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Abstract 

Background 

Genome-wide association studies (GWAS) have identified multiple loci associated with coronary 

artery disease (CAD) and myocardial infarction (MI), but only a few of these loci are current targets 

for on-market medications. To identify drugs suitable for repurposing and their targets, we created 

two unique pipelines integrating public data on 49 CAD/MI-GWAS loci, drug-gene interactions, side 

effects and chemical interactions. 

Methods 

 We first used publicly available GWAS results on all phenotypes to predict relevant side effects, 

identified drug-gene interactions, and prioritized candidates for repurposing among existing drugs. 

Secondly, we prioritized gene product targets by calculating a druggability score to estimate how 

accessible pockets of CAD/MI associated gene products are, then used again the GWAS results to 

predict side effects, excluded loci with widespread cross-tissue expression to avoid housekeeping 

and genes involved in vital processes and accordingly ranked the remaining gene products. 

Results 

 These pipelines ultimately led to three suggestions for drug repurposing: pentolinium, adenosine 

triphosphate and riociguat (to target CHRNB4, ACSS2 and GUCY1A3, respectively); and three proteins 

for drug development: LMOD1, HIP1 and PPP2R3A. Most current therapies for CAD/MI treatment 

were also “rediscovered”. 

Conclusions 

Integration of genomic and pharmacological data may prove beneficial for drug repurposing and 

development, as evidence from our pipelines suggests. 
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Introduction 

Coronary artery disease (CAD) is a major cause of death worldwide, leading to a yearly estimated 8.5 

million cases of myocardial infarction (MI) 1 and loss of an expected ~150 million disability-adjusted 

life years globally in 2020 2. Current therapeutics for prevention of CAD mainly comprise the control 

of risk factors, e.g. the prescription of HMG-CoA reductase inhibitors, known as statins, or PCSK9 

inhibitors, to reduce low-density cholesterol (LDL-C) 3,4, 5. More recently, the CANTOS study has 

shown that also non-lipid pathways, such as inflammatory processes, also influence 

atherothrombotic development 6, 7. In addition, platelet inhibition may be used for prevention of 

coronary events in certain, high-risk patient groups.  

The discrepancy between the overwhelming clinical need and the small number of agents used in the 

preventive treatment of CAD and MI is largely explained by a high attrition in drug development, 

which is mostly attributable to unacceptable side effects and/or lack of efficacy 8. Currently, it is 

estimated that only one in every 5000 new drug compounds makes it to market 9. Furthermore, this 

process may take 10-15 years and costs billions of dollars for conducting clinical trials to clear the 

stringent requirements set by health agencies around the world 10, 11. Drug development has 

therefore become an expensive and difficult process, hindering the clinical implementation of 

potentially beneficial new drugs. Novel approaches to support drug development have emerged in 

recent years based on genetic strategies. For example, one may now conduct in-silico druggability 

analyses on genetic data, using bioinformatics tools, in order to identify approved and already 

marketed drugs for treating a new phenotype other than the one the drug was originally developed 

for. This strategy is referred to as drug repositioning or repurposing, an approach proposed and 

improved in the past 15 years 12, 13, based on new discoveries including, more recently, genetic 

information 14, 15. In such case, where an existing drug targets a gene product or pathway of a disease 

different from the original indication, fewer clinical trials may need to be conducted to alter the label 

and indicate a treatment for another disease as safety has already been demonstrated. An example 

of repurposing is sildenafil, initially produced with the expectation of reducing angina, and later 

found to be effective to treat erectile dysfunction 16 and pulmonary hypertension 17, leading to the 

subsequent releases of Viagra® in 1998 and Revatio® in 2005 18. Other successful examples of 

repurposing include gemfibrozil, duloxetine, dapoxetine and thalidomide 19 (original indications, 

repurposed indications and evidence for repurposing available in Supplemental Table 1). 

