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Abstract. We review the effect of the commonly-used Limber and flat-sky approximations
on the calculation of shear power spectra and correlation functions for galaxy weak lensing.
These approximations are accurate at small scales, but it has been claimed recently that their
impact on low multipoles could lead to an increase in the amplitude of the mass fluctuations
inferred from surveys such as CFHTLenS, reducing the tension between galaxy weak lensing
and the amplitude determined by Planck from observations of the cosmic microwave back-
ground. Here, we explore the impact of these approximations on cosmological parameters
derived from weak lensing surveys, using the CFHTLenS data as a test case. We conclude
that the use of small-angle approximations for cosmological parameter estimation is negligi-
ble for current data, and does not contribute to the tension between current weak lensing
surveys and Planck.1
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1 Introduction

The amplitude and shape of the mass fluctuation spectrum is of fundamental importance
to cosmology. The mass fluctuation spectrum can be used to test the physics of the early
Universe, its contents, and the nature of gravity. In addition, it determines the timescales
and evolutionary paths for the formation of non-linear objects such as galaxies and galaxy
clusters that we see in the Universe today.

Observations of the cosmic microwave background (CMB) [3, 4] have led to precision
measurements of the shape of the fluctuation spectrum and via gravitational lensing of the
CMB can constrain its amplitude down to redshifts z ∼ 2. Determining the amplitude at
lower redshifts is, however, challenging. Weak gravitational lensing of galaxies is a particu-
larly promising technique. Several weak lensing analyses [5–9] have reported constraints on
the amplitude of the fluctuation spectrum as measured by the parameter σ8.1 The results
from two surveys, CFHTLenS [7] and KiDS [8], are discrepant with the Planck constraints on
the parameter combination σ8Ω0.5

m , where Ωm is the present-day matter density parameter, at
about the 2.5σ level, assuming the standard six-parameter ΛCDM cosmology (which we will
refer to as the base-ΛCDM model). The possibility of new physics beyond base-ΛCDM [10]
merits close scrutiny of both the weak lensing and CMB data.

Recently, ref. [2] investigated the Limber approximation [11] and a number of other
small-angle approximations used to relate weak lensing observables to the three-dimensional
matter power spectrum. The first version of that paper concluded that such approximations
could contribute significantly to the tension between the CMB measurements and weak lens-
ing data. This conclusion, if correct, would have important implications for cosmology and
motivated the analysis presented in this paper.

The paper is structured as follows. In section 2 we derive the full two-point statistics
for weak galaxy lensing in different tomographic redshift bins in full generality, i.e., without
using flat-sky or Limber-like approximations (extending the work of refs. [12, 13]). We then

1Here, σ8 is the rms amplitude of the mass fluctuations in spheres of radius 8h−1 Mpc, where h is the
Hubble constant in units of 100 km s−1 Mpc−1.
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compare the exact formulae to small-angle approximations. Section 3 applies these formulae
to the latest tomographic weak lensing data from CFHTLenS2 [7] and assesses the impact of
these approximations on cosmological parameters and on the tension with the base-ΛCDM
constraints from Planck. Our conclusions are presented in section 4. Appendix A provides
more detail on some of the results used in the main text.

2 Two-point statistics

Our aim in this section is to present exact expressions for two-point weak lensing statistics and
then to apply small-angle approximations. Further details of the calculations that underlie
these results are given in the appendix. Throughout, we assume a spatially-flat universe.

