, ernst)).

Greek permits a single consonant word-finally, except for the sonority violating sequences
with [s] ([ks], [ts]). There are other exceptions at lower frequencies (< 5 Zipf) in loan items,
such as [st].

Despite the well-documented use of long final consonant sequences in Polish (e.g. Guss-
mann, 2007), only one three-segment sequence is found more than one hundred times per mil-
lion tokens: [rtv], in {martw). This is insufficient data to posit a set of segments.

Portuguese permits a limited set of single consonants word finally, with the exception of [s],
following [k].

Spanish permits single consonants word-finally in the native stratum (J. W. Harris, 1983),
with only a few two-segment sequences occurring more than one hundred times per million
tokens. These sequences tend to occur in foreign items (e.g. York, Budapest), though not exclus-
ively (e.g. récord, zinc). The finite list of exceptions do not form a coherent set; these sequences
appear to be frequent solely because of the prevalence of certain non-Spanish names.

Cheke Holo does not have word-final consonants, with no exceptions. Hrusso Aka and Mat-
bat permit single consonants word-finally, with no set of exceptions. Sylheti permits single con-
sonants word-finally, with the exception of [nd]. Whilst this sequence is found in multiple lex-
ical items, [d] does not otherwise participate in coda structure violations. Ambel permits se-

quences of two consonants word-finally; the first is always a glide, with no set of exceptions.
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Lithuanian and Welsh permit sequences of two consonants word finally, with no set of excep-
tions. Romanian has a few lower frequency word-final consonant sequences of three segments:
[nkt], [kst], and several that appear only in single lexical items (e.g. [astm] asthma). The final
consonant in these sequences seems limited to [t], [s] or [m]. With a minimum frequency of 5

Zipf, there are no word-final sequences with three or more consonants.

Sonority distance parameters

Per Clements (1990), the parameters describing the first part of the syllable (onset) are inde-
pendent of those describing the second part (rime): there is no parameter to describe the inter-
action of the two.

Not only do most languages require that onset clusters obey the Sonority Sequencing Prin-
ciple, they may also require a minimum sonority difference between segments. There are two
different models of this behaviour, neither of which fully accounts for all the observed types.

According to the Minimal Sonority Distance model (Steriade, 1982), each language has a
minimum difference between segments in an onset, be that three steps (obstruent to glide) or
zero, a sonority plateau (e.g. liquid-liquid). There is no opposing pressure to minimise sonority,
so the default case is a stop to glide cluster, since that the largest sonority distance possible.s

According to the Sonority Dispersion Principle (Clements, 1990), the maximisation of son-
ority distance extends beyond the onset to the nucleus. In the default case, an onset cluster
should be obstruent-liquid, since the liquid is maximally dispersed from both obstruent and
vowel.

Some languages permit only glides as the second member of an onset cluster, as the MSD
model would predict; some languages permit only liquids, as the SDP would predict (Parker,
2012). Others, like English, have a minimum sonority distance but no fixed requirement for the
second consonant. To capture these differences, I have included Onset Gap parameters. These

parameters are not applicable to Sylheti, which does not have onset clusters.

(18)  Onset Gap of o

Can an initial cluster contain a sonority step of length zero?
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This is a cluster with a sonority plateau: two oral stops, two fricatives, two nasals, two liquids,
or two glides.

Dutch, French, German, Greek, Hrusso Aka, Lithuanian, Matbat'#, Polish and Romanian
have word-initial consonant sequences with sonority plateaus. All except Matbat also have all
possible greater sonority steps.

Ambel, Cheke Holo, English, Portuguese, Spanish and Welsh do not have initial sonority

plateaus.

(19) Onset Gap of1

Can an initial cluster contain a sonority step of length one? (From obstruent to nasal, nasal to

liquid, or liquid to glide.)

Ambel, Cheke Holo, English, Spanish, and Welsh have word-initial consonant sequences
with a sonority step of length one. They all also have all possible larger sonority steps.

Matbat does not have any such sequences.

(20)  Onset Gap of 2

Can an initial cluster contain a sonority step of length two? (From obstruent to liquid, or nasal

to glide.)

Matbat and Portuguese have sequences with a sonority step of length two, as do all other
languages in my sample except Sylheti, to which this parameter does not apply. Hrusso Aka
has [r] only in recent loanwords (D’Souza, 2015). With frequency data to impose a minimum

threshold, this parameter might be false for Hrusso Aka.

(21)  Onset Gap of 3

Can an initial cluster contain a sonority step of length three? (From obstruent to glide.)

“The Matbat lexicon has [mn-] sequences. Whilst Remijsen, 2010 states that Matbat syllable structure is (C)V(C),
the paper contains the counterexample “hi*’p mni*k” rub oil. In Ambel, another Raja Ampat language, [mC-] roots
are realised with a vowel-final prefix, so such sequences never surface as word-initial (Arnold, pc.), but this does not
appear to be the case for Magey Matbat.
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All the languages in my sample have sequences with a sonority step of length three, except

Sylheti, to which this parameter does not apply.

(22)  Obligatory Glide parameter

Must the second consonant of an initial cluster be a glide?

Parker (2012) discusses two restrictions which languages may impose in addition to min-
imum sonority distance. The first restriction, which this parameter captures, is that the second
consonant must always be a glide. The most unmarked structure for these languages is stop-
glide, as in the minimum sonority distance model in general. This parameter requires the dis-
ambiguation of branching onsets with glides from diphthongs with an initial vowel, as discussed

in the Branching Onset parameter.

All of the languages in my sample with two initial consonants allow for non-glides as the

second consonant.

(23)  Obligatory Liquid parameter

Must the second consonant of an initial cluster be a liquid?

The second potential restriction, mutually exclusive with an obligatory glide, is that the
second consonant is obligatorily a liquid. The most unmarked structure in this case would be
stop-liquid, as predicted by the Sonority Dispersion Principle. However, Parker found languages
which also allowed nasal-liquid clusters, but not the obstruent-nasal which the Sonority Dis-
persion Principle predicts should be less marked. Therefore the differences between languages
which have only liquid final clusters can be described perfectly adequately by combining the
obligatory liquid parameter with the Onset Gap parameters.

All of the languages in my sample with two initial consonants allow for non-liquids as the

second consonant.
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4.8.4 Vowel inventory parameters

The vowel inventory parameters capture not fine or even broad phonetic detail, given the inher-
ent difficulties of categorising vowels that way (Lass, 1984), but rather the presence or absence
of phonological contrasts. They cover vowel height, ATR, backness and rounding (Rice, 2002);

nasality, and phonation types.

(1)  Height parameter

Does the vowel system have more than one contrast in height?

“Every phonological system contrasts at least two degrees of aperture” and therefore has
at least one contrast in height (Hyman, 2008). The majority of languages have more than two
heights (Maddieson, 1984).

All the languages in my sample had contrasts between (at least) three heights.

(2)  ATR contrast

Is there at least one ATR or tense/lax contrast?

A language with a tense/lax contrast has an additional contrast in its front or back vowels
on top of two existing height contrasts. For the purposes of this parameter, any vowel contrast
which includes a quality difference is counted, regardless of whether there is also a correspond-
ing length difference. This parameter depends on Parameter 4.8.4.1.

Crothers (1978) categorises [€], [a] and [2] as not (necessarily) contrasting in height, and
hence most languages in his typology have no more than three distinct categories. However, I
shall follow the common practice of categorising seven-vowel systems such as those of Italian
and Yoruba as having a tense/lax or ATR contrast, rather than having a rounding contrast in the
back vowels (e.g. Calabrese, 1998, Pulleyblank, 1996).

English, Dutch, German, and Lithuanian have at least four distinct categories. Even if the
Dutch tense/lax contrast is instead analysed as a length contrast, French loan items give rise to
a four-way contrast. The German /e/ vs /e/ distinction is debated; I am here following Wiese

(2000) and Baayen, Piepenbrock and Rijn (1993) in treating them as separate. French, Matbat
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and Portuguese have a four-way contrast assuming that [€] and [o] are categorised as differing
in height from [a].

The Welsh lexicon used in Nidaba evinces no tense/lax contrast, so this is the analysis I
am following. However, there is disagreement on whether a certain category of contrast is more
properly described as a length contrast or vowel quality contrast (Hannahs, 2013), with variation
between speakers / dialects (Iosad, 2017).

Ambel, Cheke Holo, Greek, Spanish, and Sylheti all have five-vowel systems, with no ATR

contrast. Hrusso Aka, Polish and Romanian have three contrasting vowel heights.

(3)  Multiple ATR contrasts

Are there two or more ATR or tense/lax contrasts?

Such alanguage may also be described as having a five-way contrast in vowel height (Croth-
ers, 1978, Lass, 1984). This parameter implies that 4.8.4.2 is true.

Dutch, English, German and Lithuanian have a tense/lax contrast in both high and mid
vowels.

French and Matbat only have a single tense/lax contrast, between low-mid and low vowels.
Portuguese does too, assuming that [e], unlike [a], is not contrastive in height with [¢] or [2].

This parameter is not applicable to Ambel, Cheke Holo, Greek, Hrusso Aka, Polish, Ro-

manian, Spanish, Sylheti, or Welsh, which lack any tense/lax contrast.

(4) Back parameter

Does the vowel system have contrastive roundness or contrastive frontness?

This parameter captures the difference between vertical vowel systems, such as Kabardian,
which only realise frontness or roundness on consonants or morphemes, and the more typical
language with such a contrast inherent to vowels (Hyman, 2008).

All the languages in my sample contrast front unrounded vowels with back rounded vowels.

(5) Frontrounded parameter



4.8. Parameters 85

Is there a rounding contrast in the front vowels?

If s0, 4.8.4.4 is true; the language has at least contrastive rounding. To avoid ambiguity in
setting this parameter, the language must have at least one back or central vowel at the same
height as the contrast, such that the front rounded vowel cannot be alternatively analysed as a
central or back rounded vowel.

Dutch, French, and German have a rounding contrast in the front vowels.

Ambel, Cheke Holo, English, Greek, Hrusso Aka, Lithuanian, Matbat, Polish, Portuguese,

Romanian, Spanish, Sylheti and Welsh do not.

(6) Backunrounded parameter

Is there a rounding contrast in the non-front vowels?

If so, 4.8.4.4 is true; the language has at least contrastive rounding. A vowel system may be
described as having back rounded and back unrounded vowels, or back rounded and central
unrounded vowels (e.g. Turkish, Rice, 2002); either of these contrasts sets this parameter as
true. As in 4.8.4.5, there must be at least one front unrounded vowel at the same height as this
contrast.

Polish and Portuguese have a contrast between high central unrounded and high back roun-
ded vowels. Romanian and Welsh have a contrast in both high and mid vowels. Hrusso Aka has
contrast in the high vowels, and a marginal contrast in the mid vowels. German has a con-
trast between mid central unrounded and mid back rounded vowels, though prosodically con-
ditioned®. Lithuanian also has a contrast between [a] and [o:], with a concomitant length dis-
tinction. English and Dutch have a contrast between central and back mid vowels, and rounded
and unrounded low vowels.

Ambel, Cheke Holo, French, Greek, Matbat, Spanish and Sylheti do not have a rounding

contrast in the non-front vowels.

(7)  Nasality parameter

Does the vowel system have an oral / nasal contrast?

>Taking schwa to be a contrastive segment in German, following Féry (1991).
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This parameter captures the difference between languages with no or allophonic nasal vow-
els (e.g. English) and languages which use vowel nasality contrastively (e.g. French). A language
with nasal vowels will always have oral vowels too, giving an oral/nasal contrast.

French and Portuguese have nasal vowels. Polish is variously analysed with and without
nasal vowels; I have chosen to categorise it as having an oral/nasal contrast in the vowel system,
but the lexicon in Nidaba is transcribed with a nasal archiphoneme, allowing for alternative in-
terpretations to be applied to the data. Hrusso Aka contains vowel nasalisation only marginally
(see also D’Souza, 2015), with nasalisation present in only seven lexical items out of over 3200;
but without token frequency data, I am not conclusively excluding it.

The English, Dutch and German lexicons from the CELEX database contained items tran-
scribed with nasal vowels (i.e. French loanwords). These items are both small in number and
infrequent. Furthermore, the loanwords are not (consistently) produced with nasal vowels, re-
gardless of their transcription in CELEX (see e.g. Cambridge Dictionary, 2015).

Ambel, Cheke Holo, Greek, Lithuanian, Matbat, Romanian, Spanish, and Sylheti do not have

a contrast between oral and nasal vowels.

(8)  Breathiness parameter

Does the vowel system have a modal / breathy contrast?

Of the different phonation types, all languages have modal voicing in vowels, so any lan-
guage with phonemic breathy vowels will have a contrast between modal and breathy phona-
tion.

None of the languages in my sample have a modal / breathy contrast.

(9)  Creakiness parameter

Does the vowel system have a modal / creaky contrast?

Breathiness and creakiness may both be used contrastively in vowels, including in the same
language (Silverman et al., 1995), though this can only produce a three-way contrast.

None of the languages in my sample have this contrast.
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The final phonation type, voicelessness, is only ever found predictably in vowels, in certain

contexts. It is not used contrastively (Gordon and Ladefoged, 2001).

4.8.5 Consonant inventory parameters

The consonant parameters have been divided into three categories, dealing with contrasts in

laryngeal, place and manner features.

Laryngeal parameters

(Almost) all languages with only one type of laryngeal specification have plain voiceless stops
(Maddieson, 1984). We can view this as the unmarked case of stops; in a representation using
privative features, the laryngeal features are unspecified for plain voiceless stops. Represen-
ted in binary features, [-voice, -spread glottis, -constricted glottis] is the unmarked case. The
first three laryngeal parameters examine deviations from this default case. The other two para-
meters examine voicing contrast in fricatives and nasals, since the other laryngeal contrasts are
sufficiently rare to be of less importance.

I am following Honeybone (2005) in treating aspiration and voicing as two separate cases,
rather than simply as two instantiations of a single underlying contrast. An alternative approach
could be parameters for a single contrast and for multiple contrasts. A language with a three-
way contrast and a language with a two-way contrast would then have one of two parameters
in common, just as in the approach I have chosen; whereas a language without a laryngeal con-
trast would have zero of two parameters in common with a two-way contrasting language and
a voicing language would have one of two parameters in common with an aspirating language.
Whilst such a choice might align more naturally with certain applications of a distance metric,
the majority of languages have at least one laryngeal contrast in stops (Henton, Ladefoged and
Maddieson, 1992), so I have instead chosen parameters to more evenly partition the language

space. The alternative, contrast-counting, parameters could be derived from these if required.

(1)  Stop voicing parameter

Does the language have a contrast between voiced and voiceless stops?
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This parameter only describes those languages which have a voicing contrast, rather than
the aspiration contrast of Parameter 4.8.5.2.

For languages like Hindi, which has both a voicing and an aspiration contrast, or like Ostyak,
with neither, this parameter is straightforward.

In languages with only a single contrast, allophones of aspirated stops may appear as plain,
and allophones of plain stops as voiced. A true voicing language will have the following char-
acteristics (Honeybone, 2005, p. 330): Are all ‘voiced’ stops spontaneously voiced, as opposed
to only passively voiced between sonorants? Is there voicing assimilation (i.e. a voiceless stop
becomes voiced in the environment of voiced stop)?

Cheke Holo has both a voicing and an aspiration contrast; there exist minimal triplets (e.g.
[dao] / [tao] / [thao]).

Matbat is transcribed with a voicing contrast, with final stops being spontaneously voiced
(Remijsen, 2007). Ambel (Arnold, pc.), Dutch (Honeybone, 2005), French'®, Greek (Honeybone,
2005), Lithuanian (Steriade, 2000), Portuguese, Romanian, Spanish and Sylheti (Eden, in press)
are voicing languages. Polish is phonetically a voicing language (Gussmann, 2007); there is vari-
ation in phonological behaviour between the two major dialects, with Warsaw Polish behaving
as a voicing language (Cyran, 2011).

For the purposes of this parameter, Hrusso Aka does not contrast voiced and voiceless stops:
there is evidence that the two-way contrast in Hrusso Aka stops is aspiration-based, but as yet
none for spontaneous voicing (D’Souza, 2015). English and German do not have a voicing con-

trast (Honeybone, 2005), and nor does Welsh (Ball, 1984, p. 15).

(2)  Stop aspiration parameter

Does the language have a contrast between plain and aspirated stops?

As we have seen in 4.8.5.1, languages with an aspiration contrast may have phonetic voicing.
The characteristics of an aspirating language are (Honeybone, 2005, p. 329): Do the ‘aspirated’
stops have aspiration in any environment? Is there ‘devoicing’ assimilation (i.e. a voiced stop

becomes voiceless in the environment of an voiceless stop)?

'®Romance languages in general are referred to as true voiced in multiple sources, including Honeybone, 2005;
Iverson and Salmons, 2008; and Cyran, 2011. French is mentioned specifically in Cyran, 2011, and Spanish in Honey-
bone, 2005.
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Cheke Holo is an aspirating language: aspirated sonorants are pronounced with initial spread
glottis, which manifests as breathy voice on a preceding vowel, or plain voicelessness utterance-
initially; while aspirated stops are post-aspirated (Corretta, pc.). Hrusso Aka has a contrast
between voiced and aspirated stops: voiceless plosives are aspirated before high vowels, and op-
tionally elsewhere; high vowels are devoiced following voiceless plosives (D’Souza, 2015). Eng-
lish and German are aspirating languages (Honeybone, 2005), as is Welsh (Ball, 1984, p. 15).

Ambel, Dutch, French, Greek, Lithuanian, Matbat, Portuguese, and Spanish are not aspir-
ating languages. Matbat does not have aspiration or devoicing assimilation. Polish shows voice
agreement, with obstruents assimilating to the voice (or voicelessness) of the following ob-
struent. Given the two-way laryngeal contrast, it is assumed that there is only one active pro-
cess, with devoicing ‘assimilation’ a process of neutralisation, “similar to word-final devoicing”
(Cyran, 2011). Romanian shows final devoicing of nasals in a voiceless environment, but no such
effect on obstruents (Tucker and Warner, 2010). Sylheti is unusual for an Indo-Aryan language

in that it lacks an aspiration contrast (Eden, in press).

(3)  Stop glottalisation parameter

Does the language have a contrast between plain and glottalised stops?

For this parameter, a stop is considered glottalised if the airstream mechanism is glottalic
(i.e. implosives and ejectives), or if the glottis is constricted to produce creaky consonants. There
are no known languages which distinguish between laryngealized pulmonic and glottalic con-
sonants (Maddieson, 1984), so this parameter covers both interchangeably.

None of the languages in my sample have such a contrast.

(4)  Fricative voicing parameter

Does the language have a contrast between voiceless and voiced fricatives?

The majority of languages have voiceless fricatives (Maddieson, 1984), and in general, the
presence of a voiced fricative implies the presence of a voiceless counterpart. However, this
does not hold for all places of articulation — e.g. bilabial fricatives are more commonly voiced;
and a voiced uvular fricative may be argued to belong to the class of liquids as a rhotic, rather

than that of voiced fricatives.
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For this reason, this parameter deals with the contrast between voiceless and voiced fricat-
ives at the same place of articulation, not just the presence or absence of voiced fricatives in the
language’s inventory.

There are very few languages with aspirated or glottalised fricatives (Maddieson, 1984), so I
am not including parameters for fricatives which parallel those for stops.

This parameter depends on Parameter 4.8.5.16, the presence of fricatives in the language.

Ambel and Matbat have only voiceless fricatives.

Cheke Holo, Dutch, English, French, German, Greek, Hrusso Aka, Lithuanian, Polish, Por-

tuguese, Romanian, Spanish, Sylheti, and Welsh have a voicing contrast.

(5) Nasal voicing parameter

Does the language have a contrast between voiceless and voiced nasals?

All languages with nasals have plain voiced nasals (i.e. modally voiced nasals with no sec-
ondary articulation) (Maddieson, 1984), so any language with a voiceless nasal will have this
contrast.

This parameter does not cover the contrast between modal voicing and breathy or aspirated
nasals, just as Parameter 4.8.5.1 does not. However, there are so few languages which contrast
glottalisation or breathiness in nasals that, as with fricatives, I am not including parameters
which cover those contrasts.

Welsh has a nasal voicing contrast; voiceless nasals appear in a ‘nasal mutation’ context, as
‘reflexes of initial voiceless stops’ (Hannahs, 2013).

The other languages in my sample do not; Romanian has allophonic nasal devoicing, but no

contrast (Tucker and Warner, 2010).

Obstruent place parameters

The vast majority of languages have plosives at three places of articulation: labial, dental/alve-
olar and velar. Additional contrasting places of articulation are, in order of frequency, palatal,

uvular, retroflex, labio-velar, and finally a contrast between dentals and alveolars. However,
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these additional places are fairly infrequent, found in 10% of languages or fewer. The ‘place-
less’ plosive, by contrast, divides the languages in UPSID almost equally: approximately half of

languages have a glottal stop.

(6)  Glottal stop parameter

Does the language have a glottal stop?

For this parameter to be true, the sound must be phonemic, not just be phonetically inserted
into pauses; it must contrast with other stops, not just zero.

Cheka Holo has glottal stops.

The other languages in my sample do not. Various dialects of English employ glottal stops
as allophones of /t/, but not the dialect on which this current analysis is based (e.g. Hughes,

Trudgill and Watt, 2013).

(7)  Secondary articulation series parameter

Does the language contain consonants which contrast solely in secondary place of articulation?

That s, does the language have a series of secondarily articulated consonants which parallels
another series of consonants? E.g. Irish velarized and palatalized consonants, Russian plain and
palatalized consonants. If the language contains only a single secondarily articulated obstruent,
this is not considered to be a parallel series (e.g. labialized velar in Molinos Mixtec, Hunter and
Pike, 1969).

Lithuanian (Kenstowicz, 1972) and Polish'7 (Gussmann, 2007) have secondary palatal series.
None of the other languages in my sample have a contrasting series of secondarily articulated

consonants.

Nasal place parameters

The vast majority of languages with nasals have both a bilabial nasal and a dental or alveolar

nasal. Since these are so prevalent, parameters examining them would not evenly partition the

"Whether the Polish series is a feature of the inventory or morphophonology is a subject of some debate; I am
here following Gussmann(2007, p. 99) in assuming it is ‘lexical, unpredictable, underlying’; i.e. a contrast located in
the obstruents.
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language space. I therefore include parameters for whether a language has the next most com-

mon types: velar nasals or palatal nasals.

(8)  Velar nasal parameter

Does the language have velar nasal phonemes?

Approximately half of languages use velar nasals (Maddieson, 1984). The majority of lan-
guages with only three nasals have a velar nasal as the third.

Cheke Holo, English, Dutch, German, Hrusso Aka, Matbat and Welsh have velar nasals.
French has velar nasals only in English loan items, with a total frequency of 105 items / million.

Spanish has velar nasals after nasal place assimilation, but not in contrast to other nasals
(J. W. Harris, 1984). Ambel, Greek, Lithuanian, Polish, Portuguese, Romanian, and Sylheti do

not have velar nasals.

(9)  Palatal nasal parameter

Does the language have palatal or palato-alveolar nasal phonemes?

Few, if any, languages contrast palatal with palato-alveolar nasals. Whilst they are less com-
mon than velar nasals, palatals may form the third nasal in an inventory, or, more commonly,
the fourth.

Cheke Holo, French, Hrusso Aka, Lithuanian, Polish, Portuguese and Spanish have palatal
nasals.

Ambel, Dutch, English, German, Greek, Matbat, Romanian, Sylheti and Welsh do not.

(10)  Word-final nasal place parameter

Do nasal stops contrast in place word-finally?

Whilst most languages have some contrast between bilabial and dental/alveolar nasals, many
lose that contrast word-finally, particularly those which do not otherwise have word-final ob-
struents; e.g. Japanese (Vance, 2008).

This parameter depends on Parameter 4.8.3.4, the presence of word-final consonants.
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All the languages in my sample have a contrast in place between word final nasals, excepting

Cheke Holo, which does not have word-final consonants at all.

Fricative place parameters

These parameters depend on Parameter 4.8.5.16, the presence of fricatives in the language.

(1)  Dental/alveolar fricative parameter

Does the language have an interdental, denti-alveolar (‘dental’) or laminal alveolar fricative?

The most common place of articulation for a fricative is dental/alveolar, with the majority
oflanguages not distinguishing between these two places. In terms of distinctive features, most
languages have a [+anterior] fricative, but few distinguish between [+anterior, +distributed] and
[+anterior, —distributed].

All the languages in my sample have at least one of these fricatives.

(12)  Hparameter

Does the language have /h/?

The glottal or ‘placeless’ fricative is the next most common fricative, with two-thirds of lan-
guages having some kind of voiceless laryngeal continuant.

Cheke Holo, Dutch, English, German, Hrusso Aka, Matbat, Romanian, Sylheti, Welsh have a
glottal fricative.

Ambel, French, Greek, Lithuanian, Polish, Portuguese, Spanish do not.

(13)  Palato-alveolar fricative parameter

Does the language have a palato-alveolar fricative?
The next most common place of articulation for a fricative is palato-alveolar.
Palatal fricatives are uncommon enough that I am not including a parameter examining

them here. However, their appearance is independent of palato-alveolars, since the probability
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ofthere being palatal fricatives is the same in languages with and without palato-alveolars (Mad-
dieson, 1984), so they are not considered to contribute to this parameter. In terms of distinctive
features, this parameter examines [+coronal] segments, not [+high] ones.

Ambel, Greek, Matbat and Spanish do not have a palato-alveolar fricative. Cheke Holo does
not have palato-alveolar fricatives, provided that the sounds transcribed [t[] and [d3] are affric-
ates. This is supported by distributional data: the sounds [[] and [3] only occur as components
of [t[] and [d3] respectively, and the only ‘three segment sequence’ in the language is [t[r]. Pol-
ish has an alveolo-palatal fricative, which Maddieson (1984) classes with palatals; I shall follow
this convention here.

Dutch, English, French, German, Hrusso Aka, Lithuanian, Portuguese, Romanian, Sylheti

and Welsh do have a palato-alveolar fricative.

(14)  Labial fricative parameter

Does the language have a labial fricative?

The labio-dental fricative /f/ is the third most common fricative. Since very few languages
contrast bilabial and labiodental fricatives, this parameter also includes bilabial fricatives. This
scarcity may also be why there is no general consensus on which distinctive features are neces-
sary to represent labiodentals (Odden, 2005, Hayes, 2008).

This also avoids the necessity of deciding which articulation is the underlying form in any
given language. For example, Dizi has the fricative inventory [s], [z], [[], [3], [f], [B] and [h]
(Maddieson, 1984). [f] and [8] could be considered to contrast in place, with predictable voicing,
or, given the patterning of the other fricatives, to pattern in voicing with predictable place of
articulation. In the latter case, much more data is required to decide which of the two places is
underlying.

All the languages in my sample have a labial fricative.

(15)  Velar fricative

Cheke Holo, Dutch, German, Greek, Hrusso Aka, Lithuanian, Polish, Spanish and Sylheti

have a velar fricative. Ambel, English‘s, French, Matbat, Portuguese, Romanian and Welsh do

"CELEX contains the single example (ugh), though this is para-linguistic.
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not.

Manner parameters

(16)  Fricative parameter

Does the language have fricatives?
A fricative is defined as a continuant, produced throughout with constriction leading to
turbulent airflow, and acoustically, to noise. This excludes both affricates and fricative vowels.
Over 90% of languages have fricatives (Maddieson, 1984), so two languages both having fric-
atives is not particularly meaningful. However, this parameter is a necessary prerequisite to the
larygneal and place fricative parameters. (For this reason, laryngeal continuants are included
under this parameter, despite their variable classification.)

All the languages in my sample have fricatives.

(17)  Sonorant laterality parameter

Is there a contrast between lateral and non-lateral sonorants?

That is, does the language have sonorants which have the same manner and place of artic-
ulation, and laryngeal specification, and contrast only in lateral articulation?

This contrast exists in English between /1/ and /1/ and Spanish between /j/ and /4/.

Dutch and German have lateral and non-lateral sonorants at different places of articulation.
The French rhotic is a uvular fricative, so does not contrast with the alveolar lateral approximant
for this parameter.

Ambel, Cheke Holo, Greek, Lithuanian, Matbat, Polish, Romanian, and Welsh have alveolar
rhotic and lateral sonorants, but the rhotics differ in manner, being trills. Likewise, Portuguese
and Sylheti have alveolar taps as counterparts to alveolar lateral approximants. Hrusso Aka has
two laterals and two rhotics: /1/, /£/, /8] and marginally /c/ (D’Souza, 2015) but they do not con-

trast in manner and place simultaneously.

(18)  Contrasting lateral sonorants parameter

Are there two or more contrasting lateral sonorants?
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That is, are there sonorants with lateral articulation which contrast in place of articulation?

There are very few languages which contrast more than two lateral sonorants, so I am not
distinguishing here between those languages with only one contrast and those few languages
with more than one.

