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ABSTRACT 

Background 

Inherited genetic variants may influence response to, and side effects from, 

chemotherapy. We sought to generate a comprehensive inherited pharmacogenetic 

profile for oxaliplatin and 5FU/capecitabine therapy in advanced colorectal cancer 

(aCRC). 

 

Methods 

We analysed over 200 potentially functional, common, inherited variants in genes 

within the 5-FU, capecitabine, oxaliplatin, and DNA repair pathways, together with 4 

rare dihydropyrimidine dehydrogenase (DPYD) variants, in 2183 aCRC patients 

treated with oxaliplatin-fluoropyrimidine chemotherapy with, or without, cetuximab 

(from MRC COIN and COIN-B trials). Primary endpoints were response, any toxicity 

and peripheral neuropathy. We had >85% power to detect ORs=1.3 for variants with 

minor allele frequencies >20%. 

 

Results 

Variants in DNA repair genes (Asn279Ser in EXO1 and Arg399Gln in XRCC1) were 

most associated with response (OR 1.9, 95% CI 1.2-2.9, P=0.004, and OR 0.7, 95% 

CI 0.5-0.9, P=0.003, respectively). Common variants in DPYD (Cys29Arg and 

Val732Ile) were most associated with toxicity (OR 0.8, 95% CI 0.7-1.0, P=0.008, and 

OR 1.6, 95% CI 1.1-2.1, P=0.006, respectively). Two rare DPYD variants were 

associated with increased toxicity (Asp949Val with neutropenia, nausea and 

vomiting, diarrhoea and infection; IVS14+1G>A with lethargy, diarrhoea, stomatitis, 

Hand-Foot Syndrome and infection; all ORs>3). Asp317His in DCLRE1A was most 
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associated with peripheral neuropathy (OR 1.3, 95% CI 1.1-1.6, P=0.003). No 

common variant associations remained significant after Bonferroni correction. 

 

Conclusions 

DNA repair genes may play a significant role in the pharmacogenetics of aCRC. Our 

data suggest that both common and rare DPYD variants may be associated with 

toxicity to fluoropyrimidine-based chemotherapy.
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INTRODUCTION 

Genetic factors affect response to, and side effects from, chemotherapy and 

biological therapies used in the treatment of advanced colorectal cancer (aCRC). For 

example, somatic mutations in KRAS and NRAS in the epidermal growth factor 

receptor (EGFR) signalling pathway predict a lack of response to anti-EGFR 

mononclonal antibodies [1,2]. Germline changes in drug metabolism, transport and 

target genes have also been implicated in altering response [3,4]. Although several 

large studies have attempted to identify inherited predictive biomarkers, including the 

analysis of ten variants in 1188 CRC patients [5,6], 1456 5-FU pathway tagging 

variants in 968 patients [7], and 34 variants in 520 patients [8], none have 

comprehensively analysed all of the pharmacological pathways. Indeed, the vast 

majority of studies performed to-date have used small cohorts of patients and most 

findings have not been validated in independent analyses. 

 

We have previously sought predictive biomarkers for cetuximab response and side 

effects by analysing 54 common, inherited EGFR pathway variants in 815 aCRC 

patients from the COIN [9,10] and COIN-B [11] trials that received cetuximab 

together with oxaliplatin-fluoropyrimidine chemotherapy [12]. Although we identified 

five potential biomarkers for response and four for skin rash, none remained 

significant after correction for multiple testing [12]. Here, we sought predictive 

biomarkers for oxaliplatin-fluoropyrimidine chemotherapy by analysing over 200 

potentially functional common inherited variants in 2183 COIN and COIN-B patients 

treated with oxaliplatin-fluoropyrimidine chemotherapy with, or without, cetuximab. 

