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Abstract 

To achieve computational efficiency, efforts toward developing urban-scale energy modeling 

applications frequently rely on various domain simplifications. For instance, heat transfer 

phenomena are captured using reduced order models. As a consequence, specific aspects 

pertaining to the temporal dynamics of energy load patterns and their dependency on transient 

phenomena (e.g., weather conditions, inhabitants’ presence and actions) cannot be realistically 

represented. To address this circumstance, we have conceived, implemented, and documented 

a two-step urban energy modeling approach that combines cluster analysis and sampling 

techniques, full dynamic numeric simulation capability, and stochastic methods. The paper 

describes the suggested urban energy modeling approach and the embedded cluster analysis 

supported sampling methodology. More particularly we focus on the aspects of this approach 

that explicitly involve the representation of inhabitants in urban-scale energy modeling. In this 

regard, the potential to recover lost dynamic diversity (e.g., in computation of temporal load 

patterns) due to the deployed reductive sampling is explored. Parametric runs based on 

stochastic variations of underlying building use profiles facilitate the generation of highly 

realistic load patterns despite the small number of buildings selected to represent the simulation 

domain.  We illustrate the utility of the proposed urban energy modeling approach to address 

queries concerning the energy efficiency potential of behaviorally effective instruments. The 

feasibility of the envisioned scenarios concerning inhabitants and their behavior (high-

resolution temporal load prediction, assessment of behavioral variation) is presented in detail 

via specific instances of district-level energy modeling for the city of Vienna, Austria.  
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1. Introduction  

The Paris environmental summit of 2015 concluded that global net zero emissions must be 

achieved before 2070 to avoid catastrophic levels of global warming (COP 2015). 

Governments across the world have set up ambitious plans for the reduction of emissions and 

energy use. Urban areas are considered as the primary human habitat since over half of the 

global population now lives in cities (World Bank 2015). Building stock as a major component 

of the urban environment, contributes generously to urban energy use and greenhouse gas 

emissions. Therefore, development of energy efficiency and emission mitigation strategies 

focused on the urban building stock is indispensable to a systematic shift towards emission-

free cities. Towards this end, various demand-side and supply-side energy management 

approaches can be adopted. These include but are not limited to the improvement of the thermal 

quality of building envelopes, employment of more efficient systems and appliances, 

exploitation of the renewable energy resources through centralized and distributed plants, 

influencing the microclimatic conditions through introduction of vegetation, water bodies, and 

shading elements, encouraging sustainable building operation routines either directly via 

informational campaigns or indirectly via energy pricing strategies, etc.  However, given the 

severity and urgency of the current situation and the substantial financial resources, time and 

effort required for the deployment of such strategies, trial and error is not an option. Integrative 

urban-level decision support environments, which allow for the investigation and comparative 

analysis of the implications of various energy and emission management plans, can help ensure 

the effectiveness of the envisaged strategies and an efficient allocation of the available 

resources.  
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The computational method or the energy model is the core component of these environments, 

determining the scope of their utility. Over the past years, efforts towards development of 

energy and emission models of the urban building stock for the assessment of various urban 

change and intervention scenarios, and their consequences have been steadily increasing. These 

models vary substantially in view of the general approach, scenario modeling capabilities, 

disaggregation level, required input parameters, and temporal and spatial resolution of the 

results. However, to achieve computational efficiency, efforts toward developing urban-scale 

energy modeling applications frequently rely on various domain simplifications. As such, they 

cannot accommodate queries pertaining to transient phenomenon such as microclimate and 

occupant behavior with appropriate level temporal and spatial resolution.  

The present contribution reports on the development of a bottom-up space-heating energy 

demand model of the urban building stock. The model is intended as an extendable core 

computational component of an integrative urban decision support environment. The 

environment is targeted at comparative analysis of various urban change and intervention 

scenarios pertaining to the following aspects: 

 Physical interventions: Thermal retrofit, densification, etc. 

 Technological advancements: Use of solar technologies, efficient heating systems, etc. 

 Climatic changes: Urban Heat Island Studies, etc. 

 Occupant behavior changes: Induced by demographic changes, lifestyle changes, etc. 

This development enables the employment of dynamic performance simulation for urban level 

energy assessments through a reductive process. Full-fledged simulation is well suited for 

representation of transient phenomenon with appropriate temporal resolution. For various 

urban scale queries (e.g., pertaining to the energy implications of microclimate variations or 

incorporations of small-scale renewable energy technologies), high spatial resolution is also 
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required. As such, the model is integrated with Geographic Information Systems (GIS), which 

serves as an appropriate interaction, data-processing and visualization platform.  

The following sections provide an over view of some previous efforts in this domain, describe 

the main components of the developed computational schema, and demonstrate its utility for 

investigation of behavioral change scenarios through simple illustrative examples.  

2. State of the art  

Bottom-up engineering (physical) urban energy models (Swan and Ugursal 2009) rely on heat 

transfer principles to arrive at the value of the energy demand of the entire population or a 

number of representative buildings in the study domain, in the latter case using the 

representative assessment results to extrapolate the energy performance of the entire 

population. Due to their computational method and their independence from historical demand 

data, these models are generally deemed most suitable for evaluation and investigation of 

various urban scenarios (Kavgic et al. 2010). The range of the observable scenarios depends 

on the versatility and resolution of the underlying building level energy computation routine 

and its representation of various energy-relevant building aspects (such as internal and external 

boundary conditions, thermal properties of the envelope, geometry, etc.). The predictive 

performance of the model on the other hand depends not only on the modeling capabilities of 

the computational engine, but also on the inevitable domain simplifications and the reliability 

of the model input parameters.  

Few former urban energy modeling efforts have attempted a detailed representation of the 

entire building population under study. This is in part due to the scarcity of informational 

resources and in part due to the computational cost and effort required for such extensive 

modeling activities. To address this circumstance, several approaches have been adopted by 

former efforts: 1) adopting simplified computation methods (e.g., Li et al. 2015, Glawischnig 
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2016); 2) focusing on a smaller area of investigation (e.g., Beatens and Saelens 2015); 3) 

archetypical representation of the entire population based on statistical data (e.g., Sansregret 

and Millette 2009); and 4) employing reductive procedures. Most frequently reductive 

procedures such as sampling or archetyping are used to limit the number of necessary 

computations in proportion to the demandingness of the integrated energy assessments 

routines. However, loss of diversity is a natural consequence of the reductive methods. The 

severity of this loss depends on the efficiency of the building segmentation or classification 

schema, based on which the representative buildings are selected or generated. The most 

common approach towards stock segmentation relies on definition of critical thresholds for 

various energy-influential building characteristics such as envelope quality, geometry, 

operational parameters, etc. 

Snäkin (2000) developed a non-dynamic numerical bottom up engineering model of the 

province of North Karelia in Eastern Finland. Through a stock segmentation by building usage, 

built form, construction/retrofit period, primary heat energy source, and heat distribution type, 

4163 building types were identified. The study does not consider heat loads from solar energy 

and users and focuses on annual demand estimations.  