Ambel, Cheke Holo, Dutch, French, German, Greek, Matbat, Polish, Romanian, Sylheti and
Welsh each have only a single lateral sonorant. The English alveolar lateral approximant may be
syllabic or non-syllabic, but does not contrast in place of articulation.

Hrusso Aka, Portuguese, and Spanish have a contrast between alveolar and palatal lateral
approximants. Lithuanian has a contrast between alveolar and palatalised alveolar lateral ap-

proximants.

(19)  Contrasting non-lateral liquids parameter

Are there two or more contrasting non-lateral liquids?

Since over 97% of languages have two or fewer r-sounds (Maddieson, 1984), I am not includ-
ing a parameter to separate out the small minority of languages which have more than two.

Lithuanian has a contrast between a palatalised and non-palatalised alveolar trill. Por-
tuguese has a contrast between an alveolar flap and a uvular trill. Spanish has a contrast between
tapped and trilled alveolars. Sylheti has a contrast between dental and retroflex flaps'®. Welsh
has a voicing contrast in its alveolar trills.

Ambel, Cheke Holo, Dutch, English, French, German, Greek, Hrusso Aka, Matbat, Polish

and Romanian do not have a contrast within the category of non-lateral liquids.

(20)  Lateral obstruent parameter

Does the language contain any lateral obstruents?

For example, fricatives, as in Welsh, or affricates, as in Navajo. Of the languages in UPSID,
only 42 — 1% of languages with laterals — have lateral obstruents (Maddieson, 1984), but this
parameter is included for completeness.

Of the languages in my sample, only Welsh has lateral obstruents.

The retroflex flap [¢] is mostly allophonic with the voiced retroflex stop [d] except in certain loan items, as in
many Indo-Aryan languages (Masica, 1991). In neighbouring Assamese, the retroflex and dental flaps have merged
into a single rhotic.
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TABLE 4.11: Syllable structure parameter values
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TABLE 4.12: Vowel parameter values

HeightV v Vv VY VY Y VY VY Y VY YV VY V VY V /
ATRcontrast X X & & & X X & & X & X X X X

X

VAR a4

Multiple ATR contrasts -

Back/ vV VY Y Y VY V V' V' VIS

Frontrounded X X & X & & X X X X X X X X X X
Backunrounded X X « & X & X & & X L L X X

Nasality X X X X & X X & X X L L X X X X
Breathiness X X X X X X X X X X X X X X X X

Creakiness X X X X X X X X X X X X X X X X

TABLE 4.13: Consonant parameter values

Stopvoicingd ¢« & X L X L X S S S L L L L X
Stopaspiration X ¢ X X L X L X X X X X X X
Stop glottalisation X X X X X X X X X X X X X X X X

Fricativevoicing X « & & V 4V V' VY X V VY V VY V' /

Nasalvoicing X X X X X X X X X X X X X X X

Glottalstop X ¢ X X X X X X X X X X X X X X
Secondaryseries X X X X X X X X L X L X X X X X

Velarnasal X ¢ & & & & X & X & X X X X X
Palatalnasal X ¢ X X & X X ' & X L & X L X X

VARAR' AR AR AR AR AR A AR AR AR AR AN 4

Final nasal v/

Dentalfricative /' & « & ¥  « & V V V V L L

Glottalfricative X & & & X & X & X L X X & X &
Palato-alveolar fricative X X & & & X & & X & & & X &

Labialfricative v ¢ ¢ ' & S/ ' V' V' V' S V' S V' L /S

Velarfricative X & & X X & L & X L X X & L X

Fricatives/ v & / ' ¢ V V' VY VY V' V' V' S IV S

Sonorantlaterality X X X & X X X X X X X X X L X X

Contrastinglaterals X X X X X X X & &/ X X & X 4 X X
Contrastingnon-laterals X X X X X X X X & X X & X & L

Lateral obstruent X X X X X X X X X X X X X X X
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4.9 Hamming Distance

4.91 Method

Given the 16 languages described above, there are 120 unique language pairs. For each pair of
languages under examination, I have assigned each parameter a value of 1 (if its value differs
between the languages), o (if it is the same), or N/A. The Hamming Distance H between the two

languages is calculated using H = -, where d is the number of differently-valued parameters,

+d
and ¢ is the number of identically-valued parameters, as explained in Subsection 4.2.2 on page 41.
These values can be found in Table 4.14, and plotted in Figure 4.1. Since Hamming Distance
produces a symmetric result, the values are mirrored across the diagonal.
Another possible visualisation of the resulting similarities is Figure 4.2 on page 101. This
unrooted tree was calculated using the ‘Fitch’ and ‘DrawTree’ programs of the PHYLIP package

(Felsenstein, 1989).2°

TABLE 4.14: Hamming distances

P ¥ & &S _

&0&\0 6‘2‘@0 %\gﬁ\eao%&@ B &o;\}@éo& {&QO &0\ & qu}%@

¥ T P o & e o
Ambel 0.17 0.32 0.32 0.30 0.36 0.15 0.26 0.32 0.13 0.26 0.23 0.23 0.15 0.17 0.34
Cheke Holo o.17 0.34 0.34 0.34 0.34 0.26 0.17 0.36 0.21 0.32 0.32 0.32 0.19 0.22 0.34
Dutch 0.32 0.34 0.12 0.15 0.04 0.16 0.29 0.18 0.35 0.20 0.32 0.10 0.35 0.28 0.20
English 0.32 0.34 0.12 0.23 0.08 0.24 0.29 0.25 0.35 0.28 0.32 0.14 0.35 0.35 0.12
French 0.30 0.34 0.5 0.23 0.19 0.22 0.29 0.20 0.33 0.22 0.22 0.16 0.31 0.33 0.25
German 0.36 0.34 0.04 0.08 0.19 0.20 0.25 0.22 0.39 0.24 0.36 0.14 0.39 0.33 0.16
Greek 0.5 0.26 0.6 0.24 0.22 0.20 0.29 0.22 0.29 0.16 0.31 0.14 0.23 0.24 0.28
Hrusso Aka 0.26 0.17 0.29 0.29 0.29 0.25 0.29 0.27 0.29 0.23 0.23 0.27 0.23 0.24 0.29
Lithuanian 0.32 0.36 0.8 0.25 0.20 0.22 0.22 0.27 0.41 018 0.8 0.16 0.20 0.26 0.26
Matbat 0.3 0.21 0.35 0.35 0.33 0.39 0.29 0.29 0.41 0.40 0.27 0.31 0.27 0.19 0.38
Polish 0.26 0.32 0.20 0.28 0.22 0.24 0.16 0.23 0.18 0.40 0.25 0.18 0.29 0.31 0.32
Portuguese 0.23 0.32 0.32 0.32 0.22 0.36 0.31 0.23 0.18 0.27 0.25 0.24 016 0.21 0.31
Romanian 0.23 0.32 0.10 0.14 0.16 0.14 0.14 0.27 0.16 0.31 0.18 0.24 0.29 0.21 0.14
Spanish 0.5 0.9 0.35 0.35 0.31 0.39 0.23 0.23 0.20 0.27 0.29 0.16 0.29 0.14 0.35
Sylheti 0.17 0.22 0.28 0.35 0.33 0.33 0.24 0.24 0.26 0.19 0.31 0.21 0.21 0.14 0.30
Welsh 0.34 0.34 0.20 0.12 0.25 0.16 0.28 0.29 0.26 0.38 0.32 0.31 0.14 0.35 0.30

*°Figure 4.2 is a representation on a two-dimensional page of a multi-dimensional web of distances, and so cannot
be used to infer relationships between languages. For example, similarity is not transitive; just because two languages
A and B are similar, and A is similar to a third language C, this does not necessarily mean that B and C are similar,
despite the visualisation. It depends whether the parameters that A and B share are the same parameters that A and
C share. For example, the Hamming Distance between Greek and Ambel is small (0.15), as is the Hamming Distance
between Greek and Dutch (0.16). But the distance between Ambel and Dutch is not small (0.32).
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FIGURE 4.1: Heatmap of Hamming Distances; larger, blacker points are closer,
smaller, greyer points are further.
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FIGURE 4.2: Visualisation of Hamming Distances (Felsenstein, 1989)

4.9.2 Significant similarity

As we saw in Subsection 4.2.2, parametric similarity between languages is only significant when
these values are drawn from a sufficient total number of parameters.

Table 4.15 lists those language pairs where the probability of their high similarity arising
at random is <1 in 105, assuming both values of each binary parameter are equally likely, and
all parameters are strictly independent. In that case, such similarity would imply a relation-
ship between those language pairs. Indeed, some pairs are sisters (West Germanic, Raja Ampat,
Iberian Romance); some are neighbours (English/Welsh; Dutch/French; Lithuanian/Polish).

However, not all parameter values are equally likely to occur. Deviations from the canon-
ical CV syllable structure are not as common as the default, by definition. Ambel and Greek
share a syllable shape inventory of (C)CV(C), lacking variations such as three-consonant ini-
tial sequences or two-consonant final sequences, falling initial sonority or rising final sonority
sequences, or syllables which are exceptions to the standard shapes. Likewise, “considerably

more languages have an inventory of five vowels than any other number” (Maddieson, 2011),
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and Ambel and Greek share the ‘average vowel inventory’ of five monopthongs.

Cheke Holo and Hrusso Aka similarly have fewer deviations from the canonical syllable
structure. With much more limited lexicons available compared to Indo-European languages,
the negative evidence for sonority or structure violations is also less compelling than for Spanish
or Portuguese, for example.

The remaining language pairs have statistically insignificant similarities, so nothing can be
inferred about the historical relationship between them from these results.

TABLE 4.15: Language pairs with significant overlap in parameter similarity

Identically Differently  Total
Languages Hamming valued valued relevant
distance parameters parameters parameters

Dutch German 0.04 50 2 52 West Germanic
English German 0.08 48 4 52 West Germanic
Dutch Romanian 0.10 46 5 51 Indo-European
Dutch English 0.12 46 6 52 West Germanic
English Welsh 0.12 45 6 51 neighbours
English Romanian 0.14 44 7 51 Indo-European
German Romanian 0.14 44 7 51 Indo-European
Romanian Welsh 0.14 44 7 51 Indo-European
Ambel Matbat 0.13 41 6 47 Raja Ampat
Greek Romanian 0.14 43 7 50 Indo-European
Dutch French 0.15 44 8 52 neighbours
French Romanian 0.16 43 8 51 Romance
German  Welsh 0.16 43 8 51 Indo-European
Ambel Greek 0.15 40 7 47

Ambel Spanish 0.15 40 7 47

Dutch Greek 0.16 42 8 50 Indo-European
Greek Polish 0.16 42 8 50 Indo-European
Lithuanian Romanian 0.16 42 8 50 Indo-European
Spanish Sylheti 0.14 37 6 43 Indo-European
Portuguese Spanish 016 41 8 49 Iberian Romance
Dutch Lithuanian 0.8 42 9 51 Indo-European
Cheke Holo Hrusso Aka  o.7y 39 8 47

Lithuanian Portuguese 048 4 9 50 Indo-European
Polish Romanian 048 41 9 50 Indo-European
French German 0.19 42 10 52 neighbours
Ambel Cheke Holo o7y 38 8 46 Malayo-Polynesian
Lithuanian Polish 0.18 40 9 49 Balto-Slavic
Dutch Welsh 0.20 41 10 51 Indo-European

French Lithuanian 0.20 4 10 51 Indo-European
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4.9.3 Weighting

It is possible to account for asymmetries in typology by, for example, assigning a weighting pro-
portional to the percentage of languages which share that parametric value. This system would
assign a greater similarity to languages which shared a marked value than an unmarked one.
This would compensate for the effect described above, making this metric more useful for prob-
ing the historical relationship between languages.

However, a metric is by definition symmetric; measuring from a phonologically ‘standard’
language to an unusual one should give the same distance as the reverse. It is possible to apply
a weighting asymmetrically, so as to be useful in asymmetric processes such as intelligibility
or acquisition (see Chapter 2). But in using a weighting for synchronic, rather than historical,
research, there is the risk of begging the question: using acquisition observations to establish

weightings to derive a distance metric to explain acquisition observations.

410 Conclusion

It is possible to measure the similarity of phonological representation systems using typological
observations, formulated in either parameters or constraints.

Nidaba is a computational tool for assisting in making typological observations, and is de-
signed to be configurable and extensible software, so as to enable users to make differing theor-
etical assumptions based on the same data.

I have applied a test set of 52 syllable structure and segment inventory parameters to 16 lan-
guages, and measured the resulting Hamming Distances between each language pair. The find-
ings broadly accord with intuitive observations®: Dutch, English and German resemble each
other more than French, Portuguese and Spanish do; and Portuguese is very similar to a Baltic
language. This method is equally applicable to Tibeto-Burman and Austronesian languages as
Indo-European, with no dependency on cognacy or historically significant features.

This method therefore provides a reproducible way of quantifying similarity between any

pair of languages using only a lexicon of ~1000 items.

*Both my own impressions, and an informal survey of phonologists.
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Chapter 5

Cross-Entropy

In this chapter, I move away from a static representation of phonological systems, to a similarity
metric based on the cross-entropy of phonemically and featurally transcribed example texts.
The advantage of such a metric is a large reduction in the amount of input data required, and in
the completeness of analysis of a given language.

In Section 5.1 I discuss the basic concept of cross-entropy; in Section 5.2 the choice of nota-
tion to use in representing an extract of speech; in Section 5.3 the different approaches for cal-
culating entropy. Section 5.4 summarises the methodology, with the prototype described in

Section 5.5 and the full application in Section 5.6.

51 Background

511 Whatis entropy?

Entropy is a measure of randomness. It is used in physics to describe the disorder of a system,
and in information science to describe the efficiency of information transfer.

For example, let us take a message like: ‘aaaaaaaaaaaaaaaaaaaaaaaaaa’ This can either be
transmitted as 26 individual characters, or as ‘a, 26 times..

The message ‘abcdefghijklmnopqrstuvwxyz’ cannot be compressed like that, since every
character is different. However, it can be transmitted as ‘the Roman alphabet. That is, given
some existing knowledge of the system - the order in which letters usually appear in the Ro-
man alphabet - the new message is more predictable than if you had to guess the order of 26

characters at random.
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The same is true for the transmission of any string of characters. The character ‘t has amuch
higher probability of being followed by ‘h’ in English than by g} so receiving the message ‘the

thing’ is much more likely than ‘tge tging’, which is more likely than ‘tgb tglkh’, and so on.

5.1.2 Shannon entropy

Shannon (1948) shows that the most efficient encoding is where the length of the representation
in bits' is -logap;, where p; is the probability of some unit of representation 7. That is, compared
to a standard word W, a word that is half as frequent as W should have a representation twice as
long; a word which occurs twice as frequently as W should have a representation which is half
as long.

If English were efficiently encoded, we could represent ‘the’ with 1 bit, (“Is this word ‘the’?),
‘of” with 2 bits (“Is this word ‘the’? Is this word ‘of”"?) and so on. By contrast, since the Eng-
lish alphabet requires 5 bits per letter?, English encoded as a series of letters requires 15 bits for
‘the’, 10 for ‘of’, and so on. Therefore, written material can be compressed to require fewer bits,
without loss of information. Substituting a word-frequency based representation for the written
representation is just one of the possible techniques.

The maximally efficient encoding corresponds to Shannon’s entropy H (M), and is:

H(M) = (-logaps) - (pi)

%

That is, the entropy of a message is the sum of the lengths of the efficiently encoded repres-
entations, each multiplied by the probability of its occurrence.

An entirely predictable system has an entropy of zero, since the probability of that system
is1, and -log2(1) = 0; i.e. no question needs to be answered for the state of the system to be
known. A system which has two equally likely states — e.g. the answer to a yes/no question — has
an entropy of 1 bit (H(M) = (—log2(0.5) x 0.5) X 2); the answer to 1 binary decision is needed

to know the state of the system.

'A bit is a binary digit, whose two values are frequently represented as o or 1. It can be viewed as the answer to a
yes-no question.

25 bits gives 2° possibilities, which can represent up to 32 characters. 2* can represent up to 16, which is obviously
insufficient.
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A system cannot have negative entropy; knowing its state cannot require fewer than o binary

questions to be answered.

513 Cross-entropy

In order to achieve the maximally efficient encoding, we must perfectly know the probability
of occurrence of every word in the message. Assuming we do not, we must use an estimated
distribution () to decide on the lengths of the encodings. ) will not be the same as the actual
probability distribution P, and so the encoding it produces is less efficient.

The entropy of a system which has been encoded using the estimated distribution () is

called the cross-entropy:

H(P,Q) = (~logag:) - (p:)

(2

That is, the cross-entropy is the sum of the lengths of the representations (derived from the
estimated probabilities), each multiplied by the true probability. This cross-entropy is minim-
ised when P = () (i.e. the estimated distribution is the same as the true distribution).

The difference in entropy between a system encoded using () and one using P is called the

Kullback-Leibler divergence:

Drr(Pl|Q) = H(P,Q) — H(P)

=Y (~log2gi) - (pi) = > _(~logopi) - (pi)

7 7

Since there is no theoretical difference between an accurate and an inaccurate distribution,
the same technique can be applied to any two distributions P and (), whether P is actually the
true distribution, or is in reality just another estimate. This should produce a positive Kullback-
Leibler divergence; if not, then the approximation () is in fact more accurate than the ‘true’

distribution P.
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Two languages can therefore be compared using the Kullback-Leibler divergence even if we
do not know the true probability distribution of character sequences for them, provided we have
a reasonable estimate for each.

For example, we can derive two encodings for English: the first based on our reasonable
estimate of the probability distribution of English, and the second based instead on German. We
shall label the distribution derived from English the ‘true’ distribution P, and the one derived
from German an approximate distribution (). The cross-entropy of these estimates will be called
H (English, German).

If instead we wanted to apply these distributions to a German text, we would label the
German-based ‘true’ distribution P, and the English-based approximation (). The cross-entropy
of these estimates would be called H (German, English).

The Kullback-Leibler divergence for each of these situations will not necessarily be the same:

H (English, German) — H (English) # H (German, English) — H (German)

Therefore, the Kullback-Leibler divergence cannot strictly be called a metric, since it is not
symmetrical. However, this may be beneficial in modelling human understanding and acquisi-
tion of language, which can also be asymmetrical between language pairs. To produce a metric
which is comparable to those derived in Chapter 4 and Chapter 6, the average of the two can be
used.

We can then compare the cross-entropy H (English, German) with H (English, Spanish)
and H (English, Dutch). The pair of languages with the smallest Kullback-Leibler divergence
have more similar encodings, which means that knowledge of one system in that pair is likely
to translate accurately into knowledge of the other. For example, if H (English, Dutch) had
the smallest Kullback-Leibler divergence, and H (English, Spanish) the largest, a Dutch speaker
would be more likely to correctly guess whether [#st-] occurs in English than a Spanish speaker,
based solely on their own language.

The above examples kept one language (English) constant across the comparisons. How-

ever, this is not a requirement of the metric. By using the Kullback-Leibler divergence, we can
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control for a system having an inherently higher or lower entropy, and compare across all lan-
guage pairs, even if they do not have a language in common; e.g. comparing H (English, Dutch)
with H (German, Spanish).

Whether phonemic representations vary in redundancy depending on the language will be
examined below.

Finally, this language distance can be normalised to a scale between o and 1. When one
estimate is as good as the other, the Kullback-Leibler divergence will be o. Since entropy cannot
be negative, the maximum Kullback-Leibler divergence occurs when one estimate predicts an
entropy of o, and the other estimate predicts the maximum possible entropy of that system.

Maximum entropy means maximum uncertainty, i.e. every possibility is equally likely.

N 1.1 1
Hma:r — Z(_ZOQQN) : (N) = _ZOQQN

where N is the number of possible states.

We normalise the metric by dividing the Kullback-Leibler divergence by this maximum.

5.2 Representation

There are myriad options for representing languages in a suitable format for entropy estima-
tion. For our purposes, entropy estimation requires a linear sequence of characters, known as a
string. A character is any discrete representation of a concept. The most common characters are
orthographic - letters, punctuation and numerals - but characters may also be concepts without
a standard visual representation. Possible phonological characters include phonemes, tones,
stress, distinctive features (voicing, syllabicity, nasality, etc), and combinations of distinctive
features (which I shall call feature bundles).

There is broad consensus that phonological representations are discrete, so I shall not here
examine the measurement of entropy in a continuous system. It is however a possibility for

anyone wishing to apply the same methodology to phonetic variables, for example.



110 Chapter 5. Cross-Entropy

5.21 Orthography

Classification of written documents using entropy-based algorithms has been an active area of
research for decades. But there are three obvious limitations of using orthographic texts as the
input to a model of phonological similarity. Firstly, languages with different orthographies can-
not be compared. Secondly, the results shed more light on historical written contact than on
modern phonological similarity. Thirdly and most importantly, most orthographies are fairly
inadequate representations of phonology.

5.2.2 Example phonological characters

Here are some examples of the same phrase represented using different types of characters (with

IPA transcription to aid the reader (International Phonetic Association, 1999)):

(5.1) Orthographic characters

The North Wind and the Sun were disputing which was the stronger
do mobé windon do 'sanwe dis'pjutiy 'wiff woaz da 'stipnge

(5.2) Phrasal stress characters

02 1 0 02 o0 02 2 0 0 2
39 'noé wind an ds 'san wa dis'pjutiy ‘'wiff woz da 'stibnge

(5.3) Voicing features

R s ot o S B B B
39 'nof wind on ds 'san wo dis'pjutiy  'wiff woz da 'stibnge

(5.4) Nasality features

e e it e A it S

do 'noé wind an do 'san wa dis'pjutiy ‘wiff waz da 'stibyge

(5.5) Feature bundles (voicing and nasality combined)
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++ ++- ++++
R + - - e
BB  ABC BBAB

do nob wind

Each feature bundle forms a single character, so i, J_r and _ could alternatively be
represented as ‘A, ‘B’ and ‘C’. Using this representational choice, it does not matter how
many feature values the bundles have in common, only whether each bundle is
identical or not. A phonemic representation is a particular kind of feature bundle: if

feature bundles comprise all the relevant features, they are abstract phonemes.

This choice of character type for the algorithm can therefore be used to compare feature
theories; by choosing different representations (e.g. SPE features, Elements) we can

compare which theory of representation gives a more insightful result.

For my prototype in Section 5.5, I use orthographic and phonemic characters. In Section 5.6,

I then move on to using various subphonemic features, described below.

5.2.3 Static IPA-feature mapping

The first phonological representation I examine is that of Hayes, 2008. This is a set of binary
features which map statically to the IPA. All segments are fully specified for all relevant fea-
tures. Whilst this has obvious problems in accounting for natural classes cross-linguistically, it
is straightforward to apply to IPA-transcribed texts from multiple languages, and is therefore a

useful starting place.

5.2.4 Language-specific binary features

The second representation is a set of binary features formed from the consensus of Gussenhoven
and Jacobs (2013), Hayes (2008), and Odden (2005). There is variation both in the inclusion or
exclusion of features in a given feature system, and in the criteria used to decide on their values.

Where possible, I have relied on the criteria found in the three textbooks, for consistency.
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Feature set

Table 5.1lists all the features found in Gussenhoven and Jacobs (2013), Hayes (2008), and Odden
(2005); and the set of features I have chosen to include. The criteria for deciding on the values
of these features are in Section A.1 on page 195, and the values for each languages listed in Sec-
tion A.3 on page 201

I am not including [syllabic], assuming that structural information is represented separ-
ately from melodic information (Goldsmith, 1976). This means that in the representations be-
low, glides are indistinguishable from high vowels, since structural information is not included.
Likewise, I am not including [long] or [delayed release]; these are better represented by one-to-
many / many-to-one relationships between the melodic and segmental tiers.

Backness and rounding give a four-way contrast; including [front] to generate a six-way con-
trast is unnecessary, at least for the languages sampled.

Implosives can be specified with a combination of constricted glottis and voicing.

Whilst not strictly necessary for distinguishing segments, [labial] rationalises observable
patterns. For this set of languages, including it makes [round] redundant.

Labiodentals can be specified with [distributed] and [strident]. Furthermore, per Odden
and other authors, [strident] is redundant for all the languages under examination.

[RADICAL] contrasts pharyngeal with other places of articulation, and is likewise redundant
for the languages in my sample.

[tap] and [trill] are specified with [distributed] and [continuant].

I used a Python program to analyse a feature specification for a given language, and indicate
where there are redundancies, or where two segments have the same specification.? I found that
[distributed] and [constricted glottis] are redundant features with this choice of languages, and
they are therefore not included in the entropy calculations. More details are available in Sec-

tion A.2 on page 198.

5.2.5 Element Theory representation

SPE-style binary features are not the only system of phonological representation currently in

use. One alternative to using articulatory features is Element Theory. Elements correspond to

3The source code is available at https://github.com/ElizabethSEden/NaturalClasses.
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Odden Gussenhoven Hayes Consensus
& Jacobs
anterior anterior anterior v
approximant approximant
back back back v
consonantal consonantal consonantal v
constricted glottis  constricted glottis  constr glottis ()
continuant continuant continuant v
coronal CORONAL coronal v
delayed release delayed release
distributed distributed distributed V)
DORSAL dorsal
front
high high high v
implosive
labial LABIAL labial v
labiodental
lateral lateral lateral v
low low low v
nasal nasal nasal v
RADICAL
round round round V)
sonorant sonorant sonorous v
spread glottis spread glottis spread glottis v
strident strident strident
tap
ATR tense tense v
trill
voice voice voice v
syllabic syllable
long long

TABLE 5.1: Features consensus; highlighted features are included; constricted

glottis, distributed and round are excluded as redundant.



114 Chapter 5. Cross-Entropy

acoustic signatures, though there is no one-to-one mapping to the phonetic signal; the elements
of a language are discovered through its phonological behaviour.

I will derive the elements for the seven languages in question based on the principles in
Backley (2o11). There are six elements, each of which can be a head or a dependent in Backley’s
approach. A headed element plays a greater role in determining the overall acoustic shape.
Headedness is represented by underlining.

The element assignments that I have chosen are in Section A.4. Element values for English
are adapted from the values for Received Pronunciation English in Backley (2011), as are element
values for the other languages which Backley discusses explicitly*. The remaining element val-
ues are only a first approximation, and open to amendment. However, they are sufficient to
test a proof of concept - namely that such representations will give rise to language-dependent
cross-entropy differences.

The six elements and their characteristics are:

(1) Al

|A] is characterised by a lower-central energy peak, around 1kHz. |A| as a single element in an
expression will be a sound like [a].
|A| contributes to place in coronals, labiodentals and gutterals. Simplex |A| is used in retro-

flexes or pharyngeals.

(2) 0

|T| is characterised by energy peaks around 500Hz and 2.5kHz, with a dip between them. |I| as a
single element in an expression will be a sound like [i].
As a consonantal place element, |I] is used in coronals and |I| in palatals. |I A| is used in

alveolo-palatals. Non-high front vowels are |I| with [A|.

(3) Ul

*See in particular p.52 for English vowels, p.109 for place in obstruents, p.161 for manner in consonants, and p.184
for glides.
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|U] is characterised by low frequency energy, under 1kH. |U| as a single element in an expression
will be a sound like [u].

Non-high back vowels are |U| with |A|. Front rounded vowels are |I| with |U]. |U| plays a
similar rounding role in consonantal place: |U] for labials, |U A| for labiodentals, |U]| for velars,
|I U| for palato-velars and |U A| for uvulars.

A central vowel such as schwa may be empty, containing none of the three vowel elements.

(4) H|

|H| is characterised by high-frequency aperiodic noise, such as frication and release bursts. [H|
in isolation is placeless frication noise, i.e. [h]. Dependent |H| indicates a fricative, with |H| a
fortis or aspirated fricative. In a nasal, |H| indicates breathiness or voicelessness. In a stop, [H|
indicates aspiration and |H| breathiness or an ejective.

I have followed Backley’s simplifying assumption that a language with a two-way laryn-
geal contrast is either aspirating (an H language) or voicing (an L language), with no variation

between stops and fricatives.

(5) IL]

|L| is characterised by murmur, a band oflow frequency energy found most prevalently in nasals.
|L| in isolation is a placeless nasal, such as the moraic nasal of Japanese. |L| is found in nasal

consonants and vowels; |L| is found in voiced obstruents.

6) I?|

|| is characterised by “a sudden and sustained drop in acoustic energy”. |?| is isolation is a place-
less (i.e. glottal) stop, [?]. |?| is found in stops, and some nasals and laterals. |?| is found in

ejectives.

(7)  Syllabicity

Unlike with SPE-style features, the same elements are used to represent all vowels and conson-

ants. Glides and liquids, lacking frication or closure, are separated from vowels only by syllable
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structure.

However, for the purposes of a linear representation, I have included an additional bit of
information for each segment: its syllabicity. An alternative to this approach would be to include
empty nuclei where necessary to give rise to an entirely predictable onset-nucleus structure.