Genome wide association studies (GWAS) have identified multiple independent loci that contribute 

to the genetic susceptibility of CAD/MI 20-23. Many of these loci include genes involved in diverse and 

currently unexplored biological mechanisms. Thereby these loci represent novel drug targets for 

treatment and prevention of CAD/MI. A key challenge is to prioritize GWAS hits and their products 



for pharmacological intervention. In this process, bioinformatics methods may yield novel insights 

into the potential “druggability” 24 of each of these loci in order to translate genetic knowledge into 

clinical care. 

When assessing the druggability of a GWAS hit, several factors need consideration. A particular gene 

may not be “druggable”, which means that developing a molecule to target this gene product is not 

feasible, due to the lack of a defined drug binding pocket (known as a pharmacophore), or the 

druggability cannot be assessed due to unavailable relevant protein structural information. Although 

a target may be druggable, it still may not be suitable for clinical exploration, as immediate toxicity 

issues, buffering effects, redundancy, robustness and possible undesired pleiotropic effects in 

downstream biological pathways need to be clarified. For example, inhibition of the cardiac 

expressed HERG gene causes severe QT-interval prolongation, which is now screened as a liability in 

all drug discovery programs 25. Other adverse events may be more subtle, for example genetic 

variability in HMGCR has recently been identified as a risk factor for type 2 diabetes (T2D), which 

partially explains the relationship between statin use and risk of developing T2D 26,27, 28. Today, GWAS 

have found associations between thousands of loci and hundreds of phenotypes, thereby enabling a 

robust exploration of possible pleiotropic effects for any given locus or SNP 29. Here, we present two 

unique pipelines integrating currently available public data on GWAS, drug-gene interactions, side 

effects and chemical interactions. The first pipeline aims to identify approved drugs that may be 

suitable for repurposing for treatment of CAD/MI, while the second pipeline ranks non-targeted 

genes for their suitability to be a target for development of new drugs. The pipelines make use of 

numerous sources of information made available publicly in the past few years.  

Methods 

A fluxogram of the pipeline developed in this work is presented in Figure 1. Custom algorithms 

created in this project are available on GitHub (https://github.com/drugab/drugab). Methods are 

available in the Supplemental Material. This study does not make use of identifiable data, only public, 

summary-level data. 

Results 

 Candidates for repurposing 

All 153 SNP regions, selected for their association with CAD/MI, queried on PhenoScanner had a 

nominally significant association with another phenotype, 68 of which with a positive score of 

associations in the same direction as for CAD/MI, i.e., the risk of developing these phenotypes can be 

decreased together with CAD/MI in case of targeting given gene products. We filtered the list further 

by using DGIdb 30 to identify existing medications targeting the gene products of these regions, and 

https://github.com/drugab/drugab


found drugs targeting 15 of these gene products (ABO, ACSS2, ARVCF, CDKN1A, CHRNB4, CKM, 

GUCY1A3, HDAC9, IL6R, LPL, MAP4, MTAP, PCSK9, SCARB1 and SLC22A4). Due to gene products 

affected by multiple drugs, the targeted genes showed interactions with 48 drugs. Further analysis of 

the results showed that 22 of them are not clinically available drugs, either due to halted 

development (N=15) or still under evaluation in clinical trials (N=7). After excluding these, 26 

medicinal products mapping to 15 genes of interest remain. 

Out of the 26 products on our list, three are not classified as drugs (L-carnitine, phosphatidylserine 

and adenine), leaving 23 marketed drugs that have 26 assigned Anatomical Therapeutic Chemical 

(ATC) codes in total. The most common ATC groups involved were cardiovascular (group C - 8 drugs), 

cancer (group L - 7 drugs) and nervous system (group N - 6 drugs). Table 1 presents drug-gene 

interactions and ATC codes for these drugs. 