 

METHODS 
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Patients and treatments 

All patients had metastatic or locally advanced colorectal adenocarcinoma and 

received no previous chemotherapy for advanced disease. All patients gave fully 

informed consent for this study (approved by REC [04/MRE06/60]). COIN patients 

were randomised 1:1:1 to receive continuous oxaliplatin and fluoropyrimidine 

chemotherapy (Arm A), continuous chemotherapy +cetuximab (Arm B), or 

intermittent chemotherapy (Arm C) (ISRCTN27286448) [9,10]. COIN-B patients were 

randomised 1:1 to receive intermittent chemotherapy and cetuximab (Arm D) or 

intermittent chemotherapy and continuous cetuximab (Arm E) (ISRCTN3837568) 

[11]. For the first 12-weeks, at which point the primary pharmacogenetic analyses 

were carried out, treatments were identical in all patients apart from the choice of 

fluoropyrimidine (n=834, 38% received infusional 5FU with oxaliplatin [OxMdG] and 

n=1349, 62% received capecitabine with oxaliplatin [Xelox]) together with the 

randomisation of ±cetuximab (n=815, 37% received cetuximab) (Supplementary 

Table 1). 

 

Selection of potential pharmacogenetic variants 

Potentially functional variants were sought in 62 genes identified from literature 

reviews as likely to play a role in the metabolic pathways associated with the agents 

used in COIN and COIN-B - 5FU and capecitabine (28 genes) and oxaliplatin (34 

genes). Variants were considered potentially functional if there was previously 

reported clinical or biological evidence for an effect on response or side effects, if 

they were nonsynonymous, or if they occurred in the promoter region. We also 

sought similar variants in 155 DNA repair genes that were likely to play a role in 

repairing the damage caused by these agents. Variants were mined from dbSNP 
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(v.129, http://www.ncbi.nlm.nih.gov/SNP/) and from exome re-sequencing germline 

data [13], and those with a minor allele frequency (MAF) >5% (Caucasian 

population) were considered for genotyping. 

 

Genotyping 

Most variants were single nucleotide polymorphisms (SNPs) genotyped using a 

custom Illumina GoldenGate assay. The ‘Assay Design Tool’ software (Illumina) was 

used to anticipate genotyping success. This was based on the designability rank and 

validation class for a given SNP. When two or more SNPs occurred within 60bp of 

one another, the SNP selected for submission was chosen based on its designability 

score, MAF and likelihood of being functional using in silico analyses (PolyPhen, 

http://genetics.bwh.harvard.edu/pph2/ or align-GVGD, http://agvgd.iarc.fr/). 

 

Eight variants were assayed ‘in house’ because they were not suitable for (n=7), or 

failed (n=1), GoldenGate genotyping. The c.1-99 28bp repeat in the TYMS promoter 

(rs34743033) and the c.939+450 6bp deletion in the TYMS 3' untranslated region 

(UTR) (rs34489327) were assayed using the primers 5’-

GGGTTTCCTAAGACTCTCAG-3’ and 5’- CCGAGCCGGCCACAGGCATA-3’, and 

5’-CATCCAAACCAGAATACAGCAC-3’ and 5’-CTTTGAGTTAACTCACTGAGGG-3’, 

respectively, and the c.1-1671 insertion A in the MMP3 promoter (rs35068180) was 

assayed using the primers 5’-AGCTGCCACAGCTTCTACAC-3’ and 5’-

GTATTCTATGGTTCTCCATTC-3’. One of the primers for each pair was 

fluorescently labelled and PCR products were analysed on an ABI3100 using the 

GeneScan Analysis Software (ABI). The GSTT1 and GSTM1 copy number deletions 

(Accession numbers CG962889 and CN973733, respectively [HGMD, 
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www.hgmd.cf.ac.uk]) and the variants Phe212Val in FCGR3A (rs396991) and His46 

(synonymous) in ERCC5 (rs1047768) were assayed using Taqman real time 

quantitative PCR assays (ABI). The G>C variant in the 28bp repeat within the TYMS 

promoter (rs2853542) was assayed by direct sequencing without success. 

 

We assayed for four rare DPYD variants (IVS14+1G>A [rs3918290], Asp949Val 

[rs67376798], Lys259Glu [rs45589337] and Ser534Asn [rs1801158]) using KASPar 

assays (LGC). 

