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Abstract. Automatic detection of lung lesions from computed tomog-
raphy (CT) and positron emission tomography (PET) is an important
task in lung cancer diagnosis. While CT scans make it possible to retrieve
structural information, PET images reveal the functional aspects of the
tissue, hence combined PET/CT imagery allows for detecting metaboli-
cally active lesions. In this paper, we explore how to exploit deep convo-
lutional neural networks to identify the active tumour tissue exclusively
from CT scans, which, to the best of our knowledge, has not been at-
tempted yet. Our experimental results are very encouraging and they
clearly indicate the possibility of detecting lesions with high glucose up-
take, which could increase the utility of CT in lung cancer diagnosis.
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1 Introduction

Cancer is one of the main causes of death worldwide, with 1.69 out of 8.8 million
deaths caused by lung cancer in 2015. Therefore, improving lung cancer diagnos-
tics from medical images is crucial, either as a part of the screening process or at a
later stage to assess the effectiveness of treatment. An important, yet challenging,
task is to differentiate between benign and malignant lesions. Some of the useful
features concerned with the structure, shape and boundary smoothness can be
observed relying on structural imaging (such as computed tomography—CT or
magnetic resonance imaging—MRI). However, in many cases the physiological
activity of the tissue must be captured to make this differentiation, which can be
achieved with functional imaging, such as positron emission tomography (PET),
functional MRI or dynamic contrast-enhanced imaging.

PET imaging allows for measuring the glucose uptake, which indicates the
metabolism of the tissue to identify abnormally active lesions. In lung cancer
diagnostics, measuring the lesion’s activity plays a key role in differentiating
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between benign and malignant tumours or nodules. This provides functional
information, however as PET images are of poor spatial resolution and they do
not reveal much of the anatomical details, they are usually complemented with
the co-registered CT scans. This is necessary, as the high-uptake regions (hot
spots in PET) include many false positives (FPs) which can be easily verified
based on the anatomy and structure (e.g., the heart is usually a hot spot).

1.1 Contribution

Taking into account that different type of information is acquired with CT and
PET imagery, these modalities are often fused to improve the diagnosis. In the
research reported here, we explore the possibility of detecting the high-uptake
lesions exclusively from CT scans. Identifying active tumour tissue from CT
would be very useful as this is an important indicator of disease severity and
response. To the best of our knowledge, there is no reported work on this problem
and PET images are considered indispensable here.

Our contribution consists in proposing a deep convolutional neural network
(CNN) to detect and segment the high-uptake lesions from CT scans. Deep
neural networks (DNNs) [14] have been already successfully applied to solve a
number of computer vision problems, including medical imaging challenges [15],
and in many cases they reach beyond human performance. We validated the out-
come obtained from CT scans using our CNN against the annotations performed
by professional radiologists, asked to locate the high-uptake regions based on CT
and PET data. Although the detection scores are below the scores obtained us-
ing the combined CT and PET modality, they are highly encouraging and they
suggest that DNNs are capable of identifying high-uptake lesions from structural
images. Finally, we compared the detection results of the CNN with those re-
ported by our recent PET/CT lung lesion detection algorithm (LUNGCX) [17],
which benefits from the information extracted from both modalities.

1.2 Paper Structure

This paper is structured as follows. Section 2 reviews the literature. The proposed
CNN is described in Section 3 and the obtained experimental results are reported
and discussed in Section 4. The paper is concluded in Section 5.

2 Related Literature

Detecting lung lesions (including nodules and tumours) is a deeply investigated
problem of medical image analysis and there are numerous methods which oper-
ate from different image modalities. Here, we briefly outline the state of the art
on detecting and segmenting lung lesions relying on CT and PET/CT images.

The two general tasks concerned with analysis of lung CT scans are: (i) detec-
tion of lung nodules aimed at early diagnosis of lung cancer and (ii) segmentation
of the lesion region [11], helpful in differentiating between benign and malignant
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lesions, computer-aided surgery or planning radiation treatment. Clinical aspects
of detecting lung nodules from CT scans are thoroughly discussed in a recently
published survey [1]. Sensitivity of state-of-the-art methods vary significantly,
spanning between 80% [22] and 98% [5] at several FPs per whole CT scan. This
allows for improving the performance of inexperienced radiologists, and in some
cases increases the detection sensitivity when used by experienced radiologists.