We determined side effects of the 23 drugs using different databases, in particular SIDER; 

accordingly, we suggested possible candidates for repurposing. We excluded chemotherapy 

compounds (N=6), based on their serious side effect profile and unsuitability for continuous use in 

cardiovascular indications. Further exclusions involved medications which are already marketed for 

CAD prevention (N=2), expected to cause tachycardia (N=4), MI (N=1), liver injury (N=3), kidney 

damage (N=1) and stroke (N=1). Full counts of indications and side effects are available in 

Supplemental Tables 2 and 3, respectively. Out of the remaining medications (N=5), we suggest three 

possible candidates for repurposing based on their positive impact on cardiovascular system seen in 

previous clinical trials. These include pentolinium (predicted as antagonist of the gene product of 

CHRNB4), adenosine triphosphate (targeting the gene product of ACSS2) and riociguat (antianginal 

agent works as a stimulator for the product of GUCY1A3).  

 ”Re-discovery” of existing CAD drugs 

After all steps of the pipeline, we identified drugs that are already prescribed for the treatment of 

CAD: simvastatin (representing statins), evolocumbad and alirocumab (representing PCSK9 

inhibitors), irbesartan (representing angiotensin II receptor blockers) and gemfibrozil (a 

cholesterol-lowering agent more recently adjuvant in CAD treatment). They serve as positive 

control for the pipeline. 

 Druggability of docking pockets 

We also investigated druggability of CAD/MI loci, by analyzing the chemical structures of the 

respective gene products in search of pockets suitable for docking with novel molecules. We 

obtained PDB structures for 60 out of the 153 proteins produced by the estimated genes these 



CAD/MI loci belong to. Six of those were not human, but from a homologous animal model, and we 

decided to keep them for the analyses. Fifty-two structures had good druggability scores (>=0.5), and 

the eight remaining structures with low druggability scores were excluded from further analyses. 

Thirty-seven structures of the 52 remaining are not targeted by drugs available in the market, 

according to DGIdb. The statement of the original DoGSiteScorer manuscript about threshold for 

druggability were confirmed (scores above 0.5 would be in theory druggable 31) by the 15 structures 

currently targeted by drugs, with scores ranging from 0.5-0.89. We also used the PhenoScanner 

ranking explained above for ranking the most promising candidates for drug development, and 

excluded a further 21 loci due to its predicted negative effect on related phenotypes. We then 

evaluated the remaining 16 loci for their function and tissue expression using Protein Atlas 32 to 

observe tissue expression of the gene products in different tissues, and excluded those with high 

levels of expression (more than 1SD from the average expression cross-tissue) across multiple tissues 

(e.g., brain, kidney, pancreas, muscle), since those are most likely housekeeping genes or necessary 

for cell cycle, and therefore not suitable for intervention 33. We concluded with this approach that 

the most suitable targets to be considered are leiomodin 1 (LMOD1), huntingtin-interacting protein 1 

(HIP1) and protein phosphatase 2, regulatory subunit b-double prime, alpha (PPP2R3A) (druggability 

scores were 0.73, 0.79 and 0.85, respectively). Score of effect directions were 4, 3, and 7 for CAD/MI 

related phenotypes (max. possible score 8) and 24, 24, and 14 for all other phenotypes, respectively. 

Full description of all molecules that passed the filters are shown in Table 2. Druggability scores for 

all proteins with a PDB entry are presented on Supplemental Table 4. 

 

Discussion 

GWAS have identified multiple loci and genes that appear to play a causal role in CAD/MI. While new 

efforts may unveil other associated loci (and indeed have already, with the current loci count at 164 

34, 35), it is essential to maximize the value of the current data to translate this knowledge into clinical 

care, and improve management of CAD/MI. One way to utilize genetic information is by identifying 

suitable targets for drugs and possible repurposing of already existing drugs. Here, we cross-

referenced multiple bioinformatics databases to identify potentially druggable genes and related 

compounds that may be suitable for repurposing in order to treat CAD/MI.  