From a conservation of information perspective, the outcome is comparable, if not identical.
(8)  Length

Length is expressed structurally, with elements associating to multiple timing slots. For the
purposes of entropy calculation, I have expressed this as duplicate element bundles. Backley
encodes the Germanic tense-lax distinction solely through length, with long-short pairs having
the same element structure, despite the quality difference. I have kept to this principle, since

this results in no loss of contrast.

5.3 Algorithms

We have seen that language distance can be measured using entropy estimation, and reviewed
some potential phonological representations of language. In this section, I will give an overview
of the algorithms that I am using to estimate values for entropy.

Since entropy is a measure of predictability, it can be estimated using the results of compres-
sion algorithms. The aim of a compression algorithm is to remove any redundant information

from a message, whether that be an audio recording, a text file, or something else.

5.3.1 Unigram model

The most basic algorithm for estimating P calculates entropy directly from the probability dis-

tribution P of characters in a text, using Shannon’s formula:

H(P) = Z(—logzpz’) - (pi)

7
where p; is the probability of a given character.
It uses a basic unigram model of probability, based simply on the frequency of each charac-

ter observed in a sample of text. In its simplest form, this model is:
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ng
pi:N

where n; the number of times it is observed in a sample of N characters.
This model gives a probability of o for characters which are not found in the text sample, so

to account for inevitable low frequency items, a smoothing function is applied:

onitA
PP N T A%

where A is the number of different potential characters (‘alphabet size’). A is the smoothing
parameter. A greater value of A\ means that a greater number of previously unseen items are
expected. [ have set A to 0.5, a commonly used value in Natural Language Processing (Manning
and Schiitze, 1999).

I implemented this algorithm to prototype the cross-entropy approach in Section 5.5.

5.3.2 Prediction by partial matching

A more complex model estimates p; using the surrounding context. Instead of the probability
of a character or a word being fixed, it is dependent on the preceding n characters or words
(n-gram models) or words and their parts of speech (n-pos models).

A Markov model lists the possible states (e.g. ‘t) ‘h’, ‘g’), and the probability of transitioning
from one to another (e.g. t' — ‘W’ = o.5; ‘' — ‘¢’ = 0.01; ‘' — ‘t’ again = 0.1.). The model is
memoryless - only the current state matters, and the probabilities do not depend on previous
states. To take larger contexts into account, each longer string must be treated as an independent
state (e.g. ‘th) ‘he’, ‘gh’).

In prediction by partial matching (PPM), several of these fixed-order context models are
combined, with the process starting with the longest matching model, and falling back to shorter
contexts if no match can be found.

Teahan (2000) finds that PPM can be used to successfully identify the dialect of orthographic
text as British or American English. Teahan’s (1999) Text Mining Toolkit which implements this
scheme is therefore a reasonable starting point for examining phonological language identific-

ation, and the source of entropy calculations in Section 5.6.
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The longest useful context with orthographic characters has been found to be 5 characters
(Cleary and Teahan, 1997). Beyond this length, predictions that do exist are more specific, but
many contexts do not give rise do any predictions at all; this uncertainty increases entropy. I
have therefore used the Text Mining Toolkit’s default maximum context of 5 characters in the
investigation below. Further research is needed to determine if other representations have the

same optimal context length as orthographic characters.

5.3.3 Alternative algorithms

There are several text compression schemes besides PPM, including the match-length approach
used by Juola (see Subsection 3.3.2 on page 37). However, comparing their performance is bey-

ond the scope of this investigation.

5.4 Methodology

To recap, entropy is a measure of predictability of a sequence of characters. The cross-entropy of
two sequences is how good a measure the entropy as calculated from one sequence is at predict-
ing the other sequence. The maximum possible entropy of a sequence is constant for a single
set of characters; to compare between entropies derived from different sets of characters, we
can divide by this maximum value. The true entropy of each sequence, however, is not con-
stant. It must be subtracted from the calculated cross-entropy, so that the final value is directly
comparable across different pairs of sequences. This final value is called the Kullback-Leibler
divergence.

The Kullback-Leibler divergence tells us how predictable a sequence A is, given a sequence
B. By definition, the more similar the two sequences are, the smaller the Kullback-Leibler diver-

gence will be. This method can be applied to any pairs of sequence of characters.

5.4.1 Hypotheses

For each system of representation, I test the following hypotheses:

1. The language of a test string can be reliably identified.
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2. The minimum required test string length for reliable language identification is consistent

across multiple samples of text.

3. If the language of the test string can be reliably identified, the Kullback-Leibler diver-
gences between each pair of languages will be consistently ranked across multiple samples

of text.
4. The Kullback-Leibler divergence is symmetrical for all language pairs.
5. Languages do not differ in their segmental predictability
6. Every feature encodes the same amount of information

Hypotheses 1 - 3 are requirements for Kullback-Leibler divergence to be a viable method of
measuring language distance, with Hypothesis 1 a prerequisite for Hypothesis 2, and 2 for 3.

Hypotheses 4 - 6 examine the relative information content of components of a text in a given
representational system. The default position is that each component is homogenous with re-
gards to predictability. Language acquisition and intelligibility can be asymmetric between lan-
guage pairs, suggesting Hypothesis 4 may be false. Languages vary in their use of suprasegmental
information, implying Hypothesis 5 to be false. Representational theories differ in which fea-
tures they privilege, so variation in this area provides a means of comparing theories based on

observable information content.

5.4.2 Language distance

For each system of representation, the algorithm to generate a language distance metric is as

follows:

1. For each language, obtain multiple samples of text transcribed in the desired character

set.
2. Calculate the cross-entropy H (P, Q) of each pair of samples.

(a) Calculate the probability distribution P for each sample of text.

(b) Calculate the cross-entropy H (P, Q) = > (—l0g2q;)-(p;) for each pair of samples.

7

Where a sample is paired with itself, this gives the entropy of that sample:

H(P,Q) = H(P,P) = H(P).
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(c) Verify that this gives consistent results

3. Calculate the cross-entropy for each pair of languages by grouping sample pairs by their

languages, and taking the average of the group.
4. Normalise the cross-entropies by dividing by the maximum possible entropy.
5. Calculate the Kullback-Leibler divergence KL(P, Q) of each language pair.

6. Take the average of KL(P, Q) and KL(Q, P) to get a symmetrical language distance.

5.5 Prototype
5.5.1 Input data

For the prototype, I have used orthographically transcribed data from the Europarl corpus
(Koehn, 2005), as a starting point. This corpus contains text from 20 European languages, taken
from the proceedings of the European Parliament, of which I am examining six: three Germanic
(Dutch, English, German) and three Romance (French, Portuguese, Spanish). I have used eight
samples of 1000 lines per language, sampled at random from the proceedings in that language,

putting aside the question of minimum required sample size during this experiment.

5.5.2 Replication of orthographic work

Firstly, I present a partial reproduction of Juola’s orthographic results, showing that the unigram-
based algorithm works as intended.

Table 5.2 shows the cross-entropy H (P, Q) of each language pair. This has been averaged
across all samples of each language, and normalised. Since I used a unigram probability distri-
bution of 26 segments, the maximum entropy was 4.7 (= -loga % ),

The row name refers to the source language of ‘true’ probability (P), i.e. a probability distri-
bution generated from the text itself. The smallest value in a row is in the column of the model
which best predicts it. Column names refer to the source language of ‘estimated’ probability (())
i.e. probability distributions generated from other texts. The smallest value in a column is the

sample of text which the model best predicts.
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N Portuguese French Spanish German English Dutch

Portuguese 0.71 0.73 0.74 0.81 0.83 0.85
French 0.72 0.71 0.74 0.79 0.81 0.84

Spanish 0.71 0.72 0.72 0.79 0.8 0.83

German 0.77 0.76 0.78 0.73 0.79 0.78

English 0.73 0.73 0.75 0.75 0.75 0.8

Dutch 0.75 0.75 0.77 0.74 0.78 0.75

Average H(P, Q) 0.73 0.73 0.75 0.77 0.79 0.81

TABLE 5.2: Cross-entropy H (P, Q) of orthographic texts

We can see that for every column, the smallest value is that where the source and model
language are the same, where H (P, Q) = H (P). This value has been highlighted for each model
language. It is not a constant across languages; languages vary in their predictability, which is
why the Kullback-Leibler divergence is required.

For example, the Portuguese and French models have inherently lower entropy than the
English and Dutch. The cross-entropy of those models with all source languages therefore tends
to be lower, and in some cases even lower than when the source and model languages match.

Looking at the Kullback-Leibler divergence in Table 5.3, we can see that it is minimised
when source and model language match, whether in comparison to alternative source languages
(rows) or model languages (columns).

The resulting ‘distances’ are visualised using Phylip (Felsenstein, 1989) in Figure 5.1.

N Portuguese Spanish French English Dutch German

Portuguese 0.00 0.02 0.02 0.08 0.08 0.10
French 0.01 0.00 0.02 0.06 0.06 0.09
Spanish 0.00 0.01 0.00 0.06 0.05 0.08
German 0.06 0.05 0.06 0.00 0.04 0.03
English 0.02 0.02 0.03 0.02 0.00 0.05
Dutch 0.04 0.04 0.05 0.01 0.03 0.00

TABLE 5.3: Kullback-Leibler divergence of orthographic texts
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p— Corman

Dutch

- —— Eng“sh

Spanish

Portuguese

[ rgnch

FIGURE 5.1: Language distance based on average Kullback-Leibler divergence
of orthographic texts

These results replicate Juola’s findings, that the orthographic distances as measured by cross-
entropy are a good proxy for historical relatedness of Indo-European languages: the Iberian lan-

guages are grouped together, then Romance; and Germanic separately.

5.5.3 Transcribed results

Next, I present the results of the unigram method as applied to IPA-transcribed text from Dutch,
English and French. Iinclude the intermediate steps of the probability values and cross-entropy,
and the resulting language distance.

To get samples approximating phonemically transcribed data, I automatically replaced the
orthographic Europarl text with IPA transcriptions of each individual word, drawn from the lex-
icons used in Nidaba (CELEX for English and Dutch, and Lexique3 for French). For these lan-
guages, more than 85% of instances of orthographic words could be replaced with IPA transcrip-
tions. The remaining words - mostly proper nouns - were not included. This is obviously a very

crude technique, but it gives some indication of the feasibility of using IPA-based texts.
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Probability distributions

Table 5.4, Table 5.5 and Table 5.6 show samples of probability distributions for each IPA segment.
The different text samples for English produce slightly different probability distributions, but
they are much more similar to each other than to the French distribution. Segments which
have a probability of less than o.001 have not been shown; the differing inventories obviously
produce the largest disparity. Using distinctive features rather than phonemes will eliminate

this effect (see Section 5.6).

5.5.4 Average cross-entropy per language pair

Table 5.7 shows the average cross-entropy of each language pair. The normalising constant was
8.54.

The minimum cross-entropy for each language occurred when the true language was used to
generate the estimate, as expected. The results are approximately symmetrical for each pair, i.e.
there is little or no difference between Dutch being the source of the ‘true’ model, and English
being the source of the estimate, and vice versa. The cross-entropy between Dutch and English

is much smaller than the cross-entropy of either with French.

5.5.5 Kullback-Leibler divergence

Table 5.8 shows the Kullback-Leibler divergence for Dutch, French and English texts. It is visual-
ised using Phylip (Felsenstein, 1989) in Figure 5.2. I find that English and Dutch are most similar,

as expected, followed by French and English, then French and Dutch.

_[ English
1 Dutch

French

FIGURE 5.2: Language distance based on average Kullback-Leibler divergence
of IPA transcribed texts
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Segment Probability Segment Probability Segment Probability
¥ 0.093 * 0.096 B 0.064
t 0.054 n 0.055 e 0.051
n 0.053 t 0.052 a 0.051
E 0.048 ) 0.048 S 0.045
s 0.034 ] 0.035 1 0.044
1 0.027 1 0.028 o 0.042
it 0.026 d 0.027 d 0.040
d 0.026 ir 0.026 i 0.038
d 0.026 d 0.025 t 0.038
k 0.024 & 0.024 p 0.032
® 0.023 k 0.023 k 0.032
1 0.022 1 0.022 € 0.031
zZ 0.021 zZ 0.021 0 0.025
m 0.020 P 0.021 a 0.024
D 0.018 m 0.020 m 0.021
p 0.018 € 0.018 0 0.019
€ 0.017 D 0.018 n 0.019
v 0.016 v 0.016 y 0.019
e 0.015 6] 0.015 j 0.017
0 0.014 e 0.014 v 0.013
w 0.014 w 0.014 u 0.011
w 0.014 w 0.014 f 0.009
a 0.013 a 0.013 z 0.008
b 0.012 a: 0.012 2 0.008
f o.o11 b o.o11 g 0.007
a 0.011 f 0.010 b 0.006
A 0.009 I 0.009 3 0.006
) 0.008 A 0.008 g 0.005
by} 0.006 | 0.006 w 0.005
h 0.006 h 0.006 ) 0.004
j 0.006 j 0.005 e 0.004
g 0.005 g 0.005 y 0.003
a 0.005 a: 0.005 & 0.002
i) 0.004 i) 0.004 n 0.001
dz 0.004 3 0.003

3 0.004 dz 0.003

] 0.002 9 0.003

3 0.001 2 0.001

3 0.001 3 0.001

TABLE 5.4: Unigram probabilit- TABLE 5.5: Unigram probabilit- TABLE 5.6: Unigram probabilit-
ies for English sample 1 ies for English sample 2 ies for French sample 1
*Note that the happY vowel is transcribed as [1] in CELEX
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N Dutch English French

Dutch 0.31 0.46 0.64

English 0.46 0.31 0.60
French 0.66 0.66 0.31

Average 0.48 0.52 0.48

TABLE 5.7: Cross-entropy H (P, ()) of IPA transcribed texts

Dutch o}
French 0.34 o
English 0.15 0.32 o}

Dutch French English

TABLE 5.8: Average Kullback-Leibler divergence of IPA transcribed texts

5.5.6 Conclusion

Applying the basic unigram calculation of entropy to orthographic data reproduces Juola’s res-
ults, so I am confident that this algorithm functions as intended.

Applying it to even simplistically auto-transcribed samples gives internally consistent res-
ults, which accord with both historical and intuitive measures of distance. In Section 5.6, I there-
fore use Teahan's Text Mining Toolkit to gain a more sophisticated and accurate measure of the

cross-entropy of a variety of phonological representations.

5.6 Text Mining Toolkit

5.6.1 Input data

The entropy of orthographic texts is affected by factors including dialect, genre, author and topic
(Teahan, 2000) — in short, everything that alters the content of a text. I therefore used trans-
lations of a single text, to minimise the impact of these factors. An investigation using non-
translated (and hence possibly more representative) texts will require many more texts from
across a wide range of genres and authors.

For training texts, I used the first chapter of the gospel of Mark. This is a text which is widely

translated. In many languages, it may be the only published material, or the only text available
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in both English and a minority language. It is also a text which tends to be available as an audio
recording as well as — or even in preference to — an orthographic text.

Phonemic transcriptions were created by performing substitutions on an orthographic text,
using data from the lexicons in Nidaba. The resulting transcription was then verified against an
audio recording where possible.

For test data, I initially used The North Wind and the Sun, a widely translated story used
for example transcriptions by the International Phonetic Association. However, to examine the
effects of varying the length of the test string, I instead used a longer text - the second chapter
of the letter to the Phillipians - from the same Bible translation for each language. Some of
the cross-entropy effects may therefore reflect the fact that training and test texts for a given
language share translators.

These texts can be found in Section A.s5.

5.6.2 Results: IPA Representation

The first representation I examine is IPA transcription. Each character is a single phoneme.

Language identification

Using samples of text from Phillipians 2, the correct language for each test string was identified
reliably (i.e. in 100% of cases) for test strings of length 26 characters or longer. There is an
exponential increase in mis-identification as test strings become shorter than this threshold,
with Spanish being identified as Greek, then also German as Dutch, then a broader scattering of
errors (see Figure 5.3).

The best fit curve has the equation: Percentage correct ~ 100(1 — 1.3e~%4%), where L is
the length of the test string. Therefore, to achieve 100% accuracy using 100 test strings in 99%
of experiments, a test string of length L > 34 is required. A test string of length 500 (used
hereafter) has an identification error rate of <1 in 10~%". I therefore confirm that the language
of the test string can be reliably identified, and the length threshold for doing so is consistent,

as per Hypotheses 1 and 2 in Subsection 5.4.1.
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FIGURE 5.3: Percentage of test strings correctly identified by length

Language interaction as a predictor of cross-entropy

We can reliably identify the language of a test string of a given length transcribed phonemically
in the IPA. The cross-entropy of a test string in a given language with a model based on that
same language is therefore consistently ranked lower than the cross-entropy of different lan-
guage models. But are the mean cross-entropies of non-identical language pairs distinguishable
from one another?

Applying a one-way ANOVA to the cross-entropy of an ordered pairing® of languages for
test strings of length 50045 characters, I find that there is an effect size of > = 0.87 (see
Table 5.9). That is, the proportion of the variance in cross-entropy that can be explained by
the combination of the test language and the model language is 87%. The proportion of the
variance which is residual, not explained by this, nor by the test language or model language
independently, is <0.5%. Ordered pairings of languages are a reliable predictor of cross-entropy,
and so further investigation of Kullback-Leibler divergence is worth pursuing.

Figure 5.4 shows the distributions of cross-entropy for test strings of length 500=+5 char-
acters and 150t5 characters. There were approximately six test strings and 21 test strings per

language, respectively.

Se.g. ‘Dutch Spanish’ refers to a Dutch test string modelled using Spanish, which as discussed is not necessarily
the same as ‘Spanish Dutch), a Spanish test string modelled using Dutch.
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English Greek- . .

Portuguese Greek - .—‘.—'ﬁ.—u
Dutch  Spanish - . .:5._.
English Spanish - m—i'@-‘—.

Dutch  Gresk- s O

German Greek- Lo

English Portuguese - m.éﬁ.._.
German Spanish- ._'..‘ﬁ.u
Portuguese Dutch - ..—:—.&.—.
English French- .E'!_ﬁ_...‘.
German Portuguese - ._..%.._.
Dutch Portuguese - . ...%.H
French Greek- . .—.—‘&;—.—n
German French- ”..:%_«. .
French Spanish- ‘_._'@..u_.
Portuguese English - ._._..:h%q,.._‘
Dutch  French - . Hgé.»u_.
Spanish English - ..l.é..u_.
Portuguese Spanish - ....5_.._.
Greek English- e
French English- - LI
French Dutch- ....ﬁ‘}_._..
Portuguese German- ...:&.}_-:. .
Spanish German- . :...“_ﬁ..._.
Greek German- .....ﬁ._.
Spanish Dutch- . ‘_’:.E.H
Greek  Dutch - .@:: .
Greek Portuguese - . . ..:&_.. .
French German - ":+1'_.'E+"'
Portuguese French- ...ﬁ.._.
Greek French- R R
French Portuguese - o—n‘%—-’ -
Spanish French- ..%H
Spanish Portuguese - ._._%‘.
Spanish Greek- .:..i..
English Dutch- Hﬁ_._._.
Greek Spanish- - .E.._.
English German - ‘.&p.m_.

Test language, model language

Dutch English- = Test string length
- v B3 150 characters
German English- . -
. B 500 characters
German Dutch - .—..—&-..n.
Dutch  German - .u.ﬁ“_..

Greek Greek- .:%....
Spanish Spanish - PR L
French French- . ...'%E._.
Portuguese Portuguese - . ._.%_._.

English English - =

AT o0
German German- .._ng.-,
e

Dutch  Dutch- -
2 4 E 8
Cross-entropy

FIGURE 5.4: Cross-entropy ranking of IPA transcriptions, for test strings of
length 150 and 500 characters.

Each point corresponds to a single test string. Also shown are the mean, hinges

at first and third quartiles, and whiskers extending to the minimum/max-

imum values that are no further than 1.5 times the inter-quartile range from

the hinges.
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Deg. of  Sum of Mean F-ratio Pr(>F) n

freedom Squares  Square

Language of test string 6 0.398 0.06639 267.6 <2x 1076  o.031

Language of model 6 1283  0.21384 862 < 2x107'6 o0.099

L f test stri
anguage ot test string x 36 1278  0.31328 1262.9 < 2x 107! 0.866
Language of model

Residuals 245 0.061  0.00025

TABLE 5.9: Factors contributing to variance in cross-entropy of IPA transcrip-
tions, for test strings of length 500 characters.

Consistency of Kullback-Leibler divergence

Having established that cross-entropy is significantly predicated on the combination of two lan-
guages, we turn to the Kullback-Leibler divergence.

Figure 5.5 shows symmetric Kullback-Leibler divergences for all language pairs. These are
calculated by pairwise means of the Kullback-Leibler divergences for a test string of language A
modelled with B, and for B modelled with A, and normalised using the same constant as in the
prototype (i.e. 8.54) to give values between o and 1.

The robustness of this ranking was tested using 10-fold cross-validation. The data were ran-
domly divided into 10 sets. Each set in turn was treated as a test set, with the remaining 9o% of
data points forming a training set. The training sets were modelled using a random decision
forest, and the resulting predictions compared to the relevant test set. The mean error was
0.016, the ggth percentile was 0.053, and the maximum was 0.085. For comparison, the values
obtained for these languages have ranges between 0.16 and 0.63, so 9gth percentile Kullback-
Leibler divergences obtained from an IPA representation are accurate to +11% of the range. For
the purposes of categorical comparison, these language pairs could therefore be divided into
five non-overlapping categories (see Table 5.10).

Considering Hypothesis 3 (Subsection 5.4.1), that the Kullback-Leibler divergences are con-
sistently ranked, we see that this is false when considering the ordering of 42 language pairings

as distinct items. However, we can reject the null hypothesis that there is no effect on rankings
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from language pairings, since five distinct categories can be observed.

Similar Dutch & German
Greek & Spanish
English & German
Somewhat similar Dutch & English
French & Portuguese
Middling Portuguese & Spanish
French & Spanish
French & Greek
Somewhat dissimilar ~ French & German
Greek & Portuguese
Dutch & French
German & Spanish
Dutch & Greek
German & Greek
German & Portuguese
Dutch & Spanish
English & French
English & Greek
English & Spanish
Dissimilar English & Portuguese
Dutch & Portuguese

TABLE 5.10: Language pairs categorised by symmetric Kullback-Leibler diver-
gence

Asymmetry of Kullback-Leibler divergence

The Kullback-Leibler divergence of IPA representations is not symmetrical (see Figure 5.7). The
cross-entropy of test language A modelled by language B is significantly different from B mod-
elled by A in all cases. However, this asymmetry varies in magnitude (Table 5.11), depending on
the language of the test string and of the model.

We can therefore reject Hypothesis 4 (Subsection 5.4.1), that the Kullback-Leibler divergence

is symmetrical for all language pairs.

Predictability per language

Returning to the ANOVA of cross-entropy (Table 5.9), we see that the language of the test string,
the language of the model and their combination are all significant factors (p < 10716), I

therefore reject the null hypothesis that all languages are equally segmentally predictable when
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Portug. Duich
Dutch Portug
English Portug
Portug. English
English Spanish
Spanish English
English Greek
Greek English %‘_‘
Dutch Spanish
Spanish Dutch
German Poriug
Portug. German
English French
French English
German Greek
Greek German
& German Spanish
%Spanish German
Dufch  Greek
Greek  Dutch
Dutch  French
French Dutch
Portug. Greek
Greek Portug

German French

Test language, model lan

French German
French Greek
Greek French
French Spanish
Spanish French
Portug. Spanish
Spanish Portug
Portug. French
French Portug
English Duich

Dutch English EE
English German
weefd g
M 2
e =

02 03 04 05 06
Normalised Kullback-Leibler distance

German English
Spanish Greek
Greek Spanish
German Dutch

Dutch  German

FIGURE 5.5: Symmetric Kullback-Leibler divergence of IPA representation
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Portuguese
3 Greek

Spanish

French

German

English Dutch

FIGURE 5.6: Visualisation of mean symmetric Kullback-Leibler divergence, IPA
transcription. (Dereeper et al., 2008, Felsenstein, 1989)

represented with IPA characters. Of the three factors, the language of the test string has the
smallest impact (7> = 0.03), the language of the model has a larger impact (7% = 0.10), and
the combination of the two has by far the largest effect size (n? = 0.87).

Test strings in Spanish have the lowest entropy (see Table 5.12). For example, the average
Portuguese test string of a given length requires 17% more bits than the average Spanish test
string of the same length. This implies that there is more segmental information in a Portuguese
phrase than in a Spanish phrase with the same number of segments, and so on for other pairs.

The models for German and Dutch result in better compression, on average, than the models
for Spanish and Greek (see Table 5.13). Test strings encoded with a Greek model require % more
bits, averaged across all test languages, than the same test strings encoded with a German model.

The predictability per language across all four representations under examination is com-

pared in Subsection 5.6.6 on page 153.
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Portug. Duich-
Dutch  Poriug. -
English Portug. -
Portug. English -
English Spanish -
Spanish English -
English Greek-
Greek English-
Dutch  Spanish-
Spanish Dutch-
German Portug. -
Portug. German-
English French-
French English -
German Greek-
Greek German-

o German Spanish-
o

Test language, model langu

French German-
French Greek-
Greek French-
French Spanish-
Spanish French-
Portug. Spanish -
Spanish Portug. -
Portug. French-
French Portug. -
English Dutch-
Dutch  English-
English German-
German English-
Spanish Greek-
Greek Spanish-
German  Dutch -

Dutch  German-

@ Spanish German -
Dutch  Greek-
Greek Dutch-
Dutch  French-
French Dutch-
Portug. Greek-
Greek Portug. -

German French -

Language of test string
B Dutch

B3 English

B8 French

ES German

B Greek

B Portug.

ES Spanish

0.2

03

133

05 0.6

Normalised Kullback-Leibler distance

FIGURE 5.7: Kullback-Leibler divergence of language pairs and their inverse,
ordered by the mean of the two, which is marked with a vertical line; IPA rep-
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Language pair Inverse Probability

(order of magnitude)

Greek Portug. Portug. Greek -50

French German  German French -45

Greek French French Greek -42

Greek Dutch Dutch Greek -39

Spanish Dutch Dutch Spanish -37

Spanish Portug.  Portug. Spanish -35

Spanish French  French Spanish -33

Portug. German  German Portug. -30

Greek German German Greek -31

Dutch English English Dutch -28

Portug. English ~ English Portug. -26

Greek English English Greek -24

French English ~ English French -24

Spanish English ~ English Spanish -21

Dutch Portug. Portug. Dutch -18

Spanish German German Spanish -16

French Portug. Portug. French -14

German English  English German -1

Greek Spanish Spanish Greek -6

French Dutch Dutch French -4

Dutch German German Dutch -3

TABLE 5.11: Probability that KL distances of language pairs and of their inverses
were drawn from the same distribution
Entropy % increase Entropy % increase
over Spanish over German
Spanish 0.64 o German 0.60 -
Greek 0.65 1 Dutch 0.63 4
German 0.69 8 English 0.66 9
Dutch 0.69 8 French 0.69 14
French 0.70 10 Portug. 0.71 17
English 0.74 15 Spanish 0.77 27
Portug. 0.75 17 Greek 0.80 32
TABLE 5.12: GLM: Contribution to cross- TABLE 513: GLM: Contribution to cross-

entropy by language of test string;
IPA representation

entropy by language of model;
IPA representation
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5.6.3 Results: Static SPE-style features

In this next section, I repeat the procedure above using binary features from Hayes, 2008.

Language identification

All test strings of length 25 characters and above are identified as the correct language out of the

seven. In the following tests, I use a test string of length 500 characters.

Consistency of Kullback-Leibler divergence

With 28 features, each of which can have one of three values, +, -, or undefined, the theoretical
maximum entropy per character is 44.38 bits. Certain feature combinations are illegal, but this is
not inherent in the representation. This representation is therefore given a high normalisation
factor, and has a much smaller variation in language distance than the IPA representation. (See
Figure 5.8 and Figure 5.9).

Applying 10-fold cross-validation, the mean error is 0.0033, the ggth percentile is 0.010, and
the maximum error is 0.017. Normalised Kullback-Leibler divergences range from 0.036 to 0.12,
so the ggth percentile error is +12% of the range of values observed, much like for the IPA rep-

resentation.

