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Abstract  

Aim: To present a flexible model for repeated measures longitudinal growth data within 

individuals that allows trends over time to incorporate individual specific random effects. 

These may reflect the timing of growth events, and characterise within-individual variability 

which can be modelled as a function of age. 

Subjects and methods: A Bayesian model is developed that includes random effects for the 

mean growth function, an individual age-alignment random effect, and random effects for 

the within-individual variance function. This model is applied to data on boys’ heights from 

the Edinburgh longitudinal growth study and to repeated weight measurements of a sample 

of pregnant women in the Avon Longitudinal Study of Parents and Children (ALSPAC) 

cohort. 

Results: The mean age at which growth curves for individual boys are aligned is 11.4 years, 

corresponding to the mean ‘take off’ age for pubertal growth. The within-individual 

variance (standard deviation) is found to decrease from 0.24 cm2  (0.50 cm) at 9 years for 

the ‘average’ boy to 0.07 cm2 (0.25 cm) at 16 years. Change in weight during pregnancy can 

be characterised by regression splines with random effects that include a large woman-

specific random effect for the within-individual variation, which is also correlated with 

overall weight and weight gain. 

Conclusions: The proposed model provides a useful extension to existing approaches, 

allowing considerable flexibility in describing within and between individual differences in 

growth patterns. 
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1. Introduction 

In modelling growth and developmental change over time the data structure typically 

consists of repeated measures within individuals and a suitable relationship, for example 

based upon polynomials or smoothing splines, relates the serial measurements to age. 

Random effect or multilevel statistical models are commonly used to fit such data, where the 

coefficients, in for example a polynomial age function, vary across individuals1. A particular 

concern in the development of such models has been to make them more general and hence 

more flexible and able to describe change over time more realistically. One recent addition 

is the use of smooth spline functions to describe growth while allowing each individual to 

have their own growth ‘origin2.  This has been extended3 to the multivariate case where 

several measurements are modelled simultaneously. Another extension is to allow the 

residual, within individual, variation to be modelled as a function of time and other 

covariates, where the parameters of this model component may be individual-specific and 

allowed to correlate with other individual random effects4,5. The present paper brings 

together these developments within a single framework and applies the model to data both 

on adolescent height growth and changes in weight during pregnancy.  

 

In the standard, especially linear, modelling framework, a constant (homoscedastic) residual 

variance is generally assumed. When such models are extended to multilevel models, 

including random effect growth curve models, to account for clustering of the repeated 

measures (level 1) within individuals (level 2), this assumption becomes an assumption of a 

constant level 1 variance. In many scenarios this assumption is violated and thus models that 

account for heteroscedasticity are required and these are common in the literature. In some 

cases log or similar transformations of the response variable are used3, but in many cases 

there is substantive interest in the variance itself so that it will generally be more satisfactory 
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to model the variance explicitly. For example, the within-individual occasion-to-occasion 

variation in variables such as weight or blood pressure may be related to behavioural or 

clinical factors.  

 

More explicitly an extension in the multilevel setting is to allow the variability at level 1 

itself to vary across level 2 units through the addition of random effects to an explicit sub-

model for the level 1 variance. To this end Hedeker et al.4 consider variance component 

models where the logarithm of the level 1 variance is a linear function of explanatory 

variables with an additional simple random effect that can vary across level 2 units and is 

allowed to correlate with the conventional level 2 random effects describing between-

individual variation in growth patterns. They show how to obtain maximum likelihood 

estimates and implement this in the stand-alone MIXREGLS software6 which is also 

accessible from within Stata7. Lee and Nelder8 also consider variance component models 

that allow a single random effect in the variance function, but do not allow this to correlate 

with the level 2 random effects. Rast et al.9 present a Bayesian version of this model 

extended to allow random coefficients in both the mean and variance function and where the 

two sets of random effects are allowed to covary. They develop their model in the context of 

a repeated measures data set. Leckie et al.7 and Brunton-Smith et al.10 consider similar 

models in the context of cross sectional two level and cross-classified data again fitting their 

models using Markov Chain Monte Carlo (MCMC) methods. 

 

In the present paper we likewise consider a general model for the level 1 variance that 

allows the inclusion of several random coefficients varying at level 2 (that of the individual), 

in two-level repeated measures growth curve models. These random coefficients are also 

allowed to covary with conventional level 2 random coefficients of age and potentially other 
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explanatory variables in the model predicting growth. The model is developed within the 

general framework of 2-level repeated measures data, but is not limited to such models. The 

model incorporates the case where there may be further level 2 random effects within the 

definition of a predictor variable. 

 One application of this model is to allow each individual to have their own ‘origin’ for age. 

The model then corresponds to the SITAR (Superimposition by Translation and Rotation) 

model2 for the case of adolescent growth in height where the timing of adolescent growth 

varies across individuals so that chronological age can be considered as a time-shifted proxy 

for an underlying ‘maturity’. Another example might be in studies where previously 

measured characteristics, such as attitudes, are individual level predictors and where the 

institutions, such as schools or hospitals, within which such characteristics were assessed 

have mean differences that are assumed directly to influence the individual characteristics. 

Including a random effect varying at the institution level would then be expected to provide 

a better specified model and have an interpretation of substantive interest. 

Another application of our model is where individuals exhibit extremely small or extremely 

large occasion to occasion, within-individual, variability around an overall growth 

trajectory. Thus, events such as repeated episodes of illness may be associated with patterns 

of normal growth followed by periods where growth shows less variability, and where the 

sensitivity of growth to such events may vary across individuals.  In such cases, allowing the 

within individual variation to vary across individuals as a function of covariates such as 

illness, will allow the detection of such effects that themselves may be associated with later 

life events. In the following sections we set out the formal model followed by applications. 
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2. A two level model with complex level 1 variation 

We consider first the extension of a standard two level random coefficients model to contain 

both fixed and random effects within the level 1 variance function. . Let 𝑦𝑖𝑗 denote the 

response at occasion 𝑖 (𝑖 = 1,… , 𝑛𝑗) for individual 𝑗 (𝑗 = 1,… , 𝐽). The model can be written 

as follows: 

 

𝑦𝑖𝑗 = 𝐱1𝑖𝑗𝛃 + 𝐳1𝑖𝑗𝐮1𝑗 + 𝑒𝑖𝑗 

𝑒𝑖𝑗~𝑁 (0, 𝜎𝑒𝑖𝑗
2 ) 

log (𝜎𝑒𝑖𝑗
2 ) =  𝐱2𝑖𝑗𝛄 + 𝐳2𝑖𝑗𝐮2𝑗  (1) 

(
𝒖1𝑗
𝒖2𝑗

) ~𝑁 {(
𝟎
𝟎
) , (

𝛀𝐮𝟏
𝛀𝐮𝟏𝐮𝟐 𝛀𝐮𝟐

)} 

 

The log-linear form for the level 1 variance function guarantees that it remains positive. 