Until very recently, drug development has not been guided by genetic profiles and risks, therefore 

expecting that GWAS hits perfectly correspond to current treatments is unrealistic. That said, we 

compiled a list of medications used in the treatment of CAD (N=79), obtained from different sources, 

searched for drug-gene interactions among those with any level of confidence (N=608), checked how 

many unique genes are represented in these interactions (N=251) and compared to the genes we 



obtained from the CAD loci, either original mapping or GENCODE annotation (N=144). Expectedly, 

our data indicate that the drugs from the ATC group “cardiovascular system” (C) are overrepresented 

among our results. Indeed, our pipeline was able to identify three of the main medication groups 

used for treatment of CAD: statins (e.g. simvastatin), PCSK9 inhibitors (e.g. evolocumab) and 

angiotensin II receptor blockers (e.g. irbesartan), which may serve as a validation of the method.  

We found an overlap of 9 genes, namely APOA1, APOB APOC1, APOE, EDNRA, GUCY1A3, LIPA, LPL 

and PCSK9. Among those, our top results, in order, include PCSK9 (target of newest medications in 

the field, evolocumab and alirocumab), LPL (indirectly a target of gemfibrozil), APOC1 and APOE 

(indirectly representing statins, i.e. first in line drugs against CAD, and ritonavir) and GUCY1A3 (target 

of suggested for repurposing drug riociguat) (Supplemental Table 5). Starting with a set of 153 loci 

identified through GWAS experiments for association with CAD/MI, through a series of filtering steps, 

we add evidence of the value of our druggability approach and suggest specifically three hits to be 

targeted by three drug compounds that show promise for repurposing including adenosine 

triphosphate (ATP), pentolinium, and riociguat.  

ATP is a promising novel candidate with a ranking score (+4) similar to those obtained for the main 

rediscovered agents. Here the route of administration (intravenous) is an obstacle that needs to be 

addressed in future studies. ATP, which canalizes the reactions involving ACCS2 gene product, is one 

of the top ranked repurposing candidates; this makes it the best promising agent suggested for CAD 

patients. It is has a role in regulating various biological cascades such as cardiac function, muscle 

contractility and blood circulation 36. Through the period of 80s and 90s, ATP was useful in managing 

several clinical conditions such as haemorrhagic shock, pulmonary hypertension and paroxysmal 

supraventricular tachycardias 37. ATP is not currently marketed in the United States but is available 

certain European countries; it is indicated as an adjunct therapy for low back pain in France 38 and 

was tested as therapeutic agent for patients with Alzheimer Disease in a recent clinical trial 

(https://clinicaltrials.gov/ct2/show/NCT02279511). According to DGIdb, ACSS2 gene is a suggested 

target for ATP; it synthesizes acetyl CoA from ATP and CoA through an acetyl-adenosine 

monophosphate (AMP).  The Drug repurposing hub confirms the drug-gene interaction. 

The proposed repurposing candidates also included riociguat (targeting GUCY1A3) and pentolinium 

(targeting CHRNB4), albeit with lower rankings (scores of 0 - +1 for all phenotypes), which may 

suggest additive roles for these medications in CAD. The findings of several GWAS suggest the gene 

GUCY1A3, coding for the alpha-3 subunit of soluble guanylate cyclase in chromosome 4 as a drug 

target to manage individuals with CAD/MI. The variant rs7692387 was strongly associated with CAD 

23 and later found to modulate GUCY1A3 promoter activity 39 and rs13139571 was identified as a risk 

https://clinicaltrials.gov/ct2/show/NCT02279511


factor for hypertension 40. This gene codes for a protein that acts as a major receptor for nitric oxide 

and other nitro-derivative products (e.g. nitroglycerin) to induce vasodilatation and platelet 

inhibition 41. GUCY1A3 is highly expressed in the vascular smooth-muscle cells and has the potential 

to modulate vascular tone and to induce venous and arterial relaxation. Interaction of nitric oxide 

with different isoforms of soluble guanylate cyclase 1 (GUCY1) plays an important role in regulating 

platelet aggregation 42 as well as accelerating thrombus formation 43. Deletion of GUCY1A3 is known 

to cause asymptomatic moyamoya (intracranial stenosis) angiopathy 42. Its deletion is also known to 

cause myocardial infarction 43, and detailed molecular analyses identified how this variant modulates 

expression of the gene, soluble guanylyl protein levels, activity of the enzyme and platelet function 

39. In addition, an exonic variant rs201558687 was reported as protective marker against pulmonary 

hypertension 44. This finding suggests a role for GUCY1A3 gene in pulmonary hypertension in addition 

to its association with CAD/MI. 