Greek

French Spanish

English Portuguese

German
Dutch

FIGURE 5.8: Visualisation of mean symmetric Kullback-Leibler divergence,
Hayes’ static featural representation (Dereeper et al., 2008, Felsenstein, 1989)
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Spanish Duich
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Greek  Dutch
Dutch  Greek
English Greek
Greek English
Portug. Duich
Dutch  Portug.
English Spanish
Spanish English
Portug. English
English Portug.
German Spanish
Spanish German
German  Greek
Greek German
French Dutch
Dutch  French
Portug. German

German Portug.

model language

English French

French English
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erman French

Portug. Greek
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Greek Portug.
Portug. French
French Portug.
French Greek
Greek  French
French Spanish
Spanish French
Portug. Spanish
Spanish Portug
English Dutch
Dutch English
English German
German English
German Dutch
Dutch  German
Spanish Greek
Greek Spanish

EM

0.050

0.075
Normalised Kullback-Leibler distance
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0.100

FIGURE 5.9: Symmetric Kullback-Leibler divergence of Hayes’ static featural

representation
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Greek
Dutch
Spanish
Dutch
English
Greek
English
Spanish
Portug.
Dutch
Portug.
English
German
Greek
German
Spanish
French
Dutch
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Asymmetry of Kullback-Leibler divergence

The Kullback-Leibler divergence of Hayes' static featural representations is not symmetrical (see
Figure 5.10). The cross-entropy of test language A modelled by language B is significantly differ-
ent from B modelled by A, except for the language pairs English and Portuguese, and English
and French. As with the IPA, this asymmetry varies in magnitude (Table 5.14), depending on the

language of the test string and of the model.

Language pair Inverse Probability
(order of magnitude)

Greek Portug. Portug. Greek -51
Greek French French Greek -42
Spanish Portug.  Portug. Spanish -39
Dutch French French Dutch -31
Spanish French ~ French Spanish -31
Dutch Portug. Portug. Dutch -26
Spanish English  English Spanish -19
Greek English English Greek -16
Dutch English English Dutch -16
Dutch Spanish Spanish Dutch -12
German English  English German -1
German Portug.  Portug. German -1
Dutch Greek Greek Dutch -11
German French ~ French German -10
Spanish German  German Spanish -6
French Portug. Portug. French 5
Greek Spanish Spanish Greek 5
Dutch German German Dutch -4
Greek German German Greek -3
English Portug.  Portug. English -1
French English ~ English French -1

TABLE 5.14: Probability that KL distances of language pairs and of their inverses
were drawn from the same distribution; Hayes’ static featural representation

Predictability per language

Applying a one-way ANOVA to the cross-entropy, the language of the test string has a small but
statistically significant impact (n? = 0.029), as does the language of the model (> = 0.014),
although the combination of the two has by far the largest effect size (7> = 0.95).

The variation is smaller than using the IPA representation, and not identically patterned

(see Subsection 5.6.6). However, there are similarities: the German model results in the best
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compression; Spanish test strings require the fewest bits to encode, and Portuguese test strings

require the most. (See Table 5.20 and Table 5.21.)

Entropy % increase Entropy % increase

over Spanish over German

Spanish 013 - German 0.14 -

Greek 0.14 2 French 0.14 1

German 0.14 3 Spanish 0.14 6

Dutch 0.14 5 English 0.14 6

French 0.15 9 Portuguese 0.15 7

English 0.15 n Dutch 0.15 8

Portuguese 0.15 13 Greek 0.15 8

TABLE 5.15: GLM: Contribution to cross- TABLE 516: GLM: Contribution to cross-
entropy by language of test string; entropy by language of model;

Hayes’ static featural representation Hayes’ static featural representation

5.6.4 Results: Language specific SPE-style binary features

In this section, I repeat the procedure above using the consensus of binary features detailed in
Section 5.2. The values for each phoneme of each language are listed in Section A.3 on page 201,

as determined by the criteria listed in Section A.1 on page 195.

Language identification

The language of all test strings of length 19 characters and above are identified correctly. I use a

test string of length 500 characters.

Consistency of Kullback-Leibler divergence

With 16 features, each of which can have one of three values, +, -, or undefined, the theoretical
maximum entropy per character is 25 bits. Again, I have not removed illogical combinations of
features when calculating this value.

Applying 10-fold cross-validation, the mean error is 0.0052, the ggth percentile is 0.016, and
the maximum error is 0.023. Normalised Kullback-Leibler divergences range from 0.13 to o.29,
so the error is £9% of the range of values observed. This representation has a similar consist-
ency to the previous representations, with a slight improvement compared to the static binary
feature representation. Symmetrical Kullback-Leibler divergence is visualised in Figure 5.1 and

Figure 5.12. The resulting six categories of language pairs are listed in Table 5.17.
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FIGURE 5.11: Symmetric Kullback-Leibler divergence; SPE-style representation



5.6. Text Mining Toolkit

Portuguese

German

Englis

141

French

Greek

Spanish

h Dutch

FIGURE 5.12: Visualisation of mean symmetric Kullback-Leibler divergence,
SPE-style representation (Dereeper et al., 2008, Felsenstein, 1989)

Most similar
Somewhat similar

Middling
Somewhat dissimilar

Dissimilar

Most dissimilar

Greek & Spanish
Dutch & English
French & Spanish
Dutch & Greek
French & Greek
English & Greek
Dutch & Spanish
Dutch & German
English & Spanish
Dutch & French
German & Greek
English & French
English & German

French & Portuguese
Portuguese & Spanish
German & Portuguese

French & German
German & Spanish

Greek & Portuguese
French & Portuguese
English & Portuguese
Dutch & Portuguese

TABLE 5.17: Language pairs categorised by symmetric Kullback-Leibler diver-
gence; SPE-style representation
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Asymmetry of Kullback-Leibler divergence

Chapter 5. Cross-Entropy

The Kullback-Leibler divergence of language-specific featural representations is not symmet-

rical (see Figure 5.13). The cross-entropy of test language A modelled by language B is signific-

antly different from B modelled by A, except for the language pairs Greek and Portuguese, and

Greek and Spanish. As with the previous two representations, this asymmetry varies in mag-

nitude (Table 5.18 and Table 5.19).

Language pair Inverse Probability (order of magnitude)
Greek Dutch Dutch Greek -40
Spanish English ~ English Spanish -39
Spanish Dutch Dutch Spanish -34
Greek French French Greek -32
Spanish French ~ French Spanish  -30
Greek English English Greek -28
Dutch Portug. Portug. Dutch -21
French Dutch Dutch French -16
French English ~ English French  -13
German English ~ English German  -13
German Greek Greek German -10
French Portug. Portug. French -9
Dutch German  German Dutch -8
Spanish Portug.  Portug. Spanish -8
German Spanish ~ Spanish German -5
English Portug.  Portug. English -5
French German  German French -4
Dutch English English Dutch -3
Portug. German  German Portug. -3
Greek Portug. Portug. Greek -1

TABLE 5.18: Probability that KL distances of language pairs and of their inverses
were drawn from the same distribution; language-specific SPE features

N Dutch English French German Greek Portug. Spanish

Dutch 4% -8% 3% -29% 7% -20%

English -4% -9% -8%  -23% 3% -25%

French 8% 9% 2%  -25% 5% -31%

German -3% 8% -2% 4% -2% 2%

Greek 29% 23% 25% -4% 0% 1%

Portuguese -7% -3% -5% 2% -0% -3%
Spanish 20% 25% 31% -2%% -1% 3%

TABLE 5.19: Proportional asymmetry in mean Kullback-Leibler divergences;
language-specific SPE features
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FIGURE 5.13: Kullback-Leibler divergence of language pairs and their inverse,
ordered by the mean of the two; SPE-style representation
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Predictability per language

Consistent with IPA and static featural representations, Spanish and Greek test strings are the
most predictable, and Portuguese is the least, though the ranking is not identical (see Subsec-
tion 5.6.6 for a full comparison.)

However, the model languages contribute differently to the GLM for this representation
than for the others. For language-specific binary features, text is much more efficiently encoded

using a model based on Greek or Spanish than a model based on German.

Entropy % increase Entropy % increase

over Greek over Greek

Greek 0.28 - Greek 0.29 -

Spanish 0.29 4 Dutch 0.30 1

French 0.31 un Spanish 0.30 3

Dutch 0.31 1 English 0.31 6

English 0.32 15 French 0.32 8

German 0.34 19 German 0.33 13

Portug. 0.35 26 Portug. 0.35 21
TABLE 5.20: GLM: Contribution to cross- TABLE 5.21: GLM: Contribution to cross-
entropy by language of test string; language- entropy by language of model; language-

specific binary features specific SPE features

5.6.5 Results: Elements

In this section, I examine the combination of all six elements, plus syllabicity. The values for

each languages are given in Section A.4 on page 208.

Language identification

The correct language for each test string was identified reliably (i.e. in 100% of cases) for test
strings of length 25 characters or longer.

The best fit curve is y = 100(1 — 1.217e~9415%) where y is the percentage of test strings
whose language is correctly identified, and x is the length of the test string. Therefore, to achieve
100% accuracy using 100 test strings in 99% of experiments, a test string of length 34+ is required,

as for the IPA. A test string of length 250 has an error rate of 1in 102,
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Consistency of Kullback-Leibler divergence

Each of the six elements can be either headed, unheaded or absent. This gives 36 x 2 possible
combinations, including syllabic and non-syllabic segments, resulting in a normalisation con-
stant of 10.5.

Applying 10-fold cross-validation, the mean error is 0.017, the ggth percentile is 0.052, and
the maximum error is 0.076. Normalised Kullback-Leibler divergences range from o.15 to 0.54,
so the error is +13% of the range of values observed. This is the least stable of the four represent-
ations tested, though not significantly different.

Symmetric Kullback-Leibler divergence is visualised in Figure 5.14 and Figure 5.15.

Greek

French Spenish

German Portuguese

English
Dutch

FIGURE 5.14: Visualisation of mean symmetric Kullback-Leibler divergence,
Element representation (Dereeper et al., 2008, Felsenstein, 1989)

Asymmetry of Kullback-Leibler divergence

Figure 5.16 shows the asymmetry in Kullback-Leibler divergences calculated from Element rep-
resentations. The only language pair which is not significantly asymmetric is English and Dutch.
As with the previous two representations, this asymmetry varies in magnitude (Table 5.22

and Table 5.23).
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FIGURE 5.15: Symmetric Kullback-Leibler divergence; Element representation
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FIGURE 5.16: Kullback-Leibler divergence of language pairs and their inverse,
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Language pair

Inverse

Probability
(order of magnitude)

Greek German
Greek French
Dutch Portug.
Greek English
Greek Portug.
Spanish Portug.
Spanish German
German Portug.
Spanish French
Spanish English
Dutch French
Spanish Dutch
German English
English Portug.
Dutch German
French German
Greek Spanish
French Portug.
Greek Dutch
French English
Dutch English

German Greek
French Greek
Portug. Dutch
English Greek
Portug. Greek
Portug. Spanish
German Spanish
Portug. German
French Spanish
English Spanish
French Dutch
Dutch Spanish
English German
Portug. English
German Dutch
German French
Spanish Greek
Portug. French
Dutch Greek
English French
English Dutch

TABLE 5.22: Probability that KL distances of language pairs and of their inverses

were drawn from the same distribution; Element representation

Predictability per language

The language of the model and the language of the test string are both significant factors in

cross-entropy. Greek and Spanish test strings require the fewest bits, and German and Dutch

the most (Table 5.24). The model for Portuguese results in the best compression, on average,

and Dutch the worst (Table 5.25).
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N Dutch English French German Greek Portug. Spanish

Dutch 3 1 9 3 36 6

English -3 6 a7 34 2 49

French -1 6 5 -64 a 0

German -9 17 5 -30 24 24

Greek 3 34 64 30 60 12

Portuguese -36 -12 -1 -24 -60 70
Spanish 6 19 70 24 -12 70

TABLE 5.23: Proportional asymmetry in mean Kullback-Leibler divergences
(%); Element representation

Language Bits % Increase Language Bits % Increase
required over Greek required over Portuguese

Greek 0.55 - Portuguese. 0.59
Spanish 0.55 1 German 0.59 o
French 0.62 13 French 0.60 1
English 0.63 14 English 0.60 1
Portug. 0.64 17 Spanish 0.63 6
German 0.65 18 Greek 0.64 8
Dutch 0.66 19 Dutch 0.64 8
TABLE 5.24: GLM: Contribution to cross- TABLE 5.25: GLM: Contribution to cross-

entropy by language of test; entropy by language of model;
Entropy representation Entropy representation

5.6.6 Comparison between representations

In this section, I compare the results of each of the four representations for language distance,

asymmetry and language predictability.

Language distances

Figure 5.17 and Figure 5.18 show the language distances for all four representations.

All four representations show strong similarities between Greek and Spanish. The Germanic
languages all have small Kullback-Leibler distances, with some specific variation: the aspirat-
ing languages English and German are closer, relative to Dutch, in the element representation;
English-Dutch are closer than the other pairs in the language-specific binary features represent-

ation.



150 Chapter 5. Cross-Entropy

The IPA, static binary features and element representations all have small Kullback-Leibler
divergences where French, Spanish or Greek are the test strings, and French or Portuguese are
the model strings, but not vice versa. The language-specific binary features representation has
symmetrically close relationships for French, Spanish and Greek - but larger distances for Por-
tuguese regardless of the test language.

Finally, the language-specific binary features representation differs from the others in that it
has relatively small Kullback-Leibler divergences between Greek and Dutch - in both directions
- and between the test languages of French, Spanish and Greek and the model languages of
English and Dutch. However, since this representation has larger Kullback-Leibler divergences
than the other representations - the predictive power of its models is worse, on average - the
absolute figures are similar for these language pairs in the other representations.

Table 5.26 shows that the IPA and static SPE representations give very strongly correlated
rankings, as expected given the relationship between them. These rankings are in turn strongly
correlated with the rankings from Element representation, but only moderately correlated with
the rankings from language-specific SPE representation.

TABLE 5.26: Pearson’s correlation co-efficient of representations, using mean
Kullback-Leibler divergence for each language pair

IPA StaticSPE Language-specific SPE  Elements

IPA - 0.90 0.48 0.71
Static SPE  0.90 - 0.38 0.85
Language-specific SPE  0.48 0.38 - 0.34

Elements o.71 0.85 0.34 -
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FIGURE 5.17: Kullback-Leibler divergences between language pairs for each
representation, scaled for optimal visualisation. Larger, blacker points have

smaller Kullback-Leibler divergences; smaller, greyer points have greater.
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FIGURE 5.8: Kullback-Leibler divergences for each representation
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Asymmetry

The observed asymmetry between language pairs is not randomly distributed: the relative asym-
metry between language pairs is moderately correlated across most representations (0.43 <
r < 0.48, p < 0.025), with strong correlation between the Element and static SPE repres-
entations (r = 0.77, p < 0.005). However, there was no significant correlation for language-
specific SPE with static SPE or Element representations (see Table 5.27)

Given this variability, I do not have strong evidence that these results reflect underlying
asymmetries in segmental predictability. However, individual language pairs may have consist-
ent asymmetries across all representations.

The greatest asymmetries are found with Spanish or Greek as test languages and French,
Portuguese or English as model languages; these have much lower Kullback-Leibler divergences
than the inverse pairs. This is as expected, given the lower entropy of Spanish and Greek test
strings by comparison to the other languages. By contrast, the pair Spanish and Greek and the
pair German and Dutch show similar Kullback-Leibler divergences regardless of which language

is the test and which is the model.

IPA  Static Language-specific  Elements
binary features  binary features
IPA 0.44 0.48 0.43
Static SPE 0.44 0.10 0.77
Language-specific SPE | 0.48 0.10 0.22
Elements 0.43 0.77 0.22

TABLE 5.27: Correlation different representations of between magnitude of
asymmetry of language pairs

Language predictability

In this section, I set aside the relative similarity between combinations of languages, and exam-
ine the effect on cross-entropy of individual languages themselves. Do languages differ in their
segmental predictability?

This section summarises the data previously presented in Table 5.12,Table 5.15, Table 5.20
and Table 5.24 (for test languages) and Table 5.13,Table 5.16, Table 5.21 and Table 5.25 (for model

languages).
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First, looking at the contribution of the test language to the generalised linear model (GLM)
for cross-entropy, I find that there is a similar effect in all four representations. Greek and Span-
ish have the most predictable test strings, and English, German and Portuguese the least. This
is related to segmental inventory size, with Greek and Spanish having 23 and 26 IPA characters
respectively, whereas the other language had over 30: Dutch had 34, French 36, English 37, and
German and Portuguese had 39. The effect was correlated between all four representations (see
Figure 5.19), but with only six languages, most correlations between pairs of representations
were not significant (p >= 0.05). The exception is the correlation between the IPA and static
binary features representations, at v, = 0.86.

The contribution of the language of the model was not correlated between different repres-

entations (Figure 5.20).
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FIGURE 5.20: Relative impact on GLM of model language for each representa-
tion
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5.6.7 Segments to features

So far, T have examined all features in combination for each representation, effectively using seg-
mental representations with differing levels of phonetic detail and inventory overlap between
languages. The end result of this is that all four representations give rise to similar language dis-
tances, because there is very little variation in the resulting segment inventories. It is therefore
not possible to use these language distance hypotheses as predictions of the representational
theories to be tested and compared. This section therefore discusses the predictions made us-
ing individual features / elements from the three non-segmental representations.

For each feature/element of each representation, I calculated cross-entropy and Kullback-

Leibler divergence as I did for feature bundles in Subsection 5.6.2 - Subsection 5.6.5.

Static SPE-style features

As discussed in Subsection 5.2.2, a string representing a single binary feature would look like so:

B i o el = S S AR A

39 'nof wind on ds 'san wo dis'pjutiy  'wiff woz 89 'stioygo

For individual static features, the maximum entropy is 1.6, assuming three potential states
per character.

Individual features require more input data than combinations; with test strings of length
500 characters, not all test strings returned the language of the test strings as the language of the
model having the lowest entropy. I therefore used longer test strings which did reliably return
the correct language, of length 8oo characters.

Running 10-fold cross validation, the stability of Kullback-Leibler divergence calculated us-
ing individual features ranges from slightly more stable than combinations (for [round] and

[tap]), to much less stable - see Table 5.28.

Language specific SPE-style features

Turning to the language-specific binary features, even with the longest available test string of
goo characters, the language of the test string cannot be reliably identified with single features.
Combining the features into laryngeal, place, and manner bundles, test strings of over 400

characters could be reliably identified as to language. The manner bundle provided the most
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TABLE 5.28: Kullback-Leibler values and error for individual static features

Mean Range  Mean 99th percentile Max Error as

value ofvalues error error error % of range
round 0.21 1.79 0.046 0.16 0.18 9%
tap 0.25 1.47 0.036 0.3 0.14 9%
anterior 0.33 116 0.042 0.3 0.17 1%
consonantal 0.32 112 0.044 0.3 0.19 12%
labiodental 0.19 113 0.041 0.14 0.18 12%
voice 0.25 0.90 0.037 0.1 0.3 12%
spread glottis 0.20 1.20 0.041 0.15 0.18 13%
constricted glottis  0.17 0.97 0.030 0.13 0.15 13%
distributed 0.32 0.89 0.039 0.12 0.17 13%
implosive 0.24 1.02 0.039 0.13 0.15 13%
lateral 0.19 115 0.050 0.15 0.19 13%
syllable 0.33 1.06 0.048 0.15 0.16 14%
sonorous 0.26 0.91 0.042 0.13 0.16 14%
delayed release 0.29 0.84 0.038 0.12 0.16 14%
strident 0.29 0.85 0.041 0.12 0.16 14%
continuant 0.27 0.93 0.043 0.13 0.17 14%
dorsal 0.30 0.91 0.043 0.13 0.15 14%
coronal 0.26 0.89 0.042 013 0.15 14%
tense 0.52 116 0.049 0.17 0.20 15%
trill 0.22 0.87 0.036 0.3 0.15 15%
labial 0.20 0.76 0.038 0.12 0.16 16%
approximant 0.30 0.90 0.046 0.15 0.17 17%
long 0.8 1.09 0.039 0.19 0.23 17%
back 0.36 0.85 0.041 0.15 0.17 18%
front 0.39 0.75 0.042 0.13 048 18%
nasal 0.21 0.89 0.053 0.16 0.20 18%
high 0.36 0.73 0.044 0.13 0.18 18%
low 0.33 0.68 0.046 0.13 0.16 19%

stable ranking, and the laryngeal bundle the least, reflecting the number of individual features
which combine to produce them. (See Table 5.29 for results from 800 character test strings.)
Whilst each individual bundle gives a stable ranking, these rankings are not correlated
between bundles (Figure 5.21). This means that it is possible to contrast the differing effects of
different features on language distance. However, combining the bundles into average results
does not result in reliable language distance calculations. This could potentially be mitigated by
using longer test strings - the segmental tests run previously used strings with lengths an order

of magnitude greater than the threshold for language identification.
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FIGURE 5.21: Kullback-Leibler divergence of language-specific SPE-style fea-
ture bundles, ordered by manner
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TABLE 5.29: Kullback-Leibler values and error for laryngeal, place and manner
for language-specific SPE-style features
Mean g9 percentile Maximum Percentage

Feature Mean Range error error error error

Manner 1.61 3.25 0.05 0.16 0.20 5%

Place 1.65 2.37 0.06 0.18 0.22 8%

Laryngeal 0.33 1.09 0.05 0.15 0.18 13%
Elements

Firstly, I examined strings of individual elements, with headed and unheaded elements treated

separately:

Al A
T e et S S e
da bigmiy ov da god njuiz  sbaut do bigmniy ov da god njuiz  sbaut

As with the language-specific binary features, individual elements cannot reliably identify
the language of the test string with test strings of goo characters or under. I therefore com-
bined presence with headedness into a single character, such that each composite character
has three possible states: absent, unheaded or headed. These states are entirely independent,
such that, for example, a pattern involving headed A will not aid in identifying the same pattern
in a different language which refers to unheaded A instead. However, this approach does help
identify patterns in which the headedness of an element has predictive power for neighbouring

unheaded versions, or vice versa.

|A] with |A]

A-———A—-AA-A-—-AA—AA-B-A
doa biginiy  ov do god njuiz  sbaot

Using these bundles as characters, test strings of 8oo characters or more are reliably iden-
tified. (With test strings of length 700 characters, one of the 28 English test strings was mis-

identified as Dutch.)
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There is a similar range of stability in elements as in static binary features, with most indi-
vidual elements being similar in stability to, or slightly less stable than, their combination into a
single bundle, which had an error rate 0of13%. (See Table 5.30). H gives more stable results than
combining all elements, perhaps because of the stark division of languages in this sample into
voicing and aspirating languages, with no confounds from tone or breathy voice.

TABLE 5.30: Kullback-Leibler values and error for Elements

Mean gg* percentile Maximum Percentage

Element Mean Range error error error error

H 0.42 1.60 0.04 0.14 017 8%
I 0.36 1.41 0.05 048 0.25 13%
A 0.30 1.08 0.04 0.15 0.17 14%
? 0.22 0.94 0.04 0.13 0.16 14%
Syllabicity 0.29 0.73 0.04 0.12 0.15 16%
L 0.30 1.53 0.05 0.25 0.32 17%
U 048 0.60 0.04 0.13 0.15 22%

As well as varying in their stability, individual elements vary in their predictability (see
Table 5.31). For example, |A| is approximately 1.5 times more predictable than |A| on average,
and [H| 20% more predictable than |I|. This implies that the functional load is different between
different elements. An interesting avenue of future research would be to compare these findings
between different languages, and look for phonetic or phonological phenomena which correlate
to differences in modelled predictability. Likewise, such calculations could be used to compare

the implications for information transer of different analytical decisions in element assignment.

5.6.8 Transparent segments

In Subsection 5.6.2 — Subsection 5.6.5, I have examined segments represented as monolithic
blocks, and in Subsection 5.6.7 as individual, independent features. An alternative would be to
calculate cross-entropy once for each test string, from a representation in which the internal

structure of each segment is more transparent. For example, a linear listing of feature values:

—ttt—t——tt+— +—H—F————

do
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TABLE 5.31: Predictability by feature

Chapter 5. Cross-Entropy

Element Bits required

Increase over minimum

% increase

? 0.71
A 113
U 119
L 1.20
H 1.28
H 1.37
1 1.38
L 142
? 1.53
Syllabicity 153
U 1.56
I 1.65
A 1.73

0.43
0.49
0.49

0.57
0.66

0.68
0.72
0.82
0.83
0.85

0.94
1.03

60%
69%
70%
81%
94%
96%
101%
17%
17%
121%
133%
146%

However, because the Text Mining Toolkit was designed for orthographic text, it uses a con-

text limit smaller than the number of binary features in a single segment. Representing a seg-

ment as a linear list of feature values would therefore mean that, for example, the feature value

for voicing in one segment would be too far away to form part of the context for the value of

voicing in the next segment; there would be too many intervening values. A possible future av-

enue of investigation is the efficiency and reliability of extending the context limit of the entropy

calculations.

5.6.9 Hypotheses: summary

1. The language of a test string can be reliably identified.

For all segmental representations, the language of a test string can be reliably identified

out of the seven options with under 50 characters. The language can also be identified

for feature bundles with fewer features, using longer strings. Test strings comprised of

individual features/elements are not identifiable using under 80o—goo characters.

2. The minimum required test string length for reliable language identification is consistent.

The percentage of correctly identified strings by length of string follows an exponential

curve for each representation.
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3. If the language of the test string can be reliably identified, the Kullback-Leibler diver-

gences between each pair of languages will be consistently ranked.

Whilst the Kullback-Leibler divergences calculated using each representation did not res-
ult in identical rankings (see Figure 5.18), each ranking was internally consistent; the ggth
percentile error from 10-fold cross-validation was between 9% — 13% of the range for seg-

mental representations, and between 5% —22% for individual features / elements.

4. The Kullback-Leibler divergence is symmetrical for all language pairs.

The majority of language pairs show significant asymmetry, though the magnitude of the

asymmetry per pair is not consistent across all representations.

5. Languages do not differ in their segmental predictability

Languages with smaller inventories had consistently more predictable test strings. There
was no significant variation in predictability given the language of the model. (See Sub-

section 5.6.6)

6. Every feature encodes the same amount of information

For all representations, there is considerable variation in predictability between different
features / elements. The alignment between theoretical dependencies and the observed

information transmission could be a fruitful avenue for future research.

5.7 Conclusion

Entropy is a measure of the amount of information in a given system, and cross-entropy a meas-
ure of the information in a representation of that system. In this chapter, I have shown that the
distance between a pair of languages, for a given phonological representation, can be measured
using the difference in their cross-entropies, called the Kullback-Leibler divergence.

I have shown this transparently, using a basic unigram calculation applied to IPA characters.
This method also replicates Juola’s earlier work using orthographic representation.

I have also shown this using Teahan’s Text Mining Toolkit, which calculates a more accurate

entropy value with less data. It has been applied to representation of texts in the IPA; binary
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features, statically mapped to the IPA; language-specific binary features; and elements. The lan-
guage distances of these representations are correlated, but not uniform. However, this does
not mean that they are inaccurate for a given representation. The reliability of findings for each
representation was established with cross-validation, finding that the ggth percentile error rate
was around 10% of the range of Kullback-Leibler divergences.

Further work is required to establish which factors external to segmental representation af-
fect cross-entropy. However, even a partial measure of entropic distance can also inform invest-
igation into phonological representation. The approach outlined in this chapter can be applied
to any system of representation, aiding researchers in reflecting on implications of their theory
for information transfer, such as whether all features carry equal quantities of information in

real usage.
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Chapter 6

ACCDIST

The previous two chapters have described metrics which rely on phonological representations
of speech. In this chapter, [ use an accent distance metric — ACCDIST — to measure more directly
the similarity between audio recordings.

I have established that most existing ‘metrics’ of language distance used in second language
acquisition are insufficient for comparing phonological knowledge. They are mostly either too
subjective, based on personal impressions of how similar different linguistic systems are, or too
broad, including factors like dissimilarity in the writing system. Similarly, historical linguistic
relationships based on cognates do not provide a measure of similarity for unrelated languages,
and again are based on factors other than the phonological system.

On the other hand, phonetic comparisons are too specific to compare languages as a whole.
The similarity of individual recordings of speakers depends on physical factors such as height,
age or gender. This problem of separating out individual variation from variation between
speech communities is an important issue for speech recognition, speech synthesis and ac-
cent identification. As such, there are several methods for modelling accent distance whilst
controlling for these other factors. These methods can equally be applied to second language
speakers, giving a baseline for the similarity of pronunciation of speakers from different lan-

guage backgrounds to which to compare my metrics.

6.1 Language identification techniques

The principal techniques used in spoken language identification (LID) are Phone Recognition

and Language Modelling (PRLM) and Gaussian Mixture Models (GMM) (e.g. Zissman, 1996,



164 Chapter 6. ACCDIST

Gelly and Gauvain, 2017). In PRLM, the speech is first segmented into phones, then an n-gram
probability model is estimated (see Section 5.3). This technique and its successors rely on pho-
notactics for identification. In GMM, the speech signal — generally processed into a discrete
form — is modelled as a combination of latent variables. These components comprise speaker-
dependent characteristics (e.g. gender, age), channel-dependent characteristics (e.g. micro-
phone, background), and others, and may not necessarily be specified in advance. In some LID
systems (e.g. Gelly and Gauvain, 2017), the language similarity component of the model can be
factored out, but this is not a universal feature.

