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Abstract: To predict buildings' energy use, multiple systems and processes must be 

considered. Next to factors such as building fabric and construction, indoor 

environmental control systems, and weather conditions, the energy demand attributable 

to buildings’ internal heat gains resulting from inhabitants, lighting, and equipment usage 

also needs to be addressed. Given this background, the present contribution focuses on 

plug loads in office buildings associated mainly with computers and peripherals. Using 

long-term observational data obtained from a continuously monitored office building in 

Vienna, we specifically explore the relationship between inhabitants’ presence, installed 

power for equipment, and the resulting electrical energy use. The findings facilitate the 

formulation of both simplified and probabilistic office plug loads predictions methods. 

Thereby, the model evaluation results suggest that the non-stochastic model provides 

fairly reasonable predictions of annual energy use associated with plug loads. However, 

the stochastic plug load model – together with a stochastic occupancy model – 

outperforms the simplified model in predicting the plug loads peak and distribution. 
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1. Introduction  

Office buildings' energy demand is significant. In Europe, total annual energy use of 

office buildings varies roughly from 100 to 1000 kWh.m-2.a-1, depending on factors 

pertaining to location, construction, environmental control systems, as well as equipment 

types and use patterns [1]. Generally speaking, office buildings' energy demand is due to 

both provision of proper indoor conditions (e.g., heating, cooling, ventilation, lighting) 

and operation of office equipment. The latter energy requirement is particularly affected 

by inhabitants' presence and behaviour [2]. Plug loads play a significant role in office 

buildings, involving computers, peripheral devices, telephones, etc. A large fraction of 

office equipment is controlled by inhabitants [3]. Plug loads are suggested to account for 

more than 20% of primary energy used in office buildings, and this ratio is stipulated to 

increase by 40% in the next 20 years [4,5,6].  

Reliable estimates of plug loads are important for adequate design decision 

making. Specifically, building performance simulation tools geared toward assessing 

buildings' energy and indoor environmental performance would benefit from reliable 

methods to estimate plug loads magnitude [7]. The current state of knowledge (including 

both available information in standards and typical simulation input assumptions) with 

regard to the prevailing plug loads in office buildings may be characterized as not fully 

satisfactory.  

Recently, a number of efforts have been initiated to investigate typical patterns of 

inhabitants' presence and actions and their impact on building performance 

[8,9,10,11,12,13,14,15]. However, there are arguably few studies regarding prediction 

methods of the magnitude and pattern of equipment use in office buildings. As such, only 

few recent studies have gone beyond the use of typical profiles of plug loads, trying to 

provide a deeper understanding or models of plug loads for building performance 
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simulation [16,17,18,19]. Given this circumstance, the present contribution empirically 

explores presence and plug load patterns of a number of inhabitants of a selected office. 

The objective is to formulate a general, coherent, and transparent method to estimate 

office buildings' plug loads using a number of basic assumptions. Thereby, both bulk 

(e.g., aggregated annual values) and detailed (i.e., time-dependent high resolution) 

electrical energy use patterns are considered, resulting in a simplified (aggregate) and a 

detailed (probabilistic) prediction method. Note that, given the very small scope of the 

underlying empirical data, the authors do not claim the general validity of the specific 

formulation of the proposed prediction methods. Rather, the aim is to document the 

proposed approaches and illustrate their promising potential, which are to be further 

tested and refined via future – more extensive – cross-sectional investigations. 

2. Approach 

2.1. Setting, research questions, and nomenclature  

The main objective of the present contribution is to explore the possibility of predicting 

plug loads of office buildings based on two sets of assumptions, namely the installed 

equipment power (specifically computers and peripherals) and the presence patterns of 

inhabitants. Put in general terms, we hypothesise that plug loads or electrical energy use 

in an office building due to office equipment can be estimated based on installed 

equipment power and the presence patterns of the office inhabitants. 