Jones et al. (2001) analyzed data on heated ground floor area, façade, window to wall ratio, 

and exposed end area to identify 20 typical built forms for the assessment of the energy 

performance of the building stock of the city of Cardiff (UK). Along with 5 construction 

periods, this led to the definition of 100 building typologies. The buildings selected to represent 

these types, were subjected to assessments in a building performance benchmarking tool, UK 

Standard Assessment Procedure (SAP), which does not represent the temporal distribution of 

demand or capture the intricate effects of occupant presence and activity on energy demand. 

This stock energy model is a component of an integrative modeling environment aimed at 
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facilitating urban level policy making, covering various aspects of the urban domain including 

traffic and industrial processes.  

Hens et al. (2001) classified the Belgian building stock according to age, total floor area, built 

form, primary energy source and heating system type (central heating vs. dispersed heating 

units), to investigate the effectiveness of several CO2 emission reduction strategies. The 

envisaged CO2 reduction measures included shifting to low emission fuels, installation of heat 

pumps, conversion to renewable sources and improvements to the energy efficiency of 

buildings. The identified classes were represented by synthetic archetype buildings, which 

underwent a steady-state single zone monthly energy demand assessment procedure.  

In a study on the energy demand of the Canadian building stock, Parekh (2005) segmented the 

building stock into classes of buildings with similar usage, vintage and climate region, 

generating 56 building types. Other building parameters required for energy assessments were 

statistically determined in every class. The resulting archetypical buildings were simulated in 

the HOT2000 energy assessment tool (Natural Resources Canada 2016), used to estimate 

annual energy consumption of low-rise residential buildings (single-family houses, semi-

detached houses, and row houses).  

The TABULA project (Episcope 2016), aiming towards development of residential building 

typologies for energy assessments across 11 European countries also relies on a building stock 

classification per climate zone, vintage and dwelling type. Real buildings representing the 

various characteristics of the buildings in each class are suggested as references, for 

performance computation purposes. The resulting typology has been used in various reductive 

urban energy assessment models (e.g., Dascalaki et al. 2011; Ballarini et al. 2014).  

Huang and Broderick (2000) used a segmentation scheme by usage, vintage and location, 

developing a total of 120 commercial and 144 residential prototype/location combinations to 
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characterize the US building stock. Simulation input files for the DOE-2 (Hirsch and 

Associates 2016) program were developed for each combination. Results were up-scaled and 

employed for cogeneration potential studies. Similar simulation-supported reductive 

approaches have been followed by Heiple and Sailor (2008), Caputo et al. (2013), Tuominen 

et al. (2014), and Orehounig et al (2014).  

Most previous efforts adopt age and built form to express the thermal quality of the building 

envelope and its exposure to elements respectively. Operational parameters are captured 

through buildings’ primary usage, which may be suboptimal when dealing with multi-usage 

buildings. Building orientation and transparency, as well as the effect of mutual shading are 

frequently ignored in various stock segmentation schemes. Despite adoption of reductive 

routines, very few studies focus on employment of more versatile dynamic performance 

evaluation procedures. Due to limitations in computational and informational resources, 

reduced order models are more frequently used. Although beneficial to provide an overview of 

the energy behavior of an urban domain, these simplified models are incapable of representing 

the temporal dynamics of energy load patterns and their dependency on transient phenomena 

(e.g., weather conditions, inhabitants’ presence and actions) with appropriate detail. 

Consequently, specific queries, particularly those regarding the urban microclimate variance 

or occupant behavioral aspects, cannot be accommodated with suitable levels of resolution. 

Sansregret and Millette (2009) developed software that automatically generates archetypical 

simulation models for the representation of the Quebecois building stock using building usage, 

floor area, construction period, location and main heating source as input. Relying on an 

extensive repository of building information data, for various characteristics of buildings 

probability distributions are statistically derived. These characteristics include aspect ratio, 

number of floors, thermal properties of envelope components, as well as operational parameters 

such as control settings and occupancy, lighting and appliance load schedules, and ventilation 
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rates. The stock model is generated through stochastic determination of these variables 

according to the underlying probability distributions. As such, this method efficiently 

represents the diversity of the urban building stock, while minimizing modelling effort. 

However, a reliable spatial disaggregation of demand, necessary for proximity-dependent 

queries (e.g., pertaining to grid optimization and integration of distributed generation plants) 

cannot be expected since the method does not allow for the consideration of contextual 

parameters such as adjacency and shading relations.  

In an article declaring Distributed Generation (DG) as the “future power paradigm”, Manfren 

et al. (2011) count the “direct customer’s involvement in energy demand and peak power 

reduction programs” among the manifold strengths of a DG scheme. The identification of 

potential sites through analysis of existing customers’ distribution, energy demands and load 

patterns is, however, considered the preliminary phase towards efficient adoption of DG in 

urban areas. Investigation of the energy implications of behavior change scenarios, caused by 

demographic changes (e.g., ageing society, elevated birthrate, etc.), or new social 

developments (e.g., changes in official weekly work hours, increase in part-time employment) 

can enhance the utility of the urban energy predictive models.  

Emphasizing the significance of the occupancy related variance in energy demand in view of 

the increasingly stringent thermal codes, Munoz and Peters (2014) question the efficiency of 

the reference operational schedules for assessments pertaining to DG schemes. They argue that 

even though social or behavioral diversity may not play a major role in the current centralized 

grids, development of decentralized energy generation paradigms requires reliable data on the 

dynamics of energy demand at a higher spatial resolution. To address this issue, they use the 

TABULA building typologies for Germany to characterize Hamburg’s existing stock 

(Episcope 2016). Focusing on the residential buildings, they analyze micro-census data, 

defining household types and their occurrence likelihood, in each statistical area. These 
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households are allocated to the prototypical buildings within the designated spatial domains, 

but the resulting configuration is assessed using a simplified standard heat balance model, 

which is ill suited to incorporate this elaborate representation of inhabitants towards 

performance assessment.  

Baetens and Saelens (2015) identify various occupant types (full-time employed, unemployed, 

minor) for the Belgian context using time-use and household budget survey data. These typical 

profiles are then used as a basis for the stochastic modeling of occupant presence and activity 

schedules. The results are used to examine the uncertainties associated with user behavior in 

neighborhood scale energy assessments. The resulting model efficiently represents diversity of 

buildings and inhabitants, however, due to the extensive modelling effort required its 

applicability to larger building assemblies is limited.  

In a demand model for the residential building sector in the city of Osaka, Japan, Shimoda et 

al. (2003) incorporate a detailed survey on household demographics and activities to determine 

23 household types. The data provides the probability distribution of each living activity such 

as sleep, meal, work, etc. in 15-minute time intervals for weekdays, Saturdays and Sundays for 

each family member’s category (classified by gender, age, and occupation: employed or not). 