I have chosen to use the ACCDIST system (Huckvale, 2004), as described below, due to its
non-proprietary nature, ready availability, small input data requirements, and transparent inner

workings.

6.2 ACCDIST

ACCDIST (Huckvale, 2004) is a metric based on the relative similarity of a speaker’s realisa-
tions of different segments. For example, a northern British English speaker will pronounce the
stressed vowels in ‘after’ and ‘cat’ with greater similarity than ‘after’ and ‘father, whereas in a
southern British English speaker, this pattern would be reversed. ACCDIST has been used to
successfully group British English speakers into their respective accent groups, with regional
accent groups clustering together (Huckvale, 2004).

There is also a correlation between the similarity of accent of talkers and listeners (as meas-
ured by ACCDIST) and their mutual intelligibility (Pinet, Iverson and Huckvale, 2om1). This
correlation holds for foreign-accented speech as well as regional variation; Pinet, Iverson and
Huckvale’s experiment used speech samples from Standard Southern British English (SSBE), Ir-
ish English, Korean-accented English, bilingual French-English, experienced French-accented
English, and inexperienced French-accented English.

There are several advantages to applying the ACCDIST metric to the issue of second-language
accented speech, rather than examining mutual intelligibility directly. ACCDIST has the advant-
age of being extensible to more languages in future, subject to the availability of suitable input

data. By contrast, most mutual intelligibility studies only compare two or three languages, and
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would need replicating in their entirety in order to compare ten or more languages; additional
languages cannot simply be added on.

ACCDIST is a more direct analogue of the phonological distance which I am trying to meas-
ure than mutual intelligibility is. Mutual intelligiblity depends on a variety of factors, of which

accent distance is only one, such as familiarity (Adank et al., 2009).

6.21 Method

ACCDIST is calculated as follows. The same base text is recorded by each speaker. A single
idealized transcription consisting of phonemes-in-words (e.g. a/after, a/cat, a/father) is aligned
with the recording. This transcription is identical for all speakers, regardless of actual phonetic
detail, and is used to locate corresponding segments and compare them between speakers.

Each vowel segment is represented as a set of mel-frequency cepstral coefficients (MFCCs).
This involves three transformations of the speech signal. Firstly, a Fourier transform is applied
to get a representation of the signal as a function of frequency. Secondly, it is scaled using the
Mel scale (Mermelstein, 1976), which represents human perception of pitch, with each equal
step of the scale perceived as the same difference in pitch. Thirdly, a logarithm is taken, which
permits the separation of fundamental frequency and formant data.!

For each of the experiments below, the processing from audio recording to MFCCs was done
using the Speech Filing System (Huckvale, 2008). (See Appendix Section B.3 for links.)

The position of vowels in each recording was identified programatically using Analign, based
on “a set of phone hidden-Markov models which have been trained on Southern British English”
(Huckvale, 2008). However, using a language-specific model for this task is not a significant
limitation for my purposes. The first experiment is based on English text, even if vowel qual-
ity differs between speakers. Later experiments using non-words require only the alignment
of a single CVCV item per file, and English approximations are sufficient for this. (See Subsec-
tion B.3.3 for the mapping used.)

The MFCCs for a given segment could be compared directly between speakers, but this

would group speakers by personal characteristics such as gender. Instead, with the ACCDIST

"The source signal (vocal excitations) is convolved with the filter (vocal tract), resulting in the speech signal. A
Fourier transform turns this convolution into multiplication, and taking a logarithm transforms this into a linear
addition, which allows the terms to be examined separately.
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method, the MFCCs for a given speaker are first compared across their segments. These relative
differences can then be compared across speakers, which removes the personal characteristics.

Speaker clustering based on ACCDIST measurements can be performed in several different
ways. In the experiments below, I have measured the average correlation between speakers, as
this is both accurate in categorising English speakers (Huckvale, 2007) and gives fairly stable

results with low numbers of speakers.

6.3 Speech Accent Archive

For my first analysis, I used data taken from the Speech Accent Archive (Weinberger, 2015). This
is a database of recordings of a passage of English by speakers from a variety of linguistic back-
grounds. The passage contains most of the segments and sequences of General American Eng-

lish, using common vocabulary items:

"Please call Stella. Ask her to bring these things with her from the store: Six spoons
of fresh snow peas, five thick slabs of blue cheese, and maybe a snack for her brother
Bob. We also need a small plastic snake and a big toy frog for the kids. She can
scoop these things into three red bags, and we will go meet her Wednesday at the

train station.”

6.3.1 Inputdata

I wanted to ensure that the vowels in the sample were as close to speakers’ L1 language produc-
tions as possible. Pinet, Iverson and Huckvale (2011) found that the closeness of French speakers’
vowel spaces to SSBE speakers’ increased with increased English experience. For this reason, I
chose samples from non-native speakers who had learned English in an academic context, and
who had spent less than six months living in an English-speaking country.

As far as possible, samples for each language were chosen from a single region/country to
maximise similarity. This obviously does not necessarily form a coherent accent group — e.g.
‘south-eastern English’ would include both Standard Southern and Norfolk accents — but there

are not yet enough samples from L2 speakers in the archive to be more specific.
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I examined six male and two female Dutch speakers; five male and two female English
speakers; five male and three female French speakers; six male and two female Italian speak-
ers; two male and six female Korean speakers; seven male and one female Polish speakers; and
two male and three female Portuguese speakers (see Subsection B.2.1).

Using American English orthography introduced additional variation unrelated to phon-
etic effects. The differences in pronunciation values of the Latin alphabet across languages can
reflect historical accident, rather than contemporary differences. For example, some L2 speak-
ers of all backgrounds failed to apply diphthongisation before a silent (e), producing (snake)
as (snack), though [e] and [er] would not be adapted as a single phoneme in those languages
aurally. Some British speakers stumbled over American English vocabulary (‘snow peas’) or

grammar (‘meet her Wednesday’), sometimes ‘correcting’ the passage to British English.

6.3.2 Results

The most homogenous language group — the group closest to their colinguals — were Portuguese,
followed by Dutch, Polish, Italian, English, Korean, and finally French. French speakers were the
only group to show greater mean similarity to speakers of other languages (Portuguese, Dutch,

Italian, Polish) than to their colinguals. (See Table 6.1.)

TABLE 6.1: Mean distance between speakers of different languages

Dutch English French Italian Korean Polish Portuguese

Dutch 0.33

English 0.39 0.38

French 0.43 0.48 0.44

Italian 0.38 0.43 0.43 0.38

Korean 0.42 0.48 0.45 0.42 0.41

Polish 0.37 0.40 0.43 0.39 0.42 0.36

Portuguese 0.36 0.44 0.41 0.38 0.38 0.37 0.30

Are the language groups sufficiently distinguishable from one another that between-language
speaker distances are significantly different from within-language speaker distances?
Let d,; and 0, be the distance between MFCCs for each speaker ¢ and j respectively, for

each pair of vowels v. Let A; = Z})/ 0y, where V is the total number of vowel pairs, and

Aij =3V 8,i00;.
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The Pearson’s correlation coefficient between the two speakers 7 and j is measured as

B VA — AA,
VAL - NAL VA = AJA;

T'ij

Let D;; be the distance between two speakers, equal to 1 — 7;;. Let p, , be the mean of
D;—; j—, where all speakers i speak language x, and all speakers j speak language 3.

If z and y are not the same, ji; , is the mean language distance between speakers of two
different languages (e.g. the mean distance between English speakers and French speakers).
Where they are the same, (i, ,, is the mean language distance between colinguals, and written
as flg g OF fly . (E.g. piy , is the mean distance between two English speakers and (i, is the
mean distance between two French speakers.)

If 1z 4 is significantly different from both (i, and p, 4, then speakers of x and y form
distinct groups.

[4z,y is only significantly different from both zi,. ;- and 1, ,, in three cases: English-Portuguese,
English-French, and English-Korean (see Figure 6.1 on the next page.)

Other language pairs have a significant difference between . , and (15 ;- butnot 4, ,,. This
means that cross-language distance is not distinguishable from language-internal variation of
the language y (see Figure 6.2).

Where x is Portuguese, (i, , is significantly different from (i, ; (mean distance between
Portuguese speakers) for all languages y. But it is only significantly different from 1, where y
is English, as mentioned above.

Where x is Dutch, p, 4 is significantly different from f1, , (mean distance between Dutch
speakers) where y is English, French, Italian or Korean (but not Polish or Portuguese). But i,
is not significantly different from 1, ,, for any of the four.

Finally, p/(Korean, French) is significantly different from y4(Korean, Korean); 1(Polish, French)
is significantly different from p(Polish, Polish); and p4(Korean, Polish) is significantly different

from pi(Polish, Polish).
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Additional observations

I extended the inventory of analysed segments to include fricatives as well as vowels, since fric-

atives also have steady-state MFCCs. However, this made the categorisation of speakers by lan-

guage strictly less accurate.

The average similarity of a speaker to their co-linguals was strongly correlated with the sim-
ilarity of that speaker to the native English speakers (1t; » X fiz, English; T = 0.76, p < 1078,

Figure 6.3). It appears that all felicitous pronunciations are alike; each infelicitous pronunci-

ation is infelicitous in its own way.

6.3.3 Conclusions

There were sufficient issues with the audio quality of the samples, and their low number, that
I needed to record fresh samples. Given the limitations of using read English, I designed an

entirely new set of samples.
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6.4 Non-word repetition task

This task was designed to elicit nativised versions of a large cross-section of the vowel space. As

far as possible, it is language-neutral; i.e. not biased by education in English.

6.41 Methodology

A set of 8o bisyllabic CVCV words were constructed, using 16 vowels and five consonants. Each
vowel appears twice in conjunction with each consonant, with the CV syllable in both initial
and final position. The five consonants chosen were the most common, cross-linguistically:
three plain voiceless stops [p],[t],[k], the alveolar nasal [n] and the voiceless alveolar fricative
[s]. The 16 vowels cover the major contrasts of the vowel space: the seven peripheral vowels
[i],[e],[€],[a],[2],[0] and [u]; front rounded vowels [y],[ ce]; central vowels [i],[a]; back unroun-
ded vowels [w],[¥], nasal [4], breathy [a] and creaky [a] vowels.

Each syllable was recorded in isolation with a flat intonation by a trained phonetician. This
allowed a variety of different combinations to be generated before a final vowel set was chosen.

Participants were told that “An international department store is expanding into the UK.
They want to know how their product names will be pronounced by English-speaking custom-
ers”. Where possible, all instructions were presented in their native language.

They were presented aurally with a “product name”, then visually with a written sentence
in their native language with a gap. E.g. “The ____ plates are cheap.” For a full list of example
sentences, with their translations, please see Subsection B.1.1.

Participants were instructed to read out the sentence with the product name in the gap.
They were then asked to repeat the product name again, in isolation. Each participant was given
3 — 9 demonstration items to become comfortable with the task before the 80 test items were
presented.

Use of the sentence helped to reduce direct mimicry of the stimuli, and the second repeti-
tion was, subjectively, more natural than the first. (I am confident of this judgement regarding
the English participants, and also received this as feedback from multiple linguistically aware
participants.) This was especially important because the concatenation of different samples to
create words from syllables did not result in particularly natural intonation, but rather words

” o«

that participants variously described as “Chinese”, “robotic” or “alien’”.
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13 mel frequency cepstrum coefficients are found for each half of every vowel, capturing
the changes in vowel quality present in a diphthong. For a pair of vowels u and v with MFCCs

U71...u26 and v1 ...v26 their dissimilarity is calculated as:

2?21 Uj — V5
26

i.e. the mean difference between each coefficient.

For each pair of speakers, the correlation between them is calculated as the Pearson Cor-
relation Coefficient of their vowel pair differences. If the same pairs of vowels are similar, the
speakers will have high correlation. If one speaker has small differences between pairs of vowels

for which the other has large differences, the speakers will have low correlation.

6.4.2 Pilot results

After open recruitment, speakers of the following languages were recorded: Japanese (5), Eng-
lish (4), Spanish (4), Cantonese (1), French (1), Greek (1), and Polish (1). The instructions were
translated into Japanese, English, Spanish, French and Greek (see Section B.3).

I shall present here the findings for Japanese, English and Spanish, since those had multiple
speakers and hence consistency between co-linguals could be measured.

I applied an Analysis of Variance to the correlation between speakers with the factors of
gender identity, age difference and language interaction. There was no significant effect of shar-
ing a gender or of similarity in age, as expected given the design of the ACCDIST calculation.
Language interaction was significant (p < 0.01), and the effect size was large (n> = 0.15).
This is due to a difference between within-language and between-language groupings. In par-
ticular, Japanese speakers gave homogenous responses; the only significant difference between
interspeaker correlations grouped by language was between Japanese cohesiveness and other
pairings. Japanese speakers were most similar to their co-linguals, followed by Spanish speak-
ers to their co-linguals and English to theirs. These is no significant difference between the

correlations across language groups (see Figure 6.4).
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6.4.3 Alterations following the pilot

English and Spanish had higher correlations within-group than compared to speakers of other
languages, but with only four participants, these findings were not significant. I therefore re-
peated the study with many more participants.

I had the stimuli re-recorded as entire words, since many participants found the concat-
enated syllables to have unnatural prosody, making it more difficult to perceive them as real
lexical items. This was also evident in early trials without examples sentences, in which parti-
cipants copied both the intonation and the vowel quality fairly exactly, despite instructions to
the contrary. The introduction of example sentences, forcing participants to use the trial items
in the context of their native language, made a significant difference. The second repetition,
in isolation, was subjectively a more nativised version; participants copied their own previous
pronunciation in the example sentence.

Participants reported that they found it easier to produce a natural (nativised) version of
the trial item in a longer example sentence, and when the item was not sentence initial. The
example sentences were modified to fit these criteria, and to be of equivalent length in each
language. The new examples had six syllables preceding and six syllables following the test
item, such as “I prefer the dark green ____ to the one you're holding "or “Me gusta mucho el
___, y es muy barato”. Full examples can be found in Subsection B.1.2. Since the sentences
themselves were unimportant, I dispensed with translating the sentences directly, to make the
length requirement easier.

Instructions were also repeated verbally for the participants in the second study. In the
pilot, participants received written instructions in their native language as part of the consent
form, then again screen-by-screen as they became relevant. Summarising the activity verbally
between the written form and the start of the experiment reduced problems, but did not entirely

eliminate misunderstandings or refusal to follow instructions.

6.4.4 Data

The audio recordings and analysis code described in this section can be found at the link at
Section B.3. Participants have agreed to release their recordings into the public domain, along

with anonymised demographic data.
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The stimuli were presented and audio recorded using Psychopy (Peirce, 2007), which al-
lowed a consistent presentation across languages.?

Alarger number of speakers was recruited for two languages, English and German, and those
speakers were tested in their native countries. Unfortunately, logistical problems prevented the
recording of Greek and Spanish speakers in their native countries, so a smaller number of speak-
ers were recorded in the UK.

25 English speakers, six standard Greek speakers and eight global Spanish speakers were
recorded in London, UK; and 24 German speakers were recorded in Diisseldorf, Germany by Dr
Martin Ronsch. Their demographic data can be found in Subsection B.2.2. Of these participants,
I have excluded two English speakers who were not Standard Southern British English speak-
ers and one Spanish speaker who was outside the age range of 18-35, as well as three German
and two English speakers whose recordings were unusable due to noise. This leaves 21 English,
21 German, seven Spanish and six Greek speakers. The English speakers were from London or
south-east England, and spoke London English or Standard Southern British English. The Span-
ish speakers were from Aragon, Spain; Santiago, Chile; Mexico City, Mexico; and Buenos Aires,
Argentina. The Greek speakers were from Thessalonika, Pagra, Zakynthos, Argos, and Athens in
Greece.

In total, there were 4117 usable utterances from 55 speakers, with 283 utterances discarded
due to background noise. 7798 sets of MFCCs were able to be calculated from the 8234 vowels. No
MFCCs were calculated if the detected vowel length was too short, either inherently or because

SFS was unable to align a vowel transcription with the full duration of the vowel.

6.4.5 Results
Nearest neighbour

Using the ACCDIST results, the closest other speaker to each participant is found in Table 6.2.

For no language was every single speaker closest to another speaker of that same language.
Looking at these speakers individually (see Figure 6.5), German speaker deuz is fairly dis-

similar to almost all speakers, including Spanish speaker spa1 who is their nearest neighbour.

German speaker deu8 is very similar to many other speakers, and is the nearest neighbour of six

*Whilst I have made the experimental code available for future use, audio recording with Psychopy is presently
unreliable and highly platform dependent.
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TABLE 6.2: Nearest neighbour

Their closest match  German Greek English Spanish
Language of speaker

German 20 o o] 1
Greek 1 2 1 2
English 7 o) 14 o
Spanish o) 1 o) 6

German speakers, one Greek speaker ell1, and all seven English speakers whose nearest neigh-
bour was not English. Likewise, Greek speaker ell6 was the nearest neighbour to two other Greek
speakers and to Spanish speaker spas; Spanish speaker spaz was the nearest neighbour to three
other Spanish speakers and to Greek speaker ell4; and English speaker eng8 was the nearest

neighbour to three other English speakers and to Greek speaker ell3.

Analysis

Applying an Analysis of Variance to the correlation between speakers that was calculated using
the ACCDIST method, there was a significant effect of both gender and language interaction.
The size of the gender effect was negligible (1> = 0.006), but the language interaction was
large (n? = 0.146).

Within-language correlations were significantly larger than between-language correlations,
with two exceptions. Firstly, the correlations between Greek and Spanish speakers were statist-
ically indistinguishable from the correlations between Greek colinguals, between Spanish colin-
guals, or between German colinguals. Secondly, English speakers did not form a homogenous
group, with correlation between English speakers being significantly lower than other colingual
groups, and than Greek-Spanish.

By contrast to the pilot study, these results show a measurable difference between monoph-
thongal five-vowel systems (Greek, Spanish) and larger vowel systems with diphthongs (Ger-
man, English). However, German and English are not significantly more correlated than any
other pairing. As in the pilot, English is less internally similar than the other three languages,
despite much stricter dialectal requirements. This implies that there is less consensus among

speakers as to how to adapt non-native vowels to the English vowel system than for the other
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FIGURE 6.5: ACCDIST correlations between individual speakers

TABLE 6.3: Average correlation between speakers by language

Languages Mean Standard
deviation

Greek Greek 0.575 0.033
Spanish  Spanish  o.572 0.050
German German 0.560 0.085

Greek Spanish o.554 0.044

English English  o.522 0.055
German Spanish  0.503 0.059
German Greek 0.500 0.064

Greek English  0.498 0.050

German English  o0.493 0.078
English Spanish 0.480 0.061



178 Chapter 6. ACCDIST

o7 -
0.8
Language
.5 . GErman
% 0.5 ‘ Gresk
] English
3 B £ngis
F3 spanizh
0.4 -
E L
& *
L | ] . .
L -
D.3- * .
& &
& &
& &
1 t
Garman Gresk Englich Spanish
Language

FIGURE 6.6: Correlation between individual speakers, labelled by language
background

Spanish
Greek

German
English
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stein, 1989)
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languages. This is an interesting difference when compared to German speakers, who have a

similarly wide range of options to choose from, yet are more consistent.

Vowel similarity

To illuminate the origins of these language distances, I shall discuss the observed nativisations
by each language group.

Figure 6.8 - Figure 6.11 illustrate the distribution of vowels by speakers of each language. For
each of the 160 vowel instances in the stimuli, the mean MFCC values were calculated across all
speakers of the same language. The distance between these ‘average vowels’ was calculated as
the sum of squares, as described above. In the following figures, similarity is given as the inverse
of the mean distance between average vowels. The label assigned to each production is that of
the stimulus.

In all four languages, [a] is produced fairly similarly regardless of whether the stimulus was
nasalised, or creaky, breathy or modal voiced. Other notable features include the tense-lax dis-
tinction in front mid vowels, which is visible in German and English and completely lacking in
Greek and Spanish; the distinction between [i] and [y] in German which is missing from the
other languages; and the similarity between [ce] and [3] in English and German, which is less
evident in Greek and Spanish. Not captured in this vowel data, Greek and Spanish speakers

produced almost all instances of [ce] with a following rhotic.

6.4.6 Conclusion

The ACCDIST metric can be used to identify the vowel patterns of German speakers in contrast
to speakers of languages with five vowel systems, but English speakers are sufficiently diverse
in their nativisation strategies that they cannot be identified as a homogenous group, distinct

from the other language groups.
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6.5 Conclusion

Measuring the similarity of speaker’s accents in their L2 is possible using ACCDIST, but the res-
ults of using read text are too dependent on orthographic effects and on speaker proficiency
to give a consistent picture of their L1. Using audio stimuli and non-word adaptation instead
removed these effects, but made data acquisition more difficult.

ACCDIST produces the average correlation between individual vowel stimuli across par-
ticipants of a given language background, and the consistency of adaptation between different
speakers. German, Greek and Spanish speakers all adapt vowels predictably depending on their
language background, but SSBE English speakers behave more variably. This makes the results
of the ACCDIST metric unsuitable as a metric of distance between all vowel systems, since there
is no single English system to measure from.

This study could be expanded to use more speakers, both of the existing dialects and of
more languages and more dialects, to establish if there is a replicable difference between SSBE
English speakers and speakers of other backgrounds in their consistency of adaptation, or if
monolingual speakers of prestige dialects of other backgrounds are similarly variable in their

treatment of novel loan items.
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Chapter 7

Comparison

In this chapter I will compare the three approaches detailed in the preceding chapters. In Sec-
tion 7.1, I compare the data and analysis required to implement each of the methods. In Sec-
tion 7.2, I compare the internal consistency of each of the methods. In Section 7.3, I look at the
language distances given by each of the methods, how consistent they are between methods,

and how they correspond to genetic similarity and linguists’ intuitions.

7.1 Comparison of requirements

For all three approaches, it is important that all input data used to calculate the metric is of the
same quantity and quality, regardless of which language it is from, in order to produce consistent
results. Ifa metric is to be useful when applied to all languages, as opposed to just Indo-European
languages for which we have a wealth of acoustic data, orthographic data and pre-existing ana-
lyses, the data requirements must not be too onerous.

The parametric approach and the entropy approach both rely on data which is routinely
produced as part of the initial documentation of a language.

Nidaba takes a transcribed lexicon as its input, and provides a suite of tools to aid in produ-
cing a phonemically transcribed version. The set of parameters outlined in Section 4.8 includes
both inventory and phonotactic characteristics of the lexicon, both expected parts of an initial
documentation. However, the diagnostic criteria used must be identical for all languages, which
is why it is not sufficient simply to take an existing grammar and assume its analysis is adequate.

The entropy approach requires fewer than a thousand phonemes of training text to produce
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a model that is applicable to other languages. To calculate language distance to an already-
modelled language (but not vice-versa) requires only a test string, which can be much shorter.
I found that a string of length 34 phonemes was sufficient to correctly identify a language from
out of seven options, with accuracy increasing asymptotically with length.

The entropy approach can be applied to broad phonetically transcribed texts directly, or
programmatically using a statically mapped featural representation (e.g. Hayes, 2008), neither
of which require an in-depth analysis of the language of transcription. More consideration of
phonological behaviour is required for both language-specific featural representations and ele-
ment representations. In these latter cases, producing a metric is more time-consuming and
difficult, but the results provide more insight into representational theories. If such underlying
representations are a more accurate depiction of phonological systems than surface represent-
ations, they will also produce a more accurate metric.

Both the parametric approach and the entropy approach rely on constructed records of hu-
man speech: on phonological analysis and transcription. They can therefore be applied to his-
torical data, to the reconstruction of a phonological system or the reconstruction of the pronun-
ciation of a written text. By contrast, the ACCDIST approach requires audio recordings of native
speakers.

This experimental approach requires targeted recordings: sounds recorded deliberately for
this purpose. The data collected may be interesting for other reasons — e.g. relative consistency
in loan item adaption — but it is not going to be produced spontaneously, nor collected for any
other purpose. There exist alternative spoken language identificiation techniques which do not
require particular input data. However, most use training data from all input languages simul-
taneously, and so produce results relative to the input languages used, rather than an absolute
distance. The three approaches I have described in this thesis are applicable to new languages
with no alteration; adding new languages does not change the distances measured between pre-

existing language pairs.

7.2 Comparison of internal consistency

In this section, I compare the internal consistency and precision of the three approaches. If a

metric is accurate, it will consistently produce the same distance when presented with a given
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language pair. If it is precise, it will consistently rank two pairs of languages which have very
similar distances.

The parameter-based approach relies on a single set of values for each language, so it is not
inherently variable. However, inconsistencies may arise since establishing those values is sub-
ject to researcher fallibility. Firstly, if a lexicon is unrepresentative of the language it is drawn
from, other lexicons may produce different parameter values. This can be mitigated by the in-
clusion of frequency data, but this is not available for the under-documented languages which
are most likely to have short and potentially unrepresentative lexicons, and for which errors are
least likely to be caught by peer-review. Secondly, marginal items may be treated inconsistently
between languages, being permitted to influence a parameter-value in some cases and not in
others. Finally, a user who has specialist knowledge of particular phenomena in one language
but not another may selectively deviate from diagnostic criteria. Nidaba contains several tools
to mitigate the influence of user variability by automating certain processes, but relying on these
to the exclusion of expert knowledge would remove an important verification step.

The resolution of the parameter-based metric is dependent on the number of parameters
applicable to a given language pair. The language pair with the smallest number in my sample
had 41 applicable parameters, so the metric has a precision of 0.025, and can distinguish between
41 distances. Since no language pairs in my sample are antithetical - something that would be
highly unlikely to occur by chance even including thousands oflanguages - the range of distances
observed is 0.06-0.40. This corresponds to approximately 13 distinct categories of language dis-
tance. Increasing the number of parameters would increase the precision of the metric.

The entropy-based approach requires transcribed texts to act as exemplars of the language;
one to train a model, and one to test against. The accuracy of the metric therefore depends on
how representative these texts are of the language as a whole. The results presented here used
translations of a single text for all languages to eliminate confounds such as author- or genre-
based variations in entropy. In future, it would be good to repeat the calculations using a variety
of source texts, to examine the impact this has on entropy-based language distance metrics.

The results were cross-validated, by repeating the same calculation of Kullback-Leibler di-
vergence on multiple sample texts. For all four representational approaches examined, the

variation observed between repetitions had a magnitude below 13% of the range of language
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distances calculated (see Subsection 5.6.9). Unlike the parameter-based approach, it is there-
fore not possible to consistently rank up to 41 distinct language distances (which would require
a precision of +1.25%), nor ever the 21 language pairs used in the entropy calculations (re-
quiring < £2.5%). Instead, it is possible to consistently divide language pairs into five non-
overlapping groups using the entropy approach, regardless of which of the four transcription
methods is used. With only seven languages under examination, it is quite possible that there
exist language pairs with greater, or even lesser, language distance between them than we have
seen here. In that case, the number of non-overlapping groups would increase. However, since
Kullback-Leilber divergence has a fixed normalisation, extending the observed values for the
metric would not alter the existing values, and the 21 language pairs examined here will never
have fully distinguishable distances using this metric with the transcription systems described.
It is possible that the precision and reliability of the metric could be improved with different
representational choices, or with more advanced entropic calculations.

The ACCDIST approach does not have high internal consistency. As with the entropy-based
metrics, altering the source data for a language can alter the resulting language distance. How-
ever, the entropy-based metric successfully established a minimum data requirement, above
which a language could be reliably identified. This is not the case for the ACCDIST approach,
where five of the 21 English speakers were more similar to Greek speakers than to their colin-
guals.

The ACCDIST metric has a resolution of only three statistically distinct language distance
categories: ‘colingual’ ‘similar’, and ‘dissimilar’. Looking at the six non-colingual language pairs
that all three approaches have in common, this is the same resolution as three of the four entropy-
based metrics. However, these all include German-English in the ‘similar’ category along with
Greek-Spanish, which ACCDIST does not (see Table 7.1). By contrast, the entropy metric depend-
ing on language-specific binary features divides the language pairs not into two, but into three
categories: Greek-Spanish is the closest, followed by Greek-English, with German-English hav-
ing a comparable distance to German-Greek or Spanish-English. Finally, the parameter-based
approach sorts all six language pairs into distinct categories: German-English is closest, followed

by Greek-German, then Greek-Spanish, Greek-English, Spanish-English, and Spanish-German.
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TABLE 7.1: Categorisation of English (Eng.), German, Greek and Spanish (Spa.)
by different metrics

Entropy: Entropy: Entropy: Entropy:
ACCDIST IPA static language-specific Elements Parameters

Greek-Spa.  Greek-Spa. Greek-Spa.
Greek-Spa. reetopa reekopa Greek-Spa. reekopa German-Eng.
German-Eng. German-Eng. German-Eng.
Greek-Eng. Greek-German
Greek-Spa.
G -Spa.
crman-opa Greek-Eng.  Greek-Eng. Greek-Eng.
German-Greek German-Eng.
German-Greek German-Greek German-Greek
Greek-Eng. German-Greek Greek-Eng.
Eng.-Spa. Eng.-Spa. Eng.-Spa.
German-Eng Eng.-Spa.
German-Spa. German-Spa. German-Spa.
Eng.-Spa
German-Spa. Spa.-Eng.