To provide both a concise illustration and an initial test of the proposed predictive 

approach toward estimation of office buildings' plug loads, we selected an office area in 

a University building in Vienna, Austria. The area includes both single-occupancy and 

open-plan office rooms/zones (see Table 1). The office area is used by eight regular staff 

members (referred to here as U1 to U8) of different backgrounds (Department director, 

secretarial assistant, academic assistants, research scientists). The office area is equipped 
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with a comprehensive monitoring infrastructure. Of importance are, for the purposes of 

the present contribution, sensors for occupancy detection and plug loads monitoring. 

Specifically, plug loads associated with each inhabitant (computers, peripherals, 

telephones, etc.) are monitored on a regular basis. To obtain occupancy data, wireless 

ceiling-mounted PIR sensors with EnOcean technology are used. The PIR sensor sends a 

value of 1, whenever a movement is detected. If there is no movement in its detection 

field, the sensor sends a value of 0 every 100 seconds. Plug loads are measured via 

wireless energy meters, which measure active electrical energy by means of the current 

between input and output and transmits the consumption and meter reading over the 

wireless network. These sensors transmit a telegram within 20 seconds if the power status 

changes by minimum 10 percent. In order to facilitate data analysis, the resulting data log 

of occupancy and plug load was processed in terms of 15-minute intervals. 

In this paper, the primary analysis and the basis for model development are based 

on 15-minute interval data (inhabitants' presence, plug loads) collected over a one-year 

period (2014). To assess the developed models' reliability, two separate sets of empirical 

data from the years 2013 and 2015 were complied. Note that the data included in this 

paper concerning the installed power of desktop computers do not directly reflect their 

nameplate values. Rather, they have been derived based on nameplate information 

according to the insights gained in previous studies. These studies suggest that desktop 

computers consume on average 14 to 36% of the rated values [2,20,21]. In the present 

treatment, we thus define a specific coefficient, which is to be applied to the nameplate 

values of desktop computers' installed power.  
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Table 1. Overview of the selected office zones with respective inhabitants, areas, and installed 
power (Qe) 

Space Inhabitants Total effective installed 
power [W] Area [m2] 

Open-plan office area U1, U2, U3, U4, U5 880 43 
Single-occupancy office 1 U6 180 19 
Single-occupancy office 2 U7 90 34 
Single-occupancy office 3 U8 130 17 

  

 The collected data was analysed to address a number of salient questions:  

• What is, in this case, the overall magnitude of annual person-related and area-

related plug loads and to which extend are these values in agreement with 

respective default values in pertinent standards?  

• What is the degree of diversity amongst the inhabitants with regard to presence 

levels and plug loads?  

• Is there a relationship between the installed equipment power and the annual 

energy used for electrical equipment?   

• Is there an overall relationship between an inhabitants' presence probability at 

his/her work station and his/her energy use for electrical equipment?  

• Can one establish predictive models to estimate inhabitants' equipment-related 

electrical energy demand based on their: i) installed equipment power, and ii) 

presence probability at their workstations? 

To approach these questions systematically and formulate suitable prediction methods, 

some formal expressions can be useful as per the following nomenclature: 

Pj,i Inhabitant j's presence probability (at the workplace) at time interval ti  

Qj Installed (name-tag) plug loads at Inhabitant j's workplace  

Qe,j Effective installed plug loads at Inhabitant j's workplace  

qj,i Inhabitant j’s actual plug load at time ti  
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Fj,i Inhabitant j's plug load fraction at time interval ti (Fj,i = qj,i/Qj,e)  

T Length of time interval  

2.2.  Two approaches to plug load prediction 

In previous publications, we have argued that the choice of proper modelling methods in 

building performance simulation must take the pertinent deployment scenarios (types of 

queries, their purpose, and the stage at which they are formulated) into account [22,23]. 