With 20 dwelling typologies of detached and apartment houses (distinguished by size) and the 

defined household types, 460 building typologies were defined for which hourly energy 

consumption was simulated. The results were extrapolated to the entire city. The solid 

empirical basis allows for a detailed representation of the occupant-dependent aspects 

including heating, cooling, lighting and appliance use schedules. However, the physical aspects 

of buildings may have been over-simplified as the only criteria for the segmentation of dwelling 

types is area.  
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An overview of the various characteristics of the presented models is offered in Table 1. In this 

table the term “Authentic building representation” refers to modeling approaches, in which 

actual buildings from the study domain have been selected to represent the area, as opposed to 

“Synthetic building representation”, where archetypical buildings are adopted. These models 

address various aspects of urban energy computing. However, there is a requirement for 

versatile computational frameworks that can handle high resolution representations of 

occupants, and physical and contextual building parameters to support integrative urban 

decision support environments.  
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Table 1 An overview of the consulted models

Computation 
Method 

Modeling 
Extent 

Building 
Representation 

Inhabitant 
Representation 

Examples Comments 

simplified 
   

Entire 
population 

Authentic  Simple aggregate 
representation 

Li et al. (2015)  
Glawischnig (2016) 

 Low informational requirements 
 Low computational cost 
 Loss of diversity in case of reduced modeling extent 
 Inefficient representation of contextual parameters in case 

of reduced modeling extent 
 Low temporal resolution of results 
 Limited modeling and representation capabilities (in 

particular with regard to transient phenomena) 

 Synthetic 

 

Simple aggregate 
representation   

Snäkin (2000) 
Hens et al (2001) 
Jones et al. (2001) 
Parekh (2005) 
Dascalaki et al. (2011)  
Ballarini et al. (2014) 

Detailed diversity 
representation  

Munoz and Peters (2014) 

Dynamic 
performance 
simulation 

 

Entire 
population 

 

Synthetic Simple operational 
schedules 

Sansregret and Millette 
(2009)  

 High informational requirements 
 High computational cost 
 High temporal resolution of results 
 limited application domain due to reliance on a statistical 

approach towards model generation 

Authentic Stochastic 
representation 

Baetens and Saelens 
(2015)  

Reduced 

 

Authentic Simple operational 
schedules 

Orehounig et al. (2014)  High temporal resolution of results  
 Loss of diversity 
 Inefficient representation of contextual parameters 
 Representation of diversity with regard to inhabitants 
 

Synthetic 
 

Detailed diversity 
representation  

Shimoda et al. (2003)  

Simple operational 
schedules 

Tuominen et al. (2014) 
Caputo et al. (2013) 
Huang and Broderick 
(2000) 
Heiple and Sailor (2008) 
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3. Approach 

3.1. Overview 

Figure 1 illustrates the overall structure of the developed framework. The model relies on GIS 

information and standards to develop an energy relevant representation of the building stock. It 

employs well-known data-mining methods to effectively reduce the computational domain to a set 

of representative buildings, enabling the deployment of detailed multi-zonal dynamic performance 

simulations. The simulation models pertaining to these representatives are diversified with a two-

fold method to recover part of the lost diversity, due to the reductive procedure as well as the 

utilization of average or typical operational representations (schedule-based average trends of 

occupant presence, use of appliances and lighting, typically provided in standards such as 

ASHRAE 2013). In this context, two distinct computational modules are developed: 1) The 

reductive module, and 2) The diversification module.  

 

Figure 1 Structure of the proposed framework 
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Since the model reduces diversity in one step and enhances it in a second step, the authors adopted 

the term “hour-glass model” to describe the developed method. The present contribution provides 

a brief introduction to the methods adopted in the first module, followed by a more detailed 

description of the second. The utility of the model for comparative analysis of the energy 

implications of behavioral change scenarios is demonstrated through an illustrative example on a 

neighborhood in Vienna, Austria. 

3.2. Case study 

The case study is a neighborhood in the center of the city of Vienna covering a morphologically 

diverse area of about 1.3 square kilometers. The selected neighborhood, including some 750 

buildings of various construction periods and usages, well represents the historical building stock 

of the Austrian capital. However, new Viennese buildings (constructed after 1945) are 

underrepresented due to their low count in the central districts. A less central location may have 

better captured the age diversity of the stock, however, due to their architectural and historical 

quality, the central districts have been better documented in the official GIS data. Figure 2 and 

Figure 3 illustrate the selected neighborhood and the distribution of buildings by construction 

period and primary usage. Buildings with uncommon usages, such as kiosks in a permanent market 

place, underground station entrances and a church were eliminated from the analysis. 
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Figure 2 (Left) Selected case study 

Figure 3 (Right) Distribution of buildings in the study area by usage and age 

4. The reductive module 

4.1. Tools and prerequisites 

The first module is developed as a plug-in for the open-source QGIS platform (2016). QGIS is a 

Geographical Information Systems (GIS) environment based on the programming language 

Python (2015), enhancing it with specialized packages for performing geometrical analyses on 

GIS data. The plug-in, also developed in Python language following an object-oriented approach, 

is embedded with functions from the R Program for Statistical Computing (2015), which enable 

the implementation of intricate data-mining routines. The current version of the plug-in is adapted 

to the Viennese context. This adaptation pertains to the format and the content of the available GIS 

data, as well as the incorporated codes and statistical information. However, the method can be 

applied to other geographical locations with minor modifications to the code, provided that the 

necessary input data can be procured. This data includes land-use vector data of the urban area 

under study containing the footprint geometry of the buildings and eaves height information, 

Digital elevation raster data containing punctual values for building height, and Geo-referenced 

information on construction period, building usage, and number of floors.  
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The above data can be utilized to generate a Sky View Factor (SVF) raster imagery of the area 

using the DEMTools QGIS plug-in (Hammerberg 2014). This data has been used for solar 

exposure analyses. Optionally, the official land-use data can be refined using other available data 

sources, such as the crowd-sourced Open Street Maps (2015) GIS data repository. Austrian 

standards providing use-profiles, age-based thermal performance of building components, etc. 

have been used to represent various characteristics of the building stock (Table 2).  

 

Table 2 Incorporated urban data 

 

Source Data type Contained data 

G
IS

 D
A

T
A

 

ViennaGIS  2015 
 

Land Use Plan (vector layer) Building Footprint Polygons 
Construction type (main/annex) 
Relative eaves height 
Elevation from ground 

Digital Elevation Model raster layer) Relative height of every point 

Building Inventory (vector layer) Building construction period/year 
Main building usage 
Number of Floors 

OpenStreetMap 2015 Land Use Plan (vector layer) Building Footprint Outline 
Building usage  

Hammerberg 2014 Sky View Factor Map (raster layer) Sky View Factor of every point at 
ground level 

S
T

A
N

D
A

R
D

S
 

OeNorm B8110-5 2011 Thermal insulation in building construction: 
Model of climate and user profiles 

Usage-based internal gains 
Usage-based infiltration rate 
Usage-based use hours 
Reference weather data 

OeNorm B8110-6 2014 Thermal insulation in building construction: 
Principles and verification methods,  
Heating demand  and cooling demand 

Average window to wall ratio 
Average frame to window ratio 
Average net to gross floor area ratio 

OIB-RL 6 2015 Guidelines: Energy-technical behavior of 
buildings 

Age-based component U-values 
Age-based window solar transmittance 
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4.2. Data processing 

In the official GIS data of Vienna, buildings are identified with a unique reference number, which 

also establishes a link between the land-use data and the geo-referenced building inventory data. 