Most of the existing lung nodule detectors determine a set of candidates, i.e.,
the regions of dense tissue inside the lungs, which are further verified to filter out
the FPs. In [5], the nodule candidates are extracted following a number of simple
rules and preliminarily verified in each 2D slice. Subsequently, the candidates are
combined in 3D to extract textural features, and classified using support vector
machines (SVMs). A similar approach, employing shape descriptors, was pro-
posed in [20]—all of the nodules whose size is at least 10 mm were reported to
be correctly detected at 4 FPs per scan. Recently, a deep CNN with 5 convo-
lutional and 3 max pooling layers was applied to detect lung nodules [6]. The
reported sensitivity is 78.9% at 20 FPs per scan without using any FP reduction.

The differential diagnosis of malignant from benign lesions is difficult from
CT scans, if a tumour is built of soft tissue without calcifications, as the metabolic
information is not known to be manifested in CT scans. PET imaging allows
for measuring the concentration of biologically active molecules (usually fluo-
rodeoxyglucose, FDG) marked with positron-emitting isotopes. Hence, the high-
uptake regions can be identified to indicate the tissue of high metabolism, which
is a well-known marker in cancer diagnosis. The PET intensities are converted
into standardised uptake values [3] and verified taking into account the anatomy,
extracted from CT scans [7, 17] or MRI [19]. The malignant lesions usually are
seen as hot spots in PET due to increased metabolism of a tumour, but the hot
spots do also appear in the healthy tissue (e.g., in the heart). In [7], the entire-
body CT scan is divided into several sections using hidden Markov model, which
subsequently makes it possible to classify each hot spot as normal or abnormal.

Not only are the CT scans used to verify the hot spots based on human body
atlas, but they also allow for increasing the precision of delineating the lesions.
The hot spots extracted from PET are treated as seeds for image segmentation
performed with numerous techniques, including graph cuts [2], Markov random
fields [8] or random walks [10]. The information extracted from PET may also
be used during segmentation [25]. In [4], local maxima and saddle points are
detected in a PET image to create a spatial-topological distance map, from which
the tumours are segmented. In [23], the nodules are detected independently in
both modalities—as hot spots in PET and using active contour filters in CT
scans, and then a CNN with 3 convolutional layers is applied to extract the
features of each candidate, which are classified with an SVM. Adding the CNN-
based verification allowed for reducing the number of FPs from 72.8 to 4.9 per
case, while the sensitivity dropped from 97.2% to 90.1%.

Deep CNNs have been successfully used for detecting and segmenting lung
lesions both from CT and PET/CT modalities [6, 23], but we have not encoun-
tered any reported attempts to bridge the gap between the results obtained from
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CT scans alone and from the combined PET/CT modalities. Since the deep net-
works allow for reaching beyond human performance in certain computer vision
tasks, they may be helpful in detecting potentially high FDG uptake lesions from
CT scans, improving the utility of CT in lung cancer diagnosis.

3 Detecting High-Uptake Lesions Using a CNN

Our algorithm for detecting active lesions is outlined in Fig. 1. At first, the 16-bit
pixel values are normalised to the range of 〈0, 1〉 and the CT scan is split into 3D
patches of size 5× 75× 75 (2D patches of size 75× 75 pixels are retrieved from
5 subsequent slices, as shown in Fig. 2). Such patches are used to train our deep
CNN and afterwards each patch is classified by the trained network as lesion
or background. For each patch, the CNN returns two responses (rl and rb) that
express the similarity of the patch central pixel to the lesion and background
classes, respectively. From these responses, the lesion similarity map is assembled
to determine the lesion candidates, which are subject to two verification steps,
based on (i) the maximal similarity within a blob and (ii) the blob’s area.