Here we distinguish between the traditional vector of level 2 random effects associated with 

the mean of the response (𝐮1𝑗) and the vector of random effects associated with the level 1 

variance function (𝐮2𝑗) and allow all of these to covary. The model specifies that the log of 

the level 1 variance (𝜎𝑒𝑖𝑗
2 ) is a linear function of explanatory variables, such as age, 

socioeconomic status or ethnic group. Here  𝛀𝐮1  is the covariance matrix for the traditional 

random effects associated with the mean function, and 𝛀𝐮2 is the covariance matrix of the 

random effects in the level 1 variance function, with 𝛀𝐮1𝐮2 representing their cross-

covariances. We note that 𝐱1𝑖𝑗 and 𝐱2𝑖𝑗, respectively the explanatory variable vectors for the 

growth function and the level 1 variance function, may have variables in common, for 

example time, but there may also be variables in 𝐱2𝑖𝑗 that do not influence the predicted 

response and hence are modelled solely in the level 1 variance function. The 𝐳1𝑖𝑗, and 𝐳2𝑖𝑗 
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are the explanatory variables for the level 2 random effects and are typically a subset of the 

variables included in  𝐱1𝑖𝑗 and 𝐱2𝑖𝑗. 

2.1 Estimation 

To estimate the parameters of this general model we use a Bayesian MCMC algorithm, 

where we assume independent diffuse (uninformative) priors. Details of the MCMC 

algorithm are given in the Appendix. The modular nature of MCMC algorithms means that 

the steps in the algorithm are readily generalised to models with three or more levels and to 

cross classifications and other non-hierarchical data structures. All models fitted in this 

paper are written in C++ code that is implemented in templates in the statistical software 

package, StatJR11. The relevant templates are available from the third author 

(c.charlton@bristol.ac.uk). 

 

3. Age-shifted growth curve models 

In this section we consider extending (1) to incorporate the SITAR age-shifted model2. This 

model was developed in the context of modelling adolescent height and can be written, with 

a slight change of notation, as 

 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝑓(𝑥𝑖𝑗
∗ ) + 𝑒𝑖𝑗  

𝑥𝑖𝑗
∗ = 𝑒𝛾𝑗(𝑥𝑖𝑗 − 𝑣𝑗) (2) 

𝛽0𝑗 = 𝛽0 + 𝑢0𝑗  

 

where 𝑓() is a suitable growth function  of transformed age 𝑥𝑖𝑗
∗ . The original authors use a 

natural cubic spline, but any suitable function can be used, such as the ‘Preece-Baines’ 

curve12 or a regression spline (see below). The default distributional assumptions are: 
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(

𝛽0𝑗
𝛾𝑗
𝑣𝑗

)~𝑁{(
𝛽0
𝛾0
𝑣0

) ,(

𝜎𝛽
2

𝜎𝛽𝛾 𝜎𝛾
2

𝜎𝛽𝑣 𝜎𝛾𝑣 𝜎𝑣
2

)},      𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2)      

 

The term 𝛽0𝑗 is a subject specific ‘size’ random effect. The term 𝛾𝑗 is a random effect 

determining the relative scale along which a ‘standard’ growth pattern occurs for individual 

𝑗, and 𝑣𝑗  is an age-shifted ‘tempo’ random effect representing an individual-specific ‘origin’,  

representing differences in the timing of the adolescent growth spurt. Cole et al.2 use the 

nlme package13 in R14 to obtain maximum likelihood estimates for the parameters of this 

model. They also suggest that a log transformation of height and/or age can provide a 

somewhat better fit, but for ease of interpretation we shall use height itself as the response 

variable in our example. 

 

This model has just three random effects and contrasts with more traditional random effect 

growth curve models, for example using polynomial functions, where the number of random 

effects is generally three or four for nonlinear growth periods such as adolescence1 and 

typically the underlying mean curve is a higher order polynomial or other smooth function, 

similar to the spline used by Cole et al.2. To illustrate the essential difference between the 

traditional model and the SITAR model we can write a relatively simple traditional model 

with an underlying third degree polynomial and random coefficients up to the second order 

term as: 

 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑥𝑖𝑗 + 𝛽2𝑗𝑥𝑖𝑗
2 + 𝛽3𝑥𝑖𝑗

3 + 𝑒𝑖𝑗  

𝛽0𝑗 = 𝛽0 + 𝑢0𝑗 ,    𝛽1𝑗 = 𝛽1 + 𝑢1𝑗 ,    𝛽2𝑗 = 𝛽2 + 𝑢2𝑗  
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𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2) (3) 

In our example below we will see that a higher order polynomial is needed, but for 

exposition we restrict ourselves to the simpler version given by (3). For the SITAR model, 

for comparison purposes with the same number of level 2 random effects, we also choose an 

underlying third degree polynomial for 𝑥𝑖𝑗
∗  rather than a smoothing spline, so that we have: 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑒
𝛾𝑗(𝑥𝑖𝑗 − 𝑣𝑗) + 𝛽2𝑒

2𝛾𝑗(𝑥𝑖𝑗 − 𝑣𝑗)
2
+ 𝛽3𝑒

3𝛾𝑗(𝑥𝑖𝑗 − 𝑣𝑗)
3
+ 𝑒𝑖𝑗      (4) 

Both the traditional and the SITAR model in this case have three random effects at level 2 

but with different interpretations, although when the order of the polynomial is reduced to 

one the interpretations will be similar except for the origin random effect (𝑣𝑗) which has no 

counterpart in the traditional model. The SITAR model has the property, at least in the case 

of data such as adolescent growth, that the random effects have intuitively appealing 

interpretations, although this does not imply anything inherently more ‘biological’ in the 

formulation.  