The developed plug-in browses through the land-use plan identifying features with a unique 

reference number as “Building Parts” constituting the footprint geometry of a single “Building” 

object. The construction type information is used to determine if the feature is associated with a 

main building or an annex utility building. The latter buildings are considered unconditioned. The 

eaves height information associated with every “Building Part” is used to generate “Wall” objects. 

“Buildings Parts” are examined for touching perimeter segments. Heights of the “Wall” objects 

associated with these segments are compared to determine the parts of the colliding walls, which 

form the outer boundaries of the building envelope. These “Walls” are maintained in the 

“Building” object. The aggregated area of the lowermost envelope components as well as the 

enclosed volume is computed. Through geometric analysis of footprint outlines a list of neighbors 

is identified for each building. The “Walls” are investigated for adjacency with neighboring 

buildings, determining their boundary condition (outside, adiabatic, or adjacent to unheated 

building). For “Walls” adjacent to outside air, angle to north, total area, as well as the glazed area 

are computed, using the average standard-suggested window to wall ratio. The Sky View Factor 

(SVF) for a point in the middle of the wall’s baseline is extracted from the SVF raster layer as an 

indicator of the shading effect of the surrounding buildings. A simple rule-based logic based on 

the difference between the average height of every “Building Part” calculated from the Digital 

Elevation Model, and the eaves height given by the land-use layer, determines the shape of the 

roof (flat/sloped) and the condition of the attic space in case of a sloped roof. If the attic space is 
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assumed to be used, an approximation for the additional conditioned volume and the roof area is 

made.  

The building inventory data point associated with the building is identified by the reference 

number, thus providing information on the main usage of the building and its construction period. 

If Open Street Map data is available, it is browsed for data points associated with each building, 

for additional information on other functionalities present in the building (e.g., banks, shops, 

restaurants, etc.). Based on simple rules, the entire volume of the building is distributed among the 

various usages. Operational parameters such as annual day-time and night-time use hours, daily 

HVAC operation hours, average area-related hourly internal gains and air change rate is extracted 

from the standards for the present usages. Average values of the operational parameters, weighted 

by their designated share of the total volume are calculated for the building. According to the 

construction period/year, U-values of various building components are extracted from the national 

guidelines. The resulting representation of the urban area is then used to generate a matrix of 

energy-influential descriptive indicators, which are used to partition the building stock into groups 

of buildings with similar thermal behavior. Figure 4 summarizes the data processing routine.  
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Figure 4 Overview of the steps of the data processing routine 

 

4.3. Stock classification 

Rather than relying on construction period, usage and built form as classification criteria, a set of 

descriptive indicators were defined to capture the various energy-relevant aspects of the buildings, 

including physical, operational and contextual characteristics. This allows for the development of 

a more generic approach towards stock classification in view of the dynamic nature of cities. Table 

3 provides an overview of the adopted indicators as well as the corresponding computational 

methods. Note that the contextual parameters (the reductive impact of mutual shading on solar 

gains, as well as the influence of adjacencies on conductive heat loss) have been involved in the 

definition of several indicators (thermal compactness, effective glazing ratio, and effective 
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envelope U-value). For every building, the values of the above indicators are calculated by the 

plug-in. The results are stored in a CSV file, in which every building is represented by a row, and 

the columns contain the values of the descriptive indicators. The resulting data matrix is subjected 

to Multivariate Cluster Analysis (MCA), a well-known data-mining method for unsupervised data 

classification.  

There are major differences in the magnitude of the values of these indicators. For instance, the 

values associated with net volume are much greater than those expressing the effective U-value of 

the envelope. Prior to cluster analysis, the dataset is standardized to prevent the differences in the 

magnitude of values, from influencing the clustering outcome as an unintentional weighting. The 

performance of three clustering algorithms, K-means clustering (MacQueen 1967), Hierarchical 

agglomerative clustering (Hair et al. 2010), and Model based clustering (Fraley and Raftery 2002) 

towards efficient partitioning of the data space was evaluated. K-means clustering partitions the 

data space into k clusters, such that the data points in each cluster are closer to the center of their 

own cluster than to the centers of any other clusters, based on the Euclidean distance.
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Table 3 Adopted classification criteria 

 Abbr. Variable Description/ Comments Formula Parameters 

G
eo

m
et

ry
 

Vn  

Net Volume [m
3
] An indicator of the size of the building 

Vn ൌ ∑ሺAfeat, i	. hfeat, iሻ	. fn  

Afeat, i	  
hfeat, i	  
fn  

Area of footprint feature [m] 
Height of foot print feature [m] 

Net to gross volume ratio 

he 
Effective floor height [m] Ratio of the building volume to the floor area  

he ൌ Vn	/	ሺAf, i	. nfሻ 
Af, i  
nf  

Total floor area [m] 
Number of floors 

Ct 
Thermal compactness [m] Ratio of the net building volume to the 

thermally effective envelope area Ct ൌ Vn	/	Ae  
Ae  the thermally effective envelope area [m] 

S
ol

ar
 g

ai
ns

 

GRe 

Effective glazing ratio Average glazing to wall ratio weighted by 
orientation and corrected for the shading 
effect of the surroundings 
Weights associated with orientations were 
based on reference climate data 

GRe ൌ
WWR	. GWR	. g	. ∑ሺAow, i	. fo, i	. SVFiሻ /
∑Aow, i  

WWR 
GWR 

Aow, i 
fo, i 
g  

SVFi  

Window to wall ratio 
Glass to window ratio 

Area of outside wall [m] 
Corresponding orientation correction factor 
Solar factor of glazing  

Sky View Factor in the vicinity of the wall 

T
he

rm
al

 Q
ua

li
ty

 

Ue 

Effective average 
envelope U-value [W.m

-

2
.K

-1
] 

Average U-value of the envelope corrected 
for adjacency relations and weighted by the 
corresponding areas 

Ue	 ൌ 	∑ሺUi	. Ai	. ft, iሻ 	/	Ae  

Ui  
Ai  
ft, i  

U-value of building element [W.m
-2

.K
-1

] 
Area of building element [m] 
Corresponding temperature correction factor 

O
pe

ra
ti

on
 P

ar
am

et
er

s Ou 
Fraction of the year used  Fraction of time the building is used annually 

Ou	 ൌ 	tuse, a	/	ta  
tuse, a 
ta 

Annual use hours [h] 
Total hours in a year[h] 

Igd 

Daily area related internal 
gains [Wh.m

-2
.d

-1
] 

Daily internal heat gains per unit of area 
during the heating season Igd	 ൌ 	 ሺqi, h	. tuse, dሻ  

qi, hd  

tuse,  
Usage-based internal gains rate [W.m-2] 
Daily use hours [h] 

Acd Daily air-change rate [d-1] Daily air-change rate Acd	 ൌ 	nv	. tuse, d  nv  Usage-based hourly air-change rate [h-1] 
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In Hierarchical agglomerative clustering, each data point forms a cluster with a single member. 