We thus postulate that in the case of plug loads too, different computational approaches 

may be appropriate for different use cases. Specifically, two approaches are introduced 

in the present contribution. The first (simplified) approach aims as obtaining aggregate 

estimations such as annual plug loads in an office area or building given certain basic 

input data such as overall presence patterns (e.g., in terms of diversity profiles) and 

installed equipment power. The second (probabilistic) approach aims at emulating the 

stochastic nature of load fluctuations. Toward this end, high-resolution (empirically-

based or stochastically generated) time series of office inhabitants are utilised. In the 

following,  brief descriptions of these two approaches are provided.  

2.3. The simplified approach 

We hypothesise that plug load fraction is a function of presence probability as follows: 

 Fj,i = f(pj,i)         (1) 

A linear version of this relationship could be represented as follows (with a and b as 

coefficients that would be empirically obtained): 

Fj,i = a.pj,i + b         (2) 

Given these assumptions, the energy use associated with plug loads for an office with j 

inhabitants over a time period consisting of n interval with a length of T can be estimated 

as follows: 
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𝐸𝐸 = 𝑇𝑇 × ∑ ∑ �𝐹𝐹𝑗𝑗,𝑖𝑖 × 𝑄𝑄𝑒𝑒,𝑗𝑗�𝑚𝑚
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1       (3) 

For the office area investigated in the present study and using the empirical 2014 data, 

this relationship can be expressed in terms of the template provided by equation 2 as 

follows: 

Fi = 0.53 × Pi + 0.09        (4) 

2.4. The probabilistic approach 

To explore the potential of a probabilistic approach in predicting plug loads, we 

formulated a simple stochastic plug load model, which utilizes three specific Weibull 

distributions to characterise the following: 

1) Plug load fractions during occupied periods or intermediate absences shorter than 

one hour; 

2) Plug load fractions during intermediate absences longer than one hour; 

3) Plug load fractions outside working hours. 

 

Thereby, plug load fractions are picked randomly via inverse transform sampling 

method, whenever the occupancy state falls within one of the above possibilities. 

Consequently, similar to the aforementioned simplified model, the electrical energy use 

can be calculated via Equation 3.  

The general formulation of a Weibull distribution is as follows, where a is the 

scale parameter and b is known as the shape parameter: 

 

𝑓𝑓(𝑥𝑥|𝑎𝑎, 𝑏𝑏) =
𝑏𝑏
𝑎𝑎
�
𝑥𝑥
𝑎𝑎
�
𝑏𝑏−1

𝑒𝑒−�
𝑥𝑥
𝑎𝑎�

𝑏𝑏

 
(5) 

 
Note that Weibull distribution is widely applied in various statistical modelling 

efforts. Specifically, formalisms based on Weibull distribution are also used in the 
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occupancy-related modelling studies (see, for example, [24,25,26]). In order to obtain the 

parameters of the Weibull distributions, we used the monitored data pertaining to 

occupancy and plug loads at the studied office area in year 2014 using the maximum 

likelihood estimation method (see Table 2). Figure 1 illustrates cumulative distribution 

function of the Weibull distributions for the aforementioned cases. 

Whereas the empirical distribution functions could be used to establish the 

stochastic model for the purpose of current study, we used the fitted Weibull distributions, 

so that the model can be used (and further tested by other researchers) without fully 

depending on high resolution monitoring data on occupancy and equipment use.  

 

 
Table 2. Parameters of the stochastic plug load model’s Weibull distributions (obtained from observations 

in the selected office area for the year 2014) 

Model’s Weibull 
distributions a (scale) b (shape) 

1 0.560 1.886 
2 0.377 1.323 
3 0.141 1.072 

 

 