 

In fact, despite the apparent simplicity of (4), it may not necessarily be a good fit to any 

given dataset. We therefore generalise the model by adding further random effects, still 

incorporating an age shift but allowing for a more flexible modelling of the ‘scale’. Thus (4) 

becomes  

 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗(𝑥𝑖𝑗 − 𝑣𝑗) + 𝛽2𝑗(𝑥𝑖𝑗 − 𝑣𝑗)
2
+ 𝛽3𝑗(𝑥𝑖𝑗 − 𝑣𝑗)

3
+ 𝑒𝑖𝑗     

𝛽0𝑗 = 𝛽0 + 𝑢0𝑗 ,    𝛽1𝑗 = 𝛽1 + 𝑢1𝑗 ,    𝛽2𝑗 = 𝛽2 + 𝑢2𝑗 ,    𝛽3𝑗 = 𝛽3 + 𝑢3𝑗                   (5) 
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We now have five rather than three random effects at the individual level (level 2) where the 

multiplicative single random effect 𝑒𝛾𝑗  and its powers are replaced by the three correlated 

additive random effects 𝑢1𝑗 , 𝑢2𝑗 and 𝑢3𝑗.  

 

In our first example we compare the fit of these models to a real dataset.  Rather than use a 

natural cubic spline as in Cole et al.2 we shall use a regression spline in our analyses as this 

provides more flexibility for our purposes and is straightforward to implement while 

providing sufficient flexibility to graduate growth.  At this point it is again worth pointing 

out that the choice of growth curve function is essentially empirical in the sense that it 

should graduate growth smoothly with enough complexity to allow the modelling of key 

events such as peak height velocity. In our view, none of the curves suggested in the 

literature for growth curve functions has any special ‘biological’ as opposed to 

‘mathematical’ interpretation that suggests that they should be treated preferentially. 

 

We fit all our models using MCMC with default priors as specified in the previous section. 

The random effects 𝑢0𝑗 , … , 𝑢3𝑗 , 𝛾𝑗 and 𝑣𝑗  are sampled using Metropolis steps similar to that 

for the variance function terms.  

 

4. An example using height growth data 

The dataset we use is the same one used by Cole et al.15. It consists of 1725 height 

measurements between 8 and 18 years of age for a sample of 101 boys with measurements 

made approximately six months apart. Age is centred at the mean age of 12.66 years. Only 

1% of the measurements are less than five months apart and as Browne and Goldstein16 

showed, it is not until measurements are about two months apart that serial correlation 
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effects are to be found in height growth data, so we do not attempt to fit an autocorrelation 

function for the residuals. Details of the appropriate MCMC steps for doing so however are 

given by Browne and Goldstein16 and involve a further Metropolis step in the algorithm. 

 

We first look at a polynomial model extension to the original SITAR model (which 

corresponds to model (4)). This new model has a fifth order polynomial spline, with eight 

parameters describing growth, chosen after exploring different order polynomials, and can 

be written as 

 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑒
𝛾𝑗𝑧𝑖𝑗 + 𝛽2𝑒

2𝛾𝑗𝑧𝑖𝑗
2 + 𝛽3𝑒

3𝛾𝑗𝑧𝑖𝑗
3 + 𝛽4𝑒

4𝛾𝑗𝑧𝑖𝑗
4 + 𝛽5𝑒

5𝛾𝑗𝑧𝑖𝑗
5 + 𝛼0𝑠0𝑖𝑗

2 + 𝛼1𝑠1𝑖𝑗
2 + 𝑒𝑖𝑗  

𝑧𝑖𝑗 = 𝑥𝑖𝑗 − 𝑣𝑗,    

𝑠0𝑖𝑗 = {
0       if     𝑧𝑖𝑗 < 0

𝑧𝑖𝑗     if     𝑧𝑖𝑗 ≥ 0
} (6) 

𝑠1𝑖𝑗 = {
0       if     𝑧𝑖𝑗 ≥ 0

𝑧𝑖𝑗     if     𝑧𝑖𝑗 < 0
}  

(

𝛽0𝑗
𝛾𝑗
𝑣𝑗

)~𝑁{(
𝛽0
𝛾0
𝑣0

) ,(

𝜎𝛽
2

𝜎𝛽𝛾 𝜎𝛾
2

𝜎𝛽𝑣 𝜎𝛾𝑣 𝜎𝑣
2

)},     𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2) ,       

 

The terms 𝑠0𝑖𝑗  and 𝑠1𝑖𝑗 are the regression splines that join smoothly at the shifted age 

origins. For each model, for the MCMC algorithm, three chains were run, each with 

different sets of starting values. Convergence was assumed when the chains all converged to 

the same posterior distribution as judged by inspecting the parameter estimates. In practice, 

it was sufficient to specify good starting values for the fixed coefficients (using for example 

estimates from a simple model with no random effects) for the chains to show good mixing 

properties. The default priors described above were used here including a uniform prior for 

the covariance matrix at level 2. Different models were tried with different join points and 
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orders for the spline terms and the choice of a single ‘forward’ spline 𝑠0 and a single 

‘backward’ spline 𝑠1 joining at shifted age = 0 was found to be adequate, as judged using 

the Deviance Information Criterion (DIC) statistics, and results for these choices are 

reported here. 

Table 1 shows the results of fitting the model to this dataset. 