The newly marketed drug riociguat was approved by the U.S. Food and Drug Administration (FDA) in 

2013 45 and later by European Medicines Agency in 2014 to manage patients with pulmonary arterial 

hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) 46. Riociguat is a 

positive allosteric modulator for GUCY1A3. It is a unique drug that acts as guanylate cyclase 

stimulator 47; this mechanism makes a hope to repurpose the usage of riociguat as an antianginal 

agent 48. Hypotension, headache and dizziness are the common side effects of riociguat 49. A clinical 

trial was prepared to study the effects of riociguat for CAD (clinicaltrials.gov ID: NCT01165931) but 

the study was cancelled before recruitment for unknown reasons. Further evidence is provided by 

the Drug Repurposing Hub 50, which mentions that molsidomine, a drug not available in DGIdb and 

predicted to interact with GUCY1A3, is prescribed against CAD. 

Pentolinium is an old antihypertensive agent indicated to control malignant hypertension and 

hypertensive crises, in particular, throughout surgery 51. Pentolinium is predicted to antagonize 

CHRNB4. It was marketed by WYETH AYERST under the trade name of Ansolysen then it was decided 

to stop its manufacturing in January 1982. The manufacturer did not indicate the reasons of 

discontinuation but possibly because of induction of severe postural and exertional hypotension 52. 

Moreover, the drug is rather non-specific (it targets different subunits of nicotinic acetylcholine 

receptors (nAChRs) at a time 53, in particular α3, α10, β2 and β4), and had to compete with newer 

medications with higher efficacy in lowering blood pressure. It has a potent peripheral ganglionic 

blocking action and acts as an antagonist to nicotinic receptors which inhibit the release of both 

adrenaline and noradrenaline 54. Although these receptors are abundant on somatic and central 

nervous system they are also expressed on aortic valves and atrial appendages 55. Nicotinic receptors 

are considered part of a superfamily of ligand-gated ion channels which mediate fast signal 



transmission at synapses 56. Blockage of the receptor results in relaxation as well as vasodilatation of 

smooth muscles. A single nucleotide polymorphism (SNP, rs11072794) in the gene cholinergic 

receptor, neuronal nicotinic, beta polypeptide 4 (CHRNB4) - in chromosome 15- which codes for 

nicotinic receptors was found to be a risk factor for CAD/MI 20 and nominally significantly associates 

to type 2 diabetes (T2D) 57 in a GWAS study.  

 The SNP rs11072794, located in an intronic region, is in complete LD (r2=1) with other two variants 

(rs899997 and rs12899940), that are located in regulatory regions that possibly affect gene function; 

rs12899940 is located in promoter flanking region, while rs899997 is located in a transcription factor 

binding site. The SNP rs899997 was recently identified as a risk factor to develop coronary artery 

disease and ischemic stroke according to recent analysis of three different genome-wide association 

studies; the METASTROKE, CARDIoGRAM, and C4D consortia 58. Further, another marker (rs8023822) 

in CHRNB4 gene was also detected as a susceptibility loci for CAD in T2D in a meta-analysis that 

involve several GWAS studies among Scottish population 59. These significant associations between 

different loci in CHRNB4 and CAD suggest the gene product as a good drug target; therefore, 

pentolinium can possibly repurposed in the management of CAD/MI conditions. In this case, 

however, we found no further evidence from the Drug Repurposing Hub. 