Network Architecture. The proposed network, whose architecture is pre-
sented in Fig. 3, is composed of two convolutional layers followed by three classi-
cal fully connected layers. According to [21], for small input images the pooling
may be skipped to increase the performance, therefore there are no pooling lay-
ers in our CNN. Output of every hidden layer is adjusted by a rectified linear
unit (ReLU) [16] with an activation function f(x) = max(0, x). The main task
of the first convolutional layer is to extract the low-level features from adjacent
slices using a bank of 16 filters of the size 5× 9× 9 pixels, applied with a stride
of 2 pixels (the size of each patch is reduced from 5 × 75 × 75 to 34 × 34). 3D

CT scan Normalised data 3D patches3D patches3D patches Classification
using deep CNN

Classification
using deep CNN

Detection mapResponse-based
verification

Size-based
verification

Detected
high-uptake

lesions

Fig. 1. Flowchart of the proposed DNN-based high-uptake lesions detection.
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Fig. 2. Examples of 3D patches extracted for the i-th slice.
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Fig. 3. Architecture of the proposed deep CNN.

patches are transformed into 2D ones of reduced dimensionality here. The sec-
ond convolutional layer with the bank of 48 kernels of size 7× 7 with a stride of
3 extracts higher-order features. The fully connected layers are a classical neural
network with dropout (its probability is PD) which classifies the input vector.

Handling Extremely Imbalanced Data Sets. Training classification engines
from extremely imbalanced data sets is a vital research topic, since the skewed
distributions of examples may easily bias the classifiers [13]. This problem is com-
monly addressed in deep learning with data augmentation and undersampling—
these procedures are usually executed before the training, to learn the CNN using
a new, potentially “balanced” set. Hence the training process is often unaware
of the underlying data characteristics and cannot adapt to retrieve a better-
performing model. This was thoroughly discussed in a very recent work [24].

In our approach, we dynamically balance the data batches (each contains N
samples) during the CNN training. After every I epochs of the CNN training,
the classification accuracy η is quantified for each class separately (the validation
set is balanced, and encompasses all minority-class examples, along with under-
sampled examples from the other class). Consequently, the lower η retrieved for
a given class, the higher probability of including its samples in the batch.

Illustrative Examples of CNN Filters. Several examples of the learned
filters (corresponding to the architecture presented in Fig. 3), along with the
filtered images, are presented in Fig. 4 (the first layer responses are visualised
before applying ReLU, while those for the second layer—after ReLU). For the
first layer, each filter is composed of five 2D filters convolved with subsequent
CT slices. It can be seen that these filters do not resemble the wavelets often
reported in the literature, and they are rather “noisy”—possibly, some textural
features are extracted in this way. Interestingly, the filters at the second layer are
smoother and they are focused on extracting higher-order features, as expected.
The extracted features in the presented example allow for correct segmentation
of an active lesion (yellow region in the detection outcome indicates true pos-
itives, while the blue—false negatives). We have observed that nearly half of
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Input image

Filters alongside the obtained responses (first layer)

Filters alongside the obtained responses (second layer) Detection outcome

Fig. 4. Examples of filtered images obtained at the first and second convolutional layer.

the learned filters are uniformly gray when visualised, hence they average the
signal—presence of such “dead” filters may mean that there are too many of
them in the layer or that they should be of smaller dimensions [27]. Addressing
that problem may improve our approach in the future.

Analysis of the Network Response. From the pixel-wise responses rl and
rb, we compute the lesion similarity (R = rl − rb) to create the lesion detection
map. The pixels with non-negative similarities (R > 0) are grouped spatially
and each consistent region is considered a lesion candidate. These candidates
are verified using two thresholds TR and TS , imposed on the blob’s maximum
similarity (Rmax) and its area in pixels (S), respectively. If Rmax > TR and
S > TS , then the blob is labeled as the detected lesion.