 

(Table 1 here) 

 

The estimate for 𝛾0  implies additional multipliers for the coefficients of the (shifted) age 

polynomial. For example, the additional multiplier for the coefficient of the linear term is 

approximately exp(0.13) = 1.12 and so the total fixed effect becomes 𝛽1 exp(0.13) =

3.11 × 1.12 =  3.5. The mean age at which the growth curves are aligned from this model is 

12.66 + 0.92 = 13.58 which is close to the reported mean age for UK boys at peak height 

velocity (PHV)20. If we consider a boy with 𝑣𝑗 = 0, that is at a shifted age 0.92 years later 

than the mean (-0.92) and ‘average’  growth function random effects at the mean (i.e., all 

equal to zero), then his velocity at centred age 𝑥𝑖𝑗 = 0 (i.e., the mean age of 12.66), is 

estimated to be 3.5 cm/year. If we use the fixed coefficients to estimate the age when the 

growth acceleration (that is the second differential of the growth curve) is zero (found by 

solving the corresponding cubic equation), this is calculated as 2.18, so that for the average 

value 𝑣0 = −0.92, the centred age of maximum velocity for the adolescent growth period is 

2.18 − 0.92 = 1.26, that is an actual age of 13.9 years with a corresponding velocity 

estimate of 8.8 cm/year. The level 1 standard deviation is √0.68 = 0.83 𝑐𝑚 and it also 

appears that we require only one spline function since the estimate for 𝛼0 is non-significant. 

The results obtained by Cole et al.15 using maximum likelihood estimation, for the variance 

and covariance parameters and the mean age shift and scaling parameters are given in the 
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final column and are not too dissimilar. We note that the level 1 variance is somewhat 

smaller for the Cole et al. model which may reflect the fact that Cole et al. used maximum 

likelihood estimation.  

 

Figure 1 displays the predicted median growth velocity, using actual age around the age of 

maximum growth velocity. Figure 2 displays the predicted median growth velocity, using 

the shifted age around the age of maximum growth velocity. 

 

(Figures 1 and 2 here) 

 

Note that the ‘sharpness’ of the peak in Figure 2 results from the two spline terms joining at 

𝑧𝑖𝑗 = 0, while the velocity remains a continuous function of adjusted age. The age shifted 

model essentially displays the individual specific median velocity centered on the shifted 

age, which is higher than that estimated by averaging the velocity at the median age, but is 

consistent with other estimates based upon individual growth curves 20 

 

We now fit the more flexible model, in terms of random coefficients, namely 

 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑧𝑖𝑗 + 𝛽2𝑗𝑧𝑖𝑗
2 + 𝛽3𝑗𝑧𝑖𝑗

3 + 𝛽4𝑧𝑖𝑗
4 + 𝛽5𝑧𝑖𝑗

5 + 𝛼0𝑠0𝑖𝑗
2 + 𝛼1𝑠1𝑖𝑗

2 + 𝑒𝑖𝑗  

𝑧𝑖𝑗 = 𝑥𝑖𝑗 − 𝑣𝑗  (7) 

𝑠0𝑖𝑗 = {
0       𝑖𝑓     𝑧𝑖𝑗 < 0

𝑧𝑖𝑗  𝑖𝑓     𝑧𝑖𝑗 ≥ 0
}  

𝑠1𝑖𝑗 = {
0       𝑖𝑓     𝑧𝑖𝑗 ≥ 0

𝑧𝑖𝑗  𝑖𝑓     𝑧𝑖𝑗 < 0
}  
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(

  
 

𝛽0𝑗
𝛽1𝑗
𝛽2𝑗
𝛽3𝑗
𝑣𝑗 )

  
 
~𝑁

{
 
 

 
 

(

 
 

𝛽0
𝛽1
𝛽2
𝛽3
𝑣0)

 
 
,

(

 
 

𝜎𝑢0
2

𝜎𝑢01
𝜎𝑢02
𝜎𝑢03
𝜎𝑢0𝑣

𝜎𝑢1
2

𝜎𝑢12
𝜎𝑢13
𝜎𝑢1𝑣

𝜎𝑢2
2

𝜎𝑢23
𝜎𝑢2𝑣

𝜎𝑢3
2

𝜎𝑢3𝑣 𝜎𝑣
2
)

 
 

}
 
 

 
 

,          𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2)    

 

The results are given in Table 2. 

 

(Table 2 here) 

 

Adding random coefficients for the fourth and fifth degree terms did not substantially 

change the inferences and has therefore not been used here. Again, we only appear to 

require one spline function, although this time it is the forward spline function. We also note 

that the level 1 standard deviation is greatly reduced (from √0.68 = 0.83 cm to √0.28 = 

0.53 cm) and the DIC statistic is considerably smaller than before, with a greater number of 

effective parameters (PD). These extra parameters arise from the presence of five as 

opposed to three random effects, with the linear and cubic polynomial coefficients highly 

correlated (𝜌𝑢13 = −0.96). Recalling that our age scale is centred on 12.66, we also note 

that the mean growth curve alignment age is now 12.66 − 1.27 = 11.4 years. Interestingly 

this is approximately the commonly reported mean age of ‘take off’ for pubertal growth in 

UK boys. We also see that a boy with a value of 𝑣𝑗 = 0, that is, whose adolescent growth is 

advanced by 1.27 years, at age 12.66 will have a growth velocity of 10.3. For an ‘average’ 

boy, that is where 𝑣𝑗 = 12.66, this velocity will occur at 12.66 + 1.27 = 13.9 years which 

corresponds to the (estimated) average age at PHV calculated from model (7). 

 

As children get older not only does the between-child variability increase, we might also 

expect the residual within-child variability to increase until some point before final height is 
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reached when it will then tend towards zero.  We therefore further elaborate our model so 

that it now includes the extensions explained at the start of the paper to allow the (log) 

variance to depend on a quadratic function of age and also to allow the addition of a random 

effect for individual in the variance function. It would seem more consistent to use shifted 

age in the variance function, but we shall also explore the use of age itself. Our model now 

is 

 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑧𝑖𝑗 + 𝛽2𝑗𝑧𝑖𝑗
2 + 𝛽3𝑗𝑧𝑖𝑗

3 + 𝛽4𝑧𝑖𝑗
4 + 𝛽5𝑧𝑖𝑗

5 + 𝛼0𝑠0𝑖𝑗
2 + 𝛼1𝑠1𝑖𝑗

2 + 𝑒𝑖𝑗  

𝑧𝑖𝑗 = 𝑥𝑖𝑗 − 𝑣𝑗  (8) 