Regarding novel targets, we were able to elaborate a ranking of the most suitable candidates. The 

most promising candidates for targeting are LMOD1, HIP1 and PPP2R3A. Leiomodin 1 (LMOD1) is 

related to smooth muscle contraction and cardiac conduction 60 and has been identified to have 

smooth muscle cell-specific eQTLs in SNP rs34091558 61. SNP rs2820315 at LMOD1 has reached 

genome-wide significance in the latest GWAS in CAD/MI 62. Huntingtin-interacting protein 1 (HIP1) 

codes for a protein significantly expressed in coronary artery endothelium cell and play a major role 

in cell endocytosis 63, having one of the top significant cis-eQTL expression patterns among CAD/MI 

loci 64. Finally, protein phosphatase 2, regulatory subunit b-double prime, alpha (PPP2R3A) is 

abundantly expressed in heart and skeletal muscles and responsible for intracellular signal regulation 

65, being associated to several regulatory networks of CAD 66. 

The pipelines are modular and can be easily generalized for other diseases. Once determined an 

appropriate set of bona fide associated SNPs for a given trait, the pipelines can provide candidates 

for repurposing and most suitable targets for drug development. However, a number of limitations 

need to be considered in translating our results to clinical studies. First, our approach relies on the 

well-informed yet unproven relationship between CAD/MI loci and a nearby gene and the 

druggability of its gene product. It is worth mentioning that the genes investigated in both pipelines 

were mapped to variants by positional mapping in their original study. We extended this analysis 



using GENCODE annotations to identify additional genes, a comprehensive resource that also 

integrates regulatory data in the process of annotation. However, variants can act on elements 

regulating genes that are not physically located in their immediate vicinity, but often even outside 

the locus 67. Experiments on chromosomal conformation can capture these dynamics by generating a 

map of tissue-specific genomic regions that physically interact 68-71. The ongoing generation and 

integration of such maps on disease-relevant cell-types will enable identification of target genes that 

might not have been unraveled by using current approaches, which in turn might improve results of 

our pipelines. Second, it needs to be investigated as to whether the drugs discussed modulate the 

gene product in a beneficial way. Third, we illustrate in our examples that some of the drugs are 

pleiotropic or not suitable for chronic application, and that they may be only a starting point for 

further developments. Fourth, the databases used were complete versions at the moment of usage, 

but those are ongoing efforts that will improve coverage and reliability, so iterative development 

may yield more reliable results. Finally, we focused this investigation on repurposing of established 

drugs. We expect that multiple GWAS loci, pointing to currently unexplored mechanisms, can be 

addressed by new drug development on antibodies, like what has been successfully achieved in case of 

PCSK9 72-74. In conclusion, we have found evidence for repurposing of drugs and candidates for drug 

development in the context of CAD/MI, suggesting that in-silico analysis using existing databases and 

genetic findings may be useful to accelerate translation into clinical practice. Clinical trials are now 

needed to explore the potential value of these agents. 
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Tables 

Table 1. Predicted drug-gene interactions by DGIdb, ATC codes and nominally significant loci in the same LD block of the SNP presented   

Reported SNP Gene Interacting drug ATC code 1 ATC code 2 ATC code 3 GWAS predicted concordant phenotypes GWAS predicted discordant phenotypes 