4 Experimental Results

4.1 Experimental Setup

We validated our algorithm using two data sets, namely (i) our set with 90 CT
scans of different patients (this includes the LUNGCX subset—44 scans used
in [17]) and (ii) the LOLA set7 with 55 CT scans without active lesions. For every
study in our set (with active and non-active lesions), a single slice presenting
the largest section of an active lesion was selected and manually segmented by
an experienced radiologist based on both PET and CT (our algorithm does not
exploit PET images). This set is extremely imbalanced—there are 7.3 ·104 pixels
of active lesions, and 2.4 · 107 pixels of other tissues and background.

The algorithms were implemented in C++ with the Caffe framework [9] and
validated on a computer with an Intel Xeon E5-2698 v3 processor (40M Cache,
2.30 GHz) with 128GB RAM and NVIDIA Tesla K80 GPU 24GB DDR5. The
CNN internals were tuned to PD = 0.5, N = 256 and I = 500, and we use the
ADAM optimizer [12]. As there are no reported attempts to detect high-uptake
lesions from CT, we compare our method with LUNGCX [17], exploiting the
combined PET/CT modality. The reported results were obtained with 10-fold

7 LOLA set is available at https://lola11.grand-challenge.org.



Detecting High-Uptake Lesions from CT Using Deep Learning 7

cross-validation. The LOLA set was processed 10× for CNN trained within each
fold using our data. Processing a single slice consumes 135 s on average.

4.2 Analysis and Discussion

Quantitative Analysis. Table 1 presents the obtained detection scores. For
our data set, we report precision and recall for the training and test sets (includ-
ing the LUNGCX subset), averaged over 10 folds (entire slices are segmented).
As the LOLA scans do not include active lesions, we only report the FP rate (i.e.,
the percentage of images with FP lesions). We show the scores obtained (i) with-
out any verification (R > 0), (ii) after response-based verification, (iii) with
size-based verification, and (iv) after full verification. Clearly, the verification
is critical, as it drastically decreases the FPs for LOLA (from 90.14% to 6.6%)
and significantly improves the precision. The F-score differences are statistically
important for all data sets at p < .01 (two-tailed Wilcoxon test). We also report
the recall for four ranges of lesion size. Although the verification decreases the
recall, mainly small lesions are affected—while this is obvious for size-based ver-
ification, the smaller active lesions also render lower R, hence their vulnerability
to the response-based cutoff.

In Figs. 5 and 6, we show the precision-recall curves obtained by varying the
thresholds TR and TS . The curves for the training set differ much across the folds,
so increasing the amount of training data could be beneficial. For the test set, we
apply either single or both thresholds (for each case only one threshold is being
changed, while the other remains fixed), hence two curves for each case. The
fixed threshold values were found independently for each fold, so as to obtain
equal precision and recall for the training set, and these values were also applied
to obtain the scores reported earlier in Table 1. While applying TR after TS
improves the results (Fig. 6), the latter does not render any improvement, if
the former is applied (Fig. 5). Overall, we use TR and TS , as we observed (from
LOLA) that TS is quite effective in reducing FPs for lungs without active lesions.

Table 1. Precision and recall obtained for our data set and FP rate for the LOLA set.

Recall for lesions of size (in mm) W/out active
Verif. Precision Recall < 15 (15, 25〉 (25, 40〉 > 40 FP rate (%)

Training set:
None .278± .102 1± .000 1± .000 1± .000 1± .000 1± .000 —
Resp. .905± .052 .911± .050 .747± .115 .956± .053 .971± .060 1± .000 —
Size .814± .060 .840± .074 .442± .242 .984± .034 1± .000 1± .000 —
Full .925± .038 .808± .078 .379± .213 .951± .065 .971± .060 1± .000 —

Test set (full):
None .187± .072 .870± .064 .574± .259 .917± .171 1± .000 .981± .052 90.14± 8.14
Resp. .741± .192 .610± .170 .269± .232 .758± .342 .622± .171 .867± .180 20.42± 9.68
Size .589± .130 .680± .166 .315± .196 .758± .259 .811± .241 .944± .111 26.04± 9.11
Full .789± .179 .570± .179 .176± .173 .708± .340 .622± .171 .852± .183 6.60± 3.52