𝑠0𝑖𝑗 = {
0       𝑖𝑓     𝑧𝑖𝑗 < 0

𝑧𝑖𝑗   𝑖𝑓     𝑧𝑖𝑗 ≥ 0
}  

𝑠1𝑖𝑗 = {
0       𝑖𝑓     𝑧𝑖𝑗 ≥ 0

𝑧𝑖𝑗   𝑖𝑓     𝑧𝑖𝑗 < 0
}  

  log(𝜎𝑒𝑖𝑗
2 ) = 𝛿0 + 𝛿1𝑧𝑖𝑗 + 𝛿2𝑧𝑖𝑗

2 +𝑤𝑗 

(

 
 
 
 

𝛽0𝑗
𝛽1𝑗
𝛽2𝑗
𝛽3𝑗
𝑣𝑗
𝑤𝑗 )

 
 
 
 

~𝑁

{
  
 

  
 

(

 
 
 

𝛽0
𝛽1
𝛽2
𝛽3
𝑣0
0 )

 
 
 
,

(

 
 
 
 

𝜎𝑢0
2

𝜎𝑢01 𝜎𝑢1
2

𝜎𝑢02 𝜎𝑢12 𝜎𝑢2
2

𝜎𝑢03 𝜎𝑢13 𝜎𝑢23 𝜎𝑢3
2

𝜎𝑢0𝑣 𝜎𝑢1𝑣 𝜎𝑢2𝑣 𝜎𝑢3𝑣 𝜎𝑣
2

𝜎𝑢0𝑤 𝜎𝑢1𝑤 𝜎𝑢2𝑤 𝜎𝑢3𝑤 𝜎𝑣𝑤 𝜎𝑤
2)

 
 
 
 

}
  
 

  
 

,          𝑒𝑖𝑗~𝑁(0, 𝜎𝑒𝑖𝑗
2 )   

 

Results of fitting this model are given in Table 3. 

 

(Table 3 here) 

 

Here the parameter estimates do not differ substantially from those in Table 2. For the 

variance function that uses the shifted age (Model A), at the shifted age of 0 the estimated 

standard deviation is √exp(−1.29)=0.52 cm, and this changes little at earlier ages. For 
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example, if we have a boy who has an average downward shift equal to the mean shift of 

1.37, at an actual age of 9.0 years (2.29 years earlier), the expected standard deviation is 

√exp(−1.29 − 0.051 ∗ 1.37 − 0.023 ∗ 1,372)=0.50 cm. For such a boy at an actual age of 

16.0 years, however, the expected standard deviation is 0.26 cm. For earlier ages we have 

similar results for when the variance function is defined on actual age (Model B), with the 

expected standard deviation at age 9.0 years of 0.55 cm. For later ages, however, the 

variance does not decrease as before: at age 16, for example, the standard deviation is 

estimated as 0.47 cm and this reflects the variability in the timing of the growth spurt. Apart 

from that, the remaining estimates for the two models are broadly similar. The correlations 

among the random effects are relatively small, with the largest being that between the slope 

𝛽1𝑗 and the cubic coefficient 𝛽3𝑗 of -0.74 in model B. Likewise the correlation between the 

random age shift and the variance function random effect is close to zero, the correlation 

between the variance function random effect and the quadratic coefficient is -0.24 and that 

between the age shifted random effect and the slope is -0.31.  

For model A we have similar results. For both models the DIC suggests a better fit than the 

model in Table 2 that assumes a constant residual variance. 

 

We note that a quadratic function will only approximate the residual variance at the 

approach to adult height and an asymptotic relationship that converges to a value consistent 

with measurement error would seem more appropriate, but we have not explored this here. 

 

We see from this example that introducing random coefficients rather than a single scaling 

factor for the age scale produces a better fitting model and allows relatively straightforward 

interpretations for growth events such as PHV. The further introduction of a complex 
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variance function allows us to better calibrate the residual variance and again is associated 

with a better model fit. 

We will next show how the same family of models can be used in a second application – 

this time for weight gain in pregnancy. 

5. An example using repeated measures of weight in pregnancy 

The data are from the Avon Longitudinal Study of Parents and Children (ALSPAC, Boyd et 

al.,21).  A total of 14,541 pregnant women were recruited, who were living in a defined area 

of Avon including the city of Bristol during their pregnancy and had an expected delivery 

date between 1 April 1991 and 31 December 1992. The study website contains details of all 

the data that is available through a fully searchable data dictionary 

(http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary). Ethical approval for 

the study was obtained from the ALSPAC Ethics and Law Committee and the Local 

Research Ethics Committees. 

We restrict analysis to singleton live term births (≥37 weeks' gestation). All weight 

measurements, which were taken routinely as part of antenatal care by midwives or 

obstetricians, were abstracted from obstetric records by six trained research midwives. The 

number of measurement occasions within individuals varies from 2 to 15 and we have, for 

present purposes, used only those with at least 12 measurements: this reduces the available 

number of individual pregnancies from 9447 to 475, provides more stable estimates and 

reduces any possible biases arising from selective dropout: those with few measurements 

may be individuals experiencing periods of illness and in any case will contribute less 

information to the analysis. One modelling possibility that we have not pursued, is to 

introduce the number of measurements as a covariate, together possibly including 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary


18 

 

interactions with some of the polynomial terms.  Gestational age is measured in weeks 

centered at 30 weeks and the response is weight in kilograms. 