 

Clinical parameters assessed 

The primary efficacy endpoint was 12-week response, defined as complete response 

or partial response versus stable disease or progressive disease at 12-weeks, and 

secondary efficacy endpoints were overall survival (OS) and overall response rate 

(ORR). The primary endpoints for toxicity were: (i) a dose reduction or delay in 

chemotherapy in the first 12-weeks of treatment due to any toxicity except peripheral 

neuropathy (PN), and, (ii) grade ≥2 PN or dose reduction or delay due to PN versus 

grade <2 PN despite no oxaliplatin dose modification in the first 12-weeks. 

Secondary toxicity endpoints were grade ≥2 at any point versus grade <2 for 

neutropenia, lethargy, nausea or vomiting, diarrhoea, stomatitis, Hand-Foot 

Syndrome (HFS), infection (infection with grade ≥3 neutropenia versus infection with 

normal absolute neutrophil count or no infection) and PN (COIN Arms A and B) at 

24-weeks. 

 

Power considerations 
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Patients from all arms of COIN and COIN-B had similar efficacy and toxicity 

outcomes at 12-weeks [9-11], so were combined to increase power (n=2183). Based 

on 2183 patients, we had >85% power (P<0.05) to detect an OR of 1.3, 

corresponding to a 7% difference in response or toxicity (45% responded and 35% 

had toxicity) [9-11], for a variant with a MAF>20%, and an OR of 1.6, corresponding 

to an 11% difference in response, for a variant with a MAF>5%. 

 

Statistical analyses 

Genotypes were tested for deviation from the Hardy Weinberg Equilibrium (HWE) 

using a chi-squared test and those with P<2.5x10-4 (multiple testing for 202 common 

variants) were excluded. Pharmacogenetic analyses were carried out using Stata 

12.1 with a co-dominant model, and tested using the likelihood-ratio chi-squared 

statistic. For significant associations (P<0.05), subsequent analyses were carried out 

using logistic regression under the best-fitting allele model, adjusted for cetuximab 

use and type of fluoropyrimidine. Correction for multiple testing was by Bonferroni. 

Our methods and reporting conform to REMARK criteria [14].  

 

RESULTS 

Two hundred and thirty-six potentially functional, common, coding and promoter-

region variants were identified in either 39 genes likely to play a role in the metabolic 

pathways associated with the chemotherapeutic agents used in COIN and COIN-B, 

or, in 97 genes that were likely to play a role in repairing the damage caused by 

these agents (Fig.1). Of these, 226 passed in silico locus conversion on the 

GoldenGate platform and 195 were successfully assayed. Eight variants were 

assayed ‘in house’ of which 7 were successfully genotyped. Only genotypes for the 
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c.1-99 28bp repeat in TYMS deviated from the HWE and were excluded. Therefore, 

in total, 201 common variants were considered in the pharmacogenetic analyses of 

2183 unrelated patients with aCRC from the UK national trials COIN (2070 of the 

2445 randomised) and COIN-B (113 of the 226 randomised) in which all patients 

received oxaliplatin and fluoropyrimidine chemotherapy with, or without, cetuximab 

(Supplementary Table 2). 

 

Primary analyses 

Eight variants were associated (P<0.05) with response, eight with toxicity and five 

with PN, prior to correction for multiple testing (Table 1, Supplementary Table 3); 

none were significant after Bonferroni correction. 

 

For response, the most significant associations were with variants in DNA repair 

genes. Seventy-one percent of patients with at least one allele encoding serine at 

residue 279 in EXO1 responded, as compared to 57% of patients homozygous for 

alleles encoding asparagine (OR 1.9, 95% CI 1.2-2.9, P=0.004). Also, 48% of 

patients homozygous for alleles encoding glutamine at residue 399 in XRCC1 

responded, as compared to 59% of patients with at least one allele encoding 

arginine (OR 0.7, 95% CI 0.5-0.9, P=0.003). 

 

For toxicity, the most significant associations were Cys29Arg and Val732Ile in 

DPYD. These variants were in low linkage disequilibrium (LD) (r2=0.0, D’=0.5) 

suggesting that they may represent independent associations. Arginine at residue 29 

reduced toxicity, particularly diarrhoea and stomatitis (34% of patients with at least 

one allele encoding arginine had severe toxicity as compared to 38% of patients 
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homozygous for alleles encoding cysteine, OR 0.8, 95% CI 0.7-1.0, P=0.008). 