Figure 1. Cumulative distribution function of the stochastic plug load model’s Weibull distributions 
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It should be noted that to use this model the occupancy states (occupied or vacant) 

of individuals at each time interval should be provided as input. In this regard two 

scenarios were considered: A) Use of high-resolution monitored data for the whole 

running period, and B) using a stochastic occupancy model to generate non-repeating 

daily occupancy profiles based on limited information about occupancy patterns. While 

the first scenario represents a sort of ideal situation to depict the model’s potential, the 

second scenario offers a more practical option: A number of stochastic occupancy models 

have been emerged, which can use relatively simple input information (i.e., observation-

based or standard-based diversity profiles). For the purpose of current study, we used the 

stochastic occupancy model developed by Page et al. [27]. This model uses as input a 

profile of presence probability and average parameter of mobility (μ), which is defined 

as the ratio of state change probability to state persistence probability. Similar to the 

implementation of the linear regression model, the stochastic model was provided with 

average presence profiles for weekdays and weekends. Note that the model itself does not 

include default values for the – potentially highly influential – mobility factor. To explore 

the implications for the method's predictive performance, two values for mobility factor 

were considered, namely 0.5 and 0.1, leading to scenarios B1 and B2 respectively. In the 

present contribution, we selected these values based on experiences in previous modelling 

studies of occupants’ presence. Theoretically speaking, one could also calculate these 

parameter values based on the monitored occupancy data. However, the objective here 

was to provide a model for situations, in which only limited information about occupancy 

is available. Table 3 summarizes the implementation scenarios of the stochastic plug load 

model. 
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Table 3. Implementation scenarios of the stochastic plug load model 

Scenario Input data Coupled occupancy model 

A Individuals’ monitored occupancy data - 

B1 Average monitored presence profiles for 
weekdays and weekends 

Stochastic model [27] with μ = 0.5 

B2 Stochastic model [27] with μ = 0.1 

 

3. Results and discussion 

3.1. General observations 

Table 4 shows a summary of the estimated installed equipment power as well as 

monitored annual (work days) person-related and area-related plug loads (for the year 

2014). Note that in case of U4, energy use associated with a task-light is included in the 

person-related and area-related plug loads. Excluding the maximum and minimum 

values, monitored plug loads in the selected office space was found to vary roughly 

between 16 and 48 W.person-1 (average = 22 W.person-1). In area-related terms, this 

corresponds to a range of loads between 1 and 7 W.m-2 (mean value = 3 W.m-2). A 

comparison to pertinent standardized values is not possible in all cases, as standards 

frequently lump equipment loads together with those of lighting. ASHRAE 90.1-2013 

Performance Rating Method [28], which is a widely used standard among building energy 

modellers, suggests a receptacle power density of 8.1 W.m-2 for office buildings. 

Figures 2 and 3 show, for a reference day representing the entire year, the presence 

probability of each inhabitant at the work station and plug load fractions respectively. 

This means that the loads represented in this Figure (as well as in Figures 4, 5, and 6 

below) are not given in absolute terms, but in terms of the previously mentioned plug 

load fraction (F), i.e., actual plug load value (q) divided by the effective installed 

equipment power at that inhabitant's work station (Qe). We explored the relationship 
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between an inhabitant's presence probability and the corresponding plug loads. Toward 

this end, Figure 4 shows, as an example (U7), plug load fractions as a function of the 

presence probability. The same relationship for all inhabitants is illustrated in Figure 5. 

Note that each dot in Figures 4 and 5 represents a specific 15-minute interval during a 

reference day (average value for all days of the year). As Figure 6 illustrates, there is 

considerable diversity amongst inhabitants regarding the relationship between plug load 

fractions and presence probability. Nevertheless, the respective correlations are high in 

all cases.  