We start from the definition of the lensing potential φ(n̂) as a function of the gravita-
tional potential Φ(x, χ) at (comoving) position x and lookback time χ, integrated along the
line-of-sight n̂ and weighted by a redshift distribution n(χ) of lensing sources:

φ(n̂) =
2

c2

∫
dχ

χ
q(χ)Φ(χn̂, χ), (2.1)

where χ is the comoving radial distance. In this equation n(χ) is normalized so that∫
n(χ) dχ = 1 and q(χ) is the lensing efficiency:

q(χ) =

∫ χH

χ
dχ′

χ′ − χ
χ′

n(χ′), (2.2)

where χH is the distance to the particle horizon.
We are interested in the two-point statistic

〈
φ(n̂)φ(n̂′)

〉
=

(
2

c2

)2 ∫ dχ

χ
q(χ)

∫
dχ′

χ′
q(χ′)

〈
Φ(χn̂, χ)Φ(χ′n̂′, χ′)

〉
. (2.3)

Expanding the two-dimensional lensing potential φ in spherical harmonics, and the gravita-
tional potential in Fourier modes, and using Poisson’s equation, we can relate the lensing
angular power spectrum Cφφ` ,

〈φ`mφ`′m′〉 = Cφφ` δ``′δmm′ , (2.4)

to the unequal-time dimensional matter power spectrum Pδ(k;χ, χ′). If we further approxi-
mate the unequal-time power spectrum as separable (which is exact in linear theory; see [14]
for the impact of non-linear evolution), i.e.,

Pδ(k;χ, χ′) ≈
[
Pδ(k;χ)Pδ(k;χ′)

]1/2
, (2.5)

for two tomographic redshift bins (r, s) with redshift distributions nr(χ) and ns(χ) we find

Cφφ` (r, s) =
8

π

(
3ΩmH

2
0

2c2

)2 ∫
dk

k2
Ir` (k)Is` (k), (2.6a)

where

Ir` (k) =

∫
dχ

χ
[1 + z(χ)] qr(χ)j`(kχ) [Pδ(k;χ)]1/2 . (2.6b)

2The data used in this paper is publicly available at https://github.com/sjoudaki/cfhtlens revisited.
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The main observable in weak galaxy lensing surveys is the shear, which can be described by
the spin-2 field γ = ð2φ/2, where ð is the spin-raising operator [15]. The expansions of the
shear, and its complex conjugate, in spin ±2 spherical harmonics are

γ(n̂) =
∑
`m

(ε`m + iβ`m)2Y`m(n̂), (2.7)

γ∗(n̂) =
∑
`m

(ε`m − iβ`m)−2Y`m(n̂), (2.8)

where ε`m are the multipoles of the E-mode of the shear and β`m for the B-modes. For lensing
in the Born approximation, as considered here, the gravitational shear has only E-modes
with ε`m =

√
(`+ 2)!/(`− 2)!φ`m/2. The angular power spectrum of the lensing potential,

eq. (2.6a), can easily be related to the E-mode power spectrum of the shear field by

Cεε` =
1

4

(`+ 2)!

(`− 2)!
Cφφ` . (2.9)

The shear γ is defined relative to the θ and φ directions. The two-point functions of the
shear in real space are simplest when the shear at the two points, n̂1 and n̂2, are rotated onto
bases generated by the great circle through the two points (and the orthogonal directions).
If we denote the rotated shear by an overbar, e.g., γ̄(n̂1), the shear correlation functions for
tomographic bins r and s are defined as

ξ+(θ; r, s) = 〈γ̄∗r (n̂1)γ̄s(n̂2)〉 , ξ−(θ; r, s) = 〈γ̄r(n̂1)γ̄s(n̂2)〉, (2.10)

where θ is the angle between n̂1 and n̂2. The ξ± can be expressed in terms of the shear
power spectrum as (see appendix A.2)3

ξ+(θ; r, s) =
∑
`

2`+ 1

4π
Cεε` (r, s)dl2 2(θ), (2.11a)

ξ−(θ; r, s) =
∑
`

2`+ 1

4π
Cεε` (r, s)d`2−2(θ), (2.11b)

where d`mn are the reduced Wigner D-matrices. The equations above are all exact and make
no use of the Limber or flat-sky approximations.