Although reduced toxicity was observed with both fluoropyrimidine regimens, it was 

only statistically significant with Xelox (OR 0.4, 95% CI 0.2-0.8, P=0.004) 

(Supplementary Table 4). 

 

Forty-five percent of patients with at least one allele encoding isoleucine at residue 

732 had severe toxicity as compared to 36% of patients homozygous for alleles 

encoding valine (OR 1.6, 95% CI 1.1-2.1, P=0.006). Increased toxicity was observed 

with both fluoropyrimidine regimens, but was statistically significant with OxMdG (OR 

2.0, 95% CI 1.1-3.5, P=0.014) (Supplementary Table 4). The association was 

primarily caused by neutropenia (20% versus 14% of patients, OR 1.9, 95% CI 1.2-

3.1, P=0.005) (Table 2). 

 

For PN, the most significant association was with Asp317His in DCLRE1A. Twenty-

one percent of patients homozygous for alleles encoding histidine had PN, in 

comparison to 17% of those with a single allele encoding histidine and 13% of those 

homozygous for alleles encoding aspartic acid (OR 1.3, 95% CI 1.1-1.6, P=0.003) 

(Table 2). 

 

Extended profiling of DPYD 

Since two common DPYD variants influenced toxicity and previous observations that 

rare DPYD variants also affect toxicity [15], we assayed an extended panel of rare 

(MAFs <5%) nonsynonymous and splicing DPYD variants in all patients using 

KASPar. 
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Asp949Val, in 1.4% of patients (30/2116), was associated with increased toxicity 

(OR 2.2, 95% CI 1.1-4.5, P=0.038), specifically neutropenia (OR 3.2, 95% CI 1.2-8.2, 

P=0.019), nausea and vomiting (OR 3.4, 95% CI 1.5-7.3, P=0.002), diarrhoea (OR 

4.6, 95% CI 2.1-10.1, P<0.001) and infection (OR 5.5, 95% CI 1.3-24.2, P=0.024) 

(Table 2). We found significantly increased infection with Xelox (OR 31.9, 95% CI 

5.7-178) as compared to OxMdG (OR 1.2, 95% CI 0.1-13.0, Pinteraction=0.026; 

Supplementary Table 4). 

 

IVS14+1G>A, in 1.1% of patients (23/2105), was associated with increased lethargy 

(OR 5.3, 95% CI 1.9-14.9, P=0.002), diarrhoea (OR 4.4, 95% CI 1.7-11.0, P=0.002), 

stomatitis (OR 4.6, 95% CI 1.7-12.6, P=0.003), HFS (OR 3.8, 95% CI 1.2-11.8, 

P=0.021) and infection (OR 19.2, 95% CI 5.0-73.8, P<0.001) (Table 2). These were 

consistent across fluoropyrimidine regimens (Supplementary Table 4). 

 

Secondary analyses 

Thirteen variants were associated with ORR (n=7) or OS (n=6) (Supplementary 

Table 5). In addition, 11 variants were associated with lethargy, 17 with 

nausea/vomiting, 13 with diarrhoea, 3 with stomatitis, 11 with HFS, 8 with infection 

and 8 with PN at 24-weeks (Supplementary Table 6). Upon rigorous correction for 

multiple testing, none of these associations remained statistically significant. 

 

DISCUSSION 

Fluoropyrimidines have several mechanisms of cytotoxicity including disruption of 

the dioxynucleotide pools from thymidylate synthase inhibition and the direct 

incorporation of fluoropyrimidines into DNA [16]. Platinums cause bulky adducts to 
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be introduced into DNA. The consequences of these agents are the mutagenic 

effects of base analogues or mispairs in DNA, the inhibition of replication and the 

fragmentation of DNA created in the cell’s attempts to repair these lesions. The base 

excision repair (BER), nucleotide excision repair, mismatch repair (MMR) and double 

strand break repair systems have all been suggested to modify response [16]. In our 

study, the most significant associations for response to therapy were with variants in 

DNA repair genes. EXO1 has exonuclease activity and plays a role in MMR and 

homologous recombination, and XRCC1 is involved in the repair of single-strand 

breaks following BER. Interestingly, others have also shown a predictive role for 

Arg399Gln in XRCC1 in response to oxaliplatin/5-FU treatment for aCRC [17] and in 

platinum based therapy of oesophageal cancers [18]. We also found that Asp317His 

in DCLRE1A was associated with PN, an oxaliplatin-associated toxicity of chronic 

peripheral nerve damage causing sensory ataxia and functional impairment [19]. 