Figure 7 shows the relationship between each occupant's installed equipment 

power (in W) and the respective occupant's annual electrical equipment energy use (in 

kWh).   
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Table 4. Overview of person-related and area-related plug loads (annual averages, working days) based on 
2014 data 

Inhabitant Installed effective 
equipment power [W] 

Monitored plug 
loads [W] 

Allocated area 
[m2] 

Area-related plug 
loads [W.m-2] 

U1 130 19.1 8.6 2.2 

U2 140 27.7 8.5 3.3 

U3 190 47.9 6.9 6.9 

U4 240 71.6 
 

6.9 10.4 

U5 180 29.3 12.1 2.4 

U6 180 36.1 19.0 1.9 

U7 90 14.0 34.1 0.4 

U8 130 15.7 17.0 0.9 
 

 

Figure 2. The eight inhabitants' presence probability for a reference day representing one year's 
working days  

 
Figure 3. The eight inhabitants' plug load fractions for a reference day representing one year's 
working days  
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Figure 4. The relationship between inhabitant's presence probability (U7) and the plug load 
fraction  

 
Figure 5. Linear regression analysis of the relationship between plug load fraction and presence 
probability for eight inhabitants  

 

 
Figure 6. Linear regression analysis of the relationship between plug load fraction and presence 
probability for each of the eight inhabitants  
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Figure 7. The relationship between annual equipment energy use and installed equipment power 
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patterns and their installed equipment power, the resulting electrical energy use can be 

predicted – using equation 2 – with good accuracy.  

As mentioned before, the empirical basis of the above analyses and the proposed 

methodology is limited, as it pertains to a specific office area and a small number of 

inhabitants. However, the employed data for model development is extensive in terms of 

monitoring duration and resolution (whole year data, 15-minute interval resolution). 

Thus, while we cannot address the robustness of the proposed approach if applied to all 

office buildings, it is possible to examine the model’s validity if applied to monitored data 

from a totally separate time period. Toward this end, we compared the model's results not 

only with monitored data from year 2014 (which provided the empirical basis of the 

model) but also with two entirely separate data sets from years 2013 and 2015. In 

addition, to put the model’s performance in a context more familiar to practitioners, we 

provided the electrical energy use estimations resulting from the use of ASHRAE 90.1 

plug load profiles for office buildings. 

Table 5 provides a summary of the monitored and calculated total and peak 

electrical energy use (due to office equipment) in the selected areas for the years 2014, 

2013, and 2015, together with the predictions’ relative errors with reference to the 

measurements. In addition, to compare the distribution of predicted and monitored plug 

loads, we utilized the Jensen–Shannon divergence metric [29]. This metric is used to 

compute distances between two probability distributions and it is bounded between 0 and 

ln(2).  For two probability distributions P and Q, Jensen-Shannon divergence (JSD) is 

calculated based on Kullback–Leibler divergence (KLD), as follows: 

 

𝐽𝐽𝐽𝐽𝐽𝐽(𝑃𝑃,𝑄𝑄) =
1
2
𝐾𝐾𝐾𝐾𝐾𝐾(𝑃𝑃,𝑀𝑀) +

1
2
𝐾𝐾𝐾𝐾𝐾𝐾(𝑄𝑄,𝑀𝑀) (6) 

 

Where, 
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𝑀𝑀 =
1
2

(𝑃𝑃 + 𝑄𝑄) (7) 

 

𝐾𝐾𝐾𝐾𝐾𝐾(𝑃𝑃,𝑄𝑄) = �𝑃𝑃(𝑖𝑖) ln
𝑃𝑃(𝑖𝑖)
𝑄𝑄(𝑖𝑖)

𝑖𝑖

 (8) 

 

Table 5 also includes the values of three statistical indicators, namely Root Mean 

Square error (RMSE), Normalised Root Mean Square Error (NRMSE), and Mean Bias 

Error (MBE) for interval by interval comparison of the monitored and calculated energy 

use. 

These results suggest that, for the selected case study building (for which reliable 

information on installed equipment power and occupancy patterns was available), the 

proposed method can provide good predictions of the annual electrical energy use for 

office equipment. Interestingly, the proposed method's "predictive" performance was 

better for the years 2013 and 2015, even though it was developed based on the 2014 data. 