The closest clusters are consecutively joined until only one cluster remains. The steps are traced 

back to arrive at the desired number of clusters. In this project, the Ward’s method with squared 

Euclidean distance (Ward 1963) has been used as the linkage criterion. Model-based clustering 

recasts the problem of partitioning the data space as a statistical model choice problem. The set of 

multivariate Gaussian components best approximating the data space are identified, each 

component representing a cluster (For more detail on the adopted clustering methods see Ghiassi 

and Mahdavi 2016). The K-means and Hierarchical agglomerative methods require the number of 

the desired clusters as a prerequisite to the partitioning. To solve this problem, the nbClust package 

for R (Charrad et al. 2014) was utilized. This package receives a range of values for the number of 

clusters, computes over 20 clustering performance indicators for the resulting clustering schemas, 

and delivers the optimal number of clusters by majority vote. Note that each cluster has to be 

represented by at least one building. Therefore, the upper limit of the range of cluster numbers 

considered depends on the available computational and informational resources. In this project a 

range of 6 to 30 clusters was considered at each run. The center of every cluster is determined as 

a virtual data point, the dimensions of which assume mean values of the indicators across the 

cluster. The building closest to this virtual center is selected as the cluster representative.  

Obviously, there is no unique or best set of parameters that can cover various energy-relevant 

building characteristics. For instance, thermal quality of the envelope can be expressed with a 

lower level of aggregation through effective wall, ceiling and floor U-values. Operational 

parameters can include more detail, such as day-time and night-time use fractions. Initially a larger 

set of variables was considered, which in addition to the variables described in Table 3 included 

thermally effective envelope area, effective wall, ceiling/roof, and floor U-values, daytime use 
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intensity, annual daytime and nighttime use fractions, average area-related internal gains and 

average hourly air change rate. Eleven scenarios with regard to the clustering criteria were 

developed. These scenarios involved between 7 to 12 indicators for the representation of the energy 

influential building characteristics with various resolutions (e.g., average envelope U-value versus 

effective U-values of major building components to represent constructions). The combination of 

these 11 scenarios (with regard to input variables) and 3 clustering algorithms resulted in 33 

clustering schemas. A simplified evaluation process was adopted to identify the clustering schema 

that best represented the energy diversity of the neighborhood.  

For this purpose, a simplified annual heating demand calculation was carried out on the entire data-

set using the previously generated building data representation and Standard Austrian Weather 

data (ÖNORM 2011). In a second step, for every clustering schema, the volume-related heating 

demand of the cluster representatives and the net volume of the buildings in the cluster were used 

to approximate the heating demand of the buildings. The clustering-based predicted values were 

compared to the originally calculated demand to identify the clustering schema that resulted in the 

smallest errors in the prediction of the aggregated demand of the neighborhood as well as the 

smallest average deviation of the disaggregated (building level) results. The evaluation led to the 

selection of the aforementioned set of indicators (described in Table 3) with the k-means clustering 

algorithm, which were integrated into the plug-in. The resulting clustering schema involves 7 

clusters. It predicts the aggregated heating demand of the neighborhood with a relative error below 

1%. Mean relative error in the prediction of building level demand is 11%, with 12% of the 

buildings featuring a prediction error of above 20%. Of course, the implemented evaluation can 

only roughly indicate the performance of the model in the prediction of annual demand. The quality 
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of the sample in representing the temporal diversity of load patterns must ultimately be evaluated 

by means of high resolution performance assessments or empirical data.  

5. The diversification module 

5.1. Tools and prerequisites 

The simulation program EnergyPlus (2016) was used for the generation of the reference buildings. 

Multi-zonal simulation models for the selected sample were generated based on the detailed 

drawings procured from the Viennese municipality. For various usages present in reference 

buildings, occupancy, HVAC, lighting, and equipment schedules provided by ASHRAE (2013) 

(for Weekdays, Saturdays and Sundays) were adopted as reference schedules. The non-residential 

schedules were readjusted such that the overall hours of HVAC operation matched the average 

daily operation hours provided by the Austrian Standards (ÖNORM 2014). No internal gains were 

assumed for unconditioned zones such as corridors, basements and unheated attic spaces.  

Layered building constructions were defined according to the common practice of the period of 

construction. For this purpose, base case assumptions of the Austrian Handbook for Building 

Thermal Retrofit (Schöberl et al. 2012) were used. The material properties were adjusted such that 

the component U-values matched those suggested by national guidelines for performance 

assessment purposes of historical buildings (OIB 2015). In case of newer buildings, the details 

available on the plans were used to define constructions, while matching the U-values with the 

standard guidelines.  

All required information for Energy Plus simulations is structured and stored in a text-based 

object-oriented Input Data File (IDF). The Eppy (2016) package for Python offers the possibility 
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to browse and modify IDF objects through Python codes. This package was utilized to automate 

the diversification process.  

The csv file of the descriptive indicators matrix generated by the first module is used as a basis for 

diversification. More specifically, the following parameters calculated in the previous phase (some 

of which are not involved in the current classification scheme) are utilized: 

 Effective U-values of the external wall, uppermost enclosure (Floor of the unheated attic 

space or roof of the heated attic space), and basement ceiling. These values are calculated 

according to the following equation (Equation 1):  

Uୣ,ୡ 	ൌ 	Uୡ	. fୡ  (1) 

Uୣ,ୡ : Effective U-value of the construction [W.m-2.K-1] 

Uୡ : U-value of the construction as suggested by the standard [W.m-2.K-1] 

fୡ : Share of the construction from the effective envelope area given by Equation 2: 

fୡ ൌ 	∑ሺAୡ,୧	. f୲,ୡ,୧ሻ	 /	∑ሺA୨	. f୲,୨ሻ  (2) 

Aୡ,୧ , f୲,ୡ,୧: Area and corresponding temperature correction factor of an element associated with the 

particular construction  

A୨ , f୲,୨: Area and corresponding temperature correction factor of an arbitrary building element  

 Daily internal gains (see Table 3)  

 Daily air change rate (see Table 3)  
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5.2. Computational logic overview 

As suggested by the simple evaluation performed in the previous phase, the selected buildings 

provide a fair overall representation of the energy demand of the neighborhood. However, much 

of the diversity of the building stock has been lost in this representation. This loss of diversity is 

in part due to the reductive process, and in part attributable to the use of reference schedules for 

the representation of the operational parameters. The idea behind the diversification module is to 

use the developed reference simulation models as a basis for generation of a diverse set of models 

that better reflect the various characteristics of the building stock.  