German-Spa.

7.3 Comparison of language distances

7.31 Correlation between metrics

Moving on from internal consistency, we can now ask: how similar are the results of the different
metrics to each other?

Table 7.2 shows the Pearson correlation between all six metrics. ACCDIST is included in the
table for completeness, but only has six data points to the others’ 21, and has been discussed
above.

Figure 7.1 comprises six heatmaps showing the relative similarity between languages pro-
duced by the parametric Hamming distance, by the mean Kullback-Leibler divergence of each
of the four different representational approaches, and by ACCDIST. It includes the 21 language
pairs for which the Kullback-Leibler calculations were performed.

The strongest correlation is, unsurprisingly, between the IPA-representation entropy-based
metric and the static binary features-representation entropy-based metric. The binary features
map directly onto the IPA, and entropy was calculated from abstract segments which therefore

closely correspond between the two.
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FIGURE 7.1: Similarity between language pairs for each approach, scaled for
optimal visualisation. Larger, blacker points are more similar; smaller, greyer
points are less similar.
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QI%Q >
& @%QO &
& FRF
Parameter Entropy | ACCDIST
Parameter 0.67 0.55 0.33 0.31 0.10
Entropy: IPA 0.67 0.94 0.46 0.70  0.64
Entropy: static binary features| o.55 0.94 0.38 0.85 0.69
Entropy: language-specific binary features| 0.33  0.46 0.38 031 0.74
Entropy: Elements 0.31 0.70 0.85 0.31 0.67
ACCDIST 0.10 0.64 0.69 0.74 0.67

TABLE 7.2: Pearson correlation between all six metrics.

The parameter-based metric is strongly correlated with both of these, as is the element rep-
resentation entropy-based metric. However, the parameter- and element-based metrics only
correlate weakly. The parameter-based metric has stronger similarities between French and
Germanic (Dutch, English and German), and between Greek and Germanic, than the other three
metrics. The element-representation entropy-based metric has fewer similarities between Ger-
manic languages (see below), and more similarities between Romance languages in comparison
to the other three metrics.

The final metric, entropy-based using language-specific binary features, correlates weakly
with all the other metrics, excluding ACCDIST. It has weak correlation between German and
Dutch/English; strong correlation between French and Spanish/Greek; and strong correlation

between Dutch and Greek/French.

7.3.2 Overview of language-pair distances

Figure 7.2 is an alternative visualisation of language-pair distances. There are three main group-
ings visible: Germanic pairs, Romance pairs, and Germanic to Iberian.

Greek-Spanish has a small language distance using all metrics, especially the vowel based
ACCDIST metric.

The Germanic languages are similar to each other, using the parameter-based metric and
the IPA-based and static binary features-based entropy metrics. Dutch is dissimilar to English

and German using the element-based entropy metric, due to the relative importance of voicing
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FIGURE 7.2: Mean distances between language pairs, using each of the six met-
rics

Portuguese-Dutch-

Spanish-German- Method

A i
Spanish-Dutch- Eﬁ{%’gﬁﬂi
Entropy: Hayes Gemanic to Iberian !

Portuguese-English- ® Entropy: Consensus SPE 5
Entropy: Elements 0

Portuguese-German- S ACCDIST ;

Spanish-English-
Greek-German- A *
French-English- A L
Greek-English- Ao *
Portuguese-Greek- A L)
Greek-Dutch- r'S *

German-French- A L

Language pairs

French-Dutch- A L
Spanish-French-

Portuguese-French-

Greek-French- L ¢

Spanish-Portuguese- Portuguese-Spanish !‘ Ld

English-Dutch-

German-English- Genmanic | A * K
Geman-Dutch-

Spanish-Greek- * ] A

00 01 02 03 04 05 06 07 08 09 10
Language distance, scaled to matching ranges



7.4. Conclusion 191

contrasts in determining [H| and |L| patterns. German is dissimilar to Dutch and English accord-
ing to the language-specific binary features-based entropy metric.

The Romance languages all have middling language distances between them, the same or
closer than the Germanic languages according to the element and language specific features
entropy-based metrics, but more dissimilar according to the parametric and remaining entropy-
based metrics. French-Greek also fits this description.

Dutch-Greek has a very large range of language distances. The static features and element
entropy-based metrics assign this pair the maximum observed distance, whilst the language-
specific featural entropy metric assigns it the same low distance as it assigns Dutch-English, and
the parameter-based metric assigns it almost the same distance as Spanish-Greek.

Finally, the Germanic languages are distant from the Iberian Romance languages (Portuguese

and Spanish) for all metrics.

7.4 Conclusion

Both the parameter approach and the entropy approach result in a reliable metric. They rely
on data gathered in the preliminary stages of language documentation, and thus easily applied
to new languages. The parameter-based metric results in greater precision, but overall I find
the entropy approach to be superior. It captures all phonotactic patterns present in the data,
not just those in a limited set of parameters; the metric corresponds not just to the abstract
sense of phonological distance, but the observable consequences for information transfer, both

of similarity and of representational choices.
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Chapter 8

Conclusion

At the outset of this thesis, I posed the question: Is it possible to derive a meaningful quantitative
measure of phonological similarity between individual languages? Such a measure would allow
us to address phonological questions that would benefit from quantitative answers, in areas
such as second language acquisition, bilingualism and historical linguistics. Non-quantitative,
intuitive answers to such questions only take us so far.

Three independent approaches to measuring cross-language phonological distance have
been pursued in this thesis: exploiting phonological typological parameters; measuring the
cross-entropy of phonologically transcribed texts (i.e. the relative predictability of a transcribed
passage in one language given knowledge of some other language); and measuring the phonetic
similarity of non-word nativisations by speakers from different language backgrounds.

Firstly, I presented a set of freely accessible online tools to aid in establishing parametric
values for syllable structure and phoneme inventory in different languages. The tools are de-
signed to allow researchers to make differing analytical and observational choices and compare
the results. Ilaid out a case study for the use of these tools in analysing the Indo-Aryan lan-
guage Sylheti. I then applied the tools to 16 languages from four language families, and used
correspondence between the resulting parameter values as a measure of phonological distance.
This method produces results broadly in accordance with intuition. For example, it groups Ger-
manic languages together, and groups Greek with Spanish. It can distinguish distances to the
nearest 2.5%. The tools are designed to be extensible, so that alternative transcription systems
or parametric criteria can be incorporated in future, and an alternative metric produced.

Secondly, I applied the computational technique of cross-entropy measurement to texts

from seven languages, transcribed in four different ways: a phonemic IPA transcription; with



194 Chapter 8. Conclusion

elements; and with two sets of binary distinctive features in the SPE tradition. This technique
results in consistently replicable rankings of phonological similarity for each transcription sys-
tem, which broadly correlate with the findings of the parameter-based metric. It is sensitive to
differences in transcription systems. It can be used to probe the consequences for information
transfer of the choices made in devising a representational system. That is, how inclusion or
exclusion of certain contrasts affect the amount and predictability of data transferred between
speaker and listener. In future, this technique could be extended to more languages; to alternat-
ive representations or implementations of these four representations; and to a variety of genres
and examples of source texts.

Thirdly, I presented a set of phonetic studies to act as a control for the findings of the other
two approaches. Participants from different language backgrounds were presented aurally with
non-words covering the vowel space, and asked to nativise them. The accent distance metric
ACCDIST was applied to the resulting words. A profile of how each speaker’s productions cluster
in the vowel space was produced, and ACCDIST measured the similarity of these profiles. Aver-
aging across speakers with a shared native language produced a measure of similarity between
language profiles. This technique had mixed success, with English speakers nativising inconsist-
ently, so that there was no coherent language profile to compare with the other three languages.
Whilst this is an interesting case study of nativisation behaviour, it is less internally consistent
than the two approaches outlined above. A better control in future may come from advances
in spoken language identification systems. Many do not model individual languages in such a
way that they can be compared, and all are less phonologically transparent than ACCDIST, but
systems such as Gelly and Gauvain (2017) are internally consistent.

Both the parameter-based approach and the entropy-based approach deliver a quantitative
measure of phonological similarity between individual languages. They are each sensitive to
different analytical choices, and require different types and quantities of input data, and so can
complement each other. This thesis provides a proof-of-concept for methods which are both

internally consistent and falsifiable.
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Appendix A

Entropy

A Feature criteria

(1)  sonorant

[+sonorant] is determined by air pressure: if air flows freely, such that pressure is equalised,
a segment is [+sonorant]. If a constriction results in a pressure differential, that segment is
[-sonorant]. Vowels, glides, liquids and nasals are [+sonorant], whilst plosives, fricatives, af-
fricates, implosives, and clicks are [-sonorant]. Laryngeals (i.e. [h], [f], [?]) are controversial;
Gussenhoven and Jacobs (2005) and Hayes (2008) classify them as [-son], since there is a pres-
sure differential. By contrast, Odden (2005) classifies them as [ +son], since spontaneous voicing
is precluded on different physical grounds from other [-son] segments, i.e. that the constriction
is above the glottis (c.f. Stevens and Keyser, 1989). I shall follow Stevens and Keyser (1989), and
treat laryngeals as [-son].

Under this definition, [ +sonorant] is not language dependent, despite the behaviour of, for

example, the French uvular fricative as a sonorant.
(2)  consonantal

[-consonantal] is defined as having “greater acoustic energy” than [+consonantal] (Hayes, 2008);
this includes vowels and glides, but not liquids, nasals and obstruents. Laryngeals are also [-
consonantal], as they have no superlaryngeal constriction. [fconsonantal] is not language de-

pendent; the criteria are the same as those used to decide on a transcription.
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(3) continuant

Sounds involving a full closure in the oral cavity, such that airflow is blocked, are [-continuant].
Plosives, nasals, affricates, implosives, clicks are [-continuant]. Vowels, approximants and fricat-
ives (including [h]) are [+continuant]. Lateral vary, having a central blockage but lateral airflow.
Likewise, taps and trills have only a brief closure, and are variably classified. For a full discussion

of the issues with [continuant] as a feature, see Mielke (2005).

(4) voice

[+voice] sounds are as having vibration of the vocal folds. As with all features, this is specified
categorically as a segment property; I am not including phrase-final devoicing or other gradient
effects. As an alternative input to the cross-entropy process, it would be possible to record or
sample vocal fold vibration and thereby use a continuous or discrete account of the physical
effect, without phonological abstraction.

All three sources use this articulatory definition, but then transcribe English with [b, d, g],
i.e. symbols specified as [+voice], despite the lack of vocal fold vibration in initial stops in
English. I shall follow the ‘laryngeal realism’ analysis instead (Honeybone, 2005), and assign

[+voice] only if there is an active voicing contrast for a segment series in a given language.

(5) constricted glottis

[+constricted glottis] sounds are produced with tension in the vocal folds, constricting them.

These include glottalised (including ejective), laryngealised or implosive sounds.

(6)  spread glottis

[+spread glottis] sounds are articulated with spread vocal folds, resulting in audible frication

noise. Examples include aspirated obstruents and breathy sonorants, as well as [h, f].

(7)  coronal
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Coronal sounds are articulated with tip or blade. Includes dental, alveolar, alveo-palatal, palato-

alveolar, palatal, and retroflex.

(8)  anterior

[+anterior] sounds are articulated in front of or at the alveolar ridge. This features is only applic-
able to coronals. Gussenhoven and Jacobs (2013) have anterior as a subnode of coronal; Odden

(2005) and Hayes (2008) also extend it to labials, but this does not give any additional contrasts.

(9) distributed

[tdistributed] is a subfeature of [+coronal]: sounds articulated with the tip of the tongue are
[-dist], those with the blade are [+dist]. Dentals and interdentals are [+dist] because the blade
contributes. However, this contrast is redundant, given that English - the language with the

relevant contrast - also contrasts interdental and apical fricatives using stridency.

(10)  strident

Stridency is a relative property, with [+strident] segments having more turbulance than their

[-strident] counterparts.

(n) lateral

[tlateral] is determined by whether air escapes the oral cavity laterally. It is only specified

where it is contrastive so most sounds are underspecified.

(12)  mnasal

[tnasal] is determined by whether the velum is raised or lowered, and therefore whether there

is airflow through the nasal cavity.

(13) labial

[+labial] sounds are articulated with the lips.
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(14) round

There are no contrasts between [+round] and [-round] labial segments in the languages in my

sample, so [£round] is unspecified for all segments.
(15)  back

Asin Section Subsection 4.8.4, Iam following Odden (2005) and Gussenhoven and Jacobs (2005)
in only including a single parameter [back], rather than both [front] and [back].

This feature applies to vowels and to consonants articulated with the tongue body, i.e. velars,
uvulars and pharyngeals, as [high] and [low] do.

[+back] is defined as the bunch of the tongue being relatively back. Back and central vowels

are both [+back], as are non-fronted velars and uvulars.

(16)  high

(17) low

[f£high] and [£low] are relative properties, based on contrasts between vowels. According to
Kostakis (2017), a mid-vowel may be specified as neither high nor low (the traditional repres-
entation), or as simultaneously high and low. The choice of representation for a given language
depends, as expected, on evidence from synchronic and diachronic processes which refer to

these features. In the absence of such evidence for some of the languages in this sample, I have

used the traditional specification for all languages, for consistency.
(18)  tense

In complementary distribution with [ATR] as a feature (i.e. no language has both); labelled

tense here as the languages under examination are Indo-European.

A.2 Redundant natural class descriptions

(1)  Spanish
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The feature set is at Table A.1.

All glides are high, so [-lateral, -consonantal] or [-lateral, +high].

All rounded vowels are back. Rhotics are [+sonorant], [+consonantal] or [+anterior] with
[-lateral]; labial consonants are [-sonorant], [+consonantal] or [-continuant] with [+labial]; [1,
r] are [-continuant] and [-nasal] with [+sonorant]; and non-labial stops are [-sonorant], [+con-

sonant], [-continuant] with [-labial].

(2)  Greek

The feature set is at Table A.6.
All rounded vowels are back. Labial stops are [-sonorant], [+consonantal] or [-continuant]

with [+labial]; and non-labial stops are [-sonorant], [+consonant], [-continuant] with [-labial].

(3) French

The feature set is at Table A.4.

Labial stops are [-sonorant], [+consonantal] or [-continuant] with [+labial]; non-labial stops
are [-sonorant], [+consonant], [-continuant] with [-labial]; nasal stops are [+consonantal] or
[-continuant] with [+nasal]; nasal vowels are [-consonant] or [-high] with [+nasal]; dental fric-
atives are [-sonorant] or [+continuant] with [+anterior]; fricatives are [-sonorant] or [+continu-

ant] with [-anterior]; and [1, b, d, g] are [+consonant] or [-continuant] or [+voice] with [-nasal].

(4) Portuguese

The feature set is at Table A.7.

There are no low front vowels, low rounded vowels or low nasal vowels; [-back] vowels
which are [-high] are also [-low], as are [+nasal] vowels and [+labial] vowels. [+tense] vow-
els which are [+back] are [+labial]. Obstruents [-sonorant] are all [-continuant] and [-nasal].
Labial stops are [-sonorant], [+consonantal] or [-continuant] with [+labial]; non-labial stops
are [-sonorant], [+consonant], [-continuant] with [-labial]. Nasal stops are [+consonantal] or
[-continuant] with [ +nasal]; oral stops are [+consonantal] or [-continuant] with [-nasal]. Voice-

less stops are [-continuant] or [-nasal] with [-voice]. Coronal stops are [-labial] or [-nasal] with
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[+coronal]. There is only a rounding contrast in the back vowels; [ +labial] sounds which are [-
consonant] are also [+back], as are [-labial ] sounds which are [-consonant]. [4, r] form the class

of continuants which are specified for nasality [-nasal], and also for sonorancy [-sonorant].

(5) German

The feature set is at Table A.5.

There are no low front vowels or low rounded vowels; [-back] vowels which are [-high] are
[-low], as are [+]labial] vowels. All labial sonorants are vocalic; [+]labial] sounds which are [+son-
orant] are [-consonantal]. All labial consonants are non-coronal. Oral stops can be character-
ised by any two of [-sonorant], [-continuant] and [-nasal], since fricatives are not specified for

nasality. All aspirated consonants are non-nasal stops.

(6) Dutch

The feature set is at Table A.2.

The inventory contains the following redundancies: There are no low front vowels or low
rounded vowels; [-back] vowels which are [-high] are [-low], as are [+]labial] vowels. All labial
consonants are non-coronal. All voiceless sounds specified as non-nasals are stops, and vice-
versa. All labial sonorants are vocalic. Oral stops can be characterised by any two of [-sonorant],
[-continuant] and [-nasal], since fricatives are not specified for nasality. Likewise, voiced oral

stops can be characterised by [ +voice] and either of [-nasal] and [-continuant].

(7)  English

The feature set is at Table A.3.

If [+high], [+back] <= [+labial], and [-back] <= [-labial]. All rounded sonorants
are back vowels. All labials are non-coronal. All coronals are non-labial. Fricatives are the only
obstruents specified for anteriority Liquids are can be specified as sonorants which are [-nasal]
or [+consonant], since nasals are not specified for sonorancy and vowels are not specified for
nasality. Nasals are the only stops specified for anteriority. Oral stops can be specified by any

two of [-sonorant],[-continuant] and [-nasal].
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A.3 Feature sets

TABLE A.1: Minimally-specified binary features - Spanish
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TABLE A.2: Minimally-specified binary features - Dutch

u:
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TABLE A.3: Minimally-specified binary features - English
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TABLE A.4: Minimally-specified binary features - French

W
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TABLE A.5: Minimally-specified binary features - German

v
"

i
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TABLE A.6: Minimally-specified binary features - Greek
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TABLE A.7: Minimally-specified binary features - Portuguese

W

+
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A.4 Element sets

TaBLE A.8: Elements - Spanish

Segment [A| [Al [ (1] U] U H [H [t [L 2| [2] Vowel

- - + + - - - - - - - - -

1

+

+
1
1
1

- - - - + - - - - + - -
+ - -

- - + o+ - - - - - - + - -
+ - - - - - - - - - + - -
- - - - + + - - + - + - -
- - + o+ + - - - + - + - -
- - - - + + - - + + + - -
- - - - + - - - + + - -
- - - - - - - + - + - -

- - - - - - - + + + - -

A B R OB B ) AT N p oh X DB — s S
\
\
\
\
1
1
.
\
.

C o »®» o =
+ 4+ + 0o
[ I B
+ v+
[ I B
[
[ I B
[ I B
[ I B
[ I B
[ I B
[ I
[ I B
+ + + + +
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A.4. Element sets

TaBLE A.9: Elements - Dutch

Long

AL 1o b = H=p L Lo 2 2] Vowel

Al

Segment

N RN XN NN O xS XN X XN

] 1 1 1 1 I 1 I 1 ] 1 ] 1 1 1 1 1 1 ] 1
' 1 1 1 1 1 1 1 1 | 1 | 1 1 1 1 I 1 I 1
| 1 1 1 1 | 1 | 1 | 1 | 1 1 1 1 | 1 | 1
| | 1 1 1 I 1 | 1 | 1 ' 1 1 1 1 1 1 I 1
] 1 1 1 1 1 1 ] 1 ] 1 1 1 1 1 1 1 1 ] 1
| 1 1 1 1 I 1 | 1 | 1 | 1 1 1 1 I 1 | 1
| + 1 1 1 I 1 | 1 | 1 | 1 1 1 1 I 1 | 1
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TABLE A.10: Elements - English

Long

7SVt (R 1V R 1G1 1 () = R G 1 ¥ R S I PO (S

Al

Segment

1 1 1

[ 1 1
+ + +

1 1 1

1 1 1

| 1 +

1 1 +

1 1 1
+ 1 |

! + +

! + +

1 1 1

1 1 1

Spl=!

o ——

N XX XXXXNXNYH X XXX

1 1 1 1 1 | 1 | 1 1 1 1 1 1 1 1
T T T T T T S T S B S
T T T T T T S T T T B
T T T T T T S T S B S
1 1 1 1 1 | 1 | 1 1 1 1 1 1 1 1
T T T T T T S S T S S B
T T T T T T S S T S SR SR
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TABLE A.11: Elements - French

Al 1ououl Hp =) L Lo 2] 2] Vowel

Al

Segment

o+ o+ +
+ + + !
+ 4+ o+

[ 1 1 1
+ 1 1 1

1 —+ 1 1

| =+ | =+
+ ] 1 ]
+ ] 1 ]

1 1 1 1

1 1 -+ 1
MO T X

[=>]
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TABLE A.a2: Elements - German

Long

Al Ul M=) L L] 2] [2] Vowel

Al

Segment

1 1 1 1
1 I 1 |
+ 4+ + +

1 1 1 1
1 1 [ 1
1 1 [ 1
1 + + 1

Q.+ T X4

N RN 2O 3N XN O XN X XN X X

1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | | 1 1 1 | |
T T S T T T T S S S SR SR SR S
T T T O T T T T T S S SO SR SR S R
T T T S T T T T T S S S SR SR SR S
1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | | 1 1 1 | |
T T T S S S T T T T S S SO SR SR SR S
T T T S S O T T T T S S S Y R SR S
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TABLE Aa3: Elements - Greek

Segment |A] [Al I I Ul U] [H] [H [t} [L[ 2] [2] Vowel
a + - - - - - - - - - - - +

e + - + - - - - - - - - -

—

1

1
+

1

1

1

1

1

1

1

1

1

1
1
1
1
+ o+ o+ o+
1
1
1
1
1
1
1

|
|
|
|
+
]
1
]
|

|
|
|
1
1
|
+
+
+ + + o+ o+ o+ o+ o+
|
1

1
1
1
+
+

] 1
=+ 1
=+ 1
1 1
] 1
1 1

|
|
1
|
1
+ + + + o+ 4+ o+ o+
|
1
1
1
|
1

+
1
+
1
1
1
1
1
1
1
1
1
1

" —ed M N ® @< @ XA+ oT S 8 S e 0
1
1
1
1

+
|
|
1
1
1
1
1
|
I
1
1
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TABLE A.14: Elements - Portuguese

AT 1o b = H=p L L 2 2] Vowel

Al

Segment

r— o M —
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A.5 Training and test texts

A.51 English - Mark1

Holy Bible, New International Version® Anglicized, NIV* Copyright © 1979, 1984, 2011 by Biblica,
Inc.® Used by permission. All rights reserved worldwide. Transliteration to IPA based on CELEX
(Baayen, Piepenbrock and Rijn, 1993).

da bigmi av da god njuz sbaovt dzi:zes da misare o san av god @z 1t 1z 1tn m arzare do
paofit a1 wil send mar mesimdzoe ohed av ju: hu: wil papea jor wer a vors v wan kol m do
wildenes parpea ds wer fa do lo:d meik strert pa:dz fo: him send sov dzon ds baeptist aprad m
da wildenis pai:ffin o baeptizom av 1pentons fa da fogrvnis av sz de hovl dzjurdizen kantisard
on 221 3 pizpl av dzoruselom went aot to him konfesm dea smz der wa: baeptarzd bar hrm m
da dzo:don 1ve dzpn wo: klovdm merd av kaemlz hes wid o leda belt araond hiz werst znd hi:
et lovkasts @&nd waild hani &end d1s wez hiz mesidz a:fte mi: kamz 8 wan mo: pavefol don a1
d9 stxaeps av hu:z seendlz ar 2em not w3:dr ta sturp daovn send antar a1 baeptaiz ju: wid wo:te bat
hi: wil baeptarz ju: wid da haoli spit ot dzet taim dzi:zas kerm fiom naezaerab m geelsli: an waz
baeptarzd bar dzon m da dzo:den dzast oz dzi:zes woz kamm ap avt av da wo:ta hi: so: hevn iz
tomn aupen an da spuut disendim pn him latk o devv &end s vois kerm fiom hevn ju: a: mar san
hu:m a1 lav wid ju: ar em wel plizzd ot wans da spuut sent him ast mto 8o wildonis eend hi: woz in
da wildenis fo:tr derz bizm temptid bar serton hi: woz wid 3o waild 2enimlz znd emdzolz otendid
him a:fte d3pn waz pot m paizn dzi:zes went mts geelsli: proklermm da god nju:z av gnd da tarm
haez kam hi: sed 3 kmydam av god haez kam nie mipent send bilizv 3s god nju:z sz dzi:zas workt
bisard da si: av geelsli: hi: so: sarman an hiz biads sendiu: kazstiy o net mto do letk fo der wa:
fifomoan kam folov mi: dzi:zes sed aend a1 wil send ju: aot to fif for pizpl @t wans der left deo nets
on folood him wen hi: haed gon » Iit] fa:ds hi: so: dzemmz san av zebadi: &end hiz biads dzpn m
a baut papearm deo nets widaot diler hi: ko:ld dom aen Jder left deo fa:do zebadi: m da bavt wid
da harad men on folood him der went to kopa:miom an wen do saebab kerm dzi:zos went mto do
smagog en bigeen to ti:ff do pirpl wa: omerzd eet hiz ti:ffiy bikoz hi: to:t dem aez wan hu: heed
2:0p10tr not 97 d0 tixffoz av da lor dzast den @ maen m deo smagpg hu: woz pazest bar an Impjuve
spuut krard ast wot du: ju: wont wid as dzi:zas av naezeerad haev ju: kam to distior as a1 neo hu:

ju: az 3a haolt wan av god bi: kwarat sed dzi:zas stamli kam ast av him di: impjos sput fok 9
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meen varalontlr an kerm avt av him wid o [1itk da pi:p] ws: ol sov amerzd daet der a:skt i:ff ada
wot 1z d1s 3 nju: ti:ffiy) &end wid o:0pietr hi: itvn grvz 0:dez tu: impjoe spuirts an der aber him njuiz
obaut him sp1ed kwikli svve da haol 1i:dzen av geelsli: oz suin @z der left da smagpg der went
wid dzermz on dzpn to ds hovm av sarman @nd @ndiu: satmenz madam lo: woz m bed wid o
fizve 2nd der imizdjatlr tovld dzi:zas sbaot ha: sav hi: went to ha: tok ha: haend @nd helpt hs: ap
da fizva left ha: @nd [i: bigaen to wert pn dem dzet izvnm a:fts sanset da pizpl biozt to dziizas o1l
da sik an dirmanpazest ds hovl tavn gaedad et do do: @nd d3zi:zes hi:ld ment hu: haed vearos
dizi:z1z hi: 5:lsau diovv ast menr dizmanz bat hi: wod not let do ditmanz spik bikoz der nju:
hu: hi: woz vex 3:l1 in do momm wail 1t woz stil da:k dzi:zes got ap left da haoz went of tu: o
solrtaxr plers wea hi: pierd saimon an hiz kompeenjonz went to lok fo him aen wen der fasnd him
der tksklermd evirwan 1z lokm fo: juz dziizes xiplad let as gov samwes els to da niobar vilidziz
sou ar keen pai:ff dea o:lsov deet 1z war ar haev kam sao hi: treevld Oruzaot gaeloli: pai:ffiy m deo
smagogz en diarviy aot dimmanz 9 meaen wid lepiast kerm to him send begd him on hiz ni:z if ju:
a: wilim ju: keen merk mi: klizn dzi:zes woz mdignent hi: 1i:fft aot hiz haend snd tafft 99 maen ar
am wilm hi: sed bi: klim mi:djetlr 8o lepiost left him and hi: wez klenzd d3i:zes sent him swer
at wans wid o stipy) worniy si: dat ju: devnt tel dis to entwan bat goo [ou jorself ta da paiist eend
pfo do sekufaisiz deet moavziz koamaindid fo: jo: klenziy ez o testimoni tu: dem msted hi: went
aot end brgeen tu: tozk frizl spredin do nju:z @z o nzalt dzi:zes kod nev Ipnge enta o tavn aupnlr

bat stexd avtsaid m lsonlr plersiz jet da pizpl stil kerm to him from evirwes

A.5.2 Dutch-Mark1

Het Boek Copyright © 1979, 1988, 2007 by Biblica, Inc.” Transliteration to IPA based on CELEX
(Baayen, Piepenbrock and Rijn, 1993).

Reproduction prohibited under copyright.

A.5.3 French-Marki

La Bible Du Semeur (The Bible of the Sower) Copyright © 1992, 1999 by Biblica, Inc.” Transliter-
ation to IPA based on Lexique3 (New, Pallier et al., 2001).