DCLRE1A is involved in the repair of interstrand cross-links [20]. Together, these 

data support a key role for DNA repair in the pharmacogenetics of cancer therapy. 

 

Given that our study was an exploratory analysis, we provided uncorrected P-values; 

however, we also adjusted these for multiple testing by Bonferroni. Although no 

associations with common variants remained statistically significant after correction, 

it is noteworthy that the two common variants most significantly associated with 

toxicity, were both in DPYD. DPYD encodes DPD, the key enzyme for the 

catabolism of 5-FU, and reduced DPD activity is thought to cause severe 5-FU 

induced toxicities. Previous studies have clearly shown that two rare DPYD variants 

are associated with severe toxicity in patients receiving 5-FU [15,21,22] and our data 

support these observations. Interestingly, we noted that Asp949Val was associated 
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with increased infection with Xelox as compared to OxMdG. This difference warrants 

further investigation and may potentially relate to variants within the folinic acid 

metabolism pathway not studied herein. 

 

As yet, there is no consensus on the role of common DPYD variants in contributing 

to toxicity to therapy, but our data provide supportive evidence for their role. 

Cys29Arg (MAF=21%) has previously been associated with reduced toxicity (OR 0.5 

for gastrointestinal toxicity, 95% CI 0.2-1.0 [23], and, P=0.041 [24]) and our data 

support a protective role for this variant (OR 0.8, 95% CI 0.7-1.0). Interestingly, this 

variant shows significantly higher enzymatic activity as compared to wild type DPD 

when expressed in mammalian cells [25], supporting a model in which hyperactive 

forms of DPD reduce mean circulating levels of 5-FU by increased drug catabolism 

[25]. 

 

Val732Ile (MAF=4%) has previously been associated with increased fluorouracil-

related adverse events (OR 1.7, 95% CI 1.3-2.4) including hematologic adverse 

events (OR 1.9, 95% CI 1.4-2.6), and neutropenia (OR 1.8, 95% CI 1.3-2.4) in CRC 

patients who received standard adjuvant FOLFOX4 or FOLFOX4 in combination with 

cetuximab, and these findings were validated in aCRC patients receiving FOLFOX4 

[26]. Furthermore, others have associated Val732Ile with leucopenia (OR 8.2, 95% 

CI 2.4-27.3) and neutropenia (OR 2.8, 95% CI 1.0-7.5) [23]. Our data also support 

this variant having an association with toxicity. 
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In addition to these common coding region variants, a recent study has shown that 

common tagging variants outside of the DPYD coding sequence also affect 

capecitabine toxicity [7]. 

 

CONCLUSIONS 

It is now standard practice in many European cancer centres to test for a small 

number of rare genetic variants in DPYD before starting patients on 5FU or 

capecitabine [27,28]. Upfront genotyping, and dose adjustment, has been shown to 

be feasible and cost effective by reducing the financial burden of managing 

preventable toxicities [29]. Whilst this strategy is specific, it is far from being sensitive 

for predicting excessive toxicities [30]. Partial DPD deficiency which is not picked up 

by current genetic testing may be caused by the presence of other, more common, 

genetic variants. Our study provides supportive evidence for two such variants in a 

very large cohort of patients and adds weight to the body of published data 

suggesting the genetic profiling of both common and rare DPYD variants could now 

be used to guide accurate dosing of 5FU and capecitabine. This would require 

validation in a prospective trial and might need to be combined with tests assessing 

DPD function pre-therapeutically [31], or 5FU pharmacokinetics post-therapeutically 

[32]. 