However, with regard to the peak plug loads and the distribution of run period predictions, 

the model yields relatively large errors, as it relies on average reference-day presence and 

plug load profiles. As compared with the use of ASHRAE 90.1 typical plug load profiles, 

the suggested simple model performs much better in terms of annual electrical energy use 

and time interval estimations of plug loads. However, the large overestimation of 

ASHRAE 90.1 schedules for the building under study (with a relative error of 106.7% in 

annual value) results in a better prediction of high peak values.  
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Table 5. Statistical comparison of simplified plug load model’s predictions with the monitored electrical 
energy use associated with plug loads for the years 2013 to 2015 

Model Run 
period 

Run period sum Run period peak Distribution Time interval values 

Value 
[kWh] 

RE 
[%] 

Value 
[W] 

RE 
[%] 

JSD 
[-] 

MBE 
[W] 

RMSE 
[W] 

NRMSE 
[%] 

Measured  2014 2289.7 - 1190.9 - - - - - 

Simplified model 2014 1960.4 -14.4 510.3 -57.2 0.44 -37.6 162.8 14.4 

Measured  2013 1978.0 - 1157.8 - - - - - 

Simplified model 2013 1958.1 -1.0 513.5 -55.6 0.51 -2.3 129.3 12.0 

Measured  2015 1801.5 - 1058.4 - - - - - 

Simplified model 2015 1863.1 3.4 503.6 -52.4 0.42 7.0 138.1 13.7 

ASHRAE 90.1 
plug load profiles - 3724.0 106.7 1152.0 8.8 0.40 219.5 415.2 41.1 

 

3.3. Performance of the probabilistic method 

As shown in Table 6, the stochastic method's performance in predicting annual, peak, and 

time interval plug loads was evaluated in the same manner. However, in case of the 

stochastic model, the values provided in Table 6 are mean values of a 100-run Monte 

Carlo simulation of the model. In addition, as explained before, the stochastic plug load 

model was implemented in 3 different scenarios in terms of input occupancy data (see 

Table 3).   

The results provided in Table 6 suggest that the implemented stochastic method 

for office plug loads does not provide very accurate predictions of the annual electrical 

energy use. However, it provides fairly good estimations of peak loads. It should be also 

considered that, despite the poor performance in terms of annual use predictions, it still 

outperforms the ASHRAE 90.1 profiles in terms of all our evaluation metrics. 
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Considering different implementation scenarios of the stochastic plug load model, 

it can be seen that the selection of input parameters for the stochastic occupancy model 

(in this study the parameter of mobility), has a large impact on the resulting energy use 

predictions. Specifically, for the office area studied here, setting the parameter of mobility 

to 0.5 results in a large overestimation of annual plug loads. However, when using a 

parameter of mobility of 0.1, model predictions converge to those obtained via high 

resolution occupancy data input. 

 
 
Table 6. Statistical comparison of stochastic plug load model’s predictions with the monitored electrical 
energy use associated with plug loads for the years 2013 to 2015 

Model Run 
period 

Run period sum Run period peak Distribution Time interval values 

Value 
[kWh] 

RE 
[%] 

Value 
[W] 

RE 
[%] 

JSD 
[-] 

MBE 
[W] 

RMSE 
[W] 

NRMSE 
[%] 

Measured 2014 2289.7 - 1190.9 - - - - - 

Stochastic model, 
Scenario B1 2014 2904.5 26.9 1092.3 -8.3 0.34 70.2 199.4 17.6 

Stochastic model, 
Scenario B2 2014 2388.1 4.3 1018.1 -14.5 0.35 11.2 182.7 16.2 

Stochastic model, 
Scenario A 2014 2424.3 5.9 1033.5 -13.2 0.33 15.4 141.5 12.5 

Measured 2013 1978.0 - 1157.8 - - - - - 

Stochastic model, 
Scenario B1 2013 2835.6 43.4 1098.6 -5.1 0.37 97.9 209.4 19.4 

Stochastic model, 
Scenario B2 2013 2354.8 19.1 1007.5 -13.0 0.38 43.0 181.7 16.9 