rs11206510 PCSK9 EVOLOCUMAB C10AX13 
  

LDL cholesterol,Total cholesterol,Triglycerides,Obesity class 2 - 

rs11206510 PCSK9 ALIROCUMAB C10AX14 
  

LDL cholesterol,Total cholesterol,Triglycerides,Obesity class 2 - 

rs6088638 ACSS2 ADENOSINE TRIPHOSPHATE C01EB10 
  

Triglycerides,Obesity class 2,Obesity class 1,BMI - 

rs264 LPL ORLISTAT A08AB01 
  

Triglycerides,Type II diabetes,Obesity class 2,BMI - 

rs264 LPL CLOFIBRATE C10AB01 
  

Triglycerides,Type II diabetes,Obesity class 2,BMI - 

rs264 LPL GEMFIBROZIL C10AB04 
  

Triglycerides,Type II diabetes,Obesity class 2,BMI - 

rs4845625 IL6R TOCILIZUMAB L04AC07 
  

LDL - 

rs1034565 ARVCF RISPERIDONE N05AX08 
  

Type II diabetes,BMI - 

rs1034565 ARVCF BUPROPION N06AX12 
  

Type II diabetes,BMI - 

rs11072794 CHRNB4 VARENICLINE N07BA03 
  

Type II diabetes - 

rs11072794 CHRNB4 PENTOLINIUM C02xxxx 
  

Type II diabetes - 

rs11072794 CHRNB4 DEXTROMETHORPHAN N07XX59 R05DA09 
 

Type II diabetes - 

rs11072794 CHRNB4 ETHANOL V03AB16 V03AZ01 D08AX08 Type II diabetes - 

rs11072794 CHRNB4 NICOTINE N07BA01 
  

Type II diabetes - 

rs8111989 CKM CREATINE C01EB06 
  

BMI - 

rs2023938 HDAC9 VORINOSTAT L01XX38 
  

- - 

rs2023938 HDAC9 BELINOSTAT L01XX49 
  

- - 

rs2023938 HDAC9 VALPROIC ACID N03AG01 
  

- - 

rs2023938 HDAC9 PANOBINOSTAT L01XX42 
  

- - 

rs2023938 HDAC9 ROMIDEPSIN L01XX39 
  

- - 

rs7692387 GUCY1A3 RIOCIGUAT C02KX05 
  

- - 

rs7642590 MAP4 PACLITAXEL L01CD01 
  

Triglycerides BMI 

rs7642590 MAP4 DOCETAXEL L01CD02 
  

Triglycerides BMI 

rs273909 SLC22A4 L-CARNITINE A16AA01     LDL,Total cholesterol,Triglycerides   

 

  



 

Table 2. Most suitable drug targets according to predicted pocket interactions and nominally significant loci in the same LD block of the SNP presented   

Reported SNP Genes DoGSiteScorer pocket score PDB code GWAS predicted concordant phenotypes GWAS predicted discordant phenotypes 

rs1393786 PPP2R3A 0.85 4i5j LDL cholesterol,Total cholesterol,Triglycerides,Obesity class 2,Obesity class 1,Obesity class 3,BMI 
 

rs2820315 LMOD1 0.73 4z79 Obesity class 2,Obesity class 1,Obesity class 3,BMI 
 

rs1167800 HIP1 0.79 3i00 Triglycerides,Obesity class 1,BMI 
 

rs15563 UBE2Z 0.73 5a4p LDL cholesterol,Total cholesterol,Type II diabetes 
 

rs6544713 ABCG8 0.89 5d07 LDL cholesterol,Total cholesterol,Triglycerides BMI 

rs9326246 BUD13, ZNF259, APO5A, APOA1 0.62 4uqt LDL cholesterol,Total cholesterol,Triglycerides LDL cholesterol 

rs972158 SNX10 0.73 4pzg Triglycerides,Type II diabetes 
 

rs10797416 SKI 0.73 1sbx LDL cholesterol,Total cholesterol 
 

rs12205331 ANKS1A 0.81 2lmr Triglycerides,BMI 
 

rs7139492 COL4A1 0.85 1li1 Total cholesterol 
 

rs816889 RND3 0.83 1m7b Type II diabetes 
 

rs7173743 MORF4L1 0.79 2f5j Obesity class 2 
 

rs10495907 7SK Error 2kx8 LDL,Total cholesterol,Triglycerides,Type II diabetes,Obesity class 2,Obesity class 1,Obesity class 3,BMI 
 

rs2281727 SMG6 0.89 4um2 BMI Total cholesterol 

rs2294461 LY86 0.82 3b2d Type II diabetes LDL 

rs6984210 BMP1 0.69 3edg     

 



Figure legend 

Figure 1. Complete pipeline presented in the paper, with resources used for building up the pipeline. 

Codes that are not Unix commands were uploaded to Github and can be accessed at 

https://github.com/drugab/drugab . 

https://github.com/drugab/drugab