Acquisition of relevant building information and generation of the geometric model of a building 

is the most time and effort intensive activity in building performance simulation (Mahdavi and El-

Bellahy 2005). Assuming that the identified sample of buildings represents the geometric features 

of the stock with acceptable fidelity, the diversification module readjusts the non-geometric 

parameters of the reference simulation models to recapture part of the lost diversity. The building 

parameters currently subjected to diversification are the thermal properties of the main components 

of the building envelope (uppermost and lowermost enclosures, external walls), number of 

occupants, area-related equipment and lighting power, as well as occupancy, activity level 

(metabolic rate), lighting, and equipment schedules. Diversification of some geometry-dependent 

aspects (such as effective glazing ratio) is part of the intended future research.  

For every building in the neighborhood, a duplicate of the reference simulation model pertaining 

to the relevant representative building is created. In the new model, the values of the above-

mentioned parameters are modified according to the information available on the target 

(represented) building (acquired by the first module). This procedure results in the generation of a 

unique simulation file associated with a unique set of schedules for every building in the study 
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domain. These models share all geometric properties of the reference models, but emulate the 

thermal and operational properties of the target buildings more closely. The resulting simulation 

files are batch processed from the Energy Plus launcher. Hourly simulation results for volume-

related energy loads of these diversified models are used to arrive at the hourly demand of the 

target buildings according to the following equation (Equation 3): 

Q୧,୦ 	ൌ 	Q୰ୣୣ୰ୣ୬ୡୣ,୦/	V୰ୣୣ୰ୣ୬ୡୣ	. Vi  (3) 

Q୧,୦ : Heating demand of building i in time step h (kWh) 

Vi : Net volume of building i (m3) 

Qୱ୧୫,୦ : Heating demand of the simulated model in time step h (kWh) 

V୰ୣୣ୰ୣ୬ୡୣ  : Net volume of the reference building based on which the simulation model was 

generated (m3) 

5.3. Capturing the behavioral diversity 

The reference schedules represent the temporal distribution of internal loads in aggregate terms. 

However, use of average profiles for demand assessments will result in identical peak load hours 

and unrealistically monotonous profiles across building classes. In order to stochastically represent 

occupancy-related factors, for each building based on the reference schedules for various days of 

the week, a set of randomized schedules were created and stored as schedule files compatible with 

Energy Plus requirements. Each schedule file has 8760 rows (for every hour of the year), and 5 

columns corresponding to occupants’ presence, lighting use, equipment use, HVAC operation and 

activity level. The first three variables assume real values in the range of 0 to 1, and the fourth is 

a Boolean variable (0 or 1). HVAC schedules are not diversified. In case of residential and 
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gastronomy usages, schedules for occupancy, activity level, lighting and equipment use were 

diversified separately. For this purpose, for every hour of the year, the value suggested by the 

reference schedule as the mean value of the time step, as well as a default coefficient of variance 

(CV) were used to generate a probability distribution. The identification of the specifically 

appropriate CV value is an open research question. Former studies suggest that for certain 

applications (e.g., the stochastic generation of presence patterns), CV might display a distinct value 

range (Mahdavi and Tahmasebi 2015). Accordingly, a CV value of 0.2 was deployed in the present 

study. A random value was then generated based on this distribution and assigned to the time step. 

Rules were set to ensure that the selected value remained within the acceptable range. In case of 

office spaces, where equipment and lighting use are very strongly correlated to occupancy 

presence, the rate of lighting and equipment use in every time step of the reference schedules was 

expressed as a function of the occupancy rate in addition to a minimum value. In this case, 

occupancy schedule was subjected to diversification. Equipment and lighting rates were computed 

based on the occupants’ presence rate at every time step. The same method was applied to generate 

diverse activity level schedules. Natural ventilation was assumed to follow the occupancy 

schedule. The diversification code links the IDF file associated with each building to a unique set 

of diversified schedules. Figure 5 illustrate the standard schedules as well as examples of the data 

generated for the gastronomy and office usages for two buildings for the second week of January.  
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Figure 5 a: Office reference schedules according to ASHRAE (2013); b: Office reference schedules according to ASHRAE (2013); c: 
A week’s data of  the diversified schedules generated  for  the office zones of one building; d: A week’s data of  the diversified 
schedules generated for the gastronomy zones of one building 

 

5.4. Readjustment of internal gains and ventilation rates 

Once the schedules were generated, the reference values for equipment and lighting power, number 

of occupants, as well as hourly air change rates were computed such that the aggregated internal 

gains and ventilation rates matched the values computed for each building in the first phase. For 

this purpose, the annual internal gains were computed based on the average daily values (see Table 

3) and the use days provided by the standard. Based on the same logic, average hourly air change 

rate across the year was determined for each building. The annual value of area-related internal 

gains was disaggregated into people, lighting and equipment gains using average ratios provided 

by literature. For instance, for residential spaces, 58%, 19%, and 23% were assumed for gains 

pertaining to equipment, lighting and people respectively (Kemna and Moreno Acedo 2014). For 
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every time-step, Energy Plus computes the values of lighting and equipment gains by multiplying 

the applicable usage rate (given by the schedule) by the reference power value. The following 

equations (Equation 4 and Equation 5) deliver this reference value (in this case for lighting): 

Power୧୦୲୧୬ 	ൌ 	Q୪୧୦୧୲୬,ୟ	/	FLH୧୦୲୧୬	 (4) 

FLH୧୦୲୧୬	 ൌ 	∑ሺHR୧୦୧୲୧୬ሻ	  (5) 

Power୧୦୲୧୬: reference area-related lighting power [W.m-2] 

Q୪୧୦୧୲୬,ୟ: Annual internal gains from lighting [Wh. m-2.a-1] 

FLH୧୦୲୧୬	: Aggregated annual full load hours of lighting [h. a-1] 

HR୧୦୧୲୧୬: Hourly rate of lighting use provided by the schedule 

The same logic was applied to acquire the reference air change rates, such that the annual average 

matches the expected value. In the case of occupants, the hourly gains depend not only on hourly 

occupancy presence rates, but also on the metabolic rate or activity level assumed for the time step. 