Stochastic model, 
Scenario A 2013 2374.3 20.0 1057.8 -8.6 0.36 45.3 123.2 11.4 

Measured 2015 1801.5 - 1058.4 - - - - - 

Stochastic model, 
Scenario B1 2015 2782.7 54.5 1091.9 3.2 0.34 112.0 205.0 20.3 

Stochastic model, 
Scenario B2 2015 2333.5 29.5 1004.1 -5.1 0.34 60.8 175.2 17.3 

Stochastic model, 
Scenario A 2015 2322.7 28.9 1009.8 -4.6 0.33 59.5 137.3 13.6 

ASHRAE 90.1 plug 
load profiles - 3724.0 106.7 1152.0 8.8 0.40 219.5 415.2 41.1 
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4. Conclusion 

Knowledge about inhabitants’ presence and behaviour in buildings can yield better 

(simulation-based) estimations of energy use and improve the building design and 

operation process. In the present contribution, we used actual monitoring results to 

address a number of relevant questions regarding plug loads in office buildings. The 

results suggest that the observed loads in the selected office do not necessarily correspond 

to common assumptions in standards and simulation input data. Moreover, patterns of 

user presence and plug load requirements differ significantly amongst individual office 

users.  

The results point also to an interesting and potentially highly useful relationship 

between inhabitants' presence, their respective installed equipment power, and the 

resulting electrical energy use. Using this relationship, we proposed and tested a 

simplified (aggregate) and a detailed (probabilistic) method for the prediction of electrical 

energy use in buildings due to office equipment operation.  

The comparison of model predictions with observed data facilitates a number of 

conclusions. The simplified method provides fairly reasonable predictions of annual 

energy use associated with plug loads. Indeed, the performance of the simplified model 

was in this regard considerably better than the more sophisticated probabilistic model 

implementations in the validation years 2013 and 2015 (see Figure 8). However, the 

probabilistic plug load model, independent of the variations implemented, outperforms 

the simplified model in terms of peak load (see Figure 9) and the distribution of 

predictions. The latter can be inferred from the lower values of JSD (see Table 5 and 

Table 6) and is clearly illustrated for year 2013 in Figure 10. With regard to the time 

interval plug loads, comparing the models with the same level of input (the simplified 
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model versus the probabilistic model in implementation scenarios B1 and B2), reveals a 

better performance on the side of the simplified model.  

 

 
Figure 8. Annual plug load obtained from different modelling approaches, along with the 
respective monitored values 

 

 
Figure 9. Peak plug load obtained from different modelling approaches, along with the respective 
monitored values 
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Figure 10. Cumulative distribution of plug load fraction obtained from different modelling 
scenarios for year 2013, along with the respective monitored values 

 

Our main objective in this paper was to conceive and implement the general 

structure of predictive methods for office plug loads. This was accomplished in terms of 

both a simplified method and a more detailed probabilistic method. These initial 

implementations proved to be promising, whereby the choice of the appropriate model 

may be dependent on the deployment scenario: Whereas the simplified (aggregate) 

model's predictions came closer to observed annual energy use values, probabilistic 

models performed better in prediction of peak plug loads and in emulation of time-

dependent (interval) data distributions.  

As stressed before, the present study was based on a limited set of empirical data 

obtained from one office area. While we consider the general mathematical formulation 

of the proposed prediction methods to be both consistent and promising, we do not 
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suggest that they could be generally applied without proper adjustment and calibration 

measures, pertaining, for example, to the values of various coefficients and parameters 

involved. Ongoing and future – more extensive – cross-sectional investigations in this 

area are expected to utilise a larger empirical foundation and thus lead to more 

representative and inclusive model iterations that could be embedded in high resolution 

building performance modelling and energy simulation applications.  
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