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Abstract

In this thesis multiple approaches are presented which demonstrate the effectiveness

of mathematical modelling to the study of terrorism and counter-terrorism strategies.

In particular, theories of crime science are quantified to obtain objective outcomes.

The layout of the research findings is in four parts.

The first model studied is a Hawkes point process. This model describes events

where past occurrence can lead to an increase in future events. In the context of this

thesis a point process is used to capture dependence among terrorist attacks com-

mitted by the Provisional Irish Republican Army (PIRA) during “The Troubles” in

Northern Ireland. The Hawkes process is adapted to produce a method capable of

determining quantitatively temporally distinct phases within the PIRA movement.

Expanding on the Hawkes model the next area of research introduces a time-varying

background rate. In particular, using the Fast Fourier Transform a sinusoidal back-

ground rate is derived. This model then enables a study of seasonal trends in the

attack profile of the Al Shabaab (AS) group. To study the spatial dynamics of ter-

rorist activity a Dirichlet Process Mixture (DPM) model is examined. The DPM is

used in a novel setting by considering the influence of improvised explosive device

(IED) factory closures on PIRA attacks. The final research area studied in this thesis

is data collection methods. An information retrieval (IR) tool is designed which can

automatically obtain terrorist event details. Machine learning techniques are used

to compare this IR data to a manually collected dataset. Future research ideas are

introduced for each of the topics covered in this dissertation.
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Impact Statement

The aim of the research conducted in this dissertation is to develop methods which

can quantitatively describe phenomena observed in terrorist activity. To achieve this

aim the fields of mathematical modelling and crime science have been utilised to

generate numerical insights into a range of terrorism and counter-terrorism datasets.

In particular, spatial and temporal patterns in these databases have been derived

with real-world interpretations which can be of benefit to both academics and prac-

titioners.

From an academic perspective all the research conducted in this thesis acts as

a good foundation for future studies. For example, researchers studying terrorist

groups will likely find the mathematical models which have been developed here use-

ful in a wide variety of contexts. All of the modelling techniques developed through-

out this dissertation are likely adaptable to other terrorist groups and settings. In

addition, the insights found by utilising the frameworks derived in this thesis could

prove highly beneficial to complementing qualitative and quantitative studies. An

example of complementing qualitative research in this dissertation is the use of a

Hawkes process model to quantify temporal shifts in terrorist group organisations.

These shifts were found to demonstrate gaps in current social science findings. By

forming a bridge between qualitative and quantitative research this thesis proves

useful in a wide variety of disciplines.

The research in this dissertation has also proven its academic impact via journal

publication. In 2016 research from this thesis was published in the European Journal
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of Applied Mathematics with the title “Spatio-temporal patterns of IED usage by the

Provisional Irish Republican Army”. Moreover, this research has been distributed

to a wider audience through other media. In particular, The Washington Post and

the Society for Industrial and Applied Mathematics have featured articles covering

some of the research findings in this thesis. Further papers are also currently under

preparation for future publication.

As well as having a wider academic impact there is potential for the models

studied in this thesis to be used in a variety of ways by practitioners. Tackling

terrorism and constructing counter-terrorism strategies are highly important secu-

rity issues facing societies across the globe. Therefore, methods which can assist

in understanding the dynamics underpinning terrorist activity are essential. Mathe-

matical modelling can also provide an objective framework to analyse terrorist activ-

ities leading to more precise counter-terrorism measures. The research conducted as

part of this thesis provides practitioners many different ways to collect and analyse

terrorism data. Moreover, it has been shown in this dissertation that the models

presented have real-world interpretations. This linking between numerical findings

and real-world phenomena would likely prove useful to practitioners unfamiliar with

the mathematical concepts being presented.

Overall, the research covered in this thesis will likely prove useful in many different

ways. Within academia the research covered in this dissertation can provide useful

techniques to assist in future terrorism studies. On the other hand, the models, and

their practical interpretations, will likely be of benefit to practitioners aiding both

their decision making and design of counter-terrorism approaches.
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1.1 Introduction

No one solution exists to tackle the problem of terrorism. However, many approaches

have been found, and are being developed, which can help build a clearer picture of

the many facets of terrorism and so yield valuable insights into how it can be reduced.

Amidst the plethora of sociological approaches a new tool is being harnessed for the

depth of understanding it can provide, namely, mathematical modelling. Applied

successfully in many other real world problems, from understanding the nature of

earthquake occurrence (Hawkes, 1971) to uncovering the spatio-temporal pathways

by which contagious diseases spread (Verity et al., 2014), mathematical modelling

offers a way to condense hugely complicated phenomena into numerical quantities

with real-world interpretations. In this dissertation it is shown that through the use

of carefully considered and context relevant mathematical models a powerful tool

can be created with the ability to numerically quantify the structural and tactical

approaches of terrorist organisations in near real time.

1.2 Motivation

As discussed by Matusitz (2013) finding a universally accepted definition of terrorism

is difficult. One definition that Matusitz states as being the most widely accepted

is that “terrorism is the use of violence to create fear for political, religious, or

ideological reasons.”

Terrorism has been a major security concern for governments around the world
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for decades (Hanhimäki and Blumenau, 2013). A critical turning point in global

attitudes that brought terrorism to the forefront of modern security challenges was

the attacks of September 11, 2001 commonly referred to as 9/11. After this event

research into the many facets of terrorism garnered much more attention as govern-

ments around the world sought ways to stop terrorist attacks occurring and ensure

public safety (Chen et al., 2008). Despite this increase in research Horgan and Brad-

dock (2012) finds that whereas 80% of studies in forensic psychology and 50% of

studies in criminology use some type of statistical analysis only 25% of terrorism

studies following 9/11 utilise some kind of statistical argument. The situation ap-

pears even more strikingly in research looking at ways to tackle terrorism where Lum,

Kennedy and Sherley (2006) found that only 7 out of 20,000 terrorism studies had a

sufficient evaluation of counter-terrorism approaches. This lack of research however

seems odd particularly at a time when the digital era has produced huge quantities

of data that mathematics is best placed to analyse.

One way in which the deficit of statistics in the terrorism literature is being ad-

dressed is via the use of mathematical modelling. This field of applied mathematics

aims to create a bridge between the well developed tools and techniques that have

been developed over many years in pure mathematics and real world problems. The

use of mathematical tools to model real-world phenomena is prevalent in multiple

fields of academic research. One area in particular where modelling has been found

to yield important insights is in the study of social sciences where research in eco-

nomics (Kendall, 1968; Ostaszewski, 1993; Shubik, 1967), psychology (Bush, 1956;

Kempf and Repp, 1977; Restle, 1971) and sociology (Abell, 1971; Lenhard, Küppers
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and Shinn, 2006; Sorensen, 1978) has gained much from interpreting problems in

mathematical terms. In these fields the main outcome of studying mathematical

models is that they provide a platform where policies regarding a range of issues

from financial crisis to war and terrorism can be tested (Ball, 2012).

An emerging area where modelling has been particularly successful is the fields

of crime and security studies. As discussed by Memon et al. (2009) applied maths

proved invaluable during the Second World War from cryptography to crack and

secure communications to game theory to pre-empt opponents moves. Despite this

Memon et al. (2009) point out that government uptake of mathematical modelling for

decision making has been slow in recent times. But as data collection and availabil-

ity garners more attention by law enforcement agencies and governments the world

over new opportunities are arising to apply well developed mathematical techniques

to explore data in ways not possible previously (Johnson, Restrepo and Johnson,

2015). This approach has been successful in revealing new information about sev-

eral different event types including burglary (Bernasco, Johnson and Ruiter, 2015;

Davies and Bishop, 2013; Short et al., 2009), gang related violence (Egesdal et al.,

2010; Hegemann, Lewis and Bertozzi, 2013; Stomakhin, Short and Bertozzi, 2011),

insurgency (Arney and Arney, 2012; Braithwaite and Johnson, 2012; Farley, 2007)

and civilian deaths in conflicts (Lewis et al., 2012). The aim of these sort of studies is

to use available data, such as, times of a gang or terrorist attack, and build a math-

ematical representation which reveals the underlying forces leading to the events. It

is this ability of mathematical models to provide deep insights with relative ease that

provides the strongest case for their use. In particular, studying terrorism from the
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perspective of any academic field is difficult due to the clandestine nature of terrorist

groups who rely on secrecy in order to operate (Silke, 2001). But mathematical mod-

elling can overcome some of these barriers by making full use of open source data,

such as, times of an attack reported in a news article, to shed light on the different

components of how groups are operating.

Where mathematical modelling differs from other forms of investigation is in its

flexibility. When modelling a specific topic it is possible to incorporate the ideas of

many different theories explaining various components of the topic. Moreover, math-

ematical modelling offers an iterative method of research whereby as models reveal

new insights about existing notions these can be fed back into the model to improve

its ability to capture true underlying dynamics. In other words modelling provides

a way to both explore existing ideas and generate new ones (Epstein, 2008). This

concept is especially widespread in the use of simulation studies. Here mathematical

interpretations of the theoretical ideas surrounding terrorism can be studied using

computer programs which simulate the results of different theories. An example of

this type of approach is agent based modelling of terrorist attacks. Research con-

ducted by Park et al. (2012) examines the use of agent based modelling in the context

of simulating terrorist attacks at public venues to study how crowds might respond.

This type of model leads to the development of effective practises for emergency

response teams responding to terrorist incidents.

Another strength of using models is their predictive abilities. In particular, math-

ematical models can be used to capture the patterns of previous event data and try

to project these patterns to simulate possible future occurrences. This was the ap-
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proach taken by Clauset and Woodard (2013) when studying the probability of large

scale terrorist events. By analysing historical database of terrorist events Clauset

and Woodard were able to find a power-law distribution for the probability of a large

scale event. With this distribution it was discovered that the worldwide probability

of an attack on the scale of 9/11 since 1968 was 11-35%. Moreover, the power-law

model also indicates a 19-46% chance of a large scale attack in the next decade. From

this research Clauset and Woodard conclude that it is possible that global political

and social drivers can be used to study terrorism without the need to study localised

dynamics.

What this last example in particular shows is that there is a possibility to study

terrorism on a macro level by using mathematical models. In this thesis this idea

will be the foundation upon which all analysis is conducted. The necessary theory

behind this shift from a micro to macro level will now be explained.

1.3 Crime Science and Terrorism

Before attempting to use mathematical modelling in an applied setting it is first

necessary to understand the theoretical foundations of the problem to be studied.

In the field of crime and security studies the underlying principle which has made

modelling so successful is a shift from micro level analyses to ones on a macro level.

Attention is moved away from individual dispositions or social drivers towards an

exploration of environmental conditions which facilitate criminal or terrorist activity.

This departure from a more traditional criminological person-centred understanding
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is known as crime science. The theoretical foundations of this environmental ap-

proach are rooted in the rational choice perspective and the routine activity theory

of crime.

1.3.1 Rational Choice Perspective

This approach advocates the idea that great potential in the field of crime reduction

exists through a better understanding of the cost-benefit analysis undertaken by

offenders (Clarke and Cornish, 1985). In particular, it is argued that those who

commit crimes process information in a rational way in order to make decisions

about a particular offence, such as, what target is appropriate and at what time.

This perspective looks in detail at specific crimes and the decisions surrounding the

involvement and commission of that crime. The driving force behind each stage of

crime commission is therefore a cost-benefit analysis where maximum rewards are

aimed for at minimum cost. However, as noted by Simon (1990) human rationality

is bounded so that decision making is not assumed to be perfect. A similar theory is

also found to hold in the case of terrorism with Caplan (2006) finding that a rational

choice approach can be used to model terrorist acts.

1.3.2 Routine Activities Theory

Routine activity theory places a rationally motivated offender within an environ-

mental context and explains how these two link up and lead to crime occurrence

(Cohen and Felson, 1979). This approach to understanding crime was the result of

an observation by Cohen and Felson that a crime rise following World War II may in
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fact have been resulting from a societal transformation whereby the patterns of daily

life were being fundamentally altered triggering new opportunities for crimes to be

committed. Cohen and Felson hypothesised that crime was in fact the result of con-

vergence in space-time of offenders and targets in the absence of a capable guardian

(Brantingham and Brantingham, 1981; Cohen and Felson, 1979; Eck, 2010). As a

result of this way of thinking about how crimes are committed two key ideas emerge.

One conclusion that is obtained is that for an offence to take place an offender,

target/victim and lack of guardian must occur simultaneously in time and space.

As such several authors (Bowers and Guerette, 2014; Clarke and Eck, 2003; Cohen

and Felson, 1979; Eck, 1994; Tilley, 2012) postulate that crime prevention requires

one of three components: a handler for the offender, a manager for the place or a

guardian for the target/victim. Identifying which combination of these preventative

measures will be successful and what approaches to take is context dependent and

what works in a particular setting may not be directly applicable elsewhere (Bow-

ers and Guerette, 2014). In the work of Clarke and Newman (2006) ideas relating

to the applicability of the routine activities theory to terrorism can be found, such

as, terrorists using local knowledge to determine the best targets and locations for

attacks.

1.3.3 Crime Pattern Theory

Combining the fundamental ideas of the rational choice perspective and routine

activities theory leads to a macro level analysis of crime known as crime pattern

theory. The main hypothesis of this theory is that crimes do not occur randomly or
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uniformly but are actually the result of the combination of environmental and social

factors (Brantingham and Brantingham, 1993a). In particular, crime forms patterns

in space and/or time as a result of offenders aiming to maximise their cost-benefit

analysis within their environment of operation built from their routine activities.

Pattern theory can also be extended to the problem of terrorism. Using the same

logic that combines the rational choice perspective and routine activity theory of

crime Lafree, Morris and Dugan (2010) finds strong evidence for a patterned nature

of terrorism. Some examples of the terrorism patterns found include that 10 countries

in the study accounted for 38% of all terrorist attacks and that 32 countries were

found to have more than 75% of all attacks.

1.3.4 Crime Reduction

The motivation to formulate and apply the principles of crime science is that by

uncovering the macro level behaviour of criminals there exists great potential for

crime reduction with minimal resources. Specifically the rational choice perspective,

routine activities theory and crime pattern analysis of crime identify proximal cir-

cumstances, crime opportunities and situational factors as causes of crime (Smith

and Tilley, 2005). Therefore, by targeting these common areas which lead to crime

it is theoretically possible to make large reductions in the levels of criminal activity.

This has been shown to hold true in a number of examples including crime preven-

tion through environmental design (Atlas, 2008; Crowe, 2000; Draper and Cadzow,

2004), situational crime prevention (Clarke, 1997; Heal, Laycock and Great Britain.

Home Office. Research and Planning Unit, 1986; Smith and Cornish, 2003) and
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problem-oriented policing (Goldstein, 1990; Problem-oriented policing 2003; Scott,

2000). Application of these sort of approaches is also beginning to occur in the field

of terrorism studies (Atlas, 2003; Clarke and Newman, 2006; McGarrell, Freilich and

Chermak, 2007).

1.3.5 Patterns in Terrorism

Crime science provides the fundamental theories which motivate the study of spatial

and temporal patterns in terrorist activity. Some studies already exist looking for

these patterns and in order to provide context for this thesis background to research

in this area is now provided.

A widely studied area where temporal clustering is of interest is in the area of

human behaviour. One simple model that can be used for human activities is a

Poisson model assuming random distribution of events in time. However, in research

conducted by Barabási (2005) a discussion is presented highlighting that in fact

a non-Poisson model is more relevant for human behaviour modelling. Moreover,

Barabási argues for a more clustered nature of human events with a more accurate

model being heavy tailed with most events occurring closer together in time. This

type of idea has begun to find traction in the field of terrorism where temporal

patterns have been explored. In multiple studies (Bohorquez et al., 2009; Clauset and

Gleditsch, 2012; Clauset and Woodard, 2013; Clauset, Young and Gleditsch, 2007;

Johnson et al., 2013; Johnson et al., 2011; Picoli et al., 2014) temporal clustering has

been found with inter-event times being shown to have a heavy tailed distribution

as predicted by Barabási (2005).
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In addition to studies considering the temporal patterns of terrorism there has

also been advances in investigating spatial and spatio-temporal patterns. These types

of studies stem from similar ideas in crime science concerning the observation of a

contagion effect. For example, for residential burglaries Johnson and Bowers (2004)

find that following a residential burglary there is an increased risk for homes with

300-400 metres of the initial event for 1-2 months. In the context of terrorist activity

these sorts of patterns have been researched in numerous settings. In Iraq Towns-

ley, Johnson and Ratcliffe (2008) and Braithwaite and Johnson (2012) have shown

that the spatial and temporal components of insurgent activity are more clustered

than a hypothesis assuming event independence. Similarly results are reported in

the research of Lafree et al. (2012) studying the ETA (Euskadi ta Askatasuna) ter-

rorist group in Spain. It was found that the ETA group operated during two distinct

phases. During the first phase attacks were concentrated in the Basque region of

Spain. However, after the organisation shifted its focus to a war of attrition the

spatial clustering shifted outside of this region. It was also found that due to further

distances when attacking outside the Basque region the temporal length between

terrorist events increased. Spatial and spatio-temporal results suggesting a clus-

tered nature of terrorism have been observed in numerous other countries including

Afghanistan and Pakistan (O’Loughlin, Witmer and Linke, 2010; Zammit-Mangion

et al., 2012), Israel (Berrebi and Lakdawalla, 2007; Kliot and Charney, 2006), the

Northern Caucasus in Russia (O’Loughlin, Holland and Witmer, 2011; O’Loughlin

and Witmer, 2012) and the US (Cothren et al., 2008; Smith, 2008).
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1.4 Research Questions

Despite the existence of some research into patterns of terrorism there still remains

a gap in the literature for developing mathematical models of terrorist events. More

specifically, there is an opportunity for more research to be conducted into the spatial,

temporal and spatio-temporal patterns behind terrorist attacks. In this thesis these

opportunities will be seized upon by considering a range of mathematical models

which can capture clustering in terrorism data. Therefore, the first research question

that will hopefully be addressed is as follows

1. What does mathematical modelling reveal about the spatial, temporal and

spatio-temporal characteristics of terrorist attacks?

An essential component of mathematical modelling is data. In particular, if the

underlying data used in a study is inaccurate in some sense then the conclusions

drawn from models may be misleading. Hence, alongside model selection it is also

necessary to justify the data source employed in a study. In this thesis this issue

is addressed by considering the difference in outcomes using human and computer

created databases. This leads to the following research question

2. How does the method of data collection impact the mathematical models used

to study terrorism and the what implications does this have on the validity of

conclusions drawn from such models?

A principle objective in terrorism research is to derive outcomes with policy rele-

vance in the field of counter-terrorism. As such creating tools which can be used by
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academics and practitioners to gain insight about terrorist groups is important and

incredibly useful. However, there is a lack of such tools in the literature so in this

thesis a final question that will researched is

3. Is it possible to detect in real-time the behaviour of terrorist groups by using

open source data and mathematical models?

1.5 Case Studies

As with any mathematical modelling it is necessary to have a clear understanding of

the focus of the problem. In this thesis the central case studies that will be exam-

ined revolve around two terrorist groups known as the Provisional Irish Republican

Army (PIRA) and Al Shabaab (AS). For context a brief history of each of these

organisations will now be presented.

1.5.1 Provisional Irish Republican Army

There is a plethora of historical accounts concerning the origin and evolution of the

Provisional Irish Republican Army (PIRA or Provisional IRA) (Bell, 2000; Coogan,

2002; English, 2004; Moloney, 2003; Patterson, 1997; Taylor, 1998). A summary of

these texts is provided here.

The IRA is an organisation born of the violent Easter Risings in 1916. Although

reincarnated over many years with different names arguably its most prominent

period was during “The Troubles” in Northern Ireland between 1969 until 1998.

During this period many different groups existed including the Official IRA, the Irish
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National Liberation Army, the Continuity IRA, the Real IRA and the Irish People’s

Liberation Organisation. However, it was the group known as the Provisional IRA

which was the most prolific organisation.

The main objective of PIRA was to have Northern Ireland removed from the

United Kingdom and instead have a 32 county Republic of Ireland. Initially PIRA

aimed for a quick offensive against British Forces. However, in 1977 the group realised

that a change of approach was necessary and instead PIRA began preparing for a war

of attrition. This is new objective was reflected in a publication of PIRA known as

the “Green Book” (O’Brien, 1999) which called for a “war of attrition against enemy

personnel which is aimed at causing as many casualties and deaths as possible so

as to create a demand from their people at home for their withdrawal”. According

to the sociological theory PIRA went through five distinct phases during its armed

struggle (Asal et al., 2013):

� 1969-1976 - Phase 1: During this phase the organisation was arranged in

a military style consisting of brigades, battalions and companies. Within this

army structure each unit of the organisation was given responsibility for a

specific geographical area of combat.

� 1977-1980 - Phase 2: A cell-based structure was adopted. This approach

was characterised by PIRA fracturing into small groups of members known

as Active Service Units (ASUs) (Horgan and Taylor, 1997). The aim of this

re-structuring was to improve the organisation’s secrecy by making it harder

to infiltrate. This change in structure was successful with 465 fewer charges

for paramilitary activity within a year (Smith, 1997). During this phase new
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leaders were also appointed for the organisation including Gerry Adams and

Martin McGuinness (Moloney, 2003).

� 1981-1989 - Phase 3: This period began with the Hunger Strikes by Provi-

sional IRA members protesting against the conditions of their incarceration. A

catalyst moment during this period was the death of a PIRA member known

as Bobby Sands who had been elected to Westminster whilst in prison and died

on hunger strike (English, 2004). This incident resulted in a rise of sympathy

for PIRA and its political wing Sinn Féin. As a result the Republican cam-

paign moved into the political arena through the Sinn Féin party who now had

similar levels of prestige as their militant wing, PIRA.