In this case, the following equation is applied (Equation 6):  

Numberୣ୭୮୪ୣ	 ൌ 	Qୣ୭୮୪ୣ,ୟ	/	∑ሺHRୣ୭୮୪ୣ	. Hୡ୲୧୴୧୲୷ୣ୴ୣ୪ሻ	  (6) 

Numberୣ୭୮୪ୣ	: maximum area-related number of occupants [Person.m-2] 

Qୣ୭୮୪ୣ,ୟ: Annual internal gains from people [Wh. m-2.a-1] 

HRୣ୭୮୪ୣ: Hourly presence rate of occupants provided by the schedule  

Hୡ୲୧୴୧୲୷ୣ୴ୣ୪: Hourly activity level provided by the schedule [W. Person-1] 
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5.5. Readjustment of thermal properties 

The diversification of the thermal properties of the envelope relies on the diversity of effective 

element U-values. The effective element U-value is not only a measure of the thermal quality of 

the element’s construction, but also a function of the significance of the said construction in the 

overall thermal performance of the building. This significance is determined by the share of the 

elements associated with a particular construction in the total thermally effective area of the 

envelope (corrected for adjacencies). The diversification process modifies the pertinent 

constructions in such a way as to replicate the effective construction U-values computed for every 

principle building element in the first step (see Equation 1). Since the geometry of the diversified 

model is identical to that of the reference model, any deviations from the effective U-values of the 

reference building must be accounted for by manipulating the U-values of the constructions in the 

new model. For instance, if the walls of a building have a more significant share in the building’s 

effective envelope than is the case for the reference building, and both buildings have the same 

effective wall U-value, the wall element of the diversified model will assume a higher U-value, 

such that the effective U-value of the wall remains the same. 

As mentioned before, for every reference simulation file, building component constructions were 

defined according to the common practice of the period of construction of the reference building. 

In every relevant construction, only the most thermally effective layer was subjected to 

modifications. (e.g., the massive masonry layer, or the ceiling timber in the case of historical 

buildings, and the insulation layer in case of newer buildings). Since a modification of the thermal 

mass of the building was not intended, only the thermal conductivity of the layer was changed to 

reach the target construction U-value. Rules have been applied to prevent the layer from assuming 
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unreasonably large or negative values. This may happen in rare cases where the effective U-value 

of the components vary significantly from those of the reference building.  

6. Modeled scenarios 

6.1. Diversification scenarios 

To investigate the impact of the diversification module on the model outcomes, three scenarios 

were deployed. In the first run, the hourly simulation results for volume-related energy loads of 

the non-diversified reference buildings with standard assumptions for thermal quality of 

components, schedules, area-related internal gains, and air change rate were used to arrive at the 

hourly demand of the buildings in the neighborhood. In a second step, only the schedules were 

diversified. The third case involved all the diversification steps described in the previous chapter 

(Table 4).  

Table 4 Overview of the diversification scenarios 

Abbr. Schedules 
Thermal 
properties 

Internal gains 
Number of 
simulations  

NDS 
Not diversified  Not diversified  Not diversified  7 

DS-S 
Diversified Not diversified  Not diversified  744 

DS-A 
Diversified Diversified Diversified 744 

 

6.2. Illustrative behavior change scenarios 

To demonstrate the utilities of the developed computational method for investigation of behavioral 

change scenarios, the fully diversified model was considered as the reference point. Then, two 

simple scenarios with different assumptions on occupant behavior with regard to HVAC system 

temperature set points were defined, simulated, and compared to the reference values.  The first 

scenario considers a setback value for non-residential spaces, which represents more realistically 

the general operation patterns of these buildings. The second scenario maintains the setback values, 
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but seeks to emulate the behavior of a more energy aware population. It is based on the assumption 

that occupant presence rates correlate with the fraction of the spaces conditioned. In other words, 

when occupant presence rate is low, some spaces are unoccupied and thus unheated. Therefore, 

the average indoor temperatures in the building drop below the standard assumptions. Note that 

the developed behavior change scenarios are intended as illustrative examples to demonstrate the 

modeling possibilities of the developed framework and are not presumed to realistically capture 

the behavior of inhabitants. Table 5 describes the rules defining the HVAC operation in each 

scenario.  

Table 5 Overview of the base case and scenario assumptions for HVAC operation 

 Residential Office Gastronomy 

D
S

-A
 (

B
as

e 
C

as
e)

 Set point 
assumptions 
[°C] 

20  20 20 

HVAC 
Availability 

24 hours a day 14 hours on weekdays 14 hours a day 

B
S

-1
 

Set point 
assumptions 
[°C] 

20  20 during work hours 
14 at other times 

20 during work hours 
14 at other times 

HVAC 
Availability 

24 hours a day 24 hours a day 24 hours a day 

B
S

-2
 

Set point 
assumptions 
[°C] 

16  
16  
20  
Interpolate 

Night hours  
Occupancy rate <25% 
Occupancy rate > 55% 
Other times 

14  
16  
20 
Interpolate 

Not working hours 
occupancy rate <25% 
Occupancy rate > 75% 
Other times 

14  
16  
20 
Interpolate 

Not working hours 
occupancy rate <25% 
Occupancy rate > 75% 
Other times 

HVAC 
Availability 

24 hours a day 24 hours a day 24 hours a day 
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7. Results and discussion 

7.1. Neighborhood representation 

The final outcome of the operation of the reductive module plug-in is a map of the investigated 

urban area, in which clusters are identified by colors (Figure 6), the CSV file containing the values 

of all descriptive indicators, as well as the list of buildings representing the clusters. On an average 

commercial PC, the application of the reductive plug-in on the current case study requires about 

15 minutes.  

 

Figure 6 The GIS maps of the neighborhood featuring the clustering schema, generated by reductive plug‐in. Buildings belonging 
to various clusters are identified by colors.  

Table 6 describes the particular characteristics of each cluster and the associated representative 

building. Three different usages are present in the sample: Residential, Gastronomy, and Office.  
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Table 6 Description of clusters and representative buildings 

 Cluster Description Representative Description 

C
lu

st
er

 1
 

Prominently sized buildings of mainly 
residential use with high ceilings, and 
an L-shaped or U-shaped foot print 
resulting in high exposure to outside air 
 
Number of buildings in cluster: 125 

Construction Year: 1914  
Usages: Residential + Gastronomy 

 

C
lu

st
er

 2
 

Residential buildings of varied sizes, 
less affected by shading. Most post 
1945 buildings are grouped here  
 
Number of buildings in cluster: 94 

Construction Period: After 1945  
Usage: Residential 
 

 

C
lu

st
er

 3
 

A collection of medium sized 
residential buildings with higher 
ceilings  

Number of buildings in cluster: 201 

Construction Year: 1846  
Usages: Residential + Gastronomy 

 

C
lu

st
er

 4
 

A mix of mainly educational, cultural, 
commercial and office buildings of 
medium size  

Number of buildings in cluster: 179 

Construction Year: 1868  
Usage: Office 
 

 

C
lu

st
er

 5
 

Smaller sized residential buildings with 
low compactness  

Number of buildings in cluster: 109 

Construction Period: 1848-1918  
Usage: Residential 
 

 

C
lu

st
er

 6
 

A collection of the largest non-
residential buildings on site, with high 
exposure to elements  

Number of buildings in cluster: 30 

Construction Year: 1872  
Usages: Office 
 

 

C
lu

st
er

 7
 

A cluster of all buildings constructed 
after 1976, whose thermal performance 
is significantly superior to that of all 
other classes of building  

Number of buildings in cluster: 6 

Construction Year: 2002  
Usages: Residential  
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7.2. Diversification scenarios 

Table 7 summarizes the results of the modeled cases. As seen in the table, both levels of 

diversification result in minor changes in the model outcome in terms of the aggregate energy 

demand of the neighborhood, as well as annual peaks. The use of diversified schedules alone barely 

modifies the results at all. The cumulative effect of the diversified schedules resembles closely, 

that of the impact of the average schedule, which was to be expected. The physical and operational 

adjustments introduced in scenario DS-A, result in a slightly more substantial, yet still not so 

severe change in the predicted value of annual demand. Since the aggregate results remain rather 

close to the NDS scenario, the overall integrity and representativeness of the sampling model has 

not been compromised by the diversification process. This being said, the ultimate reliability of 

the predictions with regard to overall demand can only be assessed and validated based on real 

data, currently unavailable. The generation of diversified simulation files for all buildings in the 

case study, on an average PC, requires about an hour.  