 

APPENDICIES 

Appendix A. Supplementary data 
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Table 1 - Variants with P<0.05 for the primary endpoints 
 

Endpoint rs no. Gene Variant 
Endpoint 

+/- 
AA AB BB Χ2 (df), P-valuea OR (95% CI), P-valueb 

12-week 
response 

rs4149909 EXO1 Asn279Ser 
+ 983 75 0 

8.7 (1), 0.003 1.9 (1.2-2.9), 0.004 (d) 
- 758 31 0 

rs25487 XRCC1 Arg399Gln 
+ 119 490 450 

9.6 (2), 0.008 0.7 (0.5-0.9), 0.003 (r) 
- 127 357 304 

rs144848 BRCA2 Asn372His 
+ 572 409 78 

7.2 (2), 0.027 0.8 (0.7-1.0), 0.008 (a) 
- 386 323 80 

rs1047768 ERCC5 His46 
+ 368 456 196 

7.2 (2), 0.027 1.4 (1.1-1.8), 0.008 (r) 
- 282 362 108 

rs17714854 EME1 Phe63Leu 
+ 1024 34 0 

4.7 (1), 0.029 2.0 (1.0-3.8), 0.037 (d) 
- 776 13 0 

rs2273535 AURKA Phe31Ile 
+ 675 331 51 

6.5 (2), 0.039 0.8 (0.7-1.0), 0.011 (d) 
- 458 281 47 

rs1805388 LIG4 Thr9Ile 
+ 23 274 760 

6.3 (2), 0.042 0.8 (0.6-1.0), 0.014 (d) 
- 24 241 524 

rs2229109 ABCB1 Ser400Asn 
+ 0 97 961 

3.9 (1), 0.049 1.4 (1.0-2.0), 0.052 (d) 
- 0 53 736 

          

Any 
Toxicity 
(except 

PN) 

rs1801265 DPYDc Cys29Arg 
+ 506 252 28 

8.5 (2), 0.015 0.8 (0.7-1.0), 0.008 (a) 
- 834 465 81 

rs1801160 DPYDc Val732Ile 
+ 2 79 705 

7.4 (2), 0.025 1.6 (1.1-2.1), 0.006 (d) 
- 2 97 1282 

rs4986850 BRCA1d Asp397Asn 
+ 2 113 671 

7.3 (2), 0.026 0.2 (0.1-1.0), 0.046 (r) 
- 17 169 1195 

rs1979277 SHMT1 Leu474Phe 
+ 79 380 327 

6.3 (2), 0.043 1.2 (1.0-1.4), 0.053 (d) 
- 156 591 633 

rs5745459 MSH4 Tyr589Cys 
+ 764 22 0 

4.1(1), 0.044 1.9 (1.0-3.5), 0.043 (d) 
- 1360 21 0 
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rs12022378 DCLRE1B His61Tyr 
+ 31 229 526 

6.2 (2), 0.046 1.9 (1.1-3.2), 0.016 (r) 
- 29 391 961 

rs1799966 BRCA1d Ser430Gly 
+ 343 374 69 

6.1 (2), 0.047 0.7 (0.5-1.0), 0.044 (r) 
- 619 602 160 

rs1800566 NQO1 Pro187Ser 
+ 27 213 546 

6.0 (2), 0.049 0.8 (0.7-1.0), 0.042 (d) 
- 38 449 894 

          

PN 

rs3750898 DCLRE1A Asp317His 
+ 27 119 149 

8.6 (2), 0.014 1.3 (1.1-1.6), 0.003 (a) 
- 105 603 1016 

rs1800058 ATM Leu72Phe 
+ 0 18 277 

5.5 (1), 0.019 2.0 (1.1-3.4), 0.015 (d) 
- 0 52 1670 

rs3093921 PARP2 Asp222Gly 
+ 277 18 0 

4.9 (1), 0.027 1.9 (1.1-3.3), 0.020 (d) 
- 1668 56 0 

rs13181 ERCC2 Lys751Gln 
+ 107 153 35 

6.7 (2), 0.036 1.3 (1.0-1.6), 0.082 (d) 
- 722 752 249 

rs9352 CHAF1A Ala923Val 
+ 68 156 71 

6.1 (2), 0.048 1.4 (1.1-1.9), 0.016 (d) 
- 526 828 370 

 