� 1990-1994 - Phase 4: Secret meetings occurred involving top ranking PIRA

leaders who were negotiating a ceasefire with the British Government.

� 1995-1998 - Phase 5: Finally the peace talks were announced and a ceasefire

ratified in the Good Friday Agreement. For many this signalled the end of “The

Troubles”.

One of the main strengths of PIRA was its ability to develop and deploy impro-

vised explosive device (IED) attacks. In the “Green Book” it states that the group

aimed to have a “bombing campaign aimed at making the enemy’s financial inter-

ests in our country unprofitable”. In an extensive account of the evolution of IED

usage by the PIRA Oppenheimer (2009) illustrates that both the physical make-up

of the IEDs and the tactics used to employ them evolved greatly within the organ-

isation. For example, PIRA developed 15 different versions of mortar bombs with
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Oppenheimer, who is a weapons specialist, concluding about the Mark 6 mortar

that “in just over a year, the IRA mortar had developed from something relatively

primitive to an advanced weapons series”. This sentiment was further echoed by

Ryder (2005) who described the Mark 15 mortar bomb as “perhaps the ultimate im-

provised weapon.” Alongside this extensive development PIRA also improved their

tactics (Sutton, 1994) such as using secondary IED devices following initial attacks

to catch the British Forces off guard (Oppenheimer, 2009).

1.5.2 Al Shabaab

As with the PIRA the organisation in Somalia known as Al Shabaab (AS) was formed

from a complex history of events. Here a brief overview is provided giving a summary

of the accounts of Anderson and McKnight (2015a), Hansen (2013), Marchal (2009)

and Wise (2011).

The group known as Al Shabaab was initially part of a collective called the Islamic

Courts Union (ICU). After many years of fighting between warring clans in Somalia

the ICU helped by AS became a dominant force taking control of the countries

capital, Mogadishu, in 2006. Fearing a “jihad” the Ethiopian government sent troops

into Somalia in order to contain the expansion of the ICU. The Ethiopian forces had

some success in reversing the gains made by the ICU. With these gains the ICU

leaders began to retreat whilst members of Al Shabaab began launching a guerrilla

warfare campaign against the Ethiopian forces. Al Shabaab managed to frustrate the

Ethiopian efforts and this success lead to AS becoming an independent group using

IED attacks to counter the Ethiopian army. Al Shabaab’s abilities to launch attacks
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contributed to a withdrawal of Ethiopian troops in 2009. A replacement force to

counter AS was made up of Ugandan and Burundian peacekeeping forces as part of

the African Union Mission to Somalia (AMISOM). Despite a new force Al Shabaab

remained, and still remains, undefeated. Moreover, since 2010 the AS group has

become more internationally focused launching its first attack outside of Somalia in

Kampala, Uganda. Al Shabaab have also launched high profile international attacks

against Kenya following an invasion of Kenyan armed forces into Southern Somalia

in 2011 to counter AS gains (Anderson and McKnight, 2015b). High profile incidents

in Kenya include the Westgate Mall in Nairobi in 2013 in which 67 people were killed

(Williams, 2014) and an attack on the Garissa University in 2015 which resulted in

148 deaths (Lyons et al., 2015). The international dimension is further enhanced

by links between the group and al Qaeda since 2008. Furthermore, this link with

al Qaeda has led to advances in the tactics used by Al Shabaab in areas such as

assassinations, suicide bombings and IEDs (Shinn, 2011). Over the course of AS

history to date there have been three main leaders

� 2006-2008: Aden Hashi Ayro (killed by a US airstrike).

� 2008-2014: Ahmed Abdi Godane (killed by a US drone strike).

� 2014-Present: Abu Ubeyda.

1.6 Research Methodology

Having discussed the theoretical foundations for this thesis and presented the research

questions to be studied it is now necessary to discuss the methods to be used. The
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two types of models which have been studied are the Hawkes point process and

geographic profiling. The theoretical backgrounds for each of these models is now

provided.

1.6.1 Hawkes Process

One type of mathematical model which has recently shown great potential for study-

ing security problems is known as a Hawkes self-exciting point process model. This

type of model was first discussed by Hawkes (1971) in the context of mathemat-

ical modelling of earthquake occurrences. The essential idea behind such models

is to capture the influence of past events on future occurrences. In the context of

earthquakes Ogata (1988) demonstrated that self-exciting models could be used to

understand historical ties between earthquake magnitudes thus opening up the pos-

sibility for predicting major future events. Mathematically such models are said to

capture the clustering of events in time and space where the occurrence rate of future

events depends on the occurrence of historical events (Daley and Vere-Jones, 2003).

Despite being a very useful model one of the drawbacks of the Hawkes process

was its inability to capture other influencing events. For example, in the study of

earthquakes it may be useful to consider the individual contributions of main and

aftershock earthquakes to the rate of future earthquake occurrence. An attempt at

solving this problem was touched upon in the initial exposition of Hawkes (1971)

with some work done to develop a multivariate model. Further developments to the

work of Hawkes were undertaken by Adamopoulos (1975) who expanded the analyt-

ical foundations of the multivariate model. With a multivariate Hawkes process, in
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addition to events being self-exciting, other external factors may also stimulate future

events through a method of mutual excitation. As was the case for the univariate

Hawkes process the multivariate model has also been demonstrated successfully in

the context of earthquake occurrences by Ogata, Akaike and Katsura (1982).

It is by analogy of past events stimulating future ones that has led to the ap-

plication of the Hawkes process to crime and security problems. This idea stems

from observations similar to the burglary example of Johnson and Bowers (2004)

where following a residential burglary homes within 300-400 metres were at an in-

creased risk of burglary for 1-2 months. This shows that burglary risk decays in

space and time a result found in numerous studies (Bernasco, Johnson and Ruiter,

2015; Sagovsky and Johnson, 2007; Townsley, Homel and Chaseling, 2000).

A batch of point process research which has proven particularly successful is

related to gang violence. In a student research paper by Egesdal et al. (2010) the

Hawkes process model is used to examine the retaliatory nature of gang violence

in Los Angeles. The authors discovered from this investigation that the historical

dependence of the Hawkes process outperformed a simple Poisson process. A Hawkes

process was found to capture the real world patterns of violence between pairs of

gangs. Moreover, this type of model, similar to findings in earthquake research, was

used as a predictive tool to study future violence. One of the limitations in the work

of Egesdal et al. (2010) was that only a univariate Hawkes process was employed. In

this case univariate means that only violence of one gang directed towards another

was studied neglecting the influence that fighting between multiple gangs had on

any one groups attacks. Later this research was developed using a multivariate
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Hawkes process. By a similar analogy of multiple earthquake interactions Short et

al. (2014) considered the use of the multivariate Hawkes process in the context of

multi gang violence. The additional complexity of a multidimensional model was

rewarded with further insights into the nature of gang violence in LA leading to

better policy recommendations for tackling this crime problem.

Despite these initial successes of the Hawkes self-exciting models gaps remain

in their application to security and crime science problems. One field in particular

which may have much to benefit from point process models is terrorism. By analogy

to the attacks and counter-attacks between gangs and those between security forces

and terrorist groups intuition suggests that there may be some new information to

be gained about terrorism by applying similar methods to those just discussed. Some

recent attempts in this direction have been made. In research conducted by Lewis

et al. (2012) violent civilian deaths in Iraq between 2003 and 2007 were found to

be well modelled by a Hawkes process. In particular, Lewis et al. found that as

much as 37-50% of all violent events were the result of self-excitation. Moreover,

the self-excitations that were observed were found to extend between two to six

months. From this approach precise policy relevant suggestions were obtainable

indicating ways in which a serious security problem like violence against civilians

could be negated. Another example looking at terrorist event data between 1970-

1993 in Northern Ireland by Mohler (2013) showed that the data did indeed exhibit

the property of historical dependence. Again these sort of findings can be used to

stimulate new ideas to approach the problem of tackling terrorism. Many other

studies with these and similar types of observations have been conducted including
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cases in Afghanistan (Zammit-Mangion et al., 2012), Indonesia (Porter and White,

2012), Israel and Northern Ireland (Mohler, 2013) and the Philippines and Thailand

(White, Porter and Mazerolle, 2012). The result of these studies is that point process

models which capture temporal patterns provide a better fit to terrorism data than

simple Poisson process models. This indicates that there is much to be gained from

using point process models to study temporal patterns in terrorist activity. Moreover,

another outcome of these types of studies is that even in the very difficult security

environments such as conflicts or illegal terrorist organisations it is possible to use

event data to understand underlying dynamics causing events to evolve in time and

space.

Hawkes point process models will be used in this thesis to contribute to the

research questions via the two case studies of the Provisional IRA and Al Shabaab.

In particular, the following hypotheses will be tested

Hypothesis 1 Timings of attacks by both the Provisional IRA and Al Shabaab are

past dependent, whereby, previous attacks can trigger future attacks similar to earth-

quakes and aftershocks.

Hypothesis 2 The temporal patterns of attacks by the Provisional IRA differ in

each of the organisation’s phases corresponding to structural and tactical shifts iden-

tified by social scientists.

In addition to modelling historical dependence in timeseries there can also be a

need to capture other dynamics. One particular example is the relationship between

crime occurrence and weather patterns.
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As described by Cohen and Felson (1979) crime occurs as a result of opportuni-

ties governed by environmental conditions. For example, an offender may be more

likely to commit a crime when temperatures are warmer compared to times when

there is rain. This understanding of crime through routine activities leads to the

idea that there is a great potential for reduction in criminal events by focusing on

environmental factors. For example, Cohn (1990) finds assaults, burglary, collec-

tive violence, domestic violence and rape are positively correlated with temperature.

Similarly, Pakiam and Lim (1984) reports that in Singapore crime against the per-

son increases with increasing temperature and climate comfort measures. Moreover,

Ranson (2014) elucidates a casual link between rises in multiple crime categories and

climate changes.

Extending Cohen and Felson’s routine activity approach to studying crime com-

parable results have been observed in terrorist attacks (Clauset and Woodard, 2013;

Townsley, Johnson and Ratcliffe, 2008; Zammit-Mangion et al., 2012). Also by

similarity to studies of criminal events terrorism has been shown to have cyclical dy-

namics. Enders, Parise and Sandler (1992) demonstrate that terrorist events, such

as, bombings, hostage events and assassinations have cycles ranging between 21 to

54 months. Furthermore, threat of attacks were found to have a seasonal trend of

11 months, which, the authors attribute to onset of tourism periods. More evidence

of terrorism cycles was observed by Weimann and Brosius (1988) where contagion

dynamics as well as a constant 1 month periodicity were modelled with a first-order

moving average.

To extend the literature on cyclical dynamics in terrorist attacks, and their links
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to weather patterns, in this thesis rainfall patterns will be incorporated into the

Hawkes process via a seasonal background rate. An application of this extended

Hawkes model will be to study the relationship between AS attacks and rainfall in

Somalia. In particular, Muchiri (2007) describes rainfall as the “defining character-

istic of the climate” in Somalia with two main rainfall seasons. The first season is

known as Gu and occurs between April and June. A second rainy seasons is named

Deyr and commonly appears between October and December.

As with the routine activities description of crime it may occur that AS attacks

are influenced by the onset of rainy seasons. For example, rain may make mobilising

attacks more difficult if flooding occurs. On the other hand, the availability of water

sources may provide AS with the ability to sustain attacks due to easy access to

resources. The hypothesis that will be tested to determine if rainfall influences AS

attacks is

Hypothesis 3 The temporal patterns of attacks by Al Shabaab have a 3 month cycle

corresponding to wet and dry seasons in Somalia.

The previously stated Hypotheses 1-3 concern the ability to model various ter-

rorist dynamics using the Hawkes process model. In real world situations where

counter-terrorism practitioners are attempting to disrupt and prevent terrorist at-

tacks a real-time analysis is essential. Therefore, combining the research outcomes

of using the Hawkes process model the following hypothesis will be addressed

Hypothesis 4 A Hawkes process model can be used to produce a real-time analysis

tool to study terrorist groups.
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1.6.2 Geographic Profiling

Another area of mathematical modelling which has shown potential in the field of

crime and security studies is geographical profiling (GP). As has already been dis-

cussed illegal criminal activities result from legal activities of everyday life (Branting-

ham and Brantingham, 1993a; Cohen and Felson, 1979) and that crimes occur when

three environmental aspects, offender, target and place converge (Brantingham and

Brantingham, 1981; Cohen and Felson, 1979; Eck, 2010). This motivates the idea

that by studying where in space a series of crimes are committed there is potential

to hone in on an area where the offender lives. The mathematical formulation of

this concept is GP. The idea of GP is to incorporate sociological and criminological

theory surrounding offender distance to crime into a mathematical model that allows

predictions of most likely offender locations (Rossmo, 2000). In particular, by study-

ing the spatial distribution of a series of crimes GP can be used to generate a risk

surface which when overlaid onto the map of a geographical area can indicate which

specific locations have the highest probability of being linked to a suspect. Such an

idea has important implications for law enforcement as it allows limited resources

to be targeted in the most beneficial manner. As discussed in the research of Verity

et al. (2014) GP has been adopted by a variety of law enforcement agencies as a tool

for determining the geographic location of criminals, such as, the Royal Canadian

Mounted Police, the Los Angeles Police Department and the National Crime Agency.

Moreover, GP techniques have been incorporated into several software packages for

use in criminal investigations (Canter et al., 2000; Levine, 2006; Miller, 2003).
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One of the main drawbacks of the GP model was that it only dealt with the

case of searching for a single source (O’Leary, 2009; O’Leary, 2010; O’Leary, 2012)

- the offender’s home. But in the work of Verity et al. (2014) the authors develop

the GP approach by incorporating a Dirichlet Process Mixture Model (DPMM). The

DPMM makes the extension of allowing multiple, and potentially unknown number,

of sources to be found. Moreover, Verity et al. (2014) also provide a Markov Chain

Monte Carlo (MCMC) method for applying the DPMM in situations with large

datasets when the problem is otherwise numerically difficult. The mathematical

foundations of the DPMM already exist (Green and Richardson, 2001) with the

essential idea being that the model clusters data points without requiring knowledge

of how many clusters exist a priori. This type of model has been highly effective in

the field of biology where it has been used to discover multiple sources of malaria

outbreaks (Verity et al., 2014) however it has yet to be used in a major study in

crime science. Moreover, the current DPMM approach does not include a temporal

component. Therefore, there is no way at present to use the DPMM to consider how

the spatial patterns found by GP vary in time.

In this thesis the version of GP developed by Verity et al. (2014) will be used

to study spatial and spatio-temporal patterns of improvised explosive device (IED)

usage by the Provisional IRA. Specifically, the following hypotheses will be tested

Hypothesis 5 The DPMM of GP can be used to determine the locations of IED

making factories from the location of IED attacks.

Hypothesis 6 The DPMM can be used to assess the effectiveness of counter-terrorism

strategies which aim to shut down IED factories.
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Hypothesis 7 Incorporating a temporal component in the DPMM will produce new

insights into the spatio-temporal patterns of IED attacks by the Provisional IRA.

1.7 Data Issues

A major issue that has implications for the types mathematical models just discussed,

and other modelling both within the confines of academic research and beyond, is ob-

taining useful and reliable data. This issue is becoming more significant as a plethora

of digital data becomes available in an era of “big data”. A universally accepted def-

inition of big data is difficult to find (Ward and Barker, 2013) but four principle

components, known as the “four v’s” can be used as a useful way to characterise

a big data problem - volume, variety, velocity and veracity (IBM, 2015). The first

three of these v’s deal with magnitude covering the required memory for the data,

multiple data sources and rate of data production. For research purposes the final v

is of particular importance covering the need for data validity to be confirmed. In

data analysis false conclusions drawn from inaccurate data has serious implications

and thus there is a need to cross-reference data sources and collection methods in

order to have confidence in research deductions.

A method which has great potential to deal with the problems of big data is

found in a field of research known as data mining (Han, Kamber and Pei, 2012;

Larose and Larose, 2014; Wu et al., 2014). Data mining can be defined as “a set of

mechanisms and techniques, realized in software, to extract hidden information from

data” (Coenen, 2011). Since human capacity is limited the aim of data mining is to
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use computers in order to analyse large datasets. Furthermore, data mining tech-

niques are often combined with information retrieval (IR) tools. IR covers methods

of obtaining datasets. Finding ways to automate the IR process enables efficient data

analysis frameworks to be constructed. This can be incredibly useful to researchers

in a time when digital records of events are beginning to flourish.

Another area of research which can assist in the management of big data is known

as machine learning (ML). ML is an umbrella term which covers tools and techniques

developed to enable computers to derive value from data via learned structures and

patterns (Alpaydin, 2014). The two main branches of ML techniques are supervised

and unsupervised learning (Alpaydin, 2014; Masashi, 2016; Müller and Guido, 2017).

Supervised ML provides inputs and outputs for an algorithm to learn. On the other

hand, unsupervised ML provides only inputs to the algorithm. Using ML automatic

tools can be constructed to conduct data analysis. Therefore, ML can complement

and enhance data mining and IR techniques and vice versa.

One academic area in particular that can gain from all the above methods is

terrorism studies. As briefly mentioned earlier terrorist groups rely heavily on secrecy

in order to operate undetected thus making mathematical modelling of terrorist

groups inherently difficult (Silke, 2001). However, by applying data mining, IR and

ML tools to the big data available from of open sources that can be found relating to

terrorism, such as, news articles covering terrorism events, it is possible to generate

interesting research datasets and discover new insights into terrorism dynamics.

Utilising the tools and techniques of big data, data mining, IR and ML to obtain

and analyse data allows researchers to compare analytical results arising from a
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variety of data sources. In particular, comparisons can be made between computer

generated datasets and those of more traditional human built databases such as

the Global Terrorism Database (Lafree and Dugan, 2007) and the Armed Conflict

Location and Even Data (ACLED) Project (Raleigh et al., 2010). In this thesis

this idea will be taken forward by comparing the terrorism events obtained through

the different data collection methods of an online automated information retrieval

tool and the ACLED database. In particular, attacks conducted by the Al Shabaab

group will be considered. As well as contributing to the second of the research

questions discussed earlier studying the impact of different data sources will also

provide insight into the best approach for creating a real time terrorism analysis

tool. In particular, through comparison of an IR and human collated dataset the

strengths and weaknesses of each should be revealed.

In this thesis the issue of examining data collection methods will be covered in

the final research chapter. This is in opposition to the more natural approach of

discussing data retrieval prior to any modelling or analysis. The motivating reason

for this presentation stems from the exploratory nature of data collection techniques

developed in this thesis. In particular, the aim will be to demonstrate new approaches

that can be devised based on modern technological capabilities to obtain datasets.

However, since these approaches are still in early development it would be considered

unwise to rely on their usage throughout the entirety of the research in this thesis

without more in-depth studies.

The central hypothesis for the collection methods comparison is

Hypothesis 8 An automated information retrieval tool can be constructed to yield
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terrorism data comparable to a manually collated database across temporal, spatial

and event description categories.

1.8 Dissertation Structure

With the models and case study groups defined the ultimate aim of this dissertation is

to contribute to the available tools and techniques for academics and practitioners to

use to study terrorism and terrorist groups. In particular, ranging from older terrorist

groups such as the PIRA in Northern Ireland to more modern day examples such as

the AS movement in Somalia one of the primary issues faced by law enforcement and

intelligence agencies is how to understand and predict a group’s actions. It’s clear

that there are many interactive methods by which terrorist groups can be monitored

such as a variety of surveillance techniques and these are irreplaceable sources of

information. However, it would be unwise to ignore the fact that open source data

concerning the actions of terrorist groups can easily be used to shed a lot of light

on what an organisation is doing. Such a field of study is beginning to bloom but a

systematic way of looking at what such open source data actually shows is desired.

The layout of this dissertation will be in five chapters. Chapter 1 is the present

chapter which is the literature review for this thesis. In Chapter 2 a case study of the

PIRA is made. In this chapter the Hawkes process model and relevant computational

details will be provided. Moreover, two techniques will be discussed which illustrate

how the Hawkes process model parameters can be used to determine major changes

in a terrorist group’s structure based on a change point analysis of event times.
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Having analysed a Hawkes process with just a constant background rate in Chapter

2 in Chapter 3 attention will be shifted to a more responsive underlying rate of

events via the introduction of a seasonally varying Hawkes process. In addition, in

Chapter 3 a modern and ongoing terrorist group in the form of Al Shabaab will

be used as a new case study to test the wider applicability of the Hawkes process

model. Next in Chapter 4 the method of geographic profiling will be introduced in

more detail as will the computational tools necessary to use this type of model, such

as, the Dirichlet Process Mixture Model and Markov Chain Monte Carlo method.

This chapter will then move on to examine a use of GP in the context of studying

counter-terrorism strategies by looking at the consequences of bomb factory closure

on a terrorist group’s attack profile. Next in Chapter 5 an automated data sourcing

technique will be constructed which provides a real time data gathering tool. With

data derived from using this tool it will be possible to explore issues surrounding

the research impact of automated versus manual data collection methods. Finally,

in Chapter 6 all of the research findings from this thesis will be summarised and

possible areas of future research will be presented.