Table 7 Summary of the results of modeled scenarios  
 

Maximum 
hourly load 
[MWh] 

Relative deviation 
from reference 
scenario [%] 

mean hourly 
demand [MWh] 

Standard 
deviation 

Total annual space 
heating load 
[MWh] 

Relative deviation 
from reference 
scenario [%] 

NDS 153.13 0 22.64 26.83 198354.47 0 

DS-S 154.84 1.11 22.4 26.34 196406.17 -0.98 

DS-A 151.39 -1.13 21.88 25.97 191659.24 -3.38 

 

At the level of the clusters, the deviations from the NDS are more substantial in DS-A (Table 8). 

The non-residential building clusters are more sensitive to schedule changes.  
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Table 8 Deviations in the annual demand of clusters as predicted by diversified models from the non‐diversified one 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 

NDS 

A
gg

re
ga

te
d 

an
nu

al
 

he
at

in
g 

de
m

an
d 

[M
W

h]
 

45584.23 22397.46 38435.705 41929.35 16690.24 32003.70 1313.78 

DS-S 45489.35 22343.98 38334.817 41001.84 16663.19 31264.58 1308.41 

DS-A 43109.15 25443.04 32301.631 37494.41 17984.79 33739.19 1587.04 

DS-S 

R
el

at
iv

e 
de

vi
at

io
n 

fr
om

 
N

D
S

 
[%

] 

0 0 0 -2 0 -2 0 

DS-A -5 14 -16 -11 8 5 21 

 

The percentage deviation in the volume-related annual heating demand of the buildings acquired 

from the DS-A, from the reference (non-diversified) values are shown in Figure 7.  For the majority 

of the buildings, the DS-A volume-related demand remains within 20% of the reference value. 

 

Figure 7 Percentage deviation of the volume‐related annual demand across clusters in DS‐A from NDS (outliers are excluded from 
this representation) 

Figures 8 displays the diversity caused by the two diversification scenarios in the hourly heating 

demand values of the buildings in a single time step (11 am, January 8th). In this graph the 

percentage deviation from the hourly demand value predicted by the non-diversified model has 

been shown. The two diversification scenarios, DS-S and DS-A, result in 2% and 8% average 

deviation from the hourly predictions of the non-diversified model respectively. In the design and 
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deployment of DG systems, and net-zero energy neighborhoods, due to the smaller spatial scale of 

considerations, these variations can be of great significance. 

 

Figure 8 Relative deviation of hourly demand results of all buildings as predicted by the DS‐A and DS‐S from NDS predictions for a 
single time step (11 am, January 8th) 

 

7.3. Behavior change scenarios 

The results of the investigated illustrative behavior change scenarios are summarized in Table 9. 

The consideration of a setback value for the operation of non-residential spaces leads to a minor 

increase (2%) in the overall energy demand of the neighborhood. However, it leads to effective 

reduction of (annual) peak load by 18%. Lower peak loads are advantageous for grid stability 

particularly in Distributed Generation energy systems. The occupancy sensitive control of heating 

set points during daytime in all buildings and the reduction of set points during the night in 

residential buildings can lead to an 11% decrease in the overall energy required for space heating. 

Peak loads are reduced by an impressive 26%. 
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Table 9 Summary of the results of behavior change scenarios 
 

Maximum 
hourly load 
[MWh] 

Relative deviation 
from Base case 
[%] 

mean hourly 
demand [MWh] 

Standard 
deviation 

Total annual space 
heating load 
[MWh] 

Relative deviation 
from Base case 
[%] 

DS-A 151.39 0 21.88 25.97 191659.24 0 

BS-1 124.48 -18 22.29 25.41 195220.55 2 

BS-2 111.71 -26 19.44 24.39 170303.13 -11 

 

Figure 9 displays the range of hourly loads (of the entire domain) for various scenarios in terms of 

boxplots. In Figure 10, the cumulative frequency graph for hourly demand of the neighborhood in 

all scenarios has been plotted. Note that even though BS-1 and BS-2 result in decreases in the 

magnitude of the peak load, they increase the frequency of hours with higher demands. Such 

information can support an efficient deployment of supply side energy management strategies. 

   

Figure 9 (Left) Comparative analysis of the hourly demand predicted in various scenarios 

Figure 10 (Right) Cumulative relative frequency of the hourly heating load in relation to annual peak load in various senarios 
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8. Conclusion and future research intentions 

Addressing the requirement for more versatile urban energy decision support environments, we 

have reported on the development of a two-step hourglass energy computation model based on 

detailed performance simulation. The first component of the model is tasked with the reduction of 

the computational domain, to enable the utilization of dynamic performance simulation for urban 

level energy assessments. This is done through an automated GIS-based sampling schema, 

enhanced with Multivariate Cluster Analysis. The second component incorporates stochastic 

methods as well as the available large scale building data to reintroduce some of the lost diversity 

back into the model. It generates permutations of the representative simulation models, which 

emulate the specific properties of the represented buildings more closely. To demonstrate the 

modeling potential of the developed framework, it has been deployed on a case study to investigate 

a number of diversification and illustrative behavior change scenarios. In the diversification of the 

reference schedules, due to the nature of the stochastic method adopted, in aggregate terms, the 

tendencies of the original standard schedules are maintained. However, the diversification results 

in a more realistic representation of the temporal as well as spatial distribution of energy demand. 

The data-oriented diversification of internal gains and thermal properties leads to more significant 

changes in the overall demand predictions of the model. However, it is expected to improve the 

performance of the model for comparative analysis of the energy impact of various scenarios due 

to the better representation of urban stock diversity.  

Future research intentions include exploring the potential of diversifying other building 

characteristics such as solar exposure. Also, the utility of the diversification process for calibration 

of reductive urban energy demand models based on detailed monitored data from selected 

buildings will be investigated. The relative reliability of the sampling schema in view of the 
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representation of bulk annual demand has been ascertained through simplified evaluations. 

However, the performance of the reference buildings in representing the temporal demand 

tendencies as well the predictive performance of the diversified model require detailed analyses 

based on monitored demand data currently unavailable.  
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