Results shown using a co-dominant modela and, odds ratios (ORs) and 95% confidence intervals using the best model that fitted 
the datab [models for (d) = dominant, (r) = recessive, and, (a) = additive, alleles]. P-values uncorrected for multiple testing; none 
were significant after Bonferroni correction. For endpoints, + = patients that responded, had any toxicity or PN, - = patients that did 
not respond or did not have any toxicity or PN. The DPYD variantsc Cys29Arg and Val732Ile were in low LD (r2=0.0, D’=0.5) and 
therefore may represent independent associations. The BRCA1 variantsd Asp397Asn and Ser430Gly variants were in high LD 
(r2=0.2, D’=1) so likely to be associated with the same signal. The common allele (A/B) encodes the wild type amino acid, so for 
Asn279Ser the A allele encodes Asn, for Arg399Gln the B allele encodes Arg, for Cys29Arg the A allele encodes Cys and for 
Val732Ile the B allele encodes Val. PN – Peripheral neuropathy. 
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Table 2 – Profiling of DPYD and associations with toxicity 

 

Variant(s) 
& rs no. 

Presence (+) 
or absence (-) 

of toxicity 

Any 12-week 
toxicity 

Specific toxicity 

Neutropenia Lethargy Nausea & vomiting Diarrhoea Stomatitis HFS Infection 

  AA AB BB AA AB BB AA AB BB AA AB BB AA AB BB AA AB BB AA AB BB AA AB BB 

Cys29Arg 
rs1801265 

+ 506 252 28 178 92 12 435 218 31 251 127 19 331 164 20 142 63 9 120 58 8 45 20 2 

- 834 465 81 1,061 576 88 804 450 69 988 541 81 908 504 80 1,097 605 91 1,119 610 92 1,041 575 86 

χ2 (d.f.), P 8.5 (2), 0.015 1.1 (2), 0.57 1.5 (2), 0.46 0.3 (2), 0.87 3.2 (2), 0.20 3.8 (2), 0.15 1.0 (2), 0.60 2.3 (2), 0.32 

OR (95% CI), 
P 

0.8 (0.7-1.0), 0.008 - - - - - - - 

 

Met166Val 
rs2297595 

+ 655 122 9 239 41 2 567 114 3 330 67 1 426 83 6 175 37 2 148 37 1 54 13 0 

- 1,134 237 9 1,422 289 14 1,094 216 13 1,331 263 15 1,235 247 10 1,486 293 14 1,513 293 15 1,398 290 0 

χ2 (d.f.), P 2.0 (2), 0.36 1.3 (2), 0.52 1.3 (2), 0.53 2.0 (2), 0.37 1.2 (2), 0.55 0.0 (2), 0.98 0.9 (2), 0.64 0.0 (1), 0.85 

OR (95% CI), 
P 

- - - - - - - - 

 

Lys259Glu 
rs45589337 

+ 753 14 0 256 7 0 646 13 0 382 5 0 484 11 0 196 1 0 178 2 0 60 1 0 

- 1,315 29 0 1,654 34 0 1,264 28 0 1,528 36 0 1,426 30 0 1,714 40 0 1,732 39 0 1,634 35 0 

χ2 (d.f.), P 0.6 (1), 0.43 0.4 (1), 0.53 0.0 (1), 0.94 1.5 (1), 0.22 0.0 (1), 0.91 4.4 (1), 0.036 1.1 (1), 0.29 0.0 (1), 0.92 

OR (95% CI), 
P 

- - - - - 0.2 (0.0-1.4), 0.11 - - 

 

Ser534Asn 
rs1801158 

+ 725 39 0 255 9 0 639 19 0 375 12 0 473 20 0 191 7 0 173 8 0 61 1 0 

- 1,298 43 0 1,619 64 0 1,235 54 0 1,499 61 0 1,401 53 0 1,683 66 0 1,701 65 0 1,599 65 0 

χ2 (d.f.), P 4.4 (1), 0.036 0.1 (1), 0.79 2.2 (1), 0.14 0.6 (1), 0.43 0.1 (1), 0.75 0.0 (1), 0.95 0.3 (1), 0.58 1.0 (1), 0.31 

OR (95% CI), 
P 

1.7 (1.1-2.6), 0.026 - - - - - - - 

 

Ile543Val 
rs1801159 

+ 491 273 22 165 109 8 435 229 19 253 133 12 339 161 14 140 71 3 124 58 4 45 20 2 

- 902 434 44 1,129 543 53 859 423 42 1,041 519 49 955 491 47 1,154 581 58 1,170 594 57 1,115 536 51 

χ2 (d.f.), P 2.6 (2), 0.27 5.1 (2), 0.08 0.9 (2), 0.63 0.4 (2), 0.81 0.3 (2), 0.85 2.0 (2), 0.37 0.4 (2), 0.83 0.1 (2), 0.97 

OR (95% CI), 
P 

- - - - - - - - 

 

Val732Ile 
rs1801160 

+ 2 79 705 1 32 249 0 62 622 1 41 356 1 50 464 0 23 191 0 23 163 1 10 56 

- 2 97 1,282 3 130 1,593 0 100 
1,22

0 
3 121 

1,48
6 

3 112 
1,37

8 
0 139 

1,65
1 

0 139 
1,67

9 
3 132 

1,56
8 

χ2 (d.f.), P 7.4 (2), 0.025 7.5 (2), 0.023 1.1 (1), 0.29 2.7 (2), 0.27 1.9 (2), 0.39 2.0 (1), 0.16 2.6 (1), 0.11 3.5 (2), 0.17 

OR (95% CI), 
P 

1.6 (1.1-2.1), 0.006 1.9 (1.2-3.1), 0.005 - - - - - - 
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Asp949Val 
rs67376798 

+ 750 16 0 255 8 0 651 10 0 377 12 0 480 16 0 196 1 0 180 1 0 58 3 0 

- 1,336 14 0 1,674 19 0 1,278 17 0 1,552 15 0 1,449 11 0 1,733 26 0 1,749 26 0 1,654 19 0 

χ2 (d.f.), P 4.3 (1), 0.038 5.0 (1), 0.026 0.1 (1), 0.77 8.6 (1), 0.003 14.7 (1), <0.001 1.5 (1), 0.22 1.2 (1), 0.28 4.0 (1), 0.046 

OR (95% CI), 
P 

2.2 (1.1-4.5), 0.038 3.2 (1.2-8.2), 0.019 - 3.4 (1.5-7.3), 0.002 4.6 (2.1-10.1), <0.001 - - 5.5 (1.3-24.2), 0.024 

 

IVS14+1 
G>A 

rs3918290 

+ 753 12 0 258 7 0 644 14 0 380 6 0 482 11 0 190 7 0 174 5 0 56 6 0 

- 1,329 11 0 1,669 12 0 1,283 5 0 1,547 13 0 1,445 8 0 1,737 12 0 1,753 14 0 1,654 9 0 

χ2 (d.f.), P 2.2 (1), 0.13 3.5 (1), 0.06 11.6 (1), <0.001 1.7 (1), 0.19 9.6 (1), 0.002 7.3 (1), 0.007 4.5 (1), 0.034 15.6 (1), <0.001 

OR (95% CI), 
P 

- - 5.3 (1.9-14.9), 0.002 - 4.4 (1.7-11.0), 0.002 4.6 (1.7-12.6), 0.003 3.8 (1.2- 11.8), 0.021 19.2 (5.0-73.8), <0.001 

 
Results shown using a co-dominant model and, for those that were significant (shaded & underneath), odds ratios and 95% confidence intervals 
using the best model that fitted the data (all were dominant apart from Cys29Arg which was additive). P-values uncorrected for multiple testing. 
Neither Lys259Glu nor Ser534Asn significantly increased 5FU-related toxicities (Ser534Asn was associated with skin rash). The common allele 
(A/B) encodes the wild type amino acid. 
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LEGEND TO FIGURE 

 

CONSORT diagram of the study design and analyses. Shown are the numbers of 

variants analysed from genes that were likely to play a role in the metabolic or DNA 

damage repair pathways associated with the agents used in COIN and COIN-B, 

together with the numbers of patients studied, and the primary and secondary 

endpoints. MAF, minor allele frequency; pts, patients; PN, peripheral neuropathy; 

OS, overall survival; ORR, overall response rate. 