Test set (LUNGCX subset):
None .261± .099 1± .000 — 1± .000 1± .000 1± .000 90.14± 8.14
Resp. .852± .135 .677± .272 — .700± .400 .593± .284 .852± .319 20.42± 9.68
Size .779± .160 .872± .137 — .700± .400 .824± .210 1± .000 26.04± 9.11
Full .935± .134 .677± .272 — .700± .400 .593± .284 .852± .319 6.60± 3.52
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Qualitative Analysis. Fig. 7 shows several examples of correct (Fig. 7a–e)
and incorrect (Fig. 7f–i) detection. A very interesting example is presented in
Fig. 7c—although the lesion is not very dense, our CNN identified it correctly
and managed to differentiate it from another non-active lesion, which is present
in the image. In Fig. 7f, the lesion was not detected and there has been one
FP region found—naturally, we consider such cases as detection errors. Fig. 7g
and (h) show the outcome before and after the verification—several FPs were
eliminated from (g), but the correctly detected lesion in (g) was also rejected.

Comparison with LUNGCX. We compared the proposed CNN classifier
with our active lesion detection algorithm (LUNGCX) which operates on both
PET and CT modalities [17]. In LUNGCX, the co-registered CT and PET series
are identified at first, and the lungs (base and apex) are located from CT in
the pixel-intensity histogram analysis. Then, for each lung-containing slice, we
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Fig. 5. Precision-recall curves obtained by varying the response threshold TR.
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identify the lung tissue using thresholding, alongside its convex hull, as tumours
may be associated with the lung wall or mediastinum. The active lesions (located
only within the convex hulls of lungs) are extracted from the PET images [26].

Although the LUNGCX algorithm successfully identified active lesions in 41
(out of 44 patients in the LUNGCX subset) cases (93%), the example visualisa-
tions gathered in Fig. 8 show that the most avid PET regions are very patient-
specific. In Fig. 8, we render the example of the problematic uptake in which
the most active regions were found in the kidneys (Fig. 8d–e). Here, our CNN
detected the active lesion correctly (Fig. 8f) and did not report any lesions for
these high-uptake kidneys. The numerical results (Table 1) reveal that our CNN
can produce results comparable with LUNGCX, and the analysis of the network
response (see the Size variant) greatly improves the CNN recall measures.

5 Conclusions and Outlook

In this paper, we reported our attempt to employ deep learning for detecting
high-uptake lesions from CT images, which is a challenging task, as it requires ex-
traction of functional information from structural imaging. The obtained detec-

a) b) c)

d) e) f)

g) h) i)

Fig. 7. Examples of correct (a–e) and incorrect (f–i) active lesion detection (yellow:
true positives, red: false positives, blue: false negatives).
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a) b) c) d) e) f)

Fig. 8. Examples of active lesion detection from PET/CT with LUNGCX (a, b, d, e)
and from CT using the proposed algorithm (c, f).

tion scores, though worse than those retrieved from the combined PET/CT [17],
are encouraging and they indicate that our algorithm correctly differentiates be-
tween active and non-active lesions. It is clear from the experimental results that
methods utilising deep CNNs can increase the CT diagnostic capacity.

Our ongoing research is aimed at improving the visualisation aspects to bet-
ter understand which features are learned by the CNN and which image regions
activate them, alongside comparing our method with other state-of-the-art tech-
niques on larger data sets. Furthermore, we intend to focus on detecting small
active lesions, being an important clinical goal, especially from low-dose CT.
We are on the way to employ the existing methods for CT-based lesion detec-
tion (also exploiting the anatomical information) to pre-process the scans and
narrow down the search in the pulmonary region. Also, we work on applying
incrementally increased CNN architectures in our framework [18]. Overall, while
the proposed method could be improved on many ways, it is an important step
towards retrieving information on lesion activity from CT.