2.1 Limber approximation

The exact expressions for the power spectra, eqs. (2.6a) and (2.6b) are time consuming to
evaluate accurately at high multipoles due to the rapid oscillations of the spherical Bessel
functions. Many analyses adopt the Limber approximation instead, which is accurate at
large ` and much easier to compute. In the Limber approximation, we effectively replace the
spherical Bessel function in eq. (2.6b) with a delta-function,

j`(kχ)→
√

π

2ν
δD(ν − kχ), (2.12)

3Equation (48) of ref. [1] incorrectly has the d`2 2 replaced by Legendre polynomials in the expression for
the spherical ξ+(θ; r, s). This introduces errors that increase steadily with θ. However, for our application to
CFHTLenS (section 3) the error is below 2 % on the relevant scales (θ < 100 arcmin) and so does not affect
the conclusions of ref. [1].

– 3 –
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where ν = `+1/2. The wavenumber k is then related to radial distance χ via the relation kχ =
ν. This approximation is accurate if the rest of the integrand in eq. (2.6b) is slowly varying
compared to the spherical Bessel function, which is generally the case at large ` (see [12] for a
careful discussion). Making this approximation in eq. (2.6b), and using eqs. (2.6a) and (2.9),
we recover the familiar Limber formula for the shear power spectrum

Cεε` (r, s) =
(`+ 2)!

ν4(`− 2)!

(
3ΩmH

2
0

2c2
Ωm

)2 ∫
dχ [1 + z(χ)]2 qr(χ)qs(χ)Pδ(ν/χ;χ). (2.13)

2.2 Flat-sky approximations

Mathematically, the flat-sky approximations consist of replacing the expansion in spherical
harmonics by an expansion in Fourier modes. The relation between shear and lensing power
spectra, eq. (2.9), is then

Cεε` ≈
`4

4
Cφφ` . (2.14)

The reduced D-matrices for high multipoles can be approximated by Bessel functions [16]:

d`2 +2(θ) ≈ J0(`θ) d`2 −2(θ) ≈ J4(`θ), (2.15)

and together with the Limber-approximated expression (2.13), we obtain the usual expression
for the shear power spectrum [17]

Cεε` (r, s) =

(
3ΩmH

2
0

2c2

)2 ∫
dχ [1 + z(χ)]2 qr(χ)qs(χ)Pδ(ν/χ;χ), (2.16a)

and the correlation functions

ξ+(θ, r, s) =
1

2π

∫
d``J0(`θ)Cεε` (r, s), (2.16b)

ξ−(θ, r, s) =
1

2π

∫
d``J4(`θ)Cεε` (r, s). (2.16c)

Note that we have replaced ν by ` in the prefactor of the Limber-approximated power spec-
trum, eq. (2.13), and also in the expressions (2.11a) and (2.11b) for the correlation functions
[(2`+ 1)/(4π)→ `/(2π)]. We have, however, retained ν in the argument of the matter power
spectrum.

In this paper, we compare exact results with two flat-sky approximations: (i) Equa-
tions (2.16a)–(2.16c) with ν = (`+1/2) in the argument of the matter power spectrum, which
is the approximation used in the tomographic analysis of CFHTlenS and KiDS weak lensing
data4 (we call this ‘flat-sky no prefactor’); and (ii) Equations (2.13), and (2.16b)–(2.16c)
with ν = (` + 1/2) in both the prefactor and the matter power spectrum (which we call
‘flat-sky with prefactor’). These two approximations differ from each other only in the pref-
actor of the shear power spectrum. The spectrum with the prefactor is smaller by a factor
of approximately 1 − 5/(2`2). We shall compare each of these approximations to the exact
expressions (2.6a)–(2.6b) and (2.11a)–(2.11b).

4Note that eq. (4) in [8] uses ν = ` in the argument of the matter power spectrum; however, the public
KiDS likelihood code uses ν = `+ 1/2.
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Figure 1. Shear power spectra for the third (left) and fourth (right) tomographic redshift bins of
the revised CFHTLenS data set assuming the best-fit parameters of [7], illustrating the effects of the
small-angle approximations discussed in the text. The red lines use the same approximations as in
the tomographic analyses of the CFHTlenS and KiDS weak lensing data, while the blue lines are from
the exact calculation.