CHAPTER 2

HAWKES PROCESS MODELLING OF THE PIRA

52
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2.1 Introduction

The Hawkes self-exciting point process model is used to model events where past oc-

currences can increase the rate of future occurrences (Hawkes, 1971). This structure

of the Hawkes process made it useful in the study of earthquake modelling whereby

the relationship between main shocks and aftershocks could be captured mathemat-

ically (Ogata, 1988). Picking up on an analogy between this type of behaviour and

the retaliatory nature of gang violence the Hawkes process was then used to model

gang attacks in Los Angeles (Egesdal et al., 2010; Short et al., 2014). In this chapter

a similar theme will be continued by considering the self-exciting nature of terrorist

attacks. The mathematical details of the Hawkes process and parameter estimation

methods will be provided as well as details of how the model can be applied to

terrorist attacks. With the mathematical formulations established a case study is

then given considering improvised explosive device (IED) attacks by the Provisional

Irish Republican Army in Northern Ireland. For this case study new methods will

be introduced showing how the Hawkes process can be used to determine temporal

evolutions of the PIRA over the time of its existence.

2.2 Mathematical Formulation of Point Process

Models

In general terms a temporal point process is mathematical construct which is used

to capture the properties of points in time. A common method to move from this
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abstract idea to an applied setting is to study point processes via their conditional

intensity function. In the work of Daley and Vere-Jones (2003) all the necessary

definitions and details to construct the intensity function of a point process are

provided and also summarised here.

The formulation begins by defining the counting process at time t denoted N(t)

as

N(t) =
∑

ti<t

1ti([0, t)), (2.1)

where {ti} are event times of the phenomenon being studied and 1ti([0, t)) is the

indicator function which is equal to 1 if ti ∈ [0, t) and 0 otherwise. It is also necessary

to define the history of events up to time t as

H(t) = {ti|ti < t}. (2.2)

The conditional intensity function λ(t) associated to the counting process N and

dependent on the history H can now be described as

λ(t|H(t)) = lim
δt→0

E(N(t+ δt)−N(t)|H(t))

δt
. (2.3)

Qualitatively, λ is the expected number of events that occur at each time t. Ana-

lytically this model is unique if N(t) is simple and finite. In this case simple means

that all times ti in N(t) are unique meaning ti 6= tj for i 6= j.
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2.2.1 Poisson Process Model

Before introducing the Hawkes process it is initially beneficial to consider a simpler

model known as a Poisson process (Ross, 2010). The Poisson process works by

assuming time intervals of a fixed length have a constant probability of an event.

Moreover, events described by a Poisson process are independent of the history of

past events. For the case of a Poisson process the conditional intensity is given by a

constant function

λ(t) = µ (2.4)

where µ is a positive constant.

2.2.2 Hawkes Process Model

The simplicity of the Poisson process does not allow for more complex dynamics to be

captured. This last point is particularly prominent when the data being considered

may have a past dependent nature. One possible solution to overcome this problem

is to use a Hawkes self-exciting point process model. For a dataset satisfying such a

model this means that a given event raises the chances of another event in the future.

For a given set of unique event times {ti} the conditional intensity function of

the Hawkes self-exciting process is defined as (Hawkes, 1971)

λ(t) = µ+ k0

∑

t>ti

g(t− ti), (2.5)

where the response function g is defined as g(t) = ωe−ωt in this thesis. Other forms
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for g are also possible (Hardiman, Bercot and Bouchaud, 2013; Mitchell and Cates,

2009; Ogata, 1999; Rambaldi, Pennesi and Lillo, 2015; Wang, Bebbington and Harte,

2010). Here the form of g employed by Egesdal et al. (2010) and Lewis et al. (2012) is

used based on the success of (2.5) to model violent conflicts. The right hand side of

this model can be understood in terms of the three parameters (µ, k0, ω). The first is

the background rate µ which simply describes the average rate of event occurrence.

Next is the jump factor k0. This component indicates the rate increase of events

following a past event with large values implying the underlying process is highly

reactive to new event occurrences. Finally the value of ω controls the decay rate

after a rise in the event rate. As this value occurs in the exponent the higher its

value the shorter the timespan of influence an event has on future events. Moreover,

as Lewis et al. (2012) explain the inverse parameter ω−1 describes the average time

period over which an increased rate of events occurs.

Some assumptions need to be made for the model and its parameters to be correct

mathematically and make sense in a real-world setting. Since the Hawkes process is

dependent on the infinite past, events outside of the observation period could lead

to incorrect results. Therefore, Rasmussen (2013) explains that the event times {ti}

should be measured from time zero. Practically determining the start of events can

be difficult and this issue will be addressed in more detail in Section 2.5.

For the conditional intensity function to be unique the event times must also be

unique with ti 6= tj for i 6= j (Daley and Vere-Jones, 2003). How this assumption can

best be met is context dependent and for each dataset introduced in this dissertation,

and studied using the Hawkes process, a description of the data cleaning performed
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will be provided. Essentially all methods of handling this assumption rely on some

sort of timestamp randomisation as in Bowsher (2007). For event times which are

measured as positive integers the simplest form of randomisation is to differentiate

between two identical timestamps by adding a random number taken from a uniform

distribution over the interval (0, 1) as applied in this thesis.

In the work of Lewis et al. (2012) an assumption is made that the parameter

values should all be positive. This assumption ensures that the interpretations of

the model parameters provided earlier make sense in a real-world application. It is

immediate that the background rate µ should satisfy this criteria since the lowest

number of events is zero. It is possible that the jump factor k0 can be negative

producing a self-inhibiting effect as discussed in the work of Reynaud-Bouret and

Schbath (2010), however, this case will not be considered in this thesis. The Hawkes

process is such that following an event occurrence there is an increase in the rate of

new events. Since it is unreasonable to expect such an increase to persist over an

indefinite period of time the condition that ω ≥ 0 also makes sense.

According to the work of Hawkes and Oakes (1974) if µ > 0 and

0 <

∫ ∞

0

g(t)dt < 1 (2.6)

there exists a unique Hawkes process for the event times {ti}. For the case of the

self-exciting response function this condition becomes

∫ ∞

0

ωe−ωtdt = 1. (2.7)
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Therefore, the Hawkes process is well-defined if, and only if, 0 < k0 < 1.

Another interesting result in the work of Hawkes and Oakes is to express the

Hawkes process as a branching ratio. If the above conditions on the response function

hold then the process is stationary. This means that given a long history the process

is time invariant. Mathematically this is expressed as

E(λ) =
µ

1−
∫∞

0
g(t)dt

. (2.8)

With this branching ratio interpretation the Hawkes process can be described as

having parent events occurring at rate µ each with a probability of having offspring

determined by the response function g (Rasmussen, 2013). Each offspring also has a

chance of further offspring. However, the assumption (2.6) ensures that the process

is non-explosive.

2.3 Parameter Estimation

To find the parameters of the intensity function for the Hawkes process a technique

known as maximum likelihood estimation (MLE) can be employed (Ozaki, 1979).

The aim of this method is to find parameters which maximise the loglikelihood

function. For a set of event times {ti}Ni=1 the loglikelihood is given by (Rubin, 1972)

log L({ti};µ, k0, ω) =
N∑

i=1

log(λ(ti))−
∫ T

0

λ(t) dt, (2.9)
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where T is the end time of the observation period commonly taken to be the last

event time T = tN (Ozaki, 1979).

In the work of Ozaki (1979) and Ogata (1981) it has been shown that the pa-

rameter set {µ, k0, ω} which maximises (2.9) is a good approximation to the true

parameters of the underlying Hawkes process. Heuristically, the loglikelihood func-

tion can be considered as a comparison method. In this case the comparison is

between the value of the intensity function at event times, the first term, and the

value of the function at all times in the time interval considered, the second term.

Therefore, when maximising the loglikelihood the parameters which give the best

representation of the actual event data are found.

The first term on the right hand side of this equation can be substituted directly

from (2.5). For the second term the integral can be simplified as follows

∫ T

0

λ(t)dt =

∫ T

0

µ+ k0

∑

ti<t

ωe−ω(t−ti)dt (2.10)

= µT + k0

∑

i

∫ T

0

ωe−ω(t−ti)1{t>ti}dt (2.11)

= µT + k0

∑

i

∫ T

ti

ωe−ω(t−ti)dt (2.12)

= µT + k0

∑

i

[
−e−ω(t−ti)

]T
ti

(2.13)

= µT + k0

∑

i

[
1− e−ω(T−ti)

]
. (2.14)
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Substituting this result in (2.9) yields the full form for the loglikelihood as

log L =
N∑

i=1


log


µ+ k0

∑

ti>tj

ωe−ω(ti−tj)


+ k0

(
e−ω(T−ti) − 1

)

− µT. (2.15)

As was noted by Liniger (2009) this form of the loglikelihood can be improved to get

a faster computational time by observing that

λ(ti) = µ+ k0

∑

ti>tj

ωe−ω(ti−tj) (2.16)

= µ+ k0


 ∑

ti−1≤tj<ti

ωe−ω(ti−tj) +
∑

tj<ti−1

ωe−ω(ti−tj)


 (2.17)

= µ+ k0


ωe−ω(ti−ti−1) + e−ω(ti−ti−1)

∑

tj<ti−1

ωe−ω(ti−1−tj)


 (2.18)

= µ+ k0ωe−ω(ti−ti−1) + (λ(ti−1)− µ) e−ω(ti−ti−1). (2.19)

With this recursive method the first term on the right hand side of (2.15) can be

calculated more efficiently thus improving computational speed.

There are a variety of methods by which the maximisation of this function can

be achieved. For this dissertation the Python programming language has been used

with the Scipy Optimize (SciPy Optimize 2015) routines being employed to find the

optimal parameter set. It should be mentioned at this point that the routines pro-

vided in Scipy Optimize search for the minimum of a function and so the equivalent

mathematical problem of finding the parameters which minimise − log L was under-

taken. Both the “Nelder-Mead” and “differential evolution” methods were found to
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work well for finding the Hawkes process parameters.

The Nelder-Mead method of optimisation relies on a downhill simplex approach

(Nelder and Mead, 1965). For this method a moving polytope is considered. At

each stage of the minimisation the function is evaluated on the polytope with the

shape shifting according to where the lowest function value is obtained. This pro-

cess continues until the polytope contracts sufficiently to declare convergence of the

algorithm. An advantage of the Nelder-Mead algorithm is that it relies only on func-

tion calculations and not derivatives which can be complicated or even impossible

to compute. However, a drawback of the Nelder-Mead method is that it is a local

minimisation technique. Therefore the algorithm must be run multiple times starting

at different points to find the optimal solution.

Published by Storn and Price (1997) the differential evolution method of opti-

misation uses a set condition to compare possible minimising values and find the

optimum solution. In particular, a set of possible solutions is created and the algo-

rithm moves around the function domain by combining these possible solutions. If

one of these combinations is found to provide a lower function value then it is included

in the set of possible solutions. This process continues until convergence is reached.

Similar to the Nelder-Mead method the differential evolution approach relies only on

function evaluations and hence there is no need to try and compute derivatives. The

differential evolution approach can search a large space of possible solutions with the

hope of finding a global minimum although this is not guaranteed. The differential

evolution method in Python also requires user specified bounds on each parameter.

In this thesis the bounds that were set were µ ∈ [0, 1], k0 ∈ [0, 1], ω ∈ [0, 10]. The
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bound on µ follows from the fact that the event data used was measured according to

the day of event so the background rate should not be more that 1 per day. As dis-

cussed earlier a mathematical condition exists on k0 limiting it to the range [0, 1) to

ensure the model is well-defined. Since ω−1 is the average length of time over which

a series of attacks decays for data on the scale of day of event, as in this thesis (see

Section 2.5.1), we require ω ≤ 1. However, to ensure that the decay in the Hawkes

process is exponential a cut-off of 10 was decided in the search space of the parameter

ω since higher values would imply the response function is sufficiently small to be

deemed 0. In cases were the response function is deemed to be 0 the conditional

intensity function becomes a Poisson process with a constant background rate. The

observation was also made that for datasets with more than 500 points the differen-

tial evolution algorithm found the minimising parameters of the loglikelihood in one

run. With datasets less than 500 entries multiple algorithm runs were undertaken.

This final point was especially relevant when studying change points (explained in

Sections 2.5.2 - 4) where there was a need to greatly reduce code runtime.

2.4 Model Goodness of Fit

To test whether the Hawkes process with parameters obtained via the MLE is a good

fit to the original data a method known as residual analysis can be employed (Brown

et al., 2002). The aim of this test is to look for differences between the fitted model

and underlying data dynamics. The test relies on the following logic. Assume that a

set of event times {ti} are from a Hawkes process with rate function λ and compute
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the residuals using the formula

τi =

∫ ti

0

λ(t) dt (2.20)

for each i. The {τi} form the residual process. These residuals should be distributed

as a stationary Poisson process with unit rate (Papangelou, 1972). From this it can

be deduced that

Yi = τi − τi−1 (2.21)

=

∫ ti

0

λ(t)dt−
∫ ti−1

0

λ(t)dt (2.22)

=

∫ ti

ti−1

λ(t)dt (2.23)

=

∫ ti

ti−1

µ+ k0

∑

tj<t

ωe−ω(t−tj)dt (2.24)

= µ(ti − ti−1) + k0

∫ ti

ti−1

∑

tj<t

ωe−ω(t−tj)dt (2.25)

= µ(ti − ti−1) + k0

i−1∑

j=1

∫ ti

ti−1

ωe−ω(t−tj)dt (2.26)

= µ(ti − ti−1) + k0

i−1∑

j=1

[
−e−ω(t−tj)

]ti
ti−1

(2.27)

= µ(ti − ti−1) + k0

i−1∑

j=1

[
e−ω(ti−1−tj) − e−ω(ti−tj)

]
(2.28)

are exponentially distributed. This implies that

Ui = 1− exp−Yi (2.29)
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= 1− exp

(
−
(
µ(ti − ti−1) + k0

i−1∑

j=1

[
e−ω(ti−1−tj) − e−ω(ti−tj)

]
))

(2.30)

are uniform random variables.

Hence evidence for the fit of the Hawkes process can be gained by checking

whether the Ui come from a uniform distribution. One such test is the Kolmogorov-

Smirnov (KS) test (Massey, 1951). This test works by comparing the value of a test

statistic calculated via the formula (Zar, 2014)

Dn = max
k

(∣∣∣∣Uk −
k − 1

N

∣∣∣∣ ,
∣∣∣∣
k

N
− Uk

∣∣∣∣
)

(2.31)

to a critical value Dα. Critical values can be found in many different sources of

statistical tables e.g. O’Connor and Kleyner (2012). Evidence suggesting that the

Hawkes process does fit the data is found if Dn < Dα.

Another technique which is also relevant to judging the fit of a Hawkes process

is the Akaike Information Criterion (AIC) (Akaike, 1974). The AIC is a method of

comparing models applied to the same dataset. A better fitting model will have a

lower value for the AIC given by

AIC = 2k − 2 log L, (2.32)

where k is the number of model parameters and log L is the MLE. At this point it

should be mentioned that the AIC is simply a comparative tool and not a significance

test. Therefore, some simple rules of thumb are (Burnham and Anderson, 2002)

that difference of AIC value of 0− 2 suggests little difference between models, 4− 7
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moderate evidence for difference, > 10 strong evidence for model difference.

2.5 Applying the Hawkes Process

In this section the techniques that have been outlined at the start of this chapter

will be applied to study IED attacks by the Provisional IRA.

2.5.1 IED Data

Before applying the Hawkes process model it is first necessary to have an overview

of the data being used. For this thesis the data studied was collected as part of a

research project by Asal et al. (2013). The database used consists of information

about IED attacks committed by the PIRA between 1969-1998. Details of the event

fields in this database that are relevant to this thesis are provided in Table 2.1.

Table 2.1: PIRA IED Dataset Event Fields

Field Values

Date Year (1970-1998)/Month (1-12)/Day (1-31)

Location {Antrim, Armagh, Belfast, Derry, Down, Fermanagh, Tyrone}

Target {Political, Military, Police, Paramilitary,
Government, Transport, Civilian, Foreign}

Since the temporal scale of the data is day of event an important processing step

that was undertaken with this data was to ensure that the event times were unique

as discussed in Section 2.2.2. One way this could have been achieved would be to

simply take the first occurrence of each timestamp and discard duplicates. However,
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this approach risks removing a large amount of data. A better option that was

employed for this thesis was to take account of the additional spatial information

in the database. In particular, each IED event time also had details of the county

where the event took place. Therefore, when two timestamps were equal and in

the same county the event was recorded only once. On the other hand, if two

timestamps were equal but the counties where the event occurred were different

then the timestamps were distinguished via the addition of a random number from

a uniform (0, 1) distribution as in Bowsher (2007). For this purpose Belfast was

considered as a separate county. This is justified by looking at the command and

functional structure of the PIRA which reveals that at the county and Belfast levels

IED attacks were fairly autonomous (Horgan and Taylor, 1997).

2.5.2 Change Point Detection

The foundation for the research conducted in this thesis is a masters degree submit-

ted by Tench (2014). In this masters degree the IED event database was studied via

the Hawkes process. The method used was to separate the database according to

the five phases of PIRA activity outlined in Section 1.5.1. The Hawkes process was

then applied directly to the data corresponding to each phase. One of the problems

with this approach however was that no investigation was made concerning how to

manage the past dependence of the Hawkes process. In particular, as pointed out by

Rasmussen (2013) if events occur outside the dataset being studied the parameters of

the Hawkes process may not truly reflect the underlying dynamics. Therefore, when

dividing the dataset into the five phases it is necessary to study the influence of the



67

events in past phases on future ones. This is especially relevant because the sociolog-

ical timings marking the start of each phase may not be the same as mathematically

determined boundaries. This leads to the idea of change point detection studied in

the remainder of this chapter where properties of the Hawkes process will be used to

study mathematically when the changes in the phases of the PIRA occurred. Two

novel approaches have been designed in this thesis to study these change points.

2.5.3 Change Point Analysis Based on Sociological Bound-

aries

The first approach that will be used to study change points in the IED data is one

developed and published by the author of this thesis (Tench, Fry and Gill, 2016) (see

Appendix A). The method used is to consider the sociological boundaries in pairs

and observe how far the influence of one phase extends into the next. Specifically

for i ∈ {1, 2, 3, 4, 5} consider phases i and i + 1. Then step one is to compute

the MLE parameters of phase i + 1. Next the final point of phase i is added to

i+ 1 and the MLE parameters of this new dataset is calculated. This previous step

is then repeated with the last two points in phase i added to phase i + 1 and so

on until the MLE parameters for the combined dataset of phases i and i + 1 are

computed. To determine where a phase change has occurred the residual analysis

test as described earlier is used. For each of the parameter sets obtained the KS

test statistic Dn is calculated and compared to the KS critical value Dα for that

particular dataset. For significance it is necessary that Dn < Dα. Hence a greater

positive difference ∆ = Dα − Dn provides more evidence that the model is a good



68

fit for the data. Therefore, the dataset yielding this greatest difference is viewed as

the most accurate representation of the past dependence of phase i+ 1 into phase i.

Using this KS test method the mathematical boundaries between the phases

are found to be as in Table 2.2. Corresponding to the new boundaries are model

parameters in each phase and details of their goodness of fit as provided in Table

2.3. From Table 2.3 it can be seen that the models found all have significant fits

under the KS test at the 95% level except the model in phase 1. Also in Table

2.3 are the results of applying a simple Poisson process as a comparison to the more

complex Hawkes process model. The AIC comparisons show that the Hawkes process

outperforms the Poisson process in all five phases.

Further to the quantitative results in Figures 2.1-2.4 are graphs illustrating how

the parameters {µ, k0, ω} and ∆ = Dα −Dn values change for each consecutive pair

of phases. It is also interesting to note some of the trends which appear in these

figures. The graphs in Figure 2.1 are relatively flat indicating that the dynamics

present in phase 2 extend quite far into phase 1. However, in Figure 2.2 there is a

less distinct pattern suggesting much greater variability in the dynamics in phases

2 and 3. In contrast in Figure 2.3 there is a trend appearing after the identified

change point. This implies that a Hawkes process corresponding to a dataset using

the mathematical boundary has similar characteristics to a Hawkes process found

from the dataset of phases 3 and 4 combined. In particular, this would suggest that

mathematically these phases are very similar and potentially could exist as a single

phase. In Figure 2.4 there is again a less distinctive pattern suggesting quite different

dynamics between phases 4 and 5.
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Figure 2.1: Figure (a) shows the values of ∆ = Dα−Dn for each point added from phase 1 to phase
2. Figures (b)-(d) show the corresponding changes in the MLE parameter values. The vertical line
indicates the change point between the phases as determined by maximising ∆ = Dα − Dn. The
x-axis runs backwards in time representing each new pointed added from phase 1 to phase 2.
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Figure 2.2: Figure (a) shows the values of ∆ = Dα−Dn for each point added from phase 2 to phase
3. Figures (b)-(d) show the corresponding changes in the MLE parameter values. The vertical line
indicates the change point between the phases as determined by maximising ∆ = Dα − Dn. The
x-axis runs backwards in time representing each new pointed added from phase 2 to phase 3.
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Figure 2.3: Figure (a) shows the values of ∆ = Dα−Dn for each point added from phase 3 to phase
4. Figures (b)-(d) show the corresponding changes in the MLE parameter values. The vertical line
indicates the change point between the phases as determined by maximising ∆ = Dα − Dn. The
x-axis runs backwards in time representing each new pointed added from phase 3 to phase 4.
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Figure 2.4: Figure (a) shows the values of ∆ = Dα−Dn for each point added from phase 4 to phase
5. Figures (b)-(d) show the corresponding changes in the MLE parameter values. The vertical line
indicates the change point between the phases as determined by maximising ∆ = Dα − Dn. The
x-axis runs backwards in time representing each new pointed added from phase 4 to phase 5.
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Table 2.2: Change Point Analysis Results with KS Test Method Boundaries

Phase Number of Data Points Added New Boundary Original Boundary

1 - 27/01/1970 27/01/1970

2 11 24/10/1976 01/01/1977

3 11 22/08/1980 16/01/1981

4 494 11/04/1984 02/01/1990

5 41 22/05/1994 07/01/1995

Table 2.3: Parameters with KS Test Method Boundaries

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Model 0 µ 0.3020 0.2541 0.2250 0.3028 0.0957
AIC 3359.6 1784.4 3834.3 5190.5 1079.7

Model 1 µ 0.0543 0.1721 0.0800 0.0597 0.0270
k0 0.8241 0.3233 0.6529 0.8040 0.7231
ω 0.0542 0.7685 0.0426 0.0316 0.0901

KS Test 0.0686 0.0528* 0.0465* 0.0343* 0.0455*
KS Critical 95% 0.0492 0.0701 0.0490 0.0396 0.1072
KS Critical 99% 0.0590 - - - -

AIC 3083.7 1717.6 3750.5 5004 987

* Significant at 95% level.