Our first model fits a 2-level regression spline. Several models have been explored up to 2 

join points and up to a quartic polynomial, and the following cubic with coefficients random 

up to the linear, and a single join point at 30 weeks provides a good fit. Let 𝑦𝑖𝑗 denote the 

weight of mother 𝑗 (𝑗 = 1,… , 𝐽) at occasion 𝑖 (𝑖 = 1, … , 𝑛𝑗) and 𝑥𝑖𝑗 ≡ 𝑧𝑖𝑗 denotes centred 

gestation age. The model can be written as 

 

𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑥𝑖𝑗 + 𝛽2𝑗𝑥𝑖𝑗
2 + 𝛽3𝑥𝑖𝑗

3 + 𝛼0𝑠0𝑖𝑗
2 + 𝑒𝑖𝑗  

𝛽0𝑗 = 𝛽0 + 𝑢0𝑗 ,    𝛽1𝑗 = 𝛽1 + 𝑢1𝑗      (9) 

log(𝜎𝑒𝑖𝑗
2 ) = 𝛿0 + 𝛿1𝑧𝑖𝑗 + 𝑤𝑗  

(

𝑢0𝑗
𝑢1𝑗
𝑤𝑗
)~𝑁{(

0
0
0
) , (

𝜎𝑢𝑜
2

𝜎𝑢01 𝜎𝑢1
2

𝜎𝑢0𝑤 𝜎𝑢1𝑤 𝜎𝑤
2

)} ,    𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2)  

𝑠0𝑖𝑗 = {
0                𝑖𝑓     𝑥𝑖𝑗 < 0

𝑥𝑖𝑗             𝑖𝑓     𝑥𝑖𝑗 ≥ 0
}  

 

Table 4 shows the results of fitting this model. 

(Table 4 here) 

We see, for example, that the predicted weight at age 30 weeks is 73.7 kilograms with a 

between-individual standard deviation of √151.8 = 12.3 𝑐𝑚. 

We have also fitted a model allowing a different age origin for each pregnancy, but the 

estimated variance for these is close to zero and non-significant. Likewise, there is no 

significant random coefficient for the term 𝛾1 in the variance function.  

We see significant variation in the slope as well as the intercept across pregnancies. There is 

a decreasing within-pregnancy variance with gestational age and the within-pregnancy 

variance also varies considerably between women with a standard deviation on the log scale 
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of √0.388 = 0.62, compared with a mean -0.11. There is a moderate correlation of 0.32 

between the random effect in the within-pregnancy variance function and the intercept in the 

growth component of the model – so women who weigh more also have more fluctuation of 

weight during pregnancy. Modelling the response as log(weight) does not remove the 

dependency of the within-pregnancy variance on age.  

To illustrate the heterogeneity of the data, we have plotted in Figure 3 the predicted 5th , 50th 

and 95th percentiles based upon the parameters in Table 4 including both the level 2 and 

level 1 variance estimates. Superimposed are three observed pregnancy records at 

approximately these positions. 

 

6. Discussion 

Newly developed modelling procedures such as SITAR provide a framework that allows for 

the individual timing of growth to be incorporated within a single modelling framework to 

allow efficient parameter estimation. The use of MCMC methods as proposed by Willemsen 

et al.3 and in the present paper, provides a flexible and straightforward way of incorporating 

further components such as complex variance functions with random coefficients. Previous 

attempts to allow for individual timing of growth events such as the age at peak height 

velocity have relied on two stage procedures that involve preliminary estimation of growth 

events that are then used to adjust individual age scales, and these are both inefficient and 

biased unless procedures are used that recognise the uncertainty associated with the first 

stage estimates. 

 

This paper extends existing models by allowing several random effects in the level 1 

variance function associated with the random coefficients in the mean function, and in 
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particular introduces the use of complex variance functions into the modelling of growth 

curves. This allows us to study the relationship between within-individual variability and 

other growth or individual level parameters.  

 

The MCMC algorithm is flexible, but at least in the adolescent height growth example it 

was important to provide reasonable starting values for the fixed growth curve coefficients 

and a long adaptation period (25,000 iterations) as well as a long burn in (25,000) in order 

for the MCMC algorithm to find the mode of the posterior distribution and the Metropolis 

algorithm to then tune correctly. It is also important to run several chains with different 

random starting points to check convergence. A Bayesian formulation also allows 

informative prior distributions to be used, and this is a topic for further research. 

  

We have considered models with normally distributed responses, but these can be extended 

to ordered or unordered responses using ‘latent normal’ modelling as described by Goldstein 

et al.22. An extra step in the MCMC algorithm samples from an underlying multivariate 

normal distribution and the remaining steps are as we have described. The case of a binary 

response is discussed in detail in Browne and Goldstein16. We can also extend our model to 

several higher levels, cross classified and multiple membership structures as well as the 

multivariate case with several responses1. All of these extensions involve extra, but 

standard, steps in the MCMC algorithm. Further work could look at the computational 

issues that might arise in such models and we plan to study this further. 

 

The ability to model random effects in the level 1 variance function allows us to explore 

how this variance relates to variation among units at higher levels. We would also stress that 

there is often substantive interest in modelling the level 1 variance, and this is not merely a 
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device to avoid misspecification arising from omitted variables which might affect the 

model for the mean response7. It is also worth noting that the variance function may in some 

applications be quite complex so that, for example, it might be modelled by a spline 

function. Where the data structure has more levels or cross classifications, we can likewise 

explore associations between random effects for units at these levels or classifications10. In 

addition we can include covariates in the variance as well as the mean function that are of 

substantive interest, such as for example social class or ethnic background. 

We have used data with reasonably large (12 or more) level 1 measurements per subject but, 

since the dimension of Ω𝑢 is at most 6, at least in principle we could obtain estimates with 

fewer numbers of level one measurements, so long as there were adequate numbers of 

individuals with more than 6 measurements. Extending the work of Hedeker et al.,4 a topic 

for further research is how different distributions of measurements per individual, their 

spacing and the number of individuals influence power and efficiency. 

In our growth example, where there is a height asymptote for each individual we have 

shown how modelling the level 1 variance on the shifted age scale is more realistic than a 

constant variance. It is also more realistic than modelling on the actual age scale since once 

individuals reach adulthood where the level 1 variation should simply reflect measurement 

error, we still in that case obtain estimates that result from between individual variation.  For 

height, the level 1 variation is relatively small so that modelling this creates only small 

changes to the remaining parameters. In other cases, however, such as modelling weight, an 

understanding of how the level 1, within-individual, variance changes on an individually 

age-shifted scale, especially in the transition from adolescence to adulthood, will be more 

important.  

In our example of weight change during pregnancy, the within-pregnancy standard deviation 

changes relatively little over the course of a pregnancy, and conclusions based on the fixed 
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effects are likely to be robust to not including this change over pregnancy in the random 

effects. However, there was considerable between-woman variation in the within-pregnancy 

standard deviation, and this could be particularly relevant if using these models to monitor 

individuals. 