Reproduction prohibited under copyright.
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A.5.4 German -Mark1

Bibeltext der Schlacter Copyright © 2000 Genfer Bibelgesellschaft. Transliteration to IPA based
on CELEX (Baayen, Piepenbrock and Rijn, 1993).

anfan des exvange:lizoms fon jezos kaistos de:m zo:n gotoes vi: gaftirban fte:t in dem pio:fe:ton
ese:d Ix zenda mainan bo:tan fo:r dainem angazict he:x de:r dainen ve:k fo:x dizx baaiton viat di:
Jtima ainas ru:fode:n extent m de:r vy:sta bazaitat demn vetk des hekn maxt zaine pfa:ds erbon
zo: bagan johanas m de:x vy:sta taufte ont fexkyndixte aina taufs de:x bysa fsu:x fexge:bon derx
zyndon ont €s giy fSu: iim hinaus das gantss lant judea ont di: bavoinai fon jerruizalem ont €s
vyadan fon irm ale 1m joxdan gatauft di: izre zyndan bakanten johanas a:bax va:x baklaidet mit
kame:lha:ron ont truzk ainen lerdainen gyst] om zains lendon ont e:r a:s hoyfiekan ont vildon
ho:nix ont e fetkyndixts ont [pia:x es komt ainax na:x mi:x de:x [tarkax 1st als x ont 1x bin nixt
vyadix i:m gabykt zainan furrizman f8u: lo:zen 1x ha:ba oyx mit vasax gatauft erx azbax viat oyx mit
hailigam gaist taufon ont es gafa: i jemoen ta:gan das jezos fon na:fsaxet n galileja karm vnt zix
fon johanes im joxdan taufon li:s vnt zo:glaix als e:x aus de:m vasau itk za: exx demn himal fsexison
ont dem gaist vi: aino taubs aufi:n herapftaigon ont aina [timoe exte:nts aus derm himal du: bist
main goli:ptax zo:n an de:m 1x vo:lgefalon ha:bs vnt zo:glaix traipt i:n de:x gaist m di: vy:sto
hinaus ont e:x va:1 fistsi¢ tazgo doit m de:x vy:sto ont vyads fon de:m za:tan ferzuixt ont e vax
bai de:n vilden tizton ont di: enal dirnten i:m na:xde:m a:bax johanas gafanan gonoman voidan
vaur karm jezos naix galileja ont feikyndixto das e:vange:lizom fom 1aix gotes ont [pra:x di: f3ait
1st exfylt ont das 1aix gotas 1st naze tu:t byse ont glaupt an das e:vayge:lizom als e:x atbox am ze:
fon galileja entlangm za: e:x sizmon ont deson bxu:dax andue:as di: vaifon das nefs aus im ze: den
zi: veuran fifox ont jezos [pia:x tSu: inan folkt mix naix ont x vil oyx fsu: menfonfiforn maxen da:
feilizson zi: zo:glaix itre nefsa vnt fHlkton irm narx ont als ex fon doit ain vernix vaiteigiy za: erx
jako:bus de:n zo:n des fsebedejus vnt zainen biu:dai johanas di: aux mm [if verron ont di: nefsa
flikton ont zo:glaix baui:f ex zi: ont zi: lizson irren fertax fsebedejus zamt de:n ta:galemain mm
Jif ont folkton irm na:x ont zi: baga:ban zix na:x karpainom ont e giy am zabat zo:glaix n di:
zynago:go ont leurta ont zi: exftaunton y:be zains lerro den e leuts zi: vi: ainax deur folmaxt hat
ont nixt vi di: [1rftgalerrton ont es vaur i ixro1 zynago:gs ain men| mit ainem vniainen gaist de:x
Jaiz ont [pia:x las ap vas ha:ban vir mit dix f8u: tuin jezos du: natsaie:nax bist du: gokomen om

ons f8u: fexdeiban 1x vais ve:r du: bist de:x hailiga gotes a:bai jezos bafa:l itm ont [pia:x fexftoma
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ont fa:ra aus fon izm da: f8exto im de:x vniains gaist hm vnt he:x [1i: mit lautex ftrma ont fux fon
irm aus ont zi: exftaunton als zo:das zi: zix vntorainandar fra:kton ont [piexan vas 1st das vas
fyx aina noye leus 1st dirs mit folmaxt gabi:tat err aux dein vniainan gaistoin ont zi: gohoixan
irm ont das gosyct fon i:m ferbiaitate zix zo:glaix m das ganfse vmlizganda goebi:t fon galileja ont
zo:glaix feilizson zi: di: zynago:go ont giyen mit jako:bos ont johanas in das haus des sitzmon ont
andie:as sizmons [virgermotax a:bax latk kragk am firbax dani:ds ont zo:glaix za:kton zi: irm fon
izx ont e trart hifsu: exguf itxe hant ont xxtats zi: auf ont das firbar feilizs zi: zo:glaix vnt zi:
di:nta irnan als €s a:bax azbant gevoidan ont di: zons vntaigaganen vax biextan zi: als kragken
ont bazesanan fSu: irm ont di: ganfss [tat vau four deur tyx fexizamslt ont e:x hailte fitle dir an
manxoilai kragkhaiten liton ont tri:p fislo demo:nen aus vnt lits di: demo:men nixt 1e:don den zi:
kanton irn ont am moigan als es nox ze:x donkal vau [tant e auf giy hiaus an ainan ainza:man
a1t ont be:tata doit ont es folkton irm sitmon ont di: velxa bai iim veuan ont als zi: iin gafondan
heton [pieixon zi: fSu: iim je:darman zu:xt dix ont e [paixt f8u: itnan last ons m di: smlizgandan
a1ta geron dammit 1x aux doit fertkyndige den da:fsu: bin ix goekomon ont ex fetkyndixts 1 itren
zynago:gan in ganfs galileja ont tri:p di: demo:nen aus ont €s kaim ain avszetsigax fsu: iim ba:t
im fizl forr imm auf di: kni: ont [pia:x tSu: i:m ven du: vilst kanst du: mix 1ainigen da: extbaimts zix
jezos y:be imn [tiekta di: hant aus 1y1ts imn an ont [pia:x fsu: itm 1x vil zai garainixt ont verront e
1e:data vix detx auszafs zo:glaix fon itm ont e:x vyids 1ain ont e exma:nta irn exnstlix ont fikts
im zo:glaix foxt ont [pra:x fSu: iim ha:p axt za:gs niimant etvas zondain ge: hin fsaige dix dexm
piiistax ont opfare fyx daine 1ainigor vas mo:sa bafo:lan hat i:nan tsom fSoyknis e:x azbax gim ont
fiy an es filfax tSu: fexkyndigan ont biaitate di: zaxa ybaial aus zo:das jezos nixt me:x cefontlix
in aina Jtat hi:nainge:an keents zondaun e:x va:x drausen an ainza:man oxten ont zi: kexmoan fon

alon zaiton fsu: iim

A.5.5 Greek-Mark1

Today’s Greek Version (Society) and Het Nederlands Bijbelgenootschap, 1996). Transliteration
to IPA based on GreekLex (Ktori, Heuven and Pitchford, 2008).

aiti eine i arxi tu xarmosinu minimatos yia ton iisoi xristo ton iio tu eoi sta vivlia ton profiton
eine yrammeno stelno ton ayyelioforo mu prin apo sena yia na proetimasi to dromo su mia foni

vrodofonazi stin erimo etimaste to dromo yia ton kirio isioste ta monopatia na perasi simfona
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m afta parusiastike o ioannis o opoios vaftize stin erimo ke kiritte na metanoisun i anéropi ke na
vaftistoin yia na siyxorifoin i amarties tus piyenan s afton oli i katiki tis iudaias ki i ierosolimites
ki olus tus vaftize ston potamo iordani kabos omoloyoisan tis amarties tuso ioannis foroise roixo
apo trixes kamilas ke dermatini zoni sti mesi tu etroye akrides ke meli apo ayriomelisses sto
kiriyma tu tonize erxete istera apo mena aftos pu eine pio isxiros ke pu eyo den eime aksios
na skipso ke na liso to luri apo ta ipodimata tu eyo sas vaftisa me nero ekeinos omos fa sas
vaftisi me ayio pneima ekeines tis meres irfe o iisois apo ti nazaret tis galilaias ke vaftistike ston
iordani apo ton ioanniki amesos eno evyene apo to nero eide n anoiyun i uranoi ke to pneima
san peristeri na katevaini pano tu tote mia foni akoistike apo ta urania esi eise o ayapimenos
mu iios esi eise o eklektos mu amesos to pneima odiyei ton iisoi ekso stin erimo ekei stin erimo
emine sarada meres ki adimetopise tus pirasmois tu satana zoise mazi me ta iria ke ayyeli ton
ipiretoisan meta ti sillipsi tu ioanni o iisois irfe sti galilaia ke kiritte to xarmosino minima yia
ti vasileia tu Oeoi siblirofike eleye o kaBorismenos keros ki eftase i vasileia tu feoi metanoeite
ke pisteiete sto xarmosino afto minima kabos o iisois perpatoise stin ox®i tis limnis tis galilaias
eide to simona ke ton andrea aderfo tu simona na rixnun ta dixtia sti limni yiati itan psarades
akoludiste me tus eipe o iisois ke 6a sas kano psarades anfropon ekeini amesos afisan ta dixtia
ke ton akoloibisan afoi proxorise liyo pio pera o iisois eide ton iakovo yio tu zevedaiu ke ton
aderfo tu ton ioanni na taktopioin ki aftoi ta dixtia mesa sto psarokaiko ke tus kalese amesos aitoi
afisan tote ton patera tus to zevedaio sto psarokaiko me tus misfotois ke ton akoloifisan erxode
stin kapernaoim ki amesos to savvato o iisois bike sti sinayoyi ke didaske oi anfropi emenan
kataplikti apo ti didaskalia tu yiati tus didaske me affedia ki oxi opos didaskan i yrammateis
ekei sti sinayoyi tus itan kapios pu katexotan apo demoniko pneima aitos kraiyase leyodase ti
dulia exis esi m emas iisoi nazarine irfes na mas afanisis se ksero pios eise eise o eklektos tu feoi
o iisois epitimise to demoniko pneima ke tu eipe papse na milas ke vyes ap afton to demoniko
pneima afoi sidarakse ton anéropo ke fonakse me dinati foni vyike ap aftonoli tote kirieitikan apo
deos ke sizitoisan metaksi tus ti simainun ola afta pia eine i kenoiria afti didaskalia me affedia
diatazi akomi ke ta demonika pneimata ke ton ipakoine ki amesos kikloforise i fimi tu padoi s
oli tin perioxi tis galilaias molis vyikan apo ti sinayoyi irfan sto spiti tu simona ke tu andrea me
ton iakovo ke ton ioanniamesos lene ston iisoi yia tin pefera tu simona pu itan sto krevati me

pireto o iisois tin plisiase tin epiase apo to xeri ke ti sikose o piretos tote tin afise amesos ki afti
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tus ipiretoise kata to dilino otan edise o ilios toi eferan olus tus arrostus ke tus demonismenus
ki oli i katiki tis polis eixan mazeftei brosta stin porta o iisois ferapefse pollois pu ipeferan apo
diafores arrosties ki evyale polla demonia den ta afine omos na miloin yiati ton anaynorizan oti
eine o messias to proi poli prin akoma feksi o iisois vyike ekso ke piye s ena erimiko meros ki
ekei prosefxotanton anazitisan omos o simon ki i sidrofoi tu ton vrikan ke tu lene oli se zitoin
ekeinos tus lei pame sta yitonika xoria yia na kirikso ki ekei afti eine i apostoli mu kiritte lipon
stis sinayoyes tus s oli ti galilaia ki evyaze ta demonia erxete ston iisoi enas lepros ke pesmenos
sta yonata ton parakaloise leyodas ean felis exis ti dinami na me kafarisis apo ti lepra o iisois
ton splaxnistike aplose to xeri tu ton ayyikse ke tu eipe @elo na kaaristeis apo ti lepra molis ta
eipe afta amesos efiye ap afton i lepra ke kafaristike ke sinodeiodas ton ekso o iisois tu milise
se tono afstiro ke tu eipe prosekse min pis tipota se kanenan piyene omos na deiksis ton eafto
su ston ierea ke prosfere yia ton kabarismo su oti exi kaforisi o moisis yia na tus apodeiksis oti
ferapeitikes aitos omos vyike ki arxise na dialalei ta pada ke na diadidi to yeyonos etsi pu o iisois
den boroise pia na bi fanera se kapia poli alla emene ekso se erimika meri ostoso erxotan s afton

o0 kosmos apo padoi

A.5.6 Portuguese - Mark1

Biblia Sagrada, Nova Versdo Internacional®, NVI* Copyright © 1993, 2000 by Biblica, Inc.” Trans-
literation to IPA based on Porlex (Gomes and Castro, 2003).

Reproduction prohibited under copyright.

A.5.7 Spanish - Mark1

Version Reina Valera Actualizada, Copyright © 2015 by Editorial Mundo Hispano. Translitera-
tion to IPA based on EsPal (Duchon et al., 2013).

el prinfipjo del ebanxeljo de xesukristo el ixo de djos komo esta eskrito en el profeta isaias
e aki embio mi mensaxero delante de ti kjen preparara tu kamino bo6 del ke proklama en el
desjerto preparen el kamino del sepor endereben sus sendas asi xwan el bautista aparefjo en el
desjerto predikando el bautizmo del arepentimjento para perdon de pekados i salia a el toda la
probindja de xuea i todos los de xerusalen i eran bautiados por el en el rio xordan komfesando

sus pekados xwan estaba bestido de pelo de kame£o i kon un finto de kwero a la fintura i komia
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langostas i mjel silbestre i predikaba difjendo bjene tras de mi el ke es mas poderoso ke jo a
kjen no soi digno de desatar agaffado la korea de su kalfado jo les e bautifado en agwa pero el
les bautifara en el espiritu santo akontefjo en akeAos dias ke xesus bino de nafared de galilea
i fwe bautiado por xwan en el xordan i en segida mjentras subia del agwa bjo ke los fjelos se
abrian i ke el espiritu desbendia sobre el komo paloma i bino una bo@ dezde el fjelo tu eres
mi ixo amado en ti tengo komplaBen®ja en segida el espiritu lo impulso al desjerto i estubo
en el desjerto kwarenta dias sjendo tentado por satanas estaba kon las fjeras i los anxeles le
serbian despwes ke xwan fwe enkarfelado xesus se fwe a galilea predikando el ebanxeljo de
djos i dibjendo el tjempo se a kumplido i el reino de djos se a aBerkado arepjentanse i krean en
el ebanxeljo i pasando xunto al mar de galilea bjo a simon i a andres ermano de simon effando la
red en el mar porke eran peskadores xesus les dixo bengan en pos de mi i los are peskadores de
ombres i de immedjato dexaron sus redes i lo sigjeron al ir un poko mas adelante bjo a xakobo
ixo de Bebedeo i a su ermano xwan e£os estaban en su barka areglando las redes en segida los
Kamo i efos dexando a su padre febedeo en la barka xunto kon los xornaleros se fweron en
pos de el entraron en kapernaum i en segida entrando el en la sinagoga los sabados ensepaba
i se asombraran de su ensenanfa porke les ensepaba komo kjen tjene autoridad i no komo los
eskribas i en ese momento un ombre kon espiritu immundo estaba en la sinagoga de e£os i
esklamo difjendo ke tjenes kon nosotros xesus de nabared as benido para destrwirnos jo se kjen
eres el santo de djos xesus le reprendjo difjendo kakate i sal de el i el espiritu immundo lo sakudjo
kon bjolenfja klao a gran bo€ i saljo de el todos se marabifaon de modo ke diskutian entre si
difjendo ke es esto una nweba doktrina kon autoridad aun a los espiritus immundos el manda i
lo obedefen i pronto se estendjo su fama por todas partes en toda la rexjon alcededor de galilea
en segida kwando saljeron de la sinagoga fweron kon xakobo i xwan a la kasa de simon i andres
la swegra de simon estaba en kama kon fjebre i de immedjato le ablaron de ea el se aberko a ea
la tomo de la mano i la lebanto i le dexo la fjebre i e a komenbo a serbirles al atardefer kwando
se puso el sol le traian todos los emfermos i los endemonjados toda la 6judad estaba reunida a la
pwerta i el sano a muffos ke padefian de dibersas emfermedades i effo fwera muffos demonjos
i no permitia a los demonjos ablar porke lo konofian abjendose lebantado mui de madrugada
todabia de noffe xesus saljo i se fwe a un lugar desjerto i afi oraba simon i sus kompaneros

fweron en buska de el lo enkontraron i le dixeron todos te buskan el les respondjo bamos a
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otra parte a los pweblos befinos para ke predike tambjen afi porke para esto e benido i fwe
predikando en las sinagogas de e£os en toda galilea i effando fwera los demonjos i bino a el un
leproso implorandole i de rodi£as le dixo si kjeres pwedes limpjarme xesus mobido a kompasjon
estendjo la mano lo toko i le dixo kjero se limpjo i al instante desaparefjo la lepra de el i kedo
limpjo en segida lo despidjo despwes de amoestarlo i le dixo mira no digas nada a nadje mas
bjen be mwestrate al saberdote i ofrebe lo ke mando moises en kwanto a tu purifikabjon para
testimonjo a e£os pero kwando saljo el komenfo a proklamar i a difundir mufJo el effo de modo
ke xesus ja no podia entrar abjertamente en ninguna 6judad sino ke se kedaba afwera en lugares

depoblados i benian a el de todas partes
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ACCDIST materials

Ba Example sentences used in non-word nativisation

B.i1  Sentences used in pilot

English

The __ plates are cheap
Iwanta__ picture frame
Ilike the __ pillow

I've bought a lovely ___light
I preferthe

What do you think of the ___?
Do you like the __?

How about the 7

The __is comfy
Doyouwanta__ ?

Ilike the

The ___is pretty

The __ are cheap

Spanish

Los platos __son baratos

Quiero un marco de fotos __

I want another
Ichosethe

Do you have the ___in blue?
Is this___ what you wanted?
Let’s try the

That ___ would look good in my room
Do you have a larger __ ?
Ilike this _ chair

The ___is the right size

Do you have any ___left?
The __ isnice

I prefer thered

Me gusta la almohada __

He comprado una preciosa lampara __

223
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Prefierola

¢Qué opinas del __?
iTe gustael __?
;Qué te parece _?
El _ escomodo
Quieresun __?

Me gustala

La__ esbonita

El _ esbarato

Me gustaria otra __

Escogiel

Japanese

_ M9 Z<LNTY

_EUFY—TL—LRHE D

_ MAFETY

RME_ IAMRHEOTIELL

_DHEPHFETY
FESEOETN?

AR TETN?
_AFEDITETN?
_IFRFEBRWL
~ ELWTE N
_BIFETY
_HENTY

B TELNTY

B.a.2  Sentences used in full study

Appendix B. ACCDIST materials

;Tienenla _ en azul?

;Eseste __lo que queria?
Probamosla

Esa __ se veria bien en mi habitacion
¢;Tienen una __ mas grande?

Me gusta esta __silla.

El _ es de tamafio adecuado

Te quedan alguno __?

La __ esagradable

Prefiero el __ rojo

£ —DD_ MIHEZWND

_REUEY

HOO_BHVETN?
MU= DIEZD_TIM?

_ZillTALD

TO_IZRDOEBREELED
EDLREV__DHVETN?
O RF»HETY

_ DY A ZRBEHE NN

FE_DBHVEITN?

ARG

O OFPEFETT

Each sentence has six syllables preceding and six syllables following the non-word. The parti-

cipants were given sentences in random order, and heard each sentence approximately twice
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over the course of the study.

Spanish

Prefeririaun ___ de madera blanda.

Me gustaria el ___de madera dura.

Este, stienen algin ___ de madera dura?
Estoy buscando un ___ mucho mas barato.
Quiero comprar un ___ mucho mas pequerio.
Este, ;tienen algin __ mucho mas pequefio?
Estoy buscando un __, que es mas pequefio.
Quiero comprar un __ un poco mas alto.
Este, stienen algin ___ un poco mas alto?
Estoy buscando un ___un poco mas corto.
Estoy buscando un ___ un poco més grande.
Quiero comprar un ___un poco mas grande.
Este, jtienen algn ___ un poco mas grande?
Quiero un nuevo ___verde azulado.

No me gusta este __, es demasiado grande.

Greek

[Togo éyet éva __; Auté oty Brrpiva.

Oo 10eAa To uTAe _ Tov elvat oTo pAgL.
Oa 10eAa To yxpL _ Tov elvat aTo pagL.
OanleAa éva _ ae dMo péyebog.

Oa Wdela évor__ Alyo mio pueydo.

KAivew pog To nadpo _, TL A€Te xa 0E;
KAivw pog To dompo ___, Tt AéTe ot 0Elg;
"Exete xaBoAov ___; Mov éxel TEAEIOTEL
Oéhw va ayopdaow . To éyete eaelg;

[T6go xdvel éva 5 O Tapw MePIXA.

No me gusta este ___, no es muy bonito.
Me gustaria el __, pero es muy caro.
Quiero comprar un __, pero es muy caro.

Me gusta mucho el __, y es muy barato.

Me gusta mucho el . ;Y ti qué opinas?
No me gusta este ___. ;Y til qué opinas?
Compraré un nuevo ___. El viejo se rompio.
Prefeririaun . Es minimalista.

He encontrado un __. Es muy agradable.
Me gusta mucho el __. Es muy agradable.
Me gustaria el . Es muy agradable.

He encontrado un __. Sé que quieres otro.

¢Que opinasdela __ ? Es grande y azul.
¢;Que opinas dela __? Es pequeiia y gris.

¢Que opinas dela___ de madera dura?

M’ apéaet oA To . To éyete pnmwg;
'Exete mio ¢Onvd ___; Ae Siabétw téo0.

M’ evdlagépet éva . Mope vo xortdéw;
OéAw L dMo éva . 'Exouv uelvel dia;
Telucd to Ao __ W dpeae o woAd.
'Exete avté to __ ge Mo uéyedog;

"Exete autéd To ___ g€ dMa xpopaTa;
"Exete To puixpd ___ yto va Soxtndow;
AvT6 To padpo ___ gov Ty yalvel ToAD.

Yrdpyet mo Onvé s Mymwg o éxmtway;
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Qpafo avtd to . TrTiu €xey;
Mov ivete éva ___;'AaTpo av LTApXEL.

"Epewvay xabéiov __; Wayvew xat 3¢ Bploxw.

English

I prefer the navy ___to the dark purple one.

I want another blue ___to go with my old one.

I prefer the smaller ___ to the really big one.

I really like the oak __, or maybe the walnut.
Do you have a little ___in dark blue or purple?

I prefer the bigger ___to the really small one.

I prefer the bigger __, over there on the left.

I'd like to buy a new ___, mine is getting too old.
Ireckon a smaller __ would fit in the kitchen.

I prefer the orange ___to the bright yellow one.
Ireckonapurple___wouldlook good in my room.
Ireckon an oval __ would work well in the hall.
Do you think the navy ___suits me at all, or not?
That's a really pretty . Ithink I'll buy one.

I prefer the larger ___to the one you're holding.
I prefer the smaller __, over there on the right.

I really like the red __, do you want to buy one?

Ireckon a narrow ___ would look good in the hall.
I think I prefer the __, which one do you prefer?
Do you have a smaller __? This one is a bit large.
Do you have a larger __? This one is a bit small.
I'm not sure about this __, is there a bigger one?
I'm not sure about this __, is there a yellow one?
Doyouhave alarger __inlight blue or turquoise?
I reckon a turquoise ___ would go with the bath-
room.

I'm not sure about this __, is there a smaller one?

Appendix B. ACCDIST materials

To mponyoduevo _ éatpwve wpaio.

Oa mpoteivate 1o 5 'H punmws xdtt dANo;

There’s a problem with my __, I need to replace
it.

I don't know if a big ___ would look good in my
room.

Ineed asmall one. This___is about the right size.

I really like the silk __, but the cotton’s cheaper.

I reckon a dark blue ___ would match the living
room.

Could you help me find a __? I'd like a chestnut
one.

I don’t know if the big ___ would fit in the bath-
room.

I prefer the dark green ___to the one you're hold-
ing.

I don’t know if a pink ___ would look good in the
hall.

I'm not sure about this __, is there a light blue

one?

It’s quite expensive, but this ___is really beautiful.
Could you help me reach the ___on the shelf over
there?

I don't know if a beige ___ would look good in the
hall.

Could you help me reach the __? It’s on the up-
per shelf.

Ireally like the narrow __, but the wide one’s nice

too.
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I'd quite like a dark red ___, like the one he’s hold-

ing.
Could you pass me a blue ___? There are some on

that shelf.

Ireallylike the yellow ___, but the green one’s nice

too.

German

Hittest du gerne ein ___ oder was anderes?

Wir alle mogen das ___ das angeberisch ist.

Ich habe ein nettes ___das auch so gelb ist.

Ich habe ein schones ___das angeberisch ist.

Ich habe ein tolles ___ das auch so griin ist.

Ich hétte gerne ein ___ das angeberisch ist.

Ich mag das hélzerne ___ das angeberisch ist.
Wir alle mochten ein ___ das angeberisch ist.
Wir alle mogen das ___ das auch so teuer ist.
Also, mogt ihr dieses ___ das angeberisch ist?

Die hat so ein tolles ___ das angeberisch ist.

Er hat ein sehr rotes ___das angeberisch ist.
Hiittest du gerne ein ___ oder eher doch nicht?
Wir alle mégen das ___ mit dem man bauen kann.
Wir haben ein grosses ___ das angeberisch ist.

Er mag am liebsten das ___ das angeberisch ist.
Er mag am liebsten das ___ das eben so rot ist.
Ich habe ein altes _ mit dem man backen kann.
Ichhabe ein neues___mit dem man gucken kann.
Ich hitte gerne ein ___ das auch so teuer ist.

Ich mag das holzerne ___ das auch so teuer ist.
Sie hat ein hellblaues ___ das angeberisch ist.
Wir alle lieben das ___ das auch so billig ist.

Wir alle lieben das _ mit dem man malen kann.
Wir alle wollen ein ___das auch so sauber ist.

Wir alle wollen ein __ mit dem man malen kann.

Could you pass me a square ___? There are some
on that shelf.

I'd quite like a light grey ___, like the one she’s
holding.

Also, mogt ihr dieses ___ das auch so teuer ist?
Ich habe ein nettes ___ das so dhnlich aussieht.
Ich hitte gerne ein ___ das auch so billig ist.

Ich hitte gerne ein ___ mit dem man bauen kann.
Ich hétte gerne ein ___ mit dem man malen kann.

Ich mag das hélzerne ___ das auch so billig ist.

Ich mag das holzerne ___ mit dem man bauen
kann.
Ich mag das holzerne ___ mit dem man malen
kann.

Wir alle lieben das ___ das so dhnlich aussieht.
Wir alle mochten ein ___ das auch so putzig ist.
Wir alle mochten ein _ mit dem man bauen
kann.

Wir alle wollen ein ___ das so dhnlich aussieht.
Wir haben ein grosses ___ das auch so teuer ist.

Also, mogt ihr dieses ___ das auch so billig ist?

Also, mogt ihr dieses ___ mit dem man bauen
kann?
Also, mogt ihr dieses ___ mit dem man malen
kann?

Die hatsoeintolles  mit dem man bauen kann.
Er hat ein sehr pinkes ___ das auch so teuer ist.
Er mag am liebsten das ___ das auch so teuer ist.
Glaubst du du magst so ein ___ oder was anderes?

Ich hitte gerne ein ___ das so dhnlich aussieht.
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Ich mag das hélzerne ___ das so dhnlich aussieht.
Sie hat ein hellrotes ___ das eben so schwer ist.
Wir alle mégen das ___ mit dem man zeichnen
kann.

Wir haben ein grosses ___ das auch so billig ist.

Wir haben ein grosses ___ mit dem man bauen
kann.
Wir haben ein grosses ___ mit dem man malen
kann.

Die hat doch ein tolles ___ das auch so teuer ist.

Er hat ein sehr gelbes ___ das auch so billig ist.

Er hat ein sehr rundes _ mit dem man malen
kann.
Er hat ein sehr weifles _ mit dem man bauen
kann.

Er mag am liebsten das ___ mit dem man bauen
kann.
Er mag am liebsten das ___ mit dem man malen
kann.

Sie hat ein hellblaues ___das auch so leidig ist.

Sie hat ein hellgriines __ mit dem man bauen
kann.
Sie hat ein hellgriines ___ mit dem man malen
kann.

Sie hat ein hellrotes ___ das so dhnlich aussieht.
Wir haben ein grosses ___ das so dhnlich aussieht.
Die hat auch ein tolles __ mit dem man malen
kann.

Die hat doch ein tolles ___das auch so billig ist.

Er hat ein sehr blaues ___ das so dhnlich aussieht.
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Er mag am liebsten das ___ das so dhnlich aus-
sieht.

Ich habe ein schones __ mit dem man zeichnen
kann.

Ich hitte gerne ein ___ mit dem man zeichnen
kann.