3 Application to CFHTLenS data

In this section we investigate the impact of the small-angle approximations on current weak
lensing parameter constraints using the CFHTLenS survey as an example. CFHTLenS is
based on imaging data from the Canada-France-Hawaii telescope in five photometric bands.
In the reanalysis of [7], the data is divided into seven tomographic redshift bins with pho-
tometric redshifts spanning the range 0.15 < z < 1.30. We use the calibrated redshift
distributions to compute the exact shear power spectrum, as well as the ‘flat-sky no prefac-
tor’ and the ‘flat-sky with prefactor’ spectra, using the formulae presented in the previous
section assuming the best-fit parameters of [7]. Figure 1 shows the resulting shear power
spectra for the third and fourth tomographic redshift bins. This shows that the small-angle
approximations have negligible impact except at multipoles ` <∼ 10. However, the CFHTLenS
analyses are insensitive to these multipoles.

We can see explicitly that the small-angle approximations have negligible impact on
the CFHTLens analysis by looking at the shear correlation functions ξ+ and ξ−. Figure 2
shows the predictions for ξ+ and ξ− for the various approximations assuming the best-fit
parameters of [7] for tomographic redshift bin 3, together with the data points and 1σ errors
from [7]. Compared to the large errors on the CFHTLenS data points, the effects of adopting
small-angle approximations are negligible over the angular scales probed by the data.

As a final test, we perform parameter estimation (with CosmoMC [18, 19]) sampling
the CFHTlenS likelihood as in [7] comparing the ‘flat-sky prefactor’ with the ‘flat-sky no
prefactor’ approximations.5 As expected from figure 1, the impact of these approximations
on cosmological parameters such as σ8 and Ωm is undetectable within the convergence errors
of the parameter chains (and therefore well below the 1σ errors on cosmological parameters).

5We have not tested the exact calculation since it is too slow to be used in CosmoMC. However, the
differences between the exact correlation functions and those with the ‘flat-sky no prefactor’ approximation
are about twice as large as the differences between the two flat-sky approximations, so our analysis should
still be representative of the actual errors introduced by the small-angle approximations.

– 5 –
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Figure 2. Shear correlation functions ξ+ (left) and ξ− (right) for the third tomographic redshift bin
of CFHTLenS. The points show the CFHTLenS measurements together with 1σ errors. The model
curves show the effects of the small-angle approximations described in the text, assuming the best-fit
parameters of [7].

4 Conclusions

The analysis presented here shows that the small-angle Limber and flat-sky approximations
that are typically used in the analysis of galaxy weak lensing have no significant impact on
cosmological parameters derived from current data. Kilbinger et al. [1] have reached similar
conclusions recently, as does the revised version of [2]. Three independent analyses are
therefore in agreement that small-angle approximations have no bearing on the discrepancy
between the amplitude of the mass fluctuation spectrum inferred from the CFHTLenS or
KiDS galaxy weak lensing data and that measured from the CMB assuming the base-ΛCDM
cosmology.
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A Galaxy weak lensing two-point statistics

In this appendix we summarise results for the two-point statistics of the weak lensing ob-
servables, namely convergence and shear, on the spherical sky and also in the flat-sky limit.
These results are valid for both weak lensing of galaxies and of the CMB. As in the main
text, we assume a flat universe throughout.

All weak lensing quantities can be defined as a function of the lensing potential φ(n̂, χ)
for sources at comoving distance χ:

φ(n̂, χ) =
2

c2

∫ χ

0
dχ′

χ− χ′

χχ′
Φ(χ′n̂, χ′), (A.1)

where Φ(x, χ) is the gravitational potential at comoving position x and conformal lookback
time χ.