 

A useful further extension of our model is to the case where we wish to predict future 

measurements, for example of morbidity. In such cases we can set up a joint model where the 

future measurement is at level 2 and has a random effect that is allowed to covary with the 

other level 2 random effects. For details see Goldstein and Kounali17 and Sayers et al.18. 

A further area for exploration is in the choice of informative priors for the parameters, 

especially where there may be indications from existing research about likely values. 

 

Although we have not encountered parameter identifiability problems where the models for 

the mean and the variance have (shifted) age in common, these problems might occur for 

other variables that appear in both these parts of the overall model, and this is another area 

for further work. Using the STATJR11 software all the models used were fitted within six 

minutes at most. 
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7. Appendix: MCMC algorithm steps 

We detail below the MCMC algorithm for our general two-level model. The modular nature 

of MCMC algorithms means that the steps in the algorithm are readily generalised to models 

with three or more levels and to cross classifications and to different response types. Where 

there is overlap between the current algorithm and that proposed in Browne and Goldstein16, 

we shall for brevity refer the reader to that paper. In what follows, we focus on the 

additional steps required to implement novel extension proposed in the current paper, 

namely the inclusion of random effects within the level 1 variance function. 

 

Step 1:  For the level 2 random effects (residuals), 𝑢1𝑗 the conditional posterior distribution 

is given by  
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where 

 

 𝛺𝑢1
∗ = 𝛺𝑢1 − 𝛺𝑢12𝛺𝑢2

−1Ω𝑢12
𝑇                                                                                          

 

which is the covariance matrix for 𝑢1 conditioned on 𝑢2 and is derived from (1). This is 

analogous to the step given in Browne and Goldstein16 with 𝛺𝑢1
∗  replacing 𝛺𝑢 and results in 

a Gibbs sampling step from a multivariate normal distribution.  
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Step 2: For the fixed effects, we assume a diffuse prior distribution 𝑝(𝛽) ∝ 1 so that 

 

𝑝(𝛽|𝑦𝑖𝑗, 𝜎𝑒𝑖𝑗
2 , 𝑢1𝑗) ∝ ∏ 𝜎𝑒𝑖𝑗

−2 exp [−0.5𝜎𝑒𝑖𝑗
−2(𝑦𝑖𝑗 − 𝑍1𝑖𝑗𝑢1𝑗 − 𝑋1𝑖𝑗𝛽)

2
]𝑖,𝑗    

 

And we sample from 

 

𝛽~𝑀𝑉𝑁(𝛽,̂ 𝐷̂𝛽)  

𝐷̂𝛽 = ⌊∑ 𝑋1𝑖𝑗
𝑇 𝜎𝑒𝑖𝑗

−2𝑋1𝑖𝑗𝑖,𝑗 ⌋
−1

  

𝛽̂ = ⌊∑ 𝑋1𝑖𝑗
𝑇 𝜎𝑒𝑖𝑗

−2𝑋1𝑖𝑗𝑖,𝑗 ⌋
−1
⌊∑ 𝜎𝑒𝑖𝑗

−2𝑋1𝑖𝑗
𝑇 (𝑦

𝑖𝑗
− 𝑍1𝑖𝑗𝑢1𝑗)𝑖,𝑗 ⌋  

 

The level 1 residuals are obtained by subtraction using the first line of (1).   

 

Step 3: For the fixed coefficients within the level 1 variance function we use a random walk 

Metropolis step which is the same as that given by Browne and Goldstein16 noting here that 

the level 1 variance function will additionally contain level 2 random effects.  

 

Step 4: Sampling the level 2 covariance matrix, Ω𝑢, is a standard conjugate inverse Wishart 

Gibbs sampling step as given by Browne and Goldstein16 and we omit details. 

 

Step 5: The random effects within the level 1 variance function are the 𝑢2𝑗. Here we adopt a 

single site updating strategy using another random walk Metropolis step for each element of 

𝑢2𝑗. For example, in the simple case where there is just one random effect in the mean 

function and one random effect in the variance function, we adopt the following step: 
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To sample each 𝑢2𝑗 we condition on the corresponding 𝑢1𝑗. At iteration t, we propose a new 

value 𝑢2𝑗
∗  with proposal distribution  𝑁(𝑢2𝑗

(𝑡−1)
, 𝜎𝑝

2)  where 𝜎𝑝
2 may be obtained using an 

adaptation period where the value is tuned19. We accept the proposed value according to the 

Metropolis ratio: 

  

∏ 𝜎𝑒𝑖𝑗
−2(∗)exp−(0.5𝜎𝑒𝑖𝑗

−2(∗)(𝑦𝑖𝑗−𝑍1𝑖𝑗𝑢1𝑗−𝑋1𝑖𝑗𝛽)
2

𝑖,𝑗

∏ 𝜎𝑒𝑖𝑗
−2(t−1)exp− (0.5𝜎𝑒𝑖𝑗

−2(𝑡−1)(𝑦𝑖𝑗−𝑍1𝑖𝑗𝑢1𝑗−𝑋1𝑖𝑗𝛽)
2

𝑖,𝑗

×
∅(𝑢2𝑗

∗ )

∅(𝑢2𝑗
(𝑡−1)

)
   

 

where 𝜎𝑒𝑖𝑗
2 (∗) = exp (X2ij𝛿 + 𝑢2𝑗

∗ ), 𝜎𝑒𝑖𝑗
2 (𝑡 − 1) = exp (X2ij𝛿 + 𝑢2𝑗

(𝑡−1)
)  and ∅  is the 

conditioned normal density function of 𝑢2𝑗 given 𝑢1𝑗 and 𝑢2𝑗
(𝑡−1)

 is the current value. 
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11. Tables 

Table 1. Edinburgh growth data. Extended SITAR model using regression splines 

Paramete

r 
 Estimate  Standard error Cole et al. estimate 

𝜶𝟎 -0.10 0.41  

𝜶𝟏 -3.03 0.64  

𝝈𝒖𝟎
𝟐    48.7 

𝝈𝒖𝒗
𝟐    0.97 

𝝈𝒖𝜸
𝟐    0.013 

𝛀𝒖 (
51.0 3.14 −0.13
3.14 1.98 0.17
−0.13 0.17 0.03

)   