Ich mag das hélzerne ___ mit dem man zeichnen
kann.

Wann mochtest du dieses___haben? Morgen um
eins?

Wir alle mochten ein ___ mit dem man zeichnen
kann.

Also, mogt ihr dieses ___ mit dem man zeichnen
kann?

Die hat auch ein tolles ___das so dhnlich aussieht.
Wir haben ein grosses ___ mit dem man zeichnen
kann.

Er hat ein sehr langes ___ mit dem man zeichnen
kann.

Er mag am liebsten das ___ mit dem man
zeichnen kann.

Glaubst du du magst so ein ___ oder eher doch
nicht?

Sie hat ein hellgelbes ___ mit dem man zeichnen
kann.

Die hatdoch ein tolles  mit dem man zeichnen
kann.

Ich wiirde auch gern ein ___ haben. Das war

schon nett..
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TABLE B.1: Speaker IDs from Speech Accent Archive, accent.gmu.edu

Language Sex Id
Dutch m 1
Dutch m 2
Dutch m 3
Dutch f 8
Dutch m 10
Dutch f 39
Dutch m 40
Dutch m 43
English m 13
English f 306
English m 365
English m 368
English m 465
English f 487
English m 496
French f 1
French m 13
French m 21
French m 39
French m 43
French m 46
French f 53
French f 60
Italian m 2
Italian f 4
Italian m 7

Language  Sex Id
Italian m 8
Italian m 1
Italian m 19
Italian m 26
Italian f 29
Korean f

Korean f 3
Korean f 6
Korean m 1
Korean f 16
Korean f 22
Korean m 44
Korean f 46
Polish m 5
Polish m 7
Polish m 8
Polish f 15
Polish m 22
Polish m 23
Polish m 25
Polish m 27
Portuguese f 1
Portuguese m 20
Portuguese f 27
Portuguese m 29
Portuguese f 39
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B.2 Participant data
B.2a1 Speech Accent Archive
B.2.2 ACCDIST participants
TABLE B.2: English speakers
ID Age Sex Placeofbirth Native dialect Other languages
26 M  London London English  French - school
18 F London SSBE French A-level
German - basic
6 23 F Leeds SSBE Italian - intermediate
19 M London London English ~ German C1
French GCSE
8 19 M London London English  French - A level
German - GCSE
Spanish - beginner
9 19 F London English Spanish - beginner
10 33 M  London SSBE French - GCSE
1 29 M  London SSBE French - A level
12 28 F Portsmouth SSBE French - GCSE
13 28 M  Colchester Essex English None
15 25 M  Winchester S. British English  None
16 22 F Southampton S. British English ~ French - A level
17 22 M  Hastings S. British English  None
18 32 F Leamington Spa  S. British English ~ Spanish - A level
French - beginner
German - beginner
19 M - -
20 M - -
21 M - -
23 21 F London London English ~ French - GCSE
24 22 F Milton Keynes S. British English ~ French - GCSE
Mandarin Chinese - GCSE
25 30 F London London English ~ German - beginner (school)
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TaBLE B.3: Spanish speakers
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ID Age Sex Place ofbirth Native dialect Other languages
1 32 F  Zaragoza, Aragon, Spain Spanish (Aragon accent) English - fluent
2 33 F  Zaragoza, Aragon, Spain Spanish English - fluent
Catalan - intermediate
French - beginner
4 27 F  Santiago, RM, Chile Santiago Chilean Spanish English - fluent
5 33 M Santiago, RM, Chile Santiago Chilean Spanish English - fluent
6 =22 F  Mexico City Mexican Spanish English - fluent
7 F
8 F
TABLE B.4: German speakers
ID Age Sex Otherlanguages spoken Living abroad
1 21 F English, French, Swedish New Zealand (1 Year)
2 22 F English -
3 21 M English -
4 20 F English, French, Italian, Spanish, Latin, Serbian -
6 55 F English -
7 18 M  English -
8 28 M  English, Japanese, French, Chinese -
9 21 F English -
10 22 F English, Japanese, French, Afrikaans, Korean South Africa (4 Months)
Japan (1 year)
1 24 F English, French, Arabic -
12 27 M  English -
13 22 F Italian, English -
14 27 F English, French, Russian, Turkish -
15 24 F English -
17 24 F Spanish, English -
18 20 F English, Portuguese, French, Spanish Portugal
19 21 F English, French -
20 22 M English, Spanish -
21 24 M English, French -
23 34 M  English London (1.5 years)
24 19 M  English, Spanish, Japanese, French Argentina (1 Year)
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TABLE B.5: Greek speakers

ID Age Sex Placeofbirth Native dialect Other languages

1 32 F Zakynthos Southern Greek English - fluent
French - intermediate
Italian - intermediate

2 31 F Thessalonika ~ Northern Greek English - fluent
French - beginner

3 33 M  Pagra Central Greek English

4 23 F Athens Greek English - proficient
French - C1
Arabic - intermediate

5 19 F Argos Mainland Greek English - advanced
Hindi - beginner

6 35 M  Athens Common Modern Greek (UNE)  English - advanced

Spanish - advanced
German - intermediate
Turkish - intermediate

B.3 Scripts

B.3.1 Experimental files

The Psychopy files, audio files and (translated) instructions are available at

https://figshare.com/projects/Measuring _language_distance_-_non-word_adaptation/28506

B.3.2 Analysis code

The following commands run the Speech Filing System programs (Huckvale, 2008) required to process

the audiofiles into MFCC inputs for ACCDIST.

. Create SFS file per audiofile

hed -n [filename]

. Link audiofile to SFS file

slink -iSP -tWAV -r [audio filename] [SFS filename]

. Add word to SFS file

anload -T [word] [SFS filename]


https://figshare.com/projects/Measuring_language_distance_-_non-word_adaptation/28506
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. Find the annotation; don’t add silence; load non-English pronunciations from file; transcribe in SAMPA

as default.

antrans -iAN"anload -w -x+[orthography to transcription file] [SFS
filename]

. Find the transcription; it’s in ARPA format; align it.

analign -iAN"antrans -A [SFS filename]

. Now that the alignment is finished, change each phoneme to use original, not ARPA, transcription, and

to have its context - the word it came from - as well

anload -t word -h [new transcription] [SFS filename]

. Calculate MFCCs

remove -aco [SFS filenamel]

mfcc -H -n12 -e -1100 -h6000 [SFS filename]

. Output language, gender, speaker ID, of vowel utterance with its two sets of MFCCs.

acntanal -A [language] -G [gender] -S [speaker] -v -2 -iCO0"mfcc [SFS

filename]

The Python code for calculating the ACCDIST metric from the MFCC file is also at

https://figshare.com/projects/Measuring language_distance_-_non-word_adaptation/28506.
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B.3.3 SAMPA transcriptions of stimuli
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Word inIPA SAMPA transcription Word inIPA  SAMPA transcription
kene k@ne prko pUkO
kepa kepA: pini piinl
kane kA:ne pis¥ pIsU
kapa kA:pA: poesa p@sA:
kapo kA:pO potu pOtU
katu kA:tu putce put@
kona kOnA: puisa pUs@
keto ketO pysu piisu
k¥no kUnO sape s@pe
kity ki: ti: seno senO
kino kIn@ saty sA:tU
keeta k@tA: saky sA:ki:
kona kOnA: saki sArki:
kupa kupA: saky sA:kU
kuny kUnU soko sOkO
kyna ki:nA: seki sekl
nati n@ti: syte sUte
neto net@ sika si: k A:
napy nA:pU siku slku
nati nA:tA: saekoe s@k@
nasce nA:s@ soka sOkA:
napy nA:pi: suke suke
nota nOtA: suike sUke
nepoe nep@ sykw si:kU
nysy nUsi: tosi t@si:
nise ni:se teka tek A:
nita nltA: take tA:k@
neps n@pe@e tdswm tA:sU
nopi nOpl tanu tA:nu
nusi nusl tana tA:nA:
nwto nUtO topo tOpO
nyte ni:te tenw tenU
poka p@kA: typd tUpA:
peso pesO tipi tirpi:
pasa pA:sA: tipe tlpe
pani pA:ni toence t@n@
pati pA:tl tosa tOsA:
pasa pA:sA: tuny tuni:
posd pOsO twpw tUpU
pese pese typu ti:pu
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TaBLE B.6: ACCDIST Correlations between individual speakers:

German with German, Greek

‘German

Greek

‘1101112131415171819 220 212324 3 4 6 7 8 9/ 1 2 3 4 5 6

dewm
deuio
deun
deu2
dew3
deug
deuis
dewy
dew8
deuig
deuz
deuzo
deuz21
deuzs
deuz4
deus
deuyg
deu6
deuy
deu8
deug

- 45 42 49 40 50 48 42 44 49 45 49 45 44 49 50 49 46 45 39 46
45 - 52 56 62 65 60 61 67 68 44 55 61 58 62 56 70 60 55 63 65
42 52 - 48 52 54 53 46 53 52 32 46 52 47 47 48 50 43 49 56 50
49 56 48 - 50 57 52 44 58 57 35 60 54 53 56 52 50 5150 51 52
40 62 52 50 - 66 56 57 65 66 36 56 59 53 55 52 64 52 50 59 63
50 65 54 57 66 - 68 61 73 71 40 63 67 64 64 61 71 58 63 64 72
48 60 53 52 56 68 - 58 68 64 46 58 65 61 64 62 62 58 60 56 66
42 6146 44 57 6158 - 59 6146 50 56 57 57 52 65 61 55 55 59
44 67 53 58 65 73 68 59 - 71 36 64 68 61 66 62 72 61 59 68 76
49 68 52 5766 71 64 61 71 - 44 60 66 63 64 61 71 61 60 62 72
45 44 32 35 36 40 46 46 36 44 - 42 44 42 51 36 49 45 39 39 41
49 55 46 60 56 63 58 50 64 60 42 - 58 56 59 62 60 59 52 58 60
45 61 52 54 59 67 65 56 68 66 44 58 - 63 59 53 63 59 54 60 63
44 58 47 53 53 64 61 57 61 63 42 56 63 - 63 55 62 58 53 51 62
49 62 47 56 55 64 64 57 66 64 51 59 59 63 - 61 65 58 57 60 68
50 56 48 52 52 61 62 52 62 61 36 62 53 55 61 - 59 50 53 48 58
49 70 50 50 64 71 62 65 72 71 49 60 63 62 65 59 - 62 57 63 68
46 60 43 51 52 58 58 61 61 61 45 59 59 58 58 50 62 - 48 55 57
45 55 49 50 50 63 60 55 59 60 39 52 54 53 57 53 57 48 - 56 61
39 63 56 51 59 64 56 55 68 62 39 58 60 5160 48 63 55 56 - 63
46 65 50 52 63 72 66 59 76 72 41 60 63 62 68 58 68 57 61 63

40 32 38 39 37 40
58 56 54 62 53 58
42 39 41 44 39 39
45 42 47 50 51 48
54 54 55 57 54 53
53 50 54 55 48 52
54 48 53 50 48 48
48 45 52 53 48 55
61 56 57 6148 55
58 48 55 56 52 50
40 32 35 37 46 47
51 48 53 56 50 47
58 53 56 55 51 57
51 45 52 50 48 53
50 46 55 48 57 56
47 42 44 43 37 39
58 52 53 58 51 58
53 47 54 55 55 56
49 43 48 45 50 44
52 57 53 55 51 59
56 48 55 58 48 53
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TaBLE B.7: ACCDIST Correlations between individual speakers:

German with English, Spanish

‘ English

Spanish

‘ 2 3 4 6 7 8 9g10 1112 13 1516 17 18 19 20 21 23 24 25

12 456 738

dew

deuwio
deun
deu2
deuis
deuiq
deuis
deuy
dew8
deuig

deuz
deuz
deuz

deu23

deuz
deus
deugq
deub
deu7y
deu8
deug

4143 34 42 34 44 40 35 32 37 34 25 43 36 43 39 35 35 34 42 40
60 56 49 59 53 61 57 5250 52 47 43 54 516256 6153 52 54 47
44 45 50 5137 48 48 42 47 36 37 34 49 40 44 47 48 41 45 46 45
49 52 52 46 47 54 48 47 46 50 40 34 55 42 4550 4750 47 58 49
52 54 53 57 48 64 60 55 53 5150 44 55 54 59 54 59 54 55 57 49
56 56 52 57 49 62 55 50 5150 46 39 59 53 59 58 59 5147 58 49
59 55 53 56 52 6150 5150 52 47 40 58 5158 57 53 49 49 54 54
54 5146 52 44 58 50 45 48 46 44 38 56 45 54 44 53 49 45 52 50
62 57 63 63 57 69 64 60 57 55 52 5162 62 63 6166 54 55 61 55
59 56 54 60 54 60 58 50 47 50 48 38 57 5158 52 57 5152 57 48
4344 3140 34 40 29 30 31 35 33 26 38 24 34 32 27 32 24 39 36
50 56 52 50 42 57 52 49 47 55 44 40 57 44 48 58 5148 42 56 49
58 58 55 59 52 60 58 51 5150 47 38 61 5157 53 57 53 5160 52
57 53 49 53 49 60 48 44 43 47 44 36 51 48 55 47 52 46 43 53 44
5559 52 53 55 64 48 47 55 55 49 47 59 54 58 55 53 49 46 55 46
50 45 46 50 46 53 5143 42 42 41 37 53 46 49 47 52 4142 52 44
60 56 52 53 5160 57 47 45 48 45 38 57 49 55 52 57 48 43 58 49
52 53 48 46 45 60 53 47 46 49 44 39 54 4150 50 49 50 44 57 45
46 53 46 46 41 54 48 4144 4539 36 51 4149 49 47 47 43 48 45
59 51 5156 41 61 57 51 514549 40 50 48 55 54 57 5145 50 49
56 58 60 58 54 62 56 51 55 55 5146 59 60 59 5560 54 51 57 52

o
1

4

44 46 413740 43 39
52 63 57 53 54 53 49
41 5340 42 40 41 51
48 54 48 43 47 48 46
46 56 52 5145 53 49
52 59 53 48 50 53 48
58 60 52 47 50 54 47
50 53 53 53 48 53 45
51 63 5550 55 61 51
51 61 52 49 52 56 50
53 49 47 45 4139 36
50 62 53 47 48 54 49
51 59 53 52 49 58 50
51 59 50 48 52 54 49
56 58 55 52 49 56 41
46 53 46 35 39 40 38
52 59 5549 56 54 51
52 58 52 55 55 56 47
48 56 46 43 4148 44
46 58 54 50 49 54 49
54 60 55 51 53 57 47

TABLE B.8: ACCDIST Correlations between individual speakers:

Greek, Spanish with German, Greek

‘ German

Greek

‘ 110 112 13 14 15 17 18 19 220 212324 3 4 6 7 8

991 2 3 4 56

ellr
ell2
ell3
ellg
ell5
ell6

40 58 42 45 54 53 54 48 61 58 40 51 58 51 50 47 58 53 49 52 56
32 56 39 42 54 50 48 45 56 48 32 48 53 45 46 42 52 47 43 57 48
38 54 41 47 55 54 53 52 57 55 35 53 56 52 55 44 53 54 48 53 55
39 62 44 50 57 55 50 53 6156 37 56 55 50 48 43 58 55 45 55 58
37 53 39 51 54 48 48 48 48 52 46 50 51 48 57 37 515550 51 48
40 58 39 48 53 52 48 55 55 50 47 47 57 53 56 39 58 56 44 59 53

- 54 56 58 54 59
54 - 5559 5160
56 55 - 60 59 62
58 59 60 - 55 56
54 5159 55 - 64
59 60 62 56 64 -

spai1
spaz
spa4
spas
spa6
spay

44 52 41 48 46 52 58 50 51 51 53 50 51 51 56 46 52 52 48 46 54
46 63 53 54 56 59 60 53 63 61 49 62 59 59 58 53 59 58 56 58 60
41 57 40 48 52 53 52 53 55 52 47 53 53 50 55 46 55 52 46 54 55
37 53 42 43 51 48 47 53 50 49 45 47 52 48 52 35 49 55 43 50 51
40 54 40 47 45 50 50 48 55 52 41 48 49 52 49 39 56 55 41 49 53
43 53 41 48 53 53 54 53 6156 39 54 58 54 56 40 54 56 48 54 57

spa8

39 49 5146 49 48 47 45 51 50 36 49 50 49 41 38 51 47 44 49 47

50 43 58 52 57 49
59 58 59 65 60 61
54 50 55 59 55 56
55 54 60 59 59 64
52 54 56 56 52 60
56 48 59 54 53 53
54 51 54 58 49 58
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TABLE B.g: ACCDIST Correlations between individual speakers:

Greek, Spanish with English, Spanish

‘ English

Spanish

‘ 110 11121314 15171819 220212324 3 4 6 7 8 9

123456

el
ell2
ellg
ellg
ells
ell6

40 58 42 45 54 53 54 48 6158 40 5158 5150 47 58 53 49 52 56
32 56 39 42 54 50 48 45 56 48 32 48 53 45 46 42 52 47 43 57 48
38 54 4147 5554 53 52 57 55 35 53 56 52 55 44 53 54 48 53 55
39 62 44 50 57 55 50 53 6156 37 56 55 50 48 43 58 55 45 55 58
37 53 39 5154 48 48 48 48 52 46 50 5148 57 37 515550 5148
40 58 39 48 53 52 48 55 55 50 47 47 57 53 56 39 58 56 44 59 53

- 5456 58 54 59
54 - 5559 5160
56 55 - 60 59 62
58 5960 - 5556
54 5159 55 - 64
59 60 62 56 64 -

spa1
spaz
spa4
spas
spab6
spay
spa8

44 52 4148 46 52 58 50 51 51 5350 51 5156 46 52 52 48 46 54
46 63 53 54 56 59 60 53 63 61 49 62 59 59 58 53 59 58 56 58 60
41 57 40 48 52 53 52 53 55 52 47 53 53 50 55 46 55 52 46 54 55
37 53 42 43 5148 47 5350 49 45 47 52 48 52 3549 55 43 50 51
40 54 40 47 45 50 50 48 55 52 4148 49 52 49 39 56 55 4149 53
43 53 4148 53 53 54 53 6156 39 54 58 54 56 40 54 56 48 54 57

3949 51464948 47 45 5150 36 49 50 49 41 38 5147 44 49 47

50 43 58 52 57 49
59 58 59 6560 61
54 50 55 59 55 56
55 54 60 59 59 64
52 54 56 56 52 60
56 48 59 54 53 53

54 5154 58 49 58

TABLE B.10: ACCDIST Correlations between individual speakers:

English with German, Greek

‘ German

Greek

‘110 1121314151718 19 220 212324 3 4 6 7 8 9/ 1 2 3 4 5 6

engio
engu
engiz
engi3
engis
engi6
engiy
eng18
engig
engz
eng20
engz21
engz23
engz4
engas
engs
eng4
engb6
engy
eng8
engyg

35 52 42 47 5550 514560 50 30 49 51 44 47 43 47 47 41 51 51
32 50 47 46 53 5150 48 57 47 3147 51 43 55 42 45 46 44 51 55
37 52 36 50 5150 5246 55 50 35 55 50 47 55 42 48 49 45 45 55
34 47 37 40 50 46 47 44 52 48 33 44 47 44 49 41 45 44 39 49 51
25 43 34 34 44 39 40 38 51 38 26 40 38 36 47 37 38 39 36 40 46
43 54 49 55 55 59 58 56 62 57 38 57 61 5159 53 57 54 5150 59
36 5140 42 54 53 5145 62 5124 44 5148 5446 49 41 41 48 60
43 62 44 45 59 59 58 54 63 58 34 48 57 55 58 49 55 50 49 55 59
39 56 47 50 54 58 57 44 61 52 32 58 53 47 55 47 52 50 49 54 55
4160 44 49 52 56 59 54 62 59 43 50 58 57 55 50 60 52 46 59 56
35 6148 47 59 59 53 53 66 57 27 51 57 52 53 52 57 49 47 57 60
35 53 4150 54 514949 54 51 32 48 53 46 49 41 48 50 47 51 54
34 52 45 47 55 47 49 45 55 52 24 42 51 4346 42 43 44 43 45 51
42 54 46 58 57 58 54 52 61 57 39 56 60 53 55 52 58 57 48 50 57
40 47 45 49 49 49 54 50 55 48 36 49 52 44 46 44 49 45 45 49 52
43 56 45 52 54 56 55 51 57 56 44 56 58 53 59 45 56 53 53 51 58
34 49 50 52 53 52 53 46 63 54 31 52 55 49 52 46 52 48 46 5160
42 59 5146 57 57 56 52 63 60 40 50 59 53 53 50 53 46 46 56 58
34 53 37 47 48 49 52 44 57 54 34 42 52 49 5546 51 45 41 41 54
44 6148 54 64 62 6158 69 60 40 57 60 60 64 53 60 60 54 61 62

40 57 48 48 60 55 50 50 64 58 29 52 58 48 48 51 57 5348 57 56

47 47 47 50 38 46
434849 5147 51
47 45 51 52 49 53
43 4549 44 48 48
4146 43 4340 44
52 47 55 55 50 47
46 4549 48 44 51
53 48 55 53 55 54
4849 515246 51
54 50 53 52 55 59
49 53 55 56 46 50
5152 54 49 51 53
5556 51 5346 47
5549 52 59 5149
4554 48 49 39 49
53 45 54 56 53 59
4946 515544 45
55 47 48 51 47 50
47 46 49 46 46 51
54 55 63 60 57 60

57 5559 58 50 52
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TaBLE B.11: ACCDIST Correlations between individual speakers:

English with English, Spanish

‘ English

Spanish

‘10 111213151617 1819 220 21232425 3 4 6 7 8 91 2 4 5 6 7 8

engio
engil
engi
engi3
engis
engi6
engiy
eng18
engig
engz
engzo
engz1
engz3
engz4
engas
eng3
eng4
engo6
engy
eng8
engg

- 64 4548 54 54 58 52 59 53 62 53 50 54 54 50 6152 56 63 51
64 - 524854 54 55 515250 58 57 5250 50 55 58 51 51 6148
4552 - 4544 52 45 52 49 47 5159 48 56 52 5560 45 58 56 43
48 48 45 - 44 47 48 48 48 49 48 47 39 48 45 43 48 50 44 59 45
54 54 44 44 - 3950 4546 43 47 48 45 41 43 42 46 4350 55 42
54 54 5247 39 - 54 615960 6150 54 6153 58 6559 52 56 59
58 55 45 48 50 54 - 59 53 59 56 49 47 48 43 50 57 56 57 5548
52 515248 45 6159 - 55 6163 54 52 55 47 60 52 61 5160 59
59 52 49 48 46 59 53 55 - 58 56 52 46 5149 54 57 54 49 64 53
5350 47 49 4360 59 6158 - 5246 46 58 47 62 54 59 54 60 53
62 58 5148 47 6156 6356 52 - 59 57 50 54 54 59 58 5166 63
53 57 59 47 48 50 49 54 52 46 59 - 54 5250 52 56 48 51 56 55
50 52 48 39 45 54 47 52 46 46 57 54 - 52 5550 59 52 51 53 57
5450 56 48 41 6148 55 5158 50 52 52 - 57 55 57 53 48 56 58
5450 52 45 43 53 43 47 49 47 5450 55 57 - 50 53 47 49 54 49
50 55 55 43 42 58 50 60 54 62 54 52 50 5550 - 55 55 53 56 52
6158 60 48 46 65 57 52 57 54 59 56 59 57 53 55 - 57 59 55 56
52 514550 43 59 56 6154 59 58 48 52 53 47 55 57 - 53 58 55
56 515844 50 52 57 5149 54 51 51 514849 53 59 53 - 54 45
63 61 56 59 55 56 55 60 64 60 66 56 53 56 54 56 5558 54 - 58
5148 43 45 42 59 48 59 53 53 63 55 57 58 49 52 56 55 45 58

3549 40 45 46 53 40
38 53 43 52 39 44 42
46 54 50 50 49 53 47
39 47 48 44 42 45 36
32 47 40 45 37 39 33
46 59 53 46 47 54 46
39 53 4546 49 47 42
43 59 56 5153 59 51
44 53 47 46 46 54 44
50 55 55 54 57 56 48
4460 5149 47 53 48
43 52 4850 47 48 47
3948 43484549 45
44 58 5550 46 45 52
43 54 53 43 43 48 47
53 59 52 52 47 54 51
43 58 47 47 47 46 47
4560 5147 48 46 47
44 53 46 46 49 49 40
48 62 56 58 54 60 49
45 57 53 49 50 56 53
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TABLE B.12: Student’s t-test between colingual correlation and cross-linguistic

correlation

Degrees 95% Mean Mean
Colingual Other of p-value confidence colingual cross-linguistic
language language t freedom p-value x42  interval correlation correlation
Dutch Korean 7.85 108.91 31E-12 1.3E-10 0.07 012 0.67 0.58
Dutch French 7.69 110.00 6.7E-12 2.8E-10 0.07 012  0.67 0.57
Portuguese English 8.88 50.54 6.8E-12 2.9E-10 om 017 0.70 0.56
Portuguese French 7.79  42.04 11E-09 4.6E-08 0.08 014 o0.70 0.59
Korean English 6.38 93.07 6.9E-09 2.9E-07 0.05 0.0 0.59 0.52
English Korean 6.24 95.50 1.2E-08 4.9E-07 0.07 014 0.62 0.52
English French 598 93.25 4.2E-08 1.8E-06 0.07 014 0.62 0.52
Polish French 5.32 107.06 5.7E-07 2.4E-05 0.04 0.09  0.64 0.57
Portuguese Korean 5.72 38.10 1.4E-06 5.8E-05 0.05 om1  0.70 0.62
Portuguese Italian 4.92 5546 8aE-06 3.4E-04 0.05 o042 o0.70 0.62
Portuguese Polish 4.98  43.72 11E-o5 4.5E-04 0.04 010 0.70 0.63
Polish Korean 4.49 108.98 1.8E-05 7.6E-04 0.03 0.08 0.64 0.58
Dutch English 4.22 116.07 4.8E-05 2.0E-03 0.03 0.09 0.67 0.61
Korean French 416  87.28 7.5E-05 3.2E-03 0.02 0.07 0.59 0.55
Portuguese Dutch 4.23  46.34 11E-04 4.5E-03 0.03 0.09 0.70 0.64
Dutch Italian 3.69 116.05 3.4E-04 1.4E-02 0.02 0.08 0.67 0.62
French English 3.68  85.35 4.0E-04 1.7E-02 0.02 0.06 0.56 0.52
English Portuguese 3.37 92.95 11E-03 4.6E-02 0.02 010  0.62 0.56
Italian French 3.05 99.44 3.0E-03 0412 0.02 0.08 0.62 0.57
Korean Portuguese -3.05 70.81 3.2E-03 0.14-0.05 -0.01  0.59 0.62
Italian English 2.93 12.81 4.aE-o03 0.7 0.02 0.09 0.62 0.57
English Italian 2.90 108.67 4.5E-03 0.9 0.02 0.09  0.62 0.57
Dutch Polish 2.81  117.88 0.01 0.24 0.01 0.06 0.67 0.63
French Portuguese -2.79  56.47 0.01 0.30-0.05 -0.01 0.56 0.59
Italian Korean 2.62 106.63 0.01 0.42 0.01 0.08 0.62 0.58
Polish English 2.44 11510 0.02 0.68 0.01 0.06 0.64 0.60
Polish Italian 2.30 117.94 0.02 0.98 0.00 0.06 0.64 0.61
Dutch Portuguese 2.23 87.31 0.03 119 0.00 0.06  0.67 0.64
French Korean 1.55 78.63 0.3 5.30 0.00 0.04  0.56 0.55
Korean Dutch 154 96.00 0.3 5.33 0.00 0.04  0.59 0.58
French Polish -1.41  92.30 0.16 6.85-0.03 0.01 0.56 0.57
English Polish 122 108.05 0.22 9.42 -0.01 0.06  0.62 0.60
Korean Italian 111 87.75 0.27 11.42 -0.01 0.04  0.59 0.58
French Dutch -1.09 87.10 0.28 11.71-0.03 0.01  0.56 0.57
French Italian -1.03  84.01 0.30 12.76-0.03 0.01 0.56 0.57
Italian Polish 0.92 10177 0.36 15.01-0.02 0.05  0.62 0.61
English Dutch 0.82  104.65 0.41  17.32-0.02 0.05  0.62 0.61
Korean Polish 0.81 95.91 0.42 17.64 -0.01 0.03  0.59 0.58
Polish Portuguese o0.57 90.99 0.57 23.89-0.02 0.03 0.64 0.63
Polish Dutch 0.37 117.60 0.71  29.84-0.02 0.03 0.64 0.63
Italian Dutch 0.32 109.41 0.75 31L50-0.03 0.04  0.62 0.62
Italian Portuguese 0.23  92.40 0.82 34.31-0.03 0.04  0.62 0.62
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