Acknowledgments. This work was supported by the National Centre for Re-
search and Development under the grant: POIR.01.02.00-00-0030/15.
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5. Demir, Ö., Çamurcu, A.Y.: Computer-aided detection of lung nodules using
outer surface features. Bio-Medical Materials and Engineering 26(s1), S1213–S1222
(2015)

6. Golan, R., Jacob, C., Denzinger, J.: Lung nodule detection in ct images using deep
convolutional neural networks. In: Proc. IJCNN. pp. 243–250 (2016)

7. Guan, H., Kubota, T., Huang, X., Zhou, X.S., Turk, M.: Automatic hot spot
detection and segmentation in whole body FDG-PET images. In: Proc. IEEE ICIP.
pp. 85–88 (2006)



Detecting High-Uptake Lesions from CT Using Deep Learning 11

8. Guo, Y., Feng, Y., Sun, J., Zhang, N., Lin, W., Sa, Y., Wang, P.: Automatic lung
tumor segmentation on PET/CT images using fuzzy Markov random field model.
Computational and Mathematical Methods in Medicine 2014 (2014)

9. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014)

10. Ju, W., Xiang, D., Zhang, B., Wang, L., Kopriva, I., Chen, X.: Random walk and
graph cut for co-segmentation of lung tumor on pet-ct images. IEEE Trans. on
Image Processing 24(12), 5854–5867 (2015)

11. Keshani, M., Azimifar, Z., Tajeripour, F., Boostani, R.: Lung nodule segmentation
and recognition using SVM classifier and active contour modeling: A complete
intelligent system. Computers in Biology and Medicine 43(4), 287–300 (2013)

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

13. Krawczyk, B.: Learning from imbalanced data: open challenges and future direc-
tions. Progress in Artificial Intelligence 5(4), 221–232 (2016)

14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

15. Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural net-
works. IEEE Trans. on Medical Imaging 35(11), 2369–2380 (2016)

16. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann ma-
chines. Proc. ICML pp. 807–814 (2010)

17. Nalepa, J., Szymanek, J., McQuaid, S., Endozo, R., Prakash, V., Ganeshan, B.,
Menys, A., Hayball, M., et al.: PET/CT in lung cancer: An automated imaging
tool for decision support. In: Proc. RSNA. pp. 1–2 (2016)

18. Ribalta Lorenzo, P., Nalepa, J., Kawulok, M., Sanchez Ramos, L., Ranilla Pas-
tor, J.: Particle swarm optimization for hyper-parameter selection in deep neural
networks. In: Proc. GECCO. pp. 1–8. ACM, USA (2017)

19. Rundo, L., Stefano, A., Militello, C., et al.: A fully automatic approach for multi-
modal pet and mr image segmentation in gamma knife treatment planning. Com-
puter Methods and Programs in Biomedicine (2017)

20. Setio, A.A., Jacobs, C., Gelderblom, J., Ginneken, B.: Automatic detection of large
pulmonary solid nodules in thoracic CT. Med. Phys. 42(10), 5642–5653 (2015)

21. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: The all convolutional net. ECCV 2014 arXiv preprint (2014)

22. Teramoto, A., Fujita, H.: Fast lung nodule detection in chest CT images using
cylindrical nodule-enhancement filter. Int. J. of Comp. Assisted Radiol. and Surg.
8(2), 193–205 (2013)

23. Teramoto, A., Fujita, H., Yamamuro, O., Tamaki, T.: Automated detection of
pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a
convolutional neural network technique. Medical Physics 43(6), 2821–2827 (2016)

24. Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., Kennedy, P.J.: Training deep neural
networks on imbalanced data sets. In: Proc. IJCNN. pp. 4368–4374 (2016)

25. Wang, X., Ballangan, C., Cui, H., Fulham, M., Eberl, S., Yin, Y., Feng, D.: Lung
tumor delineation based on novel tumor-background likelihood models in PET-CT
images. IEEE Trans. on Nuclear Science 61(1), 218–224 (2014)

26. Win, T., Miles, K.A., Janes, S.M., et al.: Tumor heterogeneity and permeability
as measured on the CT component of PET/CT predict survival in patients with
non–small cell lung cancer. Clinical Cancer Research 19(13), 3591–3599 (2013)

27. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: European conference on computer vision. pp. 818–833. Springer (2014)