2.5.4 Change Point Analysis Independent of Sociological Bound-

aries

The previous section described a method which uses sociologically defined boundaries

as a starting point to find mathematical boundaries working backwards between pairs

of phases. A different approach to finding the mathematical change points for the IED
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database is to consider the problem without using prior knowledge of the sociological

bounds. Previously the change between phases 1 and 2 was found starting at the

sociologically defined boundary for phase 2 and working backwards through phase 1.

However, this condition may conceal the fact that the best boundary mathematically

between the two phases occurs after the sociologically determined start of phase 2.

In this case an algorithm is required which looks at all possible positions for the

change point and returns the optimal value.

One possible method is to use a brute force approach whereby a test statistic is

employed to examine the set of all possible change point combinations and determine

which set is optimal (Ross, 2015). This approach can be undertaken using the AIC.

After a specific change point is identified two datasets are created corresponding the

data either side of the point. The Hawkes process model is then fitted to each of

these datasets and the AIC for each model is computed leading to two values AIC1

and AIC2. The total AIC can then be defined as the sum AIC1+AIC2. The total

AIC is then the test statistic through which different change points are compared.

Since lower values of the AIC imply a better model fit, after checking each change

point in this way the result yielding the lowest total AIC is declared as the best

change point. Although this is an effective method for small datasets, with larger

datasets it is likely that many possible combinations exist making the brute force

method computationally impossible to use.

To overcome lengthy computation times in this thesis an optimisation algorithm

was written in Python which searches the space of possible change points more

effectively. This approach can be understood as having two iteration loops. Firstly
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the routine runs an outer loop. In this case the “differential evolution” minimisation

routine of the Python package Scipy looks to minimise the total AIC. Since the total

AIC is the sum AIC1+AIC2 it is also necessary to compute the values of each of

AIC1 and AIC2. Therefore, the current change point being tested by the outer loop

is passed to the inner loop. In the inner loop the dataset is first divided into two

separate sets corresponding to the data on either side of the change point. Again

using the “differential evolution” package the Hawkes process model is fitted to each

dataset. The inner loop then ends by calculating AIC1 and AIC2 for each of the

Hawkes process models and returning the value of AIC1+AIC2 to the outer loop.

Finding the lowest total AIC then occurs by repeating this process with the algorithm

then returning the change point yielding the lowest value of AIC1+AIC2.

The method of optimising the total AIC was applied to the dataset consisting

of all data from phases 1 and 2 combined. Applying the AIC method only to two

phases was to allow for an analysis of the consistency of the results of the algorithm by

running it 50 times. No other pair of phases could be considered since the total AIC

would also depend on any previous phases due to the past dependence of the Hawkes

process. The results of these code executions are displayed graphically in Figure 2.5.

Graphs in Figure 2.5 are Gaussian kernel density estimates (KDE) of the distributions

of the parameter and AIC values for the two Hawkes process models obtained after

each code run. The Gaussian KDE is implemented in Python’s Scipy.Stats package

(Scipy.Stats 2016) and essentially fits one or more Gaussian bell shaped curves to

the data.

In general the graphs in Figure 2.5 suggest that the parameter values occur in
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two sets. Specifically, considering Figure 2.5(d) each of the AIC distributions have

two distinct peaks. However, it should also be observed that in Figure 2.5(c) some of

the ω values for the model in phase 2 are greater than one. However, since ω−1 is the

average time window over which a series of attacks occurs and the data is recorded

on a daily temporal scale we require ω ≤ 1. Removing the cases where ω > 1 and

plotting the distributions again leads to the graphs in Figure 2.6.

The graphs in Figure 2.6 reveal a much narrower distribution for the parameter

values and only one main peak for the AIC values. The action of restricting the

results to the case where ω ≤ 1 is further justified by the fact that from all the code

runs the model with the lowest total AIC satisfied this condition. The change point

corresponding to the models with the lowest total AIC is given in Table 2.4 and the

corresponding model parameters in Table 2.5. From Table 2.5 it can be seen that the

models found also have significant fits under the KS test at the 99% level. Moreover,

the Hawkes process models in both phases significantly outperform a simple Poisson

process model under the AIC comparison test. Also, in this case the model in phase

1 has a significant fit whereas the phase 1 model under the KS test method of Section

2.5.3 did not. This provides further evidence for why it is advantageous to consider

the change point problem from a different perspective.
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Figure 2.5: Graphs (a)-(c) show the distribution of the parameter values for the Hawkes process in
phase 1 (blue) and phase 2 (red) after each attempt at minimising the total AIC. Graph (d) is the
corresponding distribution of the AIC values for each of these Hawkes process models.
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Figure 2.6: Graphs (a)-(c) show the distribution of the parameter values for the Hawkes process
in phase 1 (blue) and phase 2 (red) after each attempt at minimising the total AIC and restricting
the results to the case ω ≤ 1. Graph (d) is the corresponding distribution of the AIC values for
each of these Hawkes process models.
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Table 2.4: Change Point Analysis Results with AIC Test Method Boundaries

Phase Number of Data Points Added New Boundary Original Boundary

1 -287 27/01/1970 27/01/1970

2 287 23/06/1973 01/01/1977

Table 2.5: Parameters with AIC Test Method Boundaries

Phase 1 Phase 2

Model 0 µ 0.3837 0.2426
AIC 1869.7 3153.1

Model 1 µ 0.0439 0.1717
k0 0.9074 0.2924
ω 0.0497 0.8069

KS Test 0.0724** 0.0551**
KS Critical 95% 0.0623 0.0533
KS Critical 99% 0.0746 0.0638

AIC 1657.9 1717.6

** Significant at 99% level.

For the AIC method the validity of the minimisation routine needs to be checked.

One of the ways that the models obtained can be checked is to use bootstrap sim-

ulations. The aim of this technique is to study the uncertainty associated with the

model parameter values. To achieve this the parameter values are used to simulate

event times from a Hawkes process. MLE is then applied to the simulated times to

obtain their corresponding Hawkes process parameter values. Finally the distribu-

tion of the simulated parameter values are analysed. The bootstrap methodology

can be summarised as follows (Embrechts, Liniger and Lin, 2011)
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1. Simulate the Hawkes process 1000 times over the interval [0, T ] where T is the

time of the original final observation. Each run of the simulation is required

to produce a set of event times {t1, ...tN} where N is the length of the original

dataset.

2. Compute the MLE parameters for each simulated dataset.

3. Analyse the statistical properties of the resulting parameters.

A common simulation technique used for Hawkes process models is Ogata’s Thin-

ning Algorithm (Lewis and Shedler, 1979; Ogata, 1981). The basic idea behind this

algorithm is to simulate a homogeneous Poisson process and decide whether or not

to keep a point based on the Hawkes process intensity function λ. The algorithm

below is based off of the work presented in Ogata (1981). To make the algorithm

realistic the same number of points as in the original dataset are generated.

The final result of this algorithm is a set of simulated event times {t1, ..., tN} with

N being the length of the original dataset.

Statistical analyses of the results of applying the bootstrap method to the models

in phases 1 and 2 are provided in Tables 2.6 and 2.7. In Figure 2.7 the distributions

of the bootstrap parameters are provided.

These observations provide strong evidence that the Hawkes processes found for

each phase are well-defined. From the descriptive statistics we see that the means of

the simulated parameter values are close to the actual parameters and the associated

standard deviations are relatively small. The ranges of the simulated parameters

suggest some extreme values were found but, as can be seen from Figure 2.7, these
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Set λ∗ = µ and s = 0.
Generate a random number U from a uniform([0, 1]) distribution and set u =
− log

(
1
λ∗

)
U .

if u <= T then
Set t1 = u.

else
Stop.

Set n = 1 and λ∗ = λ(tn|t1, ..., tn−1).
while n < N − 1 do

Generate a random number U from a uniform[([0, 1]) distribution and set u =
− log

(
1
λ∗

)
U .

Set s = s+ u.
if s > T then

Stop.
else

Generate a random number U from a uniform([0, 1]) distribution.

if U ≤ λ(s|t1,...,tn−1)
λ∗

then
Set n = n+ 1, tn = s and λ∗ = λ(tn|t1, ..., tn−1) + k0

else
Set λ∗ = λ(s|t1, ..., tn−1).

extrema are rare. The graphs in Figure 2.7 also demonstrate graphically that the

simulation results are densely clustered around the original MLE parameters. This

suggests a low level of uncertainty regarding the parameter values of the original

Hawkes process models.
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Figure 2.7: Graphs (a)-(c) show the distribution of the simulated parameter values for the Hawkes
process in phase 1 (blue) and phase 2 (red). The parameters have been simulated from the Hawkes
process models in phases 1 and 2 as defined by the AIC method for determining boundaries. The
vertical lines represent the original model parameters.
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Table 2.6: Phase 1 Bootstrap Statistics

Parameter Mean Standard Deviation Range

µ 0.0757 0.0013 0.3558

k0 0.8272 0.0035 0.6493

ω 0.0531 0.0167 0.1511

Table 2.7: Phase 2 Bootstrap Statistics

Parameter Mean Standard Deviation Range

µ 0.1734 0.0116 0.0756

k0 0.2882 0.0391 0.2353

ω 0.8393 0.1862 1.5967

2.6 Interpreting Phase Boundaries

In Sections 2.5.3 and 2.5.4 two methods to determine change points in temporal se-

ries of terrorist attacks have been constructed and applied to PIRA IED data. The

results of these analyses have indicated that there exists a difference between the

phase changes of PIRA found qualitatively in social science research and the bound-

aries found using quantitative methods. In particular, Figure 2.8 demonstrates the

change in the distribution of events between the phases for the original, KS and AIC

boundaries. The discrepancies between the qualitative and quantitative boundaries
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Figure 2.8: Distribution of IED events between phases under the original phase boundaries (blue),
KS method boundaries (orange) and AIC boundary (red).

warrants further consideration to understand the origins of these differences.

For the KS method of determining phase boundaries in Section 2.5.3 all of the

phases of PIRA were analysed. It was discovered that phases 2 and 3 only required

11 points from their prior phases to yield the best model fits. In addition, these extra

points only moved the temporal boundaries by 2 months for phase 2 and 4 months for

phase 3. From these observations we can conclude that the social science boundaries

observed for these two phases are approximately consistent with the quantitative

findings. Furthermore, since it is unreasonable to expect that an organisation like

PIRA can shift its entire operations and organisational structure instantly the delays

found in Section 2.5.3 seem reasonable.

The main differences between the research findings of Section 2.5.3 and the social

science phase boundaries occur in phases 4 and 5. In phase 4 an additional 494 points

were required to find the best fitting model. These extra points were equivalent to
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shifting the start of phase 4 backwards by almost 6 years. During the literature

review at the beginning of this thesis an overview of the evolution of PIRA was

provided in Section 1.5.1. Here it was described that phase 4 marked a shift in

PIRA towards political engagement with the British Government via secret channels

of communication. Phase 4 was also preceded by phase 3 which Moloney (2003)

describes as one of escalating violence similar to the “Tet Offensive” launched by the

People’s Army of Vietnam in 1968. As stated in the observations about the change

in phase boundaries for phases 2 and 3 organisational changes are unlikely to occur

instantly. Moreover, since the negotiations in phase 4 were secret the wider PIRA

cadre would likely not have known of their existence. Therefore, the large changes

observed in the phase 4 boundaries indicate that we should consider phase changes

as fluid. In particular, phases 3 and 4 could have been occurring in parallel and

delineating them via a sequential boundary is inaccurate.

A similar observation for the phase boundary in phase 4 explains the result found

for the boundary between phases 4 and 5. Specifically, phase 5 required 41 data

entries from phase 4 corresponding to a shift in temporal boundary of close to 1

year. In Section 1.5.1 it was stated that the secret peace talks between PIRA and

the British Government were announced and ratified in the Good Friday Agreement

in phase 5. As before here we observe the fluid nature of temporal boundaries

and their ability to occur in parallel. As noted by Coogan (2002) PIRA had the

ability to “turn ... bombing[s] on and off like a tap”. Therefore, as ceasefire terms

came to conclusion PIRA may have selectively used IED attacks to negotiate better

terms. In addition, some PIRA members may have been reluctant to accept an end
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to violence given that recruits were instructed to wage a “war of attrition against

enemy personnel which is aimed at causing as many casualties and deaths as possible

so as to create a demand from their people at home for their withdrawal” (O’Brien,

1999).

For the second approach to finding phase changes in Section 2.5.4 an AIC method

was introduced. For this method only the phase boundary between phases 1 and 2

was considered due to computational restraints. From the AIC method it was found

that 287 points needed to be added from phase 1 to phase 2. This result corresponded

to a shift backwards in the temporal boundary, from the social science boundary, by

3.5 years. In contrast to the KS method, when using the AIC method a tradeoff

is made to decide the best boundary for both phases simultaneously. As stated

in the overview of PIRA in Section 1.5.1 phase 1 was characterised by a military

structure. However, this organisational approach was susceptible to infiltration by

British security forces. Therefore, in phase 2 PIRA split into a cell-based structure

consisting of small groups known as Active Service Units. This new structure aided

the PIRA in keeping its operations secret and protecting its member’s identities. The

results of the AIC phase change analysis suggest that PIRA members may have been

making a shift to increased secrecy at an earlier time. In particular, changing the

entire structure of an organisation like PIRA would not be instantaneous. Moreover,

PIRA may have wanted to move to a new structure slowly to avoid detection of

the shift by British security forces. Therefore, it can be observed that a similar

observation is made to the findings found for the KS test method. Specifically,

terrorist groups evolve over time in response to external stimuli. Hence, a shift in
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understanding phase changes is required to consider them as gradual processes which

can overlap and occur simultaneously.

2.7 Interpreting Model Parameters

Mathematical modelling in general is motivated by the opportunities it provides to

yield insights about real-world dynamics. One of the ways insight can be obtained

for the Hawkes process is through studying the MLE parameters of the model. In

particular, the intensity function of the Hawkes process is specified via three param-

eters {µ, k0, ω}. Each of the parameter values obtained via MLE can be interpreted

in terms of the events being modelled. In the context of this thesis it is of interest

to study what the parameters imply about the timings of IED attacks by PIRA and

how these timings relate to the tactical and structural evolution of the organisation.

First the parameters obtained using the KS method for boundary determination will

be discussed. These parameters will then be compared to the ones obtained via the

AIC method for boundary determination.

2.7.1 KS Method Parameters

To interpret the meaning of the value of ω it is first useful to recall that the inverse

ω−1 indicates the average length of time over which a series of attacks decays (Lewis

et al., 2012). In phase 1 the inverse of ω satisfies 1
0.0542

= 18.5 days. Following

this in phase 2 the value of ω increases producing a smaller average attack window

of 1.3 days. This change in the average attack window can be related back to the
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sociological and historical observations of the PIRA. In particular, it is discussed in

the work of Asal et al. (2013) that in phase 1 of the PIRA the organisation adopted

a militaristic structure. However, this particular organisational structure made the

PIRA susceptible to infiltration by British security forces. Therefore, in phase 2 the

PIRA re-organised their structure instead opting for a cellular strategy made up of

Active Service Units (ASU) (Horgan and Taylor, 1997). This cell based approach

saw the PIRA break into small groups meaning any potential informers could be

quickly identified. The shift in structure was successful at limiting the security forces

abilities to place informers within the PIRA with Smith (1997) reporting there were

465 fewer charges for paramilitary activity within a year. By comparing these two

different organisational structures the dynamics which led to the observed changes

in the value of ω can be explained. In particular, with a military hierarchy in phase

1 it may have been easier for the PIRA to carry out a sustained wave of attacks.

Whilst in phase 2 with a more fragmented organisation sustained attacks may have

been harder to achieve.

In phase 3 the average length of attacks becomes 23.5 days. This period is de-

scribed by Moloney (2003) as one of escalating violence similar to the “Tet Offensive”

launched by the People’s Army of Vietnam in 1968. This is reflected in the PIRA

issued Green Book discussing the organisations aims and objectives. PIRA wanted

a “bombing campaign aimed at making the enemy’s financial interests in our coun-

try unprofitable” and to wage a “war of attrition against enemy personnel which is

aimed at causing as many casualties and deaths as possible so as to create a demand

from their people at home for their withdrawal” (O’Brien, 1999). These objectives
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are being reflected in the longer length of an average attack window.

For the final two phases of the organisation the trend is for ω to increase resulting

in shorter lengths of time for waves of attacks. For phase 4 the average attack window

is 31.6 days and this falls in phase 5 to 11.1 days. During the final two phases the

leadership of PIRA was conducting secret negotiations with the British Government

to end hostilities (Coogan, 2002; English, 2004; Moloney, 2003). However, during this

time the PIRA wanted to demonstrate their attack capability in order to strengthen

their negotiating position. As noted by Coogan (2002) PIRA had the ability to

“turn ... bombing[s] on and off like a tap”. The PIRA’s flexibility in IED attacks is

represented in the shortening of the average time window as the focus of bombings

was as a bargaining tool rather than for a war of attrition.

Similar to the values of ω the parameter µ can also be related to actual observa-

tions about the PIRA. The parameter µ represents an underlying background rate

at which new events occur. Moving from phase 1 to phase 2 the value of µ increases.

Explained previously this change of phase saw the PIRA move from having a mili-

taristic structure to a cellular based structure consisting of ASUs. Therefore, with

less control within the fragmented organisation the ASUs may have been carrying

out attacks more randomly resulting in an increase in the value of µ.

The final three phases show a declining trend in the values of µ. In phase 3 it

has been discussed that at a strategic level PIRA moved towards a “Tet Offensive”

campaign characterised by a renewed emphasis on bombings. Therefore, it is possible

that to make this approach successful attacks were becoming more systematic as well

as occurring in succession. Thus there would have been less randomness in the IED
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attacks explaining the decline from phase 2 to phase 3 in the value of µ.

For phases 4 and 5 the leadership of the organisation was focused on negotiations

with the British Government to end the conflict in Northern Ireland. Hence these

two periods had an overall de-escalation of violence. This is precisely the trend found

in the values of the parameter µ where the background rate of events decreases.

The values of the final parameter k0 across the five phases of the PIRA also

demonstrates trends related to actual events. This parameter describes the magni-

tude of increase in the intensity of events following an initial incident. The highest

value of k0 is found in phase 1. Since this was the military phase of PIRA in phase

1 coordinating attacks would have been easier for the organisation. Therefore, gen-

erating a sequence of IED attacks would have been more likely in this phase. In

phase 2 however the cellular structure emerged. Hence coordinating multiple attacks

may have been hindered which is demonstrated by a decline in the value of k0. In

the next phase the “Tet Offensive” strategy was used and hence ASUs could have

been instructed to launch more IED attacks. Thus a rise in the value of k0 can be

observed in phase 3. Finally in phases 4 and 5 the main focus of events was negoti-

ations between PIRA and the British Government. During these phases the aim of

IED attacks was to strengthen the position of PIRA at the negotiating table. The

high values of k0 in phases 4 and 5 could be representing PIRA using IEDs as a

bargaining tool as described above.
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2.7.2 AIC Method Parameters

To reduce computational time it was only possible to consider the AIC method for

change point detection between phases 1 and 2. However, the resulting models, in

Table 2.5, can still be compared to those from the KS method, in Table 2.3. For

both phases 1 and 2 the magnitudes of the parameter values are the same for both

methods. In particular, each of the parameter values resulting from the AIC method

are close to those from the KS method. Moreover, the trends in the parameter

values are the same. A similar qualitative assessment as was conducted for the KS

method results holds for the AIC method results. This shows that the AIC method

for determining change points also produces real-world interpretable parameters.

Also of interest is a comparison between where the division between phases occurs

when trying to minimise the total AIC and that found earlier from the KS test

method. Initially it can be seen that many more points are added to phase 2 for the

AIC method than for the KS method. However, as just discussed, the parameters

for the models obtained under the two different approaches are very similar. This

observation suggests that the evolution of the PIRA was quite gradual since the

underlying dynamics appear to be stable over a long period of time.

It is also of interest to observe that for both the KS method and AIC method

the boundaries are different from those suggested by the sociological theory. This

raises interesting research questions which can be pursued considering the possibility

of some new sociological theory concerning the evolution of the PIRA.
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2.8 Discussion

The chapter opened by introducing the Hawkes self-exciting point process model.