– 6 –
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If we average observables over sources with a redshift distribution n(χ), normalised such
that

∫
n(χ) dχ = 1, the relevant 2D lensing potential is given by

φ(n̂) =

∫
dχn(χ)φ(n̂, χ) =

2

c2

∫
dχ′

χ′
q(χ′)Φ(χ′n̂, χ′), (A.2)

where q(χ) is the lensing efficiency defined in eq. (2.2). In the case of CMB lensing, the
source distribution can be approximated by a delta-function at the surface of last scattering:
n(χ) = δD(χ− χ∗). The lensing potential is a scalar field and can be expanded in spherical
harmonics as

φ(n̂) =
∑
`,m

φ`mY
m
` (n̂). (A.3)

The basic observables in weak lensing are the convergence κ and the components γ1 and
γ2 of the shear, defined in terms of the second derivatives of the lensing potential as

∇i∇jφ = κgij +
1

2
(γ1 + iγ2)(m− ⊗m−)ij +

1

2
(γ1 − iγ2)(m+ ⊗m+)ij , (A.4)

where gij is the metric on the sphere and the null vectors m± = θ̂ ± iφ̂. Here, θ̂ and φ̂ are
unit vectors along the θ and φ coordinate directions of a spherical-polar coordinate system.
The convergence κ = ∇2φ/2 describes isotropic magnification/dilation and is a scalar field.
The shear describes area-preserving distortions; the complex shear γ = γ1 + iγ2 is a spin-2
field related to the lensing potential via

γ =
1

2
(m+ ⊗m+)ij∇i∇jφ =

1

2
ð2φ, (A.5)

where ð is the spin-raising operator [15]. The spherical-harmonic expansions of the conver-
gence and shear follow from eq. (A.3):

κ(n̂) = −1

2

∑
`,m

`(`+ 1)φ`mY
m
` (n̂), (A.6a)

γ1(n̂)± iγ2(n̂) =
1

2

∑
`,m

√
(`+ 2)!

(`− 2)!
φ`m ±2Y

m
` (n̂). (A.6b)

Generally, a spin 2 field can be expanded in E- and B-modes, for example,

(γi ± iγ2)(n̂) =
∑
`,m

(ε`m ± iβ`m)±2Y
m
` (n̂), (A.7)

where ε`m are the E-mode multipoles and β`m are the B-mode multipoles. These transform
oppositely under parity: ε`m → (−1)`ε`m and β`m → (−1)`+1β`m. However, we see from
eq. (A.6b) that the gravitational shear has no B-modes (in the Born approximation that we
are assuming here), while ε`m =

√
(`+ 2)!/(`− 2)!φ`m/2.

The angular power spectrum of the lensing potential is defined by

〈φ`mφ∗`′m′〉 = δ``′δmm′C
φφ
` . (A.8)

– 7 –
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We can similarly define the convergence and shear power, which are related to Cφφ` by

Cκκ` =
`2(`+ 1)2

4
Cφφ` , (A.9a)

Cεε` =
1

4

(`+ 2)!

(`− 2)!
Cφφ` . (A.9b)

In the flat-sky approximation, we project onto the tangent plane at the centre of the
observed field and denote positions in this plane with a 2D vector θ. Expansions in spherical
harmonics are replaced by Fourier expansions, so that for the gravitational potential

φ(θ) =

∫
d2l

(2π)2
φ(l)eil·θ. (A.10)

The expansions of the convergence and shear become

κ(θ) = −1

2

∫
d2l

(2π)2
l2φ(l)eil·θ (A.11a)

(γ1 ± iγ2)(θ) = −1

2

∫
d2l

(2π)2
l2φ(l)e±2i(ψl−ψθ)eil·θ, (A.11b)

where ψl and ψθ are the angles that l and θ, respectively, make with the x-axis. Note that
the components of the shear are defined relative to a polar-coordinate basis in the plane;
rotating to a global Cartesian basis removes the factors of e∓2iψθ .

In the flat-sky approximation, the power spectra are related simply by

Cκκ` =
`4

4
Cφφ` =

`4

4
Cεε` . (A.12)

A.1 Relation to the matter power spectrum

We can relate the lensing angular power spectra to the 3D matter power spectra as follows.
We begin by expanding the gravitational potential in eq. (A.2) in Fourier modes Φ(k, χ) and
using the plane-wave expansion to find

φ`m = i`
8π

c2

∫
d3k

(2π)3

(∫
dχ

χ
q(χ)j`(kχ)Φ(k, χ)

)
Y m
`
∗(k̂) . (A.13)

The two-point correlator of the gravitational potential is

〈Φ(k, χ)Φ∗(k′, χ′)〉 = (2π)3PΦ(k;χ, χ′)δ
(3)
D (k − k′), (A.14)

where PΦ(k;χ, χ′) is the unequal-time power spectrum of the gravitational potential. It
follows from eq. (A.13) that, for redshift distributions qr(χ) and qs(χ),

Cφφ` (r, s) =

(
8π

c2

)2 ∫ k2dk

(2π)3

∫
dχ

χ
qr(χ)j`(kχ)

∫
dχ′

χ′
qs(χ′)j`(kχ

′)PΦ(k;χ, χ′). (A.15)

This simplifies if we adopt the approximation made in the main text,

PΦ(k;χ, χ′) ≈
[
PΦ(k;χ)PΦ(k;χ′)

]1/2
, (A.16)

– 8 –
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to give

Cφφ` (r, s) =
8

πc4

∫
k2dk Îr` (k)Îs` (k), (A.17)

where

Îr` (k) =

∫
dχ

χ
qr(χ)j`(kχ) [PΦ(k, χ)]1/2 . (A.18)

Finally, we can relate the 3D power spectrum of the gravitational potential to the 3D matter
power spectrum using Poisson’s equation, i.e.,

PΦ(k;χ) =

(
3

2
ΩmH

2
0 [1 + z(χ)]

)2 Pδ(k;χ)

k4
, (A.19)

to obtain our final result

Cφφ` (r, s) =
8

π

(
3ΩmH

2
0

2c2

)2 ∫
dk

k2
Ir` (k)Is` (k), (A.20a)

Ir` (k) =

∫
dχ

χ
[1 + z(χ)] qr(χ)j`(kχ) [Pδ(k, χ)]1/2 . (A.20b)

A.2 Spherical correlation functions

Expressions for the spherical correlation functions of the gravitational shear from the angular
power spectrum can be obtained following the methods used for CMB polarization (also a
spin-2 field) in refs. [20, 21]. To maintain generality, we give results including B-modes
although, as noted above, these are expected to vanish for the gravitational shear.

As discussed in the main text, the correlation functions of the shear for lines of sight n̂1

and n̂2 are simplest when the shear is expressed at each point in bases generated by the great
circle through the two points. If α1 is the angle require to rotate θ̂1 in a right-handed sense
about n̂1 onto the tangent to the great circle there, the rotated shear is γ̄(n̂1) = e−2iα1γ(n̂1).
For redshift distributions qr(χ) and qs(χ), the two-point correlation functions of the rotated
shear are

ξ+(θ; r, s) = 〈γ̄∗r (n̂1)γ̄s(n̂2)〉 =
∑
`

2`+ 1

4π

[
Cεε` (r, s) + Cββ` (r, s)

]
dl2 2(θ), (A.21a)

ξ−(θ; r, s) = 〈γ̄r(n̂1)γ̄s(n̂2)〉 =
∑
`

2`+ 1

4π

[
Cεε` (r, s)− Cββ` (r, s)

]
d`2−2(θ), (A.21b)

where d`mn are the reduced Wigner D-matrices, and θ is the angle between n̂1 and n̂2. The
correlation coefficients for the shear components follow from these expressions (noting that
the right-hand sides are real-valued):

〈γ̄1,r(n̂1)γ̄1,s(n̂2)〉 =
1

2
[ξ+(θ; r, s) + ξ−(θ; r, s)] , (A.22a)

〈γ̄2,r(n̂1)γ̄2,s(n̂2)〉 =
1

2
[ξ+(θ; r, s)− ξ−(θ; r, s)] . (A.22b)

Correlations between mixed components, e.g., 〈γ̄1,r(n̂1)γ̄2,s(n̂2)〉, vanish since we are assum-

ing that parity invariance holds in the mean (so that Cεβ` (r, s) = 0).
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