  𝐑𝒖 =

𝑪𝒐𝒓(𝛀𝒖) 
(
1.0 0.31 −0.11
0.31 1.0 0.70
−0.11 0.70 1.0

)   

𝜹𝟎 0.13 0.05 0.13 

𝜷𝟎 147.1 0.7 133.4 

𝜷𝟏 3.11 0.17  

𝜷𝟐 1.97 0.55  

𝜷𝟑 -0.26 0.04  

𝜷𝟒 -0.01 0.002  

𝜷𝟓 0.002 0.0004  

𝒗𝟎 -0.92 0.14 -1.48 

𝝈𝒆
𝟐 0.68 0.03 0.51 

DIC (PD) 4541.9 (298.5)  

Note: MCMC with adaptation length 25000, burnin=25000, iterations=25000.  
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Table 2. Edinburgh growth data. Extended SITAR model with random coefficients.                                                                       

Parameter  Estimate  Standard error 

𝜶𝟎 -4.67 0.16 

𝜶𝟏 0.01 0.18 

𝛀𝒖 

(

 
 

53.5
0.41 0.55
−0.29 −0.01 0.08
−0.01 −0.01 0.001 0.0002
1.99 −0.35 0.001 0.003 3.17)

 
 

  

  𝐑𝒖 = 𝑪𝒐𝒓(𝛀𝒖) 

(

 
 

1.0
0.08 1.0
−0.14 −0.10 1.0
−0.10 −0.96 0.25 1.0
0.15 −0.27 0.002 0.12 1.0)

 
 

  

𝜷𝟎 162.6 0.70 

𝜷𝟏 10.31 0.10 

𝜷𝟐 2.01 0.16 

𝜷𝟑 0.26 0.008 

𝜷𝟒 0.0011 0.0006 

𝜷𝟓 -0.0012 0.00011 

𝒗𝟎 1.27 0.18 

𝝈𝒆
𝟐 0.28 0.03 

DIC (PD) 3095.5 (432.2)  

Note: MCMC with adaptation length 25000, burnin=25000, iterations=25000. 

 

  



32 

 

Table 3. Edinburgh growth data. Model with random coefficients and complex 

variance function with shifted age in the variance function (model A) and actual 

(centred) age in the variance function (Model B).  

 Model A  Model B  

Parameter Estimate Standard error Estimate Standard error 

𝜶𝟎 -5.46 0.08 -4.47 0.44 

𝜶𝟏 -0.72  0.09 0.24 0.42 

𝛀𝒖 
(

 
 
 

53.2
0.10 0.52
−0.16 0.0001 0.005
0.005 −0.007 0.0003 0.0002
2.05 −0.41 0.02 0.005 3.50
0.18 −0.05 −0.008 0.00001 0.01 0.18)

 
 
 

 

 

(

 
 
 

52.4
0.05 0.51
−0.15 −0.001 0.004
0.006 −0.007 0.0003 0.0002
1.73 −0.42 0.02 0.005 3.54
0.21 −0.02 −0.007 0.00001 −0.02 0.17)

 
 
 

 

 

𝐑𝐮

= 𝐂𝐨𝐫(𝛀u)  (

 
 
 

1.0
0.02 1.0
−0.32 0.002 1.0
0.06 −0.76 0.32 1.0
0.15 −0.30 0.13 0.18 1.0
0.06 −0.17 −0.26 0.01 0.01 1.0)

 
 
 

 

 

(

 
 
 

1.0
0.01 1.0
−0.31 −0.03 1.0
0.07 −0.74 0.29 1.0
0.13 −0.31 0.16 0.19 1.0
0.07 −0.08 −0.24 0.001 −0.03 1.0)

 
 
 

 

 

𝜷𝟎 163.1 0.64 163.4 0.51 

𝜷𝟏 10.3 0.09 10.3 0.08 

𝜷𝟐 2.71 0.08 1.72 0.43 

𝜷𝟑 0.26 0.007 0.26 0.006 

𝜷𝟒 0.0041 0.0005 0.0044 0.00005 

𝜷𝟓 -0.00081 0.00007 -0.00077 0.00007 

𝒗𝟎 1.37 0.18 1.38 0.18 

𝜹𝟎 -1.29 0.08 -1.21 0.08 

𝜹𝟏 -0.051 0.025 0.015 0.017 

𝜹𝟐 -0.023 0.006 -0.032 0.007 

DIC (PD) 2849.7 (478.3) 2836.1 (478.5) 

Note: MCMC with adaptation length 25000, burnin=25000, iterations=25000. Time taken 

for model A with 3 prarallel chains, using a 2.8 GhzPC running under windows 8 =5.5 

minutes 
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Table 4. ALSPAC data. Pregnancy weight regression spline model with random 

coefficients.  MCMC estimation with diffuse priors. Burnin=1000, iterations=5000. 

Adaptation length=5000                                                                     

Parameter  Estimate  Standard error 

𝜶𝟎 0.00079 0.00019 

𝛀𝒖 (
151.8
0.468 0.027
2.48 0.019 0.388

)  

  𝐑𝒖 = 𝑪𝒐𝒓(𝛀𝒖) (
1
0.23 1
0.32 0.19 1

)  

𝜷𝟎 73.70 0.40 

𝜷𝟏 0.503 0.009 

𝜷𝟐 -0.0069 0.0011 

𝜷𝟑 -0.00043 0.000060 

𝜹𝟎 -0.111 0.035 

𝜹𝟏 -0.011 0.0032 

DIC (PD) 17166.9 (1215.7)  
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12. Figures 

Figure 1. Estimated median growth velocity curve by age. Model (7) with 𝑧𝑖𝑗 = 𝑥𝑖𝑗 . 

 

Figure 2. Estimated median growth velocity curves by adjusted age. Model (7) with 𝑧𝑖𝑗 =

𝑥𝑖𝑗 − 𝑣𝑗 . 

 

Figure 3. Predicted 5, 50, 95 percentiles of weight with three pregnancy observed weights 

by gestational age. 
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Figure 1. 
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