To gain an initial understanding of how the model worked the mathematical back-

ground of the model was detailed. This background covered the basic components of

the Hawkes model including the intensity function, maximum likelihood parameter

estimation and a discussion of the computational nuances associated with the opti-

misation problem. The intensity function serves as the essential interface between

the mathematical theory behind the point process and the real-world applications

for which it can be used. In particular, as part of the mathematical foundation the

specific form of the intensity function was provided and shown to rely on three pa-

rameters. The first of these three parameters was a background rate µ describing

an average rate of event occurrence. Next a jump parameter, k0, is used to de-

scribe how following an incident there is a spike in the event rate occurrence due to

self-excitations. Finally, since it is unrealistic that self-excitations last indefinitely a

decaying kernel in the form of an exponential, with exponent ω, is used to dampen

the increased event rate.

With the physical interpretation of the parameters explained the next step in this

chapter was to introduce a case study in the form of the PIRA. As was already dis-

cussed earlier in the literature review taking a historical and sociological perspective

on the PIRA’s activities indicated five unique phases relating to shifts in the organi-

sations structural and tactical modus operandi. The task undertaken in this chapter

was to compare the mathematical boundaries for these phases to the five qualitative
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descriptions. The mathematical approach to boundary detection followed two routes

- a KS method and an AIC method.

The KS method designed used the idea of maximising the KS difference between

the KS test statistic and critical value between pairs of phases. Each adjacent phase

pair was scanned with a moving time window adding one data point from the previous

to the next phase at each shift. With each new dataset thus obtained a Hawkes

process was fitted to the time series and a corresponding KS test statistic and critical

value were calculated. Finally by graphing all these differences it was possible to

observe where the optimum change point should be placed. This method proved to

be quick and straightforward to implement so that insights could be readily obtained.

A different method that was developed to handle the change point analysis prob-

lem was to study the total AIC between two phases. The aim of this technique is

to find the break point which produces the lowest possible AIC for each phase com-

bined without relying on the sociologically defined boundary. A problem that was

discovered was the computational inefficiency of this approach. To overcome long

code runtimes a strategy was developed involving a two loop procedure. In the outer

loop a minimisation algorithm was being applied to the total AIC corresponding to

the break point inbetween the two phases. Since this total AIC was a function of the

sum of the two individual AIC values of the Hawkes process in each phase it was then

necessary to have a second minimising loop. In this inner loop the MLE values for

the Hawkes processes in each phase were computed in order to define the intensity

functions. With the intensity functions defined the AIC of the Hawkes processes in

each phase were found and the sum returned to the outer loop. This approach to
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the change point provided the advantage of not having to rely on the sociological

boundaries thus enabling the best change point among all possible change points to

be detected.

Tying this chapter together the final section aimed to interpret the different

mathematical findings from the KS and AIC approaches to change point detection

in the context of the PIRA and “The Troubles” in NI. It was found that the Hawkes

process MLE parameters from each technique were close in value with similar trends.

This observation provided confidence that both methods were providing valid results.

This confidence was further reinforced by converting the quantitative results into a

qualitative description of the PIRA. By comparing the real-world interpretations

of the MLE parameter estimates to historical accounts and sociological theory of

the PIRA it was found that the Hawkes process models were indeed picking out

important shifts within the organisation. Moreover, the differences between the

phase points obtained here and those previously used by social scientists indicate

that the Hawkes process is also offering new insights opening up opportunities for

further research into understanding the origin of these differences. Such additional

research may prove fruitful in uncovering as yet undetected subtleties concerning the

PIRA and the political climate in the time it operated.

The results of this chapter provide evidence for Hypotheses 1-2. In particular, de-

veloping unique change point detection methods using the Hawkes process model has

shown PIRA attacks are historically dependent. Moreover, via the interpretation of

the parameters of the Hawkes models it has been shown that the phases of the PIRA

were quantitatively distinct. Both of these outcomes illustrate that the research
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conducted in this chapter provides useful advancements to knowledge for studying

terrorism. Also, employing the change point detection frameworks that have been

described important insights into the evolution of terrorist groups can be identified.

Specifically, academic researchers in the field of social science can benefit from these

types of methods to obtain deeper understandings of when and how terrorist groups

change structurally and operationally. Furthermore, practitioners can use the mod-

els developed in this chapter to study terrorism in real time and quickly identify

important shifts. Therefore, the research in this chapter also provides evidence for

the validity of Hypothesis 4.

To extend the research presented in this chapter further use of spatial data could

be made inside of the Hawkes process. In particular, it may prove fruitful to study

change point detection dependent on both time and space. A possible method to

achieve this objective would be to include a spatio-temporal kernel inside the Hawkes

process model. This type of Hawkes model could then be used inside the change point

detection framework developed and analysed in this chapter. By explicitly study-

ing spatial components of PIRA attacks new insights may be revealed pertaining to

their use of geography during “The Troubles”. In addition to deeper academic under-

standings of PIRA having models including spatial patterns could assist in identifying

hotspots of terrorist activity. Moreover, improved understanding of spatial change

points would help guide practitioners in developing evidence based counter-terrorism

approaches.
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In 1979 Cohen and Felson published their paper describing research formulating

the routine activities of crime (Cohen and Felson, 1979). According to their work

they claimed crime occurs as the result of opportunities governed by environmental

conditions. Through analysing the relationship between different environmental fac-

tors and criminal events it is possible that many new crime reduction techniques can

be discovered.

Research since has focused on the influence of environmental factors on crime,

particularly, the effect of weather. Multiple articles have been published exploring

this link. For example, the research of Cohn (1990) concludes that assaults, burglary,

collective violence, domestic violence and rape are positively correlated with temper-

ature with a breakdown in these relationships occurring around 29°C. Similar results

have been reported by Pakiam and Lim (1984) whose study of crime and weather

in Singapore found that crimes against the person increase with increasing temper-

ature and climate comfort measures. Extrapolating the effect of weather conditions

on crime Ranson (2014) estimates rises in multiple crime categories as a result of

climate changes.

It has already been shown in several studies that a theory akin to Cohen and Fel-

son’s routine activity approach holds true for terrorist attacks (Clauset and Woodard,

2013; Townsley, Johnson and Ratcliffe, 2008; Zammit-Mangion et al., 2012). Sim-

ilarly, some studies have emerged illustrating repeating trends in the frequency of

terrorist activity. In the research of Enders, Parise and Sandler (1992) it has been

shown that terrorist events, such as, bombings, hostage events and assassinations

have cyclical patterns ranging from 21 to 54 months. Moreover, threats of attacks
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were found to have a seasonal trend of 11 months which the authors associate to the

onset of tourism periods. Also finding cyclical trends in terrorist attacks Weimann

and Brosius (1988) finds a contagion dynamic as well as a constant one month peri-

odicity modelled with a first-order moving average.

However, a gap in terrorism literature remains to utilise advanced mathemati-

cal techniques to capture seasonal variations in terrorist attacks. In particular, it

has been discussed that terrorist events have both cyclical and contagion dynam-

ics. But there exists a disconnect between the models used to capture each of these

components. By developing a more encompassing modelling framework which can

simultaneously describe the different influences on terrorist activity it may be pos-

sible to discover more effective counter-terrorism policies. In this chapter a possible

solution to this problem will be presented in the form of a Hawkes point process

model with a seasonal background rate. To illustrate the usage of this type of model

a case study of Al Shabaab (AS) terrorist incidents in Somalia will be examined.

3.1 Datasets

3.1.1 Al Shabaab Event Data

The data used in this chapter is sourced from the Armed Conflict Location and

Event Database (ACLED 2016). ACLED is a project run from the University of

Sussex and the database aims to provide up-to-data disaggregated data for conflicts

in Africa as well as South and South-East Asia. The data is sorted according to date

(on a daily scale), location, type of event (battles, civilian killings, riots, protests
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and recruitment activity), event actors (rebels, governments, militias, armed groups,

protestors and civilians), information on changes in territory control and fatalities.

The database is formed using information from a variety of sources including local

and international news sources and humanitarian agency reports. An outline of the

two main fields used in this chapter is provided in Table 3.1

Table 3.1: ACLED Data Fields

Field Data

EVENT DATE Day of the recorded event

EVENT TYPE

Battle-{“Government regains territory”, “No change of territory”,
“Non-state actor overtakes territory”},
Headquarters or base established, Non-violent transfer of territory,
Remote violence, Riots/Protests, Strategic development,
Violence against civilians

In the research of Maszka (2017) the strategic developments of AS are examined.

Specifically four distinct phases of the group are identified. These phases are from

the group’s inception to December 2007, January 2008 to April 2008, May 2008 to

July 2011 and August 2011 to the present time. Within these transitions the group

also had three leadership changes according to the following timeline

� 2006-2008: Aden Hashi Ayro (killed by a US airstrike).

� 2008-2014: Ahmed Abdi Godane (killed by a US drone strike).

� 2014 - Present: Abu Ubeyda.

Multiple historical and social science studies have been conducted into the evo-

lution of the AS group (Anderson and McKnight, 2015a; Hansen, 2013; Marchal,



100

2009; Maszka, 2017; Wise, 2011). During the early stages in the formation of AS the

group’s main objective was resisting a perceived occupation of Somalia by Ethiopian

troops. After the withdrawal of Ethiopian forces in 2009 AS struggled to retain local

support and began an international recruitment campaign. This shift from a local

struggle to a global movement was also accompanied by Godane’s desire to link AS

to the international terrorist group known as al Qaeda. In 2010 the African Union

Mission to Somalia (AMISOM) consisting of Ugandan and Burundian troops moved

to counter the growing threat presented by AS. However, AS persisted and in 2011

Kenyan troops crossed into South Somalia to provide a bulwark against the risks of

AS attacking inside the Kenyan border. Retribution for these moves to contain and

eliminate AS was seen in high profile attacks, such as, an attack on the Westgate

Mall in Nairobi in 2013 (Williams, 2014) and another on the Garissa University in

2015 (Lyons et al., 2015).

Examining the historical roots of AS indicate that the group was heavily focused

on fighting various governmental forces. However, as Maszka (2017) discusses under

the change of leadership to Godane the AS group underwent a tactical shift. In par-

ticular, the usage of improvised explosive devices (IEDs) became more widespread.

Alongside the use of IEDs Godane’s appeal for foreign fighters also lead to the em-

ployment of suicide attacks in Somalia. These developments significantly increased

events involving violence against civilians.

Since attacks against governmental forces and those against civilians were sep-

arate developments within the history of AS it was decided to model these two

categories of events separately. Thus the ACLED data was divided according to the



101

following criteria

� Battle Territory (BT) - Covers pre-existing categories “Battle-Government re-

gains territory”, “Battle-No change of territory”, “Battle-Non-state actor over-

takes territory”.

� Violence Against Civilians (VAC) - Covers pre-existing category “Violence

against civilians”.

In total the ACLED database, at the time of production of this chapter in 2016,

contains a total of 5935 events involving the Al Shabaab militant group. The BT

category of events includes 4089 recorded incidents and the VAC database has 670

events. Therefore, these two databases combined cover 80% of all the available Al

Shabaab data and hence provide good coverage of the group’s activities for numerical

study.

It should also be noted from Chapter 2 that one of the assumptions that must be

met to use the Hawkes process model is that the timestamps of events must be unique

so that ti 6= tj for i 6= j (Daley and Vere-Jones, 2003). For the study of Al Shabaab

attacks in this chapter the events in the ACLED database are recorded according to

day of the event. Therefore, to ensure the uniqueness of event times multiple events

on a single day are counted as only one event. Justification for such an approach to

analysing the Al Shabaab data comes from studies of the groups command structure

which shows it operates in a top down fashion (Agbiboa, 2014; Marchal, 2009) im-

plying that multiple same day attacks can be considered as stemming from a single

decision.
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Due to the uniqueness assumption of the Hawkes model dividing the AS data

into BT and VAC categories also ensures more data is retained. In particular, if the

data was analysed in aggregate form then important information may have been lost

due to the removal of repeated timestamps. However, under the analysis framework

presented in this chapter this problem is avoided due to the data disaggregation used.

Before removing duplicate entries the BT category of events has 4089 records.

After ensuring unique timestamps the BT dataset has 1751 events. Performing the

same procedure for the VAC dataset leads to a reduction from 670 to 547 datapoints.

These reduced datasets are used in the remainder of this chapter.

Since the AS group’s tactics evolved in four phases a further disaggregation of

the data can also be undertaken into the four datasets as illustrated in Tables 3.2 -

3.3. Observe that the dates demarcating the phase boundaries are adjusted based on

the actual data. In particular, the first and last dates recorded in the BT and VAC

datasets that fall inside each of the phases found by Maszka (2017) are used to define

the phase edges. The motivation for this presentation of the phases is to ensure that

the analyses conducted in this chapter capture the actual data dynamics. It should

also be noted that phases 1 and 2 have very few datapoints. Therefore, the analyses

in this chapter will focus only on phases 3 and 4.

Table 3.2: Number of Entries in BT Datasets

Dataset Name Phase 1 Phase 2 Phase 3 Phase 4
(Aug 2006 - (Jan 2008 - (May 2008 - (Aug 2011 -
Nov 2007) Apr 2008) Jul 2011) Dec 2015)

Battle Territory 5 6 407 1333

Combining all of the previous disaggregations yields four datasets - BT (phases
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Table 3.3: Number of Entries in VAC Datasets

Dataset Name Phase 1 Phase 2 Phase 3 Phase 4
(Aug 2007) (Jan 2008 - (Jun 2008 - (Aug 2011 -

Apr 2008) Jul 2011) Dec 2015)

Violence Against Civilians 1 3 51 492

3 and 4) and VAC (phases 3 and 4). These datasets were used for the studies in the

remainder of this chapter.

3.1.2 Weather Data

As discussed in the introduction to this chapter research has shown that terrorist

attacks are often linked with seasonal trends. One of the main seasonal trends in

Somalia is the onset of wet seasons. In the report of (Muchiri, 2007) rainfall is

described as the “defining characteristic of the climate” in Somalia with two main

rainfall seasons. The first rainfall season in Somalia is known as the Gu (April-June)

resulting from the northward movement of weather fronts whilst the second is called

Deyr (October-December) resulting from a southerly shift. An established monitor-

ing body of weather patterns in Somalia is known as the Somalia Water and Land

Information Management (SWALIM) which is managed by the Food and Agricul-

tural Organisation (FAO) of the United Nations (FAO SWALIM 2016). All the data

collected as part of the SWALIM project is openly accessible via the organisation’s

website. Of particular interest in this thesis is rainfall data. The SWALIM database

offers rainfall data from a variety of collection stations across the country. Since most

of the Al Shabaab attack data in the ACLED database records events in the south of
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Somalia (89% of all data points) data for the central southern data collection point in

Diinsor in the Bay area was used in this thesis. This area is highlighted in Figure 3.1

(FAO SWALIM 2016). The rainfall data downloaded for use in this chapter consists

of monthly volume counts spanning the years 2008 to 2015 providing full coverage of

the period of AS attacks being studied. In Tables 3.4 - 3.5 an overview is provided

of the rainfall datasets used in this chapter. Note that these rainfall datasets have

start and end dates corresponding to those used for the BT and VAC datasets. This

ensures consistency in the analyses of dynamics in the rainfall and event data.

Table 3.4: Number of Entries in BT Weather Datasets

Dataset Name Phase 3 Phase 4
(May 2008 - (August 2011 -
July 2011) December 2015)

BT Weather 39 53

Table 3.5: Number of Entries in VAC Weather Datasets

Dataset Name Phase 3 Phase 4
(June 2008 - (August 2011 -
July 2011) December 2015)

VAC Weather 38 53

3.2 Modelling Framework

The main objective of this chapter is to develop a model that can capture both

seasonal trends and past dependent behaviour in terrorist activities. This task will

be divided into two steps.
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Figure 3.1: Map of Somalia. The area indicated in red indicates the location of the weather station
from which the rainfall data used in this chapter was obtained.

Initially, in Section 3.3 the periodicities present in the AS event dataset and

Somalia weather dataset will be obtained using Fourier analysis. By comparing

these periods it will then be possible to determine if there exists a weather-related

dynamic within AS attacks.

Having extracted the underlying periodicities the past dependent behaviour of

the AS attacks will be captured using a Hawkes point process model in Section 3.4.

Results will be presenting comparing the modelling of AS events using a Hawkes
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model with a constant background rate and a Hawkes model using a seasonally

varying background rate. The seasonally varying Hawkes process will utilise the

periodicities found from the Fourier analysis described previously.

3.3 Identifying Seasonality

To justify the usage of a seasonally varying Hawkes process model it is necessary

to demonstrate quantitatively that the AS attacks contain a seasonal dynamic. In

particular, the focus of this chapter will be to study the influence of rainfall levels

in Somalia on AS events. One method well suited to this task is the construction of

a Fourier series. As described by Stade (2005) the aim of this approach is to gener-

ate a model using a summation of sinusoidal terms where each term has a distinct

frequency. The inverse of these frequencies yields the periodicities of dynamics in

the data being modelled. By obtaining a Fourier series model of both the Somalia

rainfall datasets and AS event datasets it will be possible to discover their underlying

cyclical trends as measured via periodicity. Directly comparing these periodicities

then enables conclusions to be drawn concerning the link between weather trends

and AS attacks.

Prior to presenting the analysis comparing the rain and event datasets the math-

ematical formulation of Fourier series will presented in the following section. Since

the rainfall data used is measured according to a monthly scale a comparison will be

made to monthly AS data. The AS data is grouped into months via binning of the

data with bin widths equal to 30 days.
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3.3.1 Detrending Data

An important note concerning the use of Fourier analysis is that the dynamic of

interest is data periodicity. Therefore, prior to constructing a Fourier series the data

being studied should be detrended so that only cyclic repetition is present. Two

common approaches of detrending are

1. subtract the mean of the data from the dataset,

2. remove a linear trend in the data using a least squares regression.

The exact method chosen to detrend a dataset is context dependent. Also it is

important to remember that the detrended method has to be incorporated at the

end of fitting the Fourier series. This can be achieved either by adding the mean as

a constant or adding a linear function to correspond to the one found in the second

detrend method.

To illustrate the context of data requiring detrending observe the histogram in

Figure 3.2. This figure shows the monthly event counts corresponding to the “Battle

for Territory” category in phase 3 of the AS evolution. It is clear from viewing this

plot that there exists a linearly increasing trend across the dataset.

One method which can be used to detrend linearly increasing data is known as

linear least squares regression. Assume a given set of data points {(tn, fn)}Nn=1. To

these datapoints we aim to fit a linear function f(t) = αt + β with parameters

p = {α, β}. This aim can be achieved by minimising the sum of squared differences
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Figure 3.2: Battle territory phase 3 binned data histogram. Bin widths are set to 30 days to
correspond to approximately one month of data.

given by the loss function (Hansen, Pereyra and Scherer, 2012)

`(p) =
N∑

n=1

(fn − f(tn; p))2. (3.1)

Since the aim is to minimise (3.1) we need to find the partial derivatives with respect

to each of the two parameters and set the resulting equations equal to zero. Hence

we obtain the set of simultaneous equations

∂`

∂α
= −2

∑

n

tn(fn − αtn − β) = 0, (3.2)

∂`

∂β
= −2

∑

n

(fn − αtn − β) = 0. (3.3)

The equations in (3.2) and (3.3) can be simplified to

α
∑

n

t2n + β
∑

n

tn =
∑

n

tnfn, (3.4)
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α
∑

n

tn + βN =
∑

n

fn. (3.5)

Solving the linear equations in (3.4) and (3.5) yields the following formulae for the

parameter values

α =
N
∑

n tnfn −
∑

n fn
∑

n tn

N
∑

n t
2
n − (

∑
n tn)2 , (3.6)

β =
1

N

∑

n

fn − α
1

N

∑

n

tn. (3.7)

Applying the detrending technique to the BT dataset in phase 3 gives the coeffi-

cients {α, β} in Table 3.6. Figure 3.3 illustrates how the histogram of event counts

changes after detrending the data.

Table 3.6: Battle Territory Phase 3 Linear Detrend Function Coefficients

Coefficient Value

α 0.0114
β 3.5329

3.3.2 Fourier Series

Literature describing the mathematical background and application details of Fourier

series is abundant (Davis, 1989; Dyke, 2014; Pinkus and Zafrany, 1997; Stein and

Shakarchi, 2003; Strang, 1986; Tolstov, 1977). Here a summary of this literature

relevant to determining seasonal trends will be presented.

The basic premise of a Fourier series is to express a periodic function in terms of

a summation of sines and cosines. For example, consider a function f with a period



110

-15
-10
-5
 0
 5

 10
 15

 0  360  720  1080

Ev
en

t C
ou

nt

Time (Days)

Figure 3.3: Battle territory phase 3 binned data histogram with a linear detrend. Bin widths are
set to 30 days to correspond to approximately one month of data.

of 2T i.e. assume f satisfies the periodic property that

f(t) = f(t+ 2T ). (3.8)

For the periodic function f the full Fourier series on the interval 0 < t < 2T is

defined as

f(t) =
a0

2
+
∞∑

n=1

(
an cos

(
2πnt

T

)
+ bn sin

(
2πnt

T

))
, (3.9)

where the set of coefficients {ai}∞i=0 and {bi}∞i=1 are constants to be determined.

Another equivalent formula for expressing the Fourier series in (3.9) is found by

mapping the problem into the complex domain. To achieve this mapping first recall

De Moivre’s formula (Abramowitz and Stegun, 1964)

eiα = cos(α) + i sin(α). (3.10)
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Now it can be observed that

cke
ikt + c−ke

−ikt = ck(cos(kt) + i sin(kt)) + c−k(cos(kt)− i sin(kt)) (3.11)

= (ck + c−k) cos(kt) + i(ck − c−k) sin(kt) (3.12)

= ak cos(kt) + bk sin(kt), (3.13)

where

ak = ck + c−k (3.14)

and

bk = i(ck − c−k). (3.15)

Rearranging the equations in (3.14) and (3.15) it can be deduced that

ck =
ak − ibk

2
(3.16)

and

c−k =
ak + ibk

2
. (3.17)

Now if we apply a mapping from t 7→ 2πt
T

the formula for the Fourier series (3.9) can

be expressed as

f(t) =
∞∑

n=−∞

cne
int. (3.18)

Now observe that for integers n, k such that n 6= k

∫ 2π

0

einte−iktdt =

∫ 2π

0

ei(n−k)tdt =
1

i(n− k)
ei(n−k)t

∣∣∣
2π

0
= 0, (3.19)
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since ei(n−k)0 = ei(n−k)2π = 1. In the case where n = k we have that

∫ 2π

0

einte−iktdt =

∫ 2π

0

e0dt = 2π. (3.20)

Therefore, a formula for the coefficients ck can be written as

ck =
1

2π

∫ 2π

0

f(t)e−iktdt. (3.21)

3.3.3 Discrete Fourier Transform

The formula for the ck can be discretised using a numerical integration method known

as the trapezoidal rule (Davis and Rabinowitz, 2007). The aim of this numerical

approach is to divide the area of integration into rectangles, the area of each being

easily computed, and then sum these areas to get an approximation to the original

integral.

The interval [0, 2π] can be subdivided into intervals of length

h =
2π

N
(3.22)

with boundaries at points

tj = jh, j = 0, ..., N − 1. (3.23)
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On this subdivision the trapezoidal rule produces the formula

1

2π

∫ 2π

0

f(t)e−iktdt ≈ h

2π

N−1∑

j=0

fje
−iktj := Fk (3.24)

where f(tj) = fj. The formula in (3.24) is known as the discrete Fourier transform

of the function f .

Some further simplification can be undertaken on the discrete Fourier transform

which will be particularly useful when describing the calculation method known as

the fast Fourier transform later on. Let

w = eih (3.25)

then using the notation of complex conjugation

w = e−ih. (3.26)

Now the discrete Fourier transform can be expressed as

Fk =
h

2π

N−1∑

j=0

fje
−iktj =

1

N

N−1∑

j=0

fj(e
−ih)jk =

1

N

N−1∑

j=0

fjw
jk
. (3.27)

It is also helpful to have the inverse of the discrete Fourier transform. Define

fj =
N−1∑

k=0

Fke
iktj =

N−1∑

k=0

Fkw
jk, (3.28)
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Now it can be seen that

fj =
N−1∑

k=0

Fkw
kj =

N−1∑

k=0

1

N

N−1∑

m=0

fmw
mk
wkj =

1

N

N−1∑

m=0

fm

N−1∑

k=0

w(j−m)k, (3.29)

where,

w
mk
wkj = e−ihmkeihkj = eih(j−m)k = w(j−m)k. (3.30)

Since the sum
∑N−1

k=1 w
(j−m)k is a geometric series it holds that for j 6= m

N−1∑

k=0

w(j−m)k = 1 +
N−1∑

k=1

w(j−m)k (3.31)

= 1 + w(j−m)

(
1− w(j−m)(N−1)

1− w(j−m)

)
(3.32)

=
1− w(j−m)N

1− w(j−m)
= 0 (3.33)

where the fact that

w(j−m)N = eih(j−m)N = ei2π(j−m) = cos(2π(j −m)) + i sin(2π(j −m)) = 1 (3.34)

has been be used.

Notice that for the case where j = m the sum on the left hand side of (3.31) is

equal to N. This yields the result that the transformations defined above are indeed

the inverse of one another. Importantly, having established formulae for the DFT

and its inverse it is now possible to consider the problem of finding a Fourier series

in terms of finding the values Fk.
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3.3.4 Fast Fourier Transform

Although it is possible to compute the Fourier series coefficients from the discrete

Fourier transform a significant reduction is possible to the required number of cal-

culations. One approach which has been particularly successful at improving the

speed of computing Fourier series is known as the Fast Fourier Transform (FFT).

Algorithms to apply the FFT are numerous but the most commonly used approach is

the Cooley-Tukey FFT (Cooley and Tukey, 1965). The essential idea of the Cooley-

Tukey approach is to divide the discrete Fourier transform into two parts looking at

odd and even terms.

Since the discrete Fourier transform can be viewed as a matrix-vector multiplica-

tion the order of complexity is simply given by O(N2). However, if the total number

of data points N is a power of 2 we can express

Fj =
1

N

N−1∑

k=0

fkw
kj

=
1

N

∑

even k

fkw
kj

+
1

N

∑

odd k

fkw
kj

=
1

N

M−1∑

k′=0

f2k′(w
2
)k
′j +

1

N

M−1∑

k′′=0

f2k′′+1w
(2k′′+1)j

=
1

N

M−1∑

k′=0

f2k′(w
2
)k
′j

︸ ︷︷ ︸
:= F ′j

+w
j 1

N

M−1∑

k′′=0

f2k′′+1(w
2
)k
′′j

︸ ︷︷ ︸
:= F ′′j

. (3.35)

We now have two series F ′j and F ′′j which are discrete Fourier transforms but of

length M which is half the initial length N. These smaller discrete Fourier transforms
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can again be simplified in order to obtain a fast recursive formula known as the Fast

Fourier Transform (FFT).

Recall that the index j represents the number of data points and that j =

0, 1, 2, ..., N − 1. For j = 0, ...,M − 1 we compute the discrete Fourier transform

using the formula in (3.35). Then for j = M, ..., N − 1 define

j′ = j −M. (3.36)

With this definition, and that h = 2π
N

, the following formulae are readily obtained.

w
M

= e−ihM = e−ih
N
2 = e−iπ = −1 (3.37)

w
N

= w
2M

= 1 (3.38)

w
j

= w
j′+M

= w
j′
w
M

= −wj
′

(3.39)

(w
2
)kj = (w

j
)2k = (−wj

′
)2k = (w

2
)kj
′
. (3.40)

Therefore, the following recursive formula follows immediately for

j = 0, ..., M − 1

Fj = F ′j + w
j
F
′′

j (3.41)

Fj+M = F ′j − w
j
F
′′

j . (3.42)

Observe that with repeated use of this recursive relationship the F ′j and F ′′j can be

computed with half the number of steps on each application. This is the essential

step which makes the fast Fourier transform so efficient.
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The improvement of the fast Fourier transform over the original brute force ap-

proach can be seen by computing the new order of complexity. First assume that

all the wj are calculated and let W (N) be the required number of operations for the

FFT with N points. Then we have that

W (2M) = 2W (M) + 4M (3.43)

since we split the problem in half arriving at the term 2W (M) and then have the

multiplications w
j
F
′′
j followed by the addition +w

j
F
′′
j and subtraction −wjF ′′j and

recombination Fj +Fj+M yielding the term 4M . Note also that W (1) = 0 since there

is nothing to compute on just a single point.

Now if the number of points being considered in the FFT are a power of 2 then

N = 2n. Let ωj = W (2j) so that

ωj = 2ωj−1 + 2(2j), (3.44)

with ω0 = 0.

Multiplying through (3.44) by a factor of 2n−j and summing we arrive at

n∑

j=1

2n−jωj = 2
n∑

j=1

2n−j(ωj−1 + 2j) (3.45)

= 2n2n +
n∑

j=1

2n−j+1ωj−1 (3.46)

= {substituting k = j − 1 into the summation}
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= 2n2n +
n−1∑

k=0

2n−kωk (3.47)

= 2n2n +
n−1∑

k=1

2n−kωk, (3.48)

where the fact that ω0 = 0 has been used in the last step to discard the first term of

the sum. Observe that final summation on the right hand side of the equal sign and

the one on the left run over the same indices, except the nth term, thus giving the

final equation

ωn = 2n2n. (3.49)

Finally,

W (N) = ωn = 2n2n = 2N log2N. (3.50)

Therefore, the order of complexity of the FFT is O(N log2N) which is a vast im-

provement over the original brute force approach with order O(N2).

A few final observations about the FFT make the algorithm output easier to

follow in numerical applications. Firstly observe that

F0 =
1

N

N−1∑

k=0

fk. (3.51)

Therefore, F0 is simply an average of the input values. As such it doesn’t provide

much additional detail and is usually not included in graphs of FFT outputs.

Another remark about the FFT is that for real valued inputs

F j = FN−j. (3.52)
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This can be proven by observing that

FN−j =
1

N

N−1∑

k=0

fke
−ihk(N−j) (3.53)

=
1

N

N−1∑

k=0

fke
−i 2π

N
k(N−j) (3.54)

=
1

N

N−1∑

k=0

fke
−i2πkei

2π
N
kj (3.55)

=
1

N

N−1∑

k=0

fke
i 2π
N
kj (3.56)

= F j (3.57)

where the assumption that the fk are real valued has been used in the final step.

The reason the symmetrical relationship F j = FN−j is important is that when

applying the FFT numerically it is only required to retrieve half of the output. This

simplifies the analysis of FFT applications.

A very fast implementation of the FFT, and the one used in this chapter, is

contained in the C++ package FFTW3 (Frigo and Johnson, 2005).

3.3.5 Fourier Analysis Application

Recall that the aim of using the Fourier series is to quantify the periodicities in the

monthly rainfall and AS event data. In particular, Fourier series will be fitted to the

monthly counts of each of these datasets using the FFT. This will be repeated for

each of the phase 3 and 4 datasets within the BT and VAC categories. Since the aim

of using the FFT is to compare the periods in the AS events and the rainfall data
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over the same time period it is necessary to ensure that the datasets analysed begin

and end on the same month.

Let N be the number of bins and let each bin be represented by i ∈ {0, ..., N−1}.

We use the left edge of each bin and corresponding bin height as input to the FFT.

We have from the symmetry properties of the FFT output in (3.52) that the

discrete Fourier series is given by

f(t) =
F0

N
+

2

N

∑

k=1,2,...,ceil(N2 )

ak cos

(
2πtk

N

)
− bk sin

(
2πtk

N

)
, (3.58)

where the ceil indicates that the number should be rounded upwards and the complex

numbers Fk = ak + ibk for real valued ak and bk. The 1
N

scaling factor of coefficients

results from the computation method used by the FFTW3 package (Frigo and John-

son, 2005).

In cases where a linear detrend has been applied to the data prior to using the

FFT the Fourier series takes the form

f(t) = αt+ β +
F0

N
+

2

N

∑

k=1,2,...,ceil(N2 )

ak cos

(
2πtk

N

)
− bk sin

(
2πtk

N

)
. (3.59)

On the other hand, when using the mean detrending method the Fourier series

is computed as

f(t) = m+
F0

N
+

2

N

∑

k=1,2,...,ceil(N2 )

ak cos

(
2πtk

N

)
− bk sin

(
2πtk

N

)
, (3.60)
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where m is the mean number of events.

Note that the rainfall data is already provided on a monthly scale. However,

the AS event data is provided on a daily timeframe. Therefore, to convert each AS

datapoint, denoted by t, to a monthly scale the transformation t
30

must be applied,

where, an approximation of one month equaling 30 days is used.

In this case the equations in (3.58)-(3.60) become

f(t) =
F0

N
+

2

N

∑

k=1,2,...,ceil(N2 )

ak cos

(
2πtk

30N

)
− bk sin

(
2πtk

30N

)
(3.61)

f(t) = αt+ β +
F0

N
+

2

N

∑

k=1,2,...,ceil(N2 )

ak cos

(
2πtk

30N

)
− bk sin

(
2πtk

30N

)
(3.62)

f(t) = m+
F0

N
+

2

N

∑

k=1,2,...,ceil(N2 )

ak cos

(
2πtk

30N

)
− bk sin

(
2πtk

30N

)
. (3.63)

When there is an even number of input data points, so that, ceil
(
N
2

)
= N

2
, there

is no need to multiply the N
2

term inside the summations in (3.58)-(3.63) by 2. The

frequency at this term is known as the Nyquist frequency (Grenander, 1959) which

only occurs once in the spectrum marking the point before the complex symmetry

described in (3.52) occurs.

In addition, it should be noted that with the definition of the Fourier series in

(3.58)-(3.63) the frequency of each term is given by

k

N
(3.64)



122

and, therefore, the periodicity associated to each term is found via the inverse

N

k
. (3.65)

The formula in (3.65) will be used to compare the lengths of the periods in the event

and rainfall data.

Observe that the equations in (3.58)-(3.63) use all possible Fourier series terms

derived from the FFT. As more terms are used the series becomes more sensitive to

noise as opposed to the important long term periodicities. An approach to minimise

this is to concentrate only on those terms which have the most significant impact

on the Fourier series function. To determine significance the absolute value of the

coefficients of each term can be computed with larger values indicating more impor-

tance. In the complex plane a number of the form a + ib can be considered as a

vector with absolute value |a + ib| =
√
a2 + b2. Therefore, the values |ak + ibk|, for

coefficients ak, bk as defined in (3.58)-(3.63), can be computed to extract the most

import terms. This information is usually displayed in the form a power spectrum

displaying each term’s coefficient magnitude against frequency. The Fourier series of

(3.58)-(3.63) can then reconstructed keeping only those terms with the largest rela-

tive absolute value. For the analyses conducted in this chapter only the two highest

powered frequencies will be included in the final Fourier series approximations.

Since the focus of using the Fourier series is to find the time varying dynamics

via periodicities in the rainfall and AS event databases the constant leading terms

F0

N
, β and m will be dropped from the Fourier series.

Another issue of concern when utilising the FFT is that the window of time
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over which the data is observed should contain full periods. As detailed by Staudt

(1998) when this assumption is not met a problem known as spectral leakage may be

introduced into the FFT output. When spectral leakage occurs the power spectrum

of the FFT will be distorted with insignificant frequencies having high powers. One

approach to overcome this issue is to introduce a window function prior to performing

FFT calculations. Simply applying the FFT is the equivalent of using a rectangular

window function which takes the value 1 inside the timeframe under consideration

and 0 elsewhere. A second common type of window function is known as the Hanning

window (Harris, 1978; Staudt, 1998). The Hanning window acts to smooth the end

points of the dataset so that the data “wraps” around ensuring full periodicities in the

FFT. However, since this chapter uses finite length datasets the issue of extrapolation

beyond the final timestamps is not of concern. Moreover, only the two frequencies

with highest power will be used in the Fourier series thus providing a filter for noisy

terms. Therefore, the rectangular window will be used henceforth.

3.3.6 Results of Fourier Series Analysis

In this section the foundations of Fourier series analysis are used to extract the

two most important periods for each of the AS and weather datasets. From this

analysis the periods can be compared to determine the relationship between rainfall

in Somalia and AS terrorism.

Tables 3.7 - 3.10 provide the most significant periods found using the FFT. In

Figures 3.4 - 3.5 the histograms, detrended histograms, FFT power spectrums and

Fourier series functions are presented for the rainfall data in phases 3 and 4 cor-
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responding to the BT dataset. Similar results are obtained for the rainfall data

corresponding to the VAC datasets and, thus, are omitted. The results of the same

analyses for BT and VAC AS events are displayed in Figures 3.6 - 3.9.
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Table 3.7: Battle Territory Phase 3 Periods

Power Spectrum Rank Event Period (Months) Rainfall Period (Months)

1 2.9 5.6
2 2.7 6.5

Table 3.8: Battle Territory Phase 4 Periods

Power Spectrum Rank Event Period (Months) Rainfall Period (Months)

1 54 5.9
2 27 2.9

Table 3.9: Violence Against Civilians Phase 3 Periods

Power Spectrum Rank Event Period (Months) Rainfall Period (Months)

1 2.2 6.3
2 2.3 5.4

Table 3.10: Violence Against Civilians Phase 4 Periods

Power Spectrum Rank Event Period (Months) Rainfall Period (Months)

1 54 5.9
2 27 2.9
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BT Rainfall Phase 3
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Figure 3.4: (a) Battle territory phase 3 weather data histogram. (b) Battle territory phase 3
weather data mean detrended histogram. (c) Battle territory phase 3 monthly weather data FFT
frequencies power spectrum. The higher the power the greater the significance of the frequency.
The highlighted points (black circles) correspond to the two frequencies with highest power which
are used to construct a Fourier series approximation for the data. (d) Battle territory phase 3
weather data mean detrended histogram with Fourier series constructed from two frequencies with
highest power.
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BT Rainfall Phase 4

 0

 50

 100

 150

 200

 250

 300

 0  360  720  1080  1440

R
ai

nf
al

l

Time (Days)

(a)

-50

 0

 50

 100

 150

 200

 250

 0  360  720  1080  1440

R
ai

nf
al

l

Time (Days)

(b)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  0.02  0.04  0.06  0.08  0.1

P
ow

er

Frequency

(c)

-50
 0

 50
 100
 150
 200
 250
 300

 0  360  720  1080  1440

Ra
in

fa
ll

Time (Days)

(d)

Figure 3.5: (a) Battle territory phase 4 weather data histogram. (b) Battle territory phase 4
weather data mean detrended histogram. (c) Battle territory phase 4 monthly weather data FFT
frequencies power spectrum. The higher the power the greater the significance of the frequency.
The highlighted points (black circles) correspond to the two frequencies with highest power which
are used to construct a Fourier series approximation for the data. (d) Battle territory phase 4
weather data mean detrended histogram with Fourier series constructed from two frequencies with
highest power.
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Battle Territory Phase 3
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Figure 3.6: (a) Battle territory phase 3 event data histogram. (b) Battle territory phase 3 event
data linearly detrended histogram. (c) Battle territory phase 3 monthly event data FFT frequencies
power spectrum. The higher the power the greater the significance of the frequency. The highlighted
points (black circles) correspond to the two frequencies with highest power which are used to
construct a Fourier series approximation for the data. (d) Battle territory phase 3 event data
linearly detrended histogram with Fourier series constructed from two frequencies with highest
power.
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Battle Territory Phase 4
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Figure 3.7: (a) Battle territory phase 4 event data histogram. (b) Battle territory phase 4 event data
mean detrended histogram. (c) Battle territory phase 4 monthly event data FFT frequencies power
spectrum. The higher the power the greater the significance of the frequency. The highlighted points
(black circles) correspond to the two frequencies with highest power which are used to construct a
Fourier series approximation for the data. (d) Battle territory phase 4 event data mean detrended
histogram with Fourier series constructed from two frequencies with highest power.
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Violence Against Civilians Phase 3
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Figure 3.8: (a) Violence against civilians phase 3 event data histogram. (b) Violence against civilians
phase 3 event data mean detrended histogram. (c) Violence against civilians phase 3 monthly event
data FFT frequencies power spectrum. The higher the power the greater the significance of the
frequency. The highlighted points (black circles) correspond to the two frequencies with highest
power which are used to construct a Fourier series approximation for the data. (d) Violence against
civilians phase 3 event data mean detrended histogram with Fourier series constructed from two
frequencies with highest power.
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Violence Against Civilians Phase 4
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Figure 3.9: (a) Violence against civilians phase 4 event data histogram. (b) Violence against civilians
phase 4 event data mean detrended histogram. (c) Violence against civilians phase 4 monthly event
data FFT frequencies power spectrum. The higher the power the greater the significance of the
frequency. The highlighted points (black circles) correspond to the two frequencies with highest
power which are used to construct a Fourier series approximation for the data. (d) Violence against
civilians phase 4 event data mean detrended histogram with Fourier series constructed from two
frequencies with highest power.
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Observe that the BT and VAC phase 3 periods are between 2-3 months whilst

the weather data for these phases have periods in the range 5-6. Significantly the

3 month periods suggest that the four cycles of rainfall in Somalia from April-June

and October-December appear as seasonal dynamics in AS attacks.

On the other hand, in phase 4 the AS data in both the BT and VAC categories

have periods of 27 and 54 months. The rainfall datasets for phase 4 have periods of

2.9 and 5.9 months. Therefore, in phase 4 the AS attack pattern does not appear to

show a yearly cycle as seen in phase 3.

One possible explanation for the difference between the periods of the rainfall

and attack data in phase 4 is the changing strategies of AS. Phase 4 covers the

timeline of renewed resistance against AS from international forces. In particular, in

2011 Kenyan troops crossed into South Somalia to resist the growing security threat

of AS at Kenya’s border. Simultaneously, the African Union Mission to Somalia

(AMISOM) consisting of international forces were also fighting against AS. A result

of all these pressures caused AS to retreat. In response AS shifted strategically

to rely more on the use of IED attacks as well as engaging in high profile events,

such as, an attack on the Westgate Mall in Nairobi in 2013. In contrast to military

type assaults against government forces which require mobilisation of AS members

and planning for weather related events, IED attacks can be organised in a more

spontaneous fashion. Therefore, the cycles observed in the Fourier analysis of the

phase 4 datasets may be demonstrating this difference in the strategies employed by

AS.
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3.4 Hawkes Process Modelling

3.4.1 Hawkes Process with Time Independent Background

Rate

In Chapter 2 of this thesis the Hawkes self-exciting point process model was discussed

in detail. The important components necessary for applying the Hawkes model will

be presented here in summary.

The premise of the Hawkes model is that given a series of timestamps {ti}Ni=1 an

intensity function of the form (Hawkes, 1971)

λ(t) = µ+ k0

∑

t>ti

ωe−ω(t−ti) (3.66)

can be fitted using the method of maximum likelihood estimation (MLE) (Ozaki,

1979). In this case µ is a time independent baseline rate at which events occur, k0

describes the rise in the rate of events following an initial event and ω is determined

by the length of time a series of self-exciting events propagates.

It should be noted that in the simple case λ(t) = µ the model becomes a Poisson

process (Ross, 2010). In this case the occurrence of events is assumed to have a

background rate µ = N
T

being the average number of events per unit time. This

Poisson model can be used as a baseline for comparison with the Hawkes process

model.

The parameter values for the model in (3.66) are computed by maximising the
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formula

log L =
N∑

i=1


log


µ+ k0

∑

ti>tj

ωe−ω(ti−tj)


+ k0

(
e−ω(T−ti) − 1

)

− µT. (3.67)

The overall fit of the Hawkes process model can be determined using the Kolmogorov-

Smirnov test (Brown et al., 2002; Massey, 1951). For this test the following statistic

is calculated

Dn = max
k

(∣∣∣∣Uk −
k − 1

N

∣∣∣∣ ,
∣∣∣∣
k

N
− Uk

∣∣∣∣
)
. (3.68)

If Dn < Dα for some critical value Dα then there is evidence that the Hawkes process

is capturing the dynamics present in the dataset. The values for Ui are evaluated

using

Ui = 1− exp

(
−
(
µ(ti − ti−1) + k0

i−1∑

j=1

[
e−ω(ti−1−tj) − e−ω(ti−tj)

]
))

. (3.69)

A comparative fit between Hawkes process models, applied to the same dataset,

can be determined using the Akaike Information Criterion (AIC) (Akaike, 1974)

AIC = 2k − 2 log L, (3.70)

where, k is the number of model parameters. A lower value of AIC implies a better

fitting model.

The results of applying the simple Poisson process model to the datasets studied

in this chapter are provided in Tables 3.11 - 3.12. None of the Poisson models prove
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to be a good fit for the data.

Table 3.11: Battle Territory Poisson Process Results

Dataset µ AIC KS Test KS Critical 95% KS Critical 99%

Phase 3 0.3449 1682 1.0000 0.0674 0.0808
Phase 4 0.8269 3175 1.0000 0.0372 0.0446

Table 3.12: Violence Against Civilians Poisson Process Results

Dataset µ AIC KS Test KS Critical 95% KS Critical 99%

Phase 3 0.0444 422 1.0000 0.1904 0.2282
Phase 4 0.3075 2146 1.0000 0.0613 0.0735

Applying the Hawkes process model in the form of (3.66) to the “Battle Territory”

and “Violence Against Civilians” datasets yields the results in Tables 3.13 - 3.14.

From these results it can be seen that KS test statistics exceed the critical values

except the VAC phase 3 dataset at the 99% critical value. However, the k0 value in

VAC phase 3 does not satisfy the requirements for a non-explosive Hawkes process

as detailed in Chapter 2. Therefore, these results suggest that a Hawkes process as

in (3.66) does not provide a sufficiently good fit to the Al Shabaab data.

Table 3.13: Battle Territory Time Invariant Background Hawkes Process Results

Dataset µ k0 ω AIC KS Test KS Critical KS Critical
95% 99%

Phase 3 0.0962 0.7430 0.0562 1612 0.1970 0.0674 0.0808
Phase 4 0.5715 0.3845 0.0034 3161 0.4442 0.0372 0.0446
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Table 3.14: Violence Against Civilians Time Invariant Background Hawkes Process Results

Dataset µ k0 ω AIC KS Test KS Critical KS Critical
95% 99%

Phase 3 0.0321 1.0000 0.0007 424 0.2175 0.1904 0.2282
Phase 4 0.1288 0.6492 0.0064 2121 0.2136 0.0613 0.0735

3.5 Hawkes Process with Seasonal Background Rate

It has been shown that the AS events have a cyclical dynamic as shown in Tables

3.7 - 3.10. A consequence of this finding is that the time invariant background rate

of the Hawkes process model in (3.66) may not be adequately well suited to capture

the variation in the underlying rate of AS events. Therefore, an extension of this

model is required which incorporates the FFT periodicities discovered previously.

A similar problem has been considered in the field of seismology. In the work of

Ogata (1999) a review is made of modelling seasonal variations in earthquake activity.

One of the pieces of research covered is by Ogata (1983) which demonstrates that an

appropriate extension of the Hawkes process to incorporate time trends in the data

being studied is

λ(t) = µ+ P (t) + C(t) + k0

∑

t>ti

ωe−ω(t−tt). (3.71)

Here P (t) is a polynomial equation. A polynomial can be used to capture trends

in the data such as linear or non-linear trends over time. On the other hand, the

term C(t) is a cyclic term consisting of trigonometric functions which can capture

patterns, such as, seasonal variations in datasets.

Fitting a Hawkes process model without P (t) and C(t) to a set of timestamps
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requires the use of the method of maximum likelihood estimation (MLE) (Ozaki,

1979). Discussed in detail in Chapter 2 of this thesis the MLE for a Hawkes process

model with timestamps {ti}Ni=1 , final time tN = T and intensity function λ(t) is

given by (Rubin, 1972)

log L({ti};µ, k0, ω) =
N∑

i=1

log(λ(ti))−
∫ T

0

λ(t) dt. (3.72)

Here the aim is to find the parameter set {µ, k0, ω} which maximises this equation.

A major issue that must be overcome when using the MLE is that the function log L

is highly multimodal (Ogata and Akaike, 1982). Therefore, the starting conditions

of any optimisation algorithm applied to (3.72) must be chosen carefully to obtain

a meaningful parameter set. One way to find the Hawkes process parameters is to

initialise the optimisation routine at multiple starting points and taking the resulting

parameter set yielding the highest value of (3.72) (Egesdal et al., 2010).

When extending the Hawkes process to incorporate a time varying background

rate as in (3.71) it is also necessary to determine the form of the functions P (t) and

C(t). A possible approach to find these functions would be to determine them inside

the MLE routine. For example, expressing the unknown functions as

P (t) =
N∑

n=0

ant
n (3.73)

C(t) = b0 +
N∑

n=1

bn cos

(
2πnt

N

)
+ cn sin

(
2πnt

N

)
(3.74)
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we would then need to consider an MLE problem of the form

log L({ti}; {an}, {bn}, {cn}, µ, k0, ω). (3.75)

In this chapter a better approach to studying the functions P (t) and C(t) has been

presented. In particular, we determine their form prior to performing the MLE

method. This provides both an additional layer of analysis from which to understand

the data and takes advantage of the fast computational time of the FFT.

However, since the computations of P (t) and C(t) are based on monthly event

counts it is unreasonable to assume that the coefficients found using FFT will be

directly usable inside the Hawkes process model (3.71). Therefore, it is necessary to

introduce a scaling factor using the following approach

1. Fit a background of the form B(t) = P (t)+C(t) to the dataset using the FFT.

2. Fit a model of the form λ(t) = A × B(t) + µ + k0

∑
t>ti

ωe−ω(t−tt) to the

dataset using MLE as in (3.72), where, the loglikelihood now has parameters

log L({ti};A, µ, k0, ω). Here A is a real number to be determined which scales

the function B.

For the MLE calculations in this chapter the “Nelder-Mead” (see Section 2.3)

routine from the C++ library “nlopt” (Johnson, 2017) is used to find the model

parameters. Note that “Nelder-Mead” is a minimisation algorithm and hence the

equivalent problem of finding parameters which minimised − logL was considered.

To overcome the issue of trying to find the minimum of the multimodal loglikeli-

hood function the minimisation algorithm was started at 100 different initial vectors.
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There are four parameters to find {A, µ, k0, ω}. Since A is used to scale the Fourier

series to daily timestamps it is reasonable to bound the search space to [0, 1]. Sim-

ilarly the search space for parameter µ was [0, 1]. A necessary condition on k0 to

ensure non-explosion of the Hawkes process is that k0 < 1 (Hawkes and Oakes, 1974)

so the search space for this parameter was [0, 1]. Finally since the inverse parame-

ter 1
ω

can be interpreted as the average number of days over which a series of self

exciting events persists (Lewis et al., 2012) then for daily timestamps it is expected

that ω < 1. Hence the bounds on the decay parameter were also [0, 1]. Therefore,

on each run of the minimisation algorithm a vector with four random numbers each

in the range [0, 1] was used as a starting value. After finding the Hawkes process

parameters the KS test and AIC value of the models can be computed to judge the

fit of the model.

3.6 Results

In this section the theoretical details discussed previously will be used in application

to study Al Shabaab data using a Hawkes process model with Fourier series back-

ground rate. Each of the datasets “Battle for Territory” (BT) and “Violence Against

Civilians” (VAC) are studied across phases 3 and 4 of the AS group. Tables 3.15 -

3.18 present the results of analysing a Poisson process, Hawkes process with constant

background rate, Hawkes process with a Fourier series background rate consisting

of the highest powered FFT frequency and a Hawkes process with a Fourier series

background rate consisting of the two highest powered FFT frequencies.
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Table 3.15: Battle Territory Phase 3 Hawkes Process Results

Model A µ k0 ω AIC KS KS 95% KS 99%

Poisson Process – 0.3449 – – 1682 1.0000 0.0674 0.0808
No Seasonality – 0.0962 0.7430 0.0562 1612 0.1970 0.0674 0.0808
1 Fourier Term 0.0152 0.0832 0.4768 0.0748 1604 0.2067 0.0674 0.0808
2 Fourier Terms 0.0163 0.0802 0.4656 0.0729 1600 0.2026 0.0674 0.0808

Table 3.16: Battle Territory Phase 4 Hawkes Process Results

Model A µ k0 ω AIC KS KS 95% KS 99%

Poisson Process – 0.8269 – – 3175 1.0000 0.0372 0.0446
No Seasonality – 0.5715 0.3845 0.0034 3161 0.4442 0.0372 0.0446
1 Fourier Term 0.0032 0.5854 0.3634 0.0034 3163 0.4436 0.0372 0.0446
2 Fourier Terms 0.0109 0.6428 0.2849 0.0030 3163 0.4522 0.0372 0.0446

Table 3.17: Violence Against Civilians Phase 3 Hawkes Process Results

Model A µ k0 ω AIC KS KS 95% KS 99%

Poisson Process – 0.0444 – – 422 1.0000 0.1904 0.2282
No Seasonality – 0.0321 1.0000 0.0007 424 0.2175 0.1904 0.2282
1 Fourier Term 0.0089 0.0331 1.0000 0.0006 425 0.1018 0.1904 0.2282
2 Fourier Terms 0.0075 0.0332 1.0000 0.0006 425 0.0894 0.1904 0.2282

Table 3.18: Violence Against Civilians Phase 4 Hawkes Process Results

Model A µ k0 ω AIC KS KS 95% KS 99%

Poisson Process – 0.3075 – – 2146 1.0000 0.0613 0.0735
No Seasonality – 0.1288 0.6492 0.0064 2121 0.2136 0.0613 0.0735
1 Fourier Term 0.0138 0.1729 0.4794 0.0075 2122 0.2094 0.0613 0.0735
2 Fourier Terms 0.0289 0.2779 1.0000 0.0001 2109 0.2080 0.0613 0.0735
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3.7 Discussion

In this chapter a novel modelling framework has been presented which can be used to

capture cyclical and history dependent dynamics in terrorist attacks. In particular,

by utilising the FFT significant periodicities were identified and used to build a

Fourier series. This Fourier series was then used as a background rate for the past

dependent Hawkes point process model.

The chapter opened with an examination of the historical roots of the AS group.

In particular, AS was found to have operated in four phases according to strate-

gic developments (Anderson and McKnight, 2015a; Hansen, 2013; Marchal, 2009;

Maszka, 2017; Wise, 2011). These phases spanned the period from the groups incep-

tion through to December 2007, January 2008 to April 2008, May 2008 to July 2011

and August 2011 to the present time.

During the AS group’s history there were three leaders as follows

� 2006-2008: Aden Hashi Ayro (killed by a US airstrike).

� 2008-2014: Ahmed Abdi Godane (killed by a US drone strike).

� 2014 - Present: Abu Ubeyda.

Initially AS had success in fighting against government forces. To reverse the

gains achieved by AS a force consisting of international troops known as the African

Union Mission in Somalia (AMISOM) was sent into Somalia. In addition, to provide

a bulwark against AS on the border Kenyan troops also moved into South Somalia.

This combination of international forces had the effect of AS losing ground.
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As a consequence of the pressure placed on AS the group evolved strategically.

Specifically, the group relied more on attacks involving IEDs. Accompanying this

shift in tactics AS also began launching high profile international events including

an attack on the Westgate Mall in Nairobi in 2013 (Williams, 2014) and another

on the Garissa University in 2015 (Lyons et al., 2015). The incorporation of less

discriminant attacks by AS lead to numerous civilian deaths.

From these observations concerning AS the datasets studied in this chapter were

analysed in four sets - BT (phases 3 and 4) and VAC (phases 3 and 4). Phases 1

and 2 were excluded from analysis due to a limited number of datapoints.

Section 3.3 presents the results of using the FFT to find periodicities in the AS

event data in monthly counts and Somalia rainfall data also in monthly counts. It

was shown that the BT and VAC phase 3 datasets followed a four cycle period each

year. On the other hand, the BT and VAC phase 4 datasets followed a much longer

27 and 54 months cycles.

These observations concerning the periodicities in the AS data can be interpreted

in terms of the real-world changes the group underwent.

In phase 3 the group was more involved in fighting government forces. Since these

type of events involved more traditional military tactics organising AS members and

accounting for weather patterns influenced the trends seen in the groups attack

dynamics.

In contrast during phase 4 AS had been forced to retreat by the arrival of inter-

national forces in Somalia. Hence the group relied more on IED attacks which could

be organised in a more spontaneous manner.



143

Having studied the cyclical nature of AS events this chapter focused on generating

a model capable of capturing any past dependent behaviour in the attacks. This was

achieved via the use of seasonal background rate in a Hawkes self-exciting point

process model. The background rate took the form of a Fourier series constructed

from the two frequencies with highest power identified with the FFT.

For the BT phase 3 dataset the best performing model is the seasonal Hawkes

process model with a two term Fourier series background rate. Also for this dataset

the simple stationary background rate Hawkes process outperforms a Poisson model.

Therefore, despite no overall goodness of fit there does appear to be some evidence

for historical dependence between the datapoints.

For the dataset of BT phase 4 the Hawkes process with constant background rate

has the lowest AIC value. Hence there appears to be historical dependence in this

dataset but the inclusion of seasonal trends does not provide any improvement.

The best performing model, according to the AIC, for the VAC phase 3 dataset

was a simple Poisson process. However, it can be observed from the KS test statistics

that the seasonal Hawkes process models have a significant fit. Moreover, the AIC

values of the Poisson and Hawkes models are similar. This provides some evidence

for both cyclical and historical dependence. However, it should be noted that the

values of k0 for the VAC phase 3 models are not in the allowed range for a Hawkes

process.

In the results for the dataset VAC phase 4 the seasonal Hawkes process with two

Fourier terms has the lowest AIC value, and, is thus the best performing model.

Hence evidence exists for both a cyclical dynamic and historical dependence in the
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dataset. As was noted for the phase 3 VAC models the value of k0 = 1 for the VAC

phase 4 Hawkes process model with a two termed Fourier series background is not a

valid value for the Hawkes model.

In addition to studying the quantitative results from the analyses in this chapter

it is also insightful to relate the results to real-world events.

For the scaling parameter only small changes are observed for the seasonal Hawkes

process models across the datasets. This implies that the magnitude of the seasonal

effects are consistent. From this observation it can be deduced that seasonal trends

are a stable dynamic in each AS dataset.

The background rate of the seasonal Hawkes process models show a greater shift

across the data phases. For the BT and VAC phase 3 datasets the parameter µ has

smaller values than for the corresponding phase 4 datasets. A possible reason for

this observation was that phase 4 was associated with a greater usage of IED attacks

which may be easier to launch leading to a higher background rate of attacks.

After an event the Hawkes process model aims to capture a boost in successive

events via the parameter k0. There is a significant change in this parameter value

between the phase 3 and 4 datasets. In particular, after attacks in phase 3 the boosts

were much greater than those observed in phase 4. Phase 3 was associated with the

arrival of forces made up of Ugandan and Burundian troops aimed at countering

AS. Therefore, the boost parameter in the seasonal Hawkes model may be reflecting

this increased domestic focus of AS. On the other hand, in phase 4 AS was forced to

retreat from territory and adopted a wider use of IED and high profile international

attacks. These types of attacks may have been more standalone in nature meaning
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follow up events were less likely.

Since a boosted level of attacks is unsustainable the parameter ω controls the

decay rate of related events. Across phases the decay parameters do not change

significantly for either the BT or VAC datasets. This implies the length of the

memory of AS attacks was consistent under each category. This implies that in the

longer term tactics used by Godane, the second leader of AS, were continued under

the group’s third leader, Ubeyda. This observation is similar to that of (Maszka,

2017) that Ubeyda has not yet altered the tactical approach of AS.

In addition to analysing the results across the BT and VAC datasets it is also

interesting to discuss the differences between corresponding phases. For the BT

and VAC phase 3 datasets the background rates µ are slightly higher for BT events

whilst the boost is greater for the VAC events. The decay factors are greater for

the BT events. This observations suggest that the BT events in phase 3 occurred at

a slightly higher average rate and decade much faster than VAC events. However,

after an initial attack the VAC phase 3 events had a greater increase in rate. These

results may be explained by AS attacks being focused on obtaining territory from

governmental forces in phase 3. Once territory was obtained further attacks would

be unnecessary. On the other hand violence against civilians could have been used

for population control which would need to be maintained during AS occupation.

This observation resembles a similar discussion by Maszka (2017) who notes that

Godane aimed to impose strict laws on the people in AS held territory.

Between BT and VAC phase 4 the values of µ move from higher to lower. On the

other hand the boost values are higher in the VAC category. In contrast, the decay
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parameters for VAC phase 4 are similar to those for BT except for the seasonal

Hawkes process with a two termed Fourier series for the VAC dataset where the

decay parameter is smaller than for BT. The results for the value of the background

rate µ and boost k0 are similar for the AS events studied in phase 3. However, the

similarity of the decay rates in phase 4 demonstrate a shift in tactics by the AS group.

Specifically, the group was losing territory in phase 4 and had begun relying on IED

attacks. The usage of more indiscriminate methods could be leading to convergence

in BT and VAC attack profiles.

Although this chapter has provided little evidence for statistical significance of

the seasonal Hawkes process model for AS attacks some interesting observations have

still be obtained. Firstly, by utilising the FFT prior to the Hawkes model fitting

it was possible to confirm insights about seasonal trends in the event datasets. In

particular, some evidence was found for Hypothesis 3 that AS attacks have a 3 month

cycle relating to rainy seasons in Somalia. Having obtained the most significant

periods present in the AS event data a seasonal Hawkes process model was derived.

Specifically, the two FFT periods of highest power were used to construct a Fourier

series background rate for the Hawkes model. The analyses of these seasonal models

did not provide much evidence for goodness of fit. Therefore, there is little evidence

to support Hypothesis 1 in the case of AS that there is historical dependence in the

data similar to earthquakes and aftershocks. However, after fitting the full seasonal

Hawkes process the model parameters provided a link between the models and the

real world event occurrences. Hence, some evidence exists for Hypothesis 4 that the

Hawkes model can be used as a real-time analysis tool. Moreover, the use of the
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extensions of the Hawkes process in this chapter demonstrate how the model can

be used to study terrorism internationally. In particular, the research conducted in

this chapter illustrates the usage of the Hawkes model to study terrorism in a non-

western setting. Developing universal models has implications for counter-terrorism

practitioners and researchers by providing the foundations of versatile modelling

approaches adaptable to a variety of environmental conditions.

There are several possible approaches to extending the work presented in this

chapter. A simple change that could be taken within the framework already es-

tablished would be to consider different kernels for the Hawkes process. Here an

exponential self-exciting kernel was studied but as discussed by Ogata (1999) there

are numerous other approaches that can be studied. Another direction that could be

taken to improve the model developed in this chapter is to consider a marked point

process (Daley and Vere-Jones, 2003). A marked point process could be adapted to

explicitly model weather conditions inside the point process model. Finally, it could

be possible to incorporate the change point detection methods from Chapter 2 of

this thesis to confirm whether the points used to delineate Al Shabaab’s phases were

mathematically correct.



CHAPTER 4

GEOGRAPHIC PROFILING USING THE DIRICHLET PROCESS MIXTURE
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A fundamental principle in the field of crime science is that environmental factors

have a significant influence on the occurrence of crime (Brantingham and Branting-

ham, 1981; Brantingham and Brantingham, 1993a; Eck, 2010). These factors can be

disaggregated into three classes - spatial, temporal and spatio-temporal. In previous

chapters covered in this thesis the main focus has been on modelling temporal dy-

namics of terrorist attacks. On the other hand, spatial components of attacks have

been treated implicitly via data segmentation according to geographic locations of

interest. Hence there is potential that some important insights may have been missed

concerning the underlying factors driving terrorist incidents. Therefore, in this chap-

ter the temporal studies of IED attacks by the Provisional Irish Republican Army

will be further enhanced through consideration of a spatial model.

Motivation to study spatial patterns in the field of Crime Science stems from

observations made concerning urban crime. Currently the predominant theory in

this setting, as discussed in Cornish and Clarke (1986), is that an offenders spatial

targeting of where to commit a crime is based on a rational thought process. This

theory is also padded with the caveat that this rational approach is based on a utility

maximisation based on multiple factors, such as, risks vs rewards, knowledge, time

constraints and possible resource requirements needed for the offence. Building on the

rational offender view is the crime pattern theory of Brantingham and Brantingham

(1993a). Here spatial patterns are modelled based on the assumption that offences

occur at locations coinciding with an offenders awareness space developed as a result

of the offenders routine activities.

Combining the approaches of these theories (Cohen and Felson, 1979) crimes
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are more likely to occur when there exists an overlap between the awareness space

of an offender and targets which are lacking guardianship. These hypotheses have

been demonstrated to be correct in the urban crime studies literature. For example,

crimes, such as, burglary and robbery have higher probability to be located on road

networks that are widely known (Beavon, Brantingham and Brantingham, 1994;

Davies and Johnson, 2015; Johnson and Bowers, 2010) as well as potential nodes,

such as, shops and bars, within an offenders awareness space (Bowers, 2014; Groff

and Lockwood, 2014).

The spatial targeting methods of offenders have also been shown to be similar in

nature to ways animals are observed to purse foraging strategies (Johnson, Summers

and Pease, 2009). In particular, evidence has been found that offenders choose to

commit crimes at locations which have proven successful in the past (Bernasco, 2008;

Bernasco, Johnson and Ruiter, 2015; Johnson, 2008; Johnson, Summers and Pease,

2009; Pitcher and Johnson, 2011). The theory underpinning this foraging behaviour

is that offenders are limited in their journey-to-crime distance. Therefore, repeatedly

targeting a geographic location can ensure that good knowledge of an area is obtained

which can be used to ensure future successful offences. On the other hand, this type

of offending pattern can both deplete the available resources in an area and attract

the attention of authorities. As a result of these two factors there is a shift in the

offenders risk-reward analysis whereby after some period of criminal activity in an

area the offender will move to a new geographical target.

Parallels may be drawn between the spatial patterns of criminal offenders and

those of terrorist attacks. Specifically terrorist groups although existing under the
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name of their organisations can actually carry out attacks at a more refined smaller

group level. An example of this occurred within the Provisional IRA which, after

suffering heavy infiltration by British Security Forces, splintered into a cellular or-

ganisation in 1977 (Asal et al., 2013). The terrorist actors versus state actors at this

group scale can now be treated somewhat analogous to the urban criminal versus a

police force. Both situations present an asymmetry between the resources accessible

to the actors on each side. It has been argued in the literature (Johnson and Braith-

waite, 2009; Townsley, Johnson and Ratcliffe, 2008) that this observation makes it

suitable to apply Crime Science approaches to study spatial dynamics of terrorist

attacks.

One area of overlap between cell based terrorist group attacks and urban crimes

is the focusing of spatial targets as described previously. It was a specified aim of

the PIRA, presented in the groups “Green Book” (O’Brien, 1999), to wage a “war

of attrition against enemy personnel which is aimed at causing as many casualties

and deaths as possible so as to create a demand from their people at home for their

withdrawal”. This method of trying to exhaust the enemy centered on a widescale

campaign of improvised explosive device (IED) attacks with Coogan (2002) explain-

ing that PIRA had the ability to “turn ... bombing[s] on and off like a tap”. In

this respect the cells within PIRA were operating in a similar way to an urban crim-

inal targeting an area before moving on when the risk of detection by authorities

outweighs any rewards. Investigations of the relationship between insurgent and

counterinsurgent strategies (Braithwaite and Johnson, 2012; Johnson et al., 2011)

have revealed that space-time patterns hold similar to those of urban offender theo-
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ries described earlier.

In this chapter research into spatial clustering of terrorist attacks will be expanded

through research into the relationship between PIRA IED attacks and the closure of

IED factories by British Security Forces. The methodology used to study the spatial

patterns of attacks in this chapter are based on research into geographic profiling

(GP). In essence GP models incorporate the theoretical aspects of environmental

influences from crime science and mathematical techniques that analyse groupings of

objects to determine likely geographical locations for the source of criminal activities

(Rossmo, 2000). Although such approaches have been proven effective to understand

the spatial nature of offending (Canter et al., 2000; Levine, 2006; Miller, 2003; Verity

et al., 2014) there is a gap for their extension into terrorism literature.

For the research presented here a GP model known as the Dirichlet Process

Mixture Model (DPMM) will be introduced and used to study spatial components

of terrorist attacks. The DPMM is a method based on Bayesian analysis which uses

the relationship between prior and posterior distributions to convert the locations of

events into information pertaining to the most likely sources of the events (Verity et

al., 2014). The DPMM will be used here in a novel approach which studies how the

grouping of IED attacks is influenced by the closure of IED factories. This research

can be directly employed by those developing counter-terrorism policies to inform

best practise approaches.
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4.1 Datasets

There were two separate datasets used in the analyses undertaken in this chapter

corresponding to PIRA IED attacks and IED factory discoveries by British Security

Forces. Both of these datasets were collated from open sources as part of a research

project by Asal et al. (2013).

The IED dataset was derived from open source accounts of attacks in Northern

Ireland using LexisNexis and the Irish Times reporting archive. In total the database

consists of 5461 entries. For the research conducted in this chapter the main fields

extracted from the database were times and locations of the events. Timing data for

the attacks was measured on a daily scale in the form of year/month/day. Location

data was recorded on a county level scale covering the six counties of Northern

Ireland (Antrim, Armagh, Derry, Down, Fermanagh, Tyrone) and the capital city

(Belfast). Further data also exists for the border counties of Cavan, Donegal, Leitrim,

Louth, and Monaghan. However, the focus in this chapter was restricted to Belfast,

which, as the capital city witnessed a high volume of terrorist activity (Bell, 2000;

Coogan, 2002; Fay, Morrissey and Smyth, 1999; McKittrick, 2007). Alongside county

information the IED dataset also contains some limited street level data, which,

is needed to perform a more refined spatial analysis using the DPMM. From this

reduced dataset unique events are separated where unique is defined by the condition

that no two entries have the same time and location. The use of “and” in this

context is as a logical operator allowing events to have overlaps of time or location

but excluding any cases where these features are both identical. In particular, there is
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data covering 192 street level events in Belfast. Although this disaggregation reduces

the number of available data points used from the original dataset it is also necessary

to obtain more detailed results from applying the DPMM. It is also of importance

to state that the dataset constructed is ordered temporally ranging from earliest to

latest event. This arrangement of the data by increasing time is important for the

novel implementation of the DPMM that will be introduced later in Section 4.4.

For data pertaining to the IED factory closures Asal et al. (2013) explain that

“such data were difficult to collect in a systematic way”. However, Asal et al. did

compile an unstructured dataset of news reports covering some of the IED factory

discoveries that occurred in Northern Ireland. Focusing on Belfast it was possible

to extract from the original unstructured dataset a series of 19 events involving IED

factory identification. This subset of data had dates of identification on a daily scale

recorded in the form year/month/day and street level addresses.

A further step that was taken before using the IED and factory datasets was

to code their geographic information into latitude (lat)/longitude (long) pairs. To

achieve this coding the Python module requests (Chandra and Varanasi, 2015) was

used to make calls to OpenStreetMap (OSM) search engine Nominatim

(www.nominatim.openstreetmap.org/) and extracted the returned lat/long coordi-

nates. When the OSM search failed to return coordinates the same script would

instead use the Google Maps Api (https://maps.googleapis.com).
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In Tables 4.1 - 4.2 summaries of the datasets used in this chapter are provided

Table 4.1: PIRA IED Dataset

Field Data

Date Time of the recorded event in the form
year(1970-1998)-month(1-12)-day(1-31)

Lat/Long Latitude and longitude coordinates of street
level events in the Belfast area

Table 4.2: Factory Closure Dataset

Field Data

Date Time of the recorded event in the form
year(1970-1994)-month(1-12)-day(1-31)

Lat/Long Latitude and longitude coordinates of street
level closures in the Belfast area

4.2 Geographic Profiling

In the following sections the historical and mathematical development of the Dirich-

let Process Mixture Model in the field of geographic profiling will be covered. This

section also serves as a way to motivate the use of the DPMM as a method for study-

ing the relationship between terrorist IED factories and counter-terrorism approaches

aimed at closing them.

4.2.1 Criminal Geographic Profiling

The research field of geographic profiling and its application to studying criminal

geographic targeting (CGT) stems from the idea that criminal actors are bound by
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environmental factors. In particular, López (2005) describes four parameters which

determine an offenders search space: operational range (furthest distance traveled

by an offender), distance decay (the relationship between offender travel distance

and number of crimes committed), a buffer region (offenders tend not to commit

crimes too close to home so as to avoid incriminating themselves) and direction of

travel (potential for an offender to prioritise a specific direction e.g. due to better

area knowledge). These criminal considerations are then coupled with non-criminal

nodes, such as, pathways and edges associated with daily activities (Brantingham

and Brantingham, 1993b), for example, traveling to socialise or shopping.

A mathematical description of the theory underpinning criminal geographic pro-

filing is given in the work of Rossmo (2000). In studying CGT Rossmo derives the

formula shown in (4.1) to determine the likelihood, pij, that a point, (xi, yj), inside

a specific 2 dimensional region is the source location of observed criminal event sites

{xn, yn}. To make the function more applicable to the study of criminal activity

in the research of Rossmo the Manhattan metric is used which models the distance

between the source of crimes and the criminal events on a grid network which the

offender must traverse.

pij = k

N∑

n=1

[
φ

(|xi − xn|+ |yj − yn|)f
+

(1− φ)(Bg−f )

2B − (|xi − xn|+ |yj − yn|)g
]

(4.1)

with the conditions that

|xi − xn|+ |yj − yn| > B ⊃ φ = 1, (4.2)
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and

|xi − xn|+ |yj − yn| ≤ B ⊃ φ = 0. (4.3)

Here the value pij is known as the score function indicating the likelihood that a

geographic location is the source of the observed events. For each possible source

(xi, yj) the score function is calculated by the formula in (4.1). The function φ is used

to defined a buffer zone or region where the crimes are most likely located based on

the ideas of distance to crime researched discussed earlier. The buffer zone is defined

to have radius B. Inside the buffer zone the function φ = 0 and outside φ = 1.

The constant value k is determined empirically. When summing over the crime

site locations the total number of crimes is N . Finally the empirically determined

parameters f and g control the decay rate around a potential source location. After

applying the formula in (4.1) a 3 dimensional surface plot can be made illustrating

the likelihood of source locations of the observed events.

4.2.2 Bayesian Framework of CGT

One of the major drawbacks of the CGT method proposed by Rossmo (2000) is that

the model assumes a fixed formulation. In particular, the model utilises a specific

decay function and distance metric. As a result of this fixed nature the equation in

(4.1) has somewhat limited usage.

A method widely used in the fields of probability and statistics which allows for

models to evolve based on other pieces of information is known as Bayes’ rule. This

rule is derived as follows (Ross, 2010).
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First define the probability of event A given another event B as

P (A|B) =
P (A

⋂
B)

P (B)
. (4.4)

Similarly

P (B|A) =
P (A

⋂
B)

P (A)
. (4.5)

From the definitions in (4.4) and (4.5) it follows immediately that

P (A|B)P (B) = P (B|A)P (A), (4.6)

which leads to Bayes’ rule

P (A|B) =
P (B|A)P (A)

P (B)
. (4.7)

The use of Bayes’ rule in CGT begun with the research of O’Leary (2009). Specif-

ically, O’Leary formulated that the posterior distribution for a source location z and

an average distance to crime α given the observed location x of a single criminal

event is

P (z, α|x) =
P (x|z, α)π(z, α)

P (x)
. (4.8)

Note that in (4.8) the source z = (z(1), z(2)) and crime site x = (x(1), x(2)) are

two-dimensional vectors. In this chapter these vectors are lat/long coordinates.

Here the term π(z, α) is called the prior distribution and represents the distribu-

tion of the potential source location z and distance to crime α before information
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about the crime location is known. O’Leary also assumes a situation in which the

source location and distance parameter are independent thus factorising

π(z, α) = H(z)π(α). (4.9)

Now the H is the prior for the source location and π is the prior for the average

distance traveled by the offender.

Since the marginal distribution P (x) is independent of the z and α this term can

be ignored and hence the final formulation becomes

P (z, α|x) ∝ P (x|z, α)H(z)π(α). (4.10)

O’Leary (2009) also further extends the Bayesian CGT model to incorporate the

observation of several crime site events given by the series {xi}Ni=1. Following similar

steps to the case of observing only a single crime site we obtain the formula

P (z, α|x1, ...,xN) ∝ P (x1, ...,xN |z, α)H(z)π(α). (4.11)

As before the term P (z, α|x1, ...,xN) is the posterior distribution of source, z, and

average distance, α, whilst P (x1, ...,xN |z, α) gives the joint probability of observing

the locations {xi}Ni=1 given the source and average distance.

Assuming that the criminal event sites are independent yields

P (x1, ...,xN |z, α) = P (x1|z, α)P (x2|z, α)...P (xN |z, α). (4.12)
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Therefore we can write

P (z, α|x1, ...,xN) ∝
(

N∏

i=1

P (xi|z, α)

)
H(z)π(α), (4.13)

where
∏

is used to denote the product of the terms.

The final step in O’Leary’s formulation is to observe that since we are only in-

terested in the source location, z, for the crimes it is possible to take the conditional

distribution by integrating as follows

P (z|x1, ...,xN) ∝
∫ ( N∏

i=1

P (xi|z, α)

)
H(z)π(α)dα. (4.14)

Hence to search for a likely source location it is necessary to find a geographic point

with a high value of P (z|x1, ...,xN) computed via (4.14).

At this point it is worth noting a major drawback that also occurs with this

Bayesian approach. When introducing the method of Rossmo (2000) no assumptions

were made concerning the number of potential sources. However with the Bayes

approach described by O’Leary (2009) only one source location is considered. Hence,

although allowing more flexibility to include new information into the model, the

Bayes method is not suitable in this form for studies with potentially multiple sources.

A goal, therefore, is to derive a model capable of combining more than one source

location as in Rossmo (2000) with the adaptability of adding new information with

the use of a Bayesian approach as in O’Leary (2009). This problem is solved using

the Dirichlet Process Mixture Model.
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4.3 Dirichlet Process Mixture Model

4.3.1 Model Theory

The problem of assigning event locations to more than one source location can be

solved by appealing to Dirichlet Process Mixture Models (DPMM). In this section the

theoretical foundations of the DPMM will be presented alongside practical aspects

of how the model can be used in application.

Extensive research covering the mathematical foundation and properties of the

DPMM already exist (Escobar and West, 1995; Ferguson, 1983; Green and Richard-

son, 2001). One property in particular which makes the DPMM such a useful model

is the flexibility it affords concerning the possible number of source locations that

can be found. Specifically the DPMM has the property of allowing a potentially infi-

nite number of sources to exist. Therefore, when applying the DPMM to a problem

where N events are observed all possible groupings of N events in up to N groups

are considered with the most likely model being chosen.

The basic design of the DPMM and details of model inference are provided in

the research of Neal (2000). Here an overview of the work of Neal will be provided.

From this point the model will be established with the aim of applying the DPMM

in a two dimensional discrete setting. Therefore, all crime event locations and source

locations will be assumed to be points of the form (ω(1), ω(2)) ∈ Ω ⊂ R2.

Assume that the total number of observed crime sites is given by N and that

these sites are denoted by the set {xi}Ni=1. Moreover, assume that the infinite possible
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source locations for the crimes are denoted by {zi}∞i=1 or z1,...,∞. It should be noted

that in application the actual number of sources will be bounded by the number

of events. However, to demonstrate the potential of the DPMM it was decided to

present arguments with a potentially infinite number of sources. Prior to adding

information concerning the observed event locations xi it is also assumed that the zi

are drawn from some prior distribution denoted G0(zi). In the language of DPMM

G0 is known as the base distribution of the Dirichlet Process. Then each crime event

location xi can be associated with a source via an index denoted ci. In particular,

it is said that the crime at xi originated from the source at zci . The point xi can

be thought of as a draw from some distribution F (zci). Here the distribution F

will be taken to be a 2 dimensional Gaussian centered on the location of zci . This

assumption on the distribution is justified based on the theory of criminal geographic

profiling where it is assumed that an offenders travel distance decays moving away

from their home location (Brantingham and Brantingham, 1981; Liu and Eck, 2008;

Rhodes and Conly, 1981).

Subsequently the ci are considered to be drawn from a method known as the

Chinese Restaurant Process (CRP). The CRP is associated with a concentration

parameter α. If the model has determined that there exists a group A from which

a total of NA crime events are grouped then the probability that the next observed

crime event also belongs to group A is given by

NA

N + α
(4.15)

where NA is the number of elements already in A and N is the total number of
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observed crime events observed thus far. Conversely the probability that the next

observation stems from a group with a different source is given by

α

N + α
. (4.16)

Observe that under the CRP probabilities in (4.15) and (4.16) there is preference for

groups with a higher number of events to grow larger than the emergence of a new

group.

Considering all of the above assumptions the DP model can expressed as

xi|zci ∼ F(zci) (4.17)

z1,...,∞ ∼ G0 (4.18)

ci ∼ CRP(α). (4.19)

With the DPMM as stated above the concentration parameter of the CRP must

be estimated from the dataset being studied. However, this estimation procedure

can be avoided using an extension of the DPMM made by Verity et al. (2014). In

particular, a hyper-prior distribution can be placed on α denoted by H. In this

case hyperprior simply means a prior distribution placed on α but it is termed a

hyperprior in order to distinguish that the prior is over the parameter α of the CRP

model. Therefore, the full DPMM can be described as follows

xi|zci ∼ F(zci) (4.20)

z1,...,∞ ∼ G0 (4.21)
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ci ∼ CRP(α) (4.22)

α ∼ H. (4.23)

The F , G0 and H each denote a type of distribution, such as, normal or exponential.

On the other hand F (xi|zci), G0(zi) and H(α) represent probability mass/density

functions.

4.3.2 DPMM Formulae

Having established a description of the DPMM in terms of distributions it is now

possible to derive relevant formulae that can be used to compute useful information

from the DPMM framework. The main application of the DPMM in this chapter

is to cluster data. Therefore, consider a specific partition defined by the indices ci

and assign the indices to the vector c := (c1, ..., cN). With this partitioning there is

a corresponding value Nj = |{ci : ci = j}| which denotes the number of elements in

group j. Moreover, for a total number of groups u ≤ N we have that
∑u

j=1 Nj = N .

In the work of Antoniak (1974) it was shown that the conditional probability

P (c|α) =
αuΓ(α)

Γ(N + α)

u∏

j=1

Γ(Nj). (4.24)

Here the function Γ is defined by (Artin and Butler, 2015)

Γ(α) =

∫ ∞

0

sα−1e−sds. (4.25)
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As is common in Bayesian settings (Gelman et al., 2014) we can integrate over

the α to obtain

P (c) =

∫
P (c|α)P (α)dα =

∫
P (c|α)H(α)dα (4.26)

where P (α) = H(α) follows from the definition of the DPMM.

In the research of Verity et al. (2014) the authors define the function

t(u) =

∫ ∞

0

αuΓ(α)

Γ(N + α)
H(α)dα. (4.27)

Therefore, we obtain

P (c) = t(u)
u∏

j=1

Γ(Nj). (4.28)

Another quantity of interest that is easily obtained from the definition of the

DPMM, and using Bayesian techniques, is the marginal probability for the vector of

data points x := (x1, ...,xN)

P (x|c) =
∞∏

j=1

∑

ω∈Ω

G0(ω)
∏

i:ci=j

F (xi|ω). (4.29)

Observe that the first product in this formula considers the possibility of an infinite

number of source locations. However, in application there will always be a finite

number of sources. In this case only a subset of the indices j are associated with

sources whilst other indices in the summation will correspond to a sum over the prior

which is equal to 1.

The probabilities found in (4.28) and (4.29) can be combined using Bayes’ rule
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to obtain

P (c|x) =
P (x|c)P (c)∑
c∈P P (x|c)P (c)

, (4.30)

where the set P denotes all possible ways to partition N data points in at most N

groups.

In the previous derivations formulae have been obtained relating to a particular

partition defined by the vector c. However, when performing inference techniques for

the DPMM discussed later in this chapter it is also necessary to have a formula for

the distribution of a single source location zj. Again using the distributions defined

in the DPMM it holds that

P (zj|c,x) =
G0(zj)

∏
i:ci=j

F (xi|zj)∑
ω∈Ω G0(ω)

∏
i:ci=j

F (xi|ω)
. (4.31)

So far in this exposition of the DPMM the necessary equations have been provided

which allow us to compute the required probabilities for the model. These numerical

values can contain interesting information but are harder to interpret raw than a

visual representation. Moreover, if models like the DPMM are to be useful in real

world settings by practitioners unfamiliar with the mathematical theory a simple to

interpret representation of the model outcomes is essential. To this end the formulae

derived above can now be combined in order to provide a method for calculating a

jeopardy surface visually demonstrating the most likely sources for crime or terrorist

attacks.

As the research of Verity et al. (2014) explains the problem of interest is to find

the location of any source location z. In probabilistic terms this problem can be
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reduced approximately to finding the mean of the probabilities P (zj|c,x) (exactly in

the case of a continuous setting with the use of probability density functions instead

of probability mass functions). This mean is computed as

J (z|c,x) =
1

u

u∑

j=1

P (zj|c,x), (4.32)

where J represents the jeopardy surface of source locations conditioned on a partic-

ular partition c and event locations x.

However, we have from (4.30) a distribution for partitions given events. Therefore,

a full jeopardy surface for source locations given event locations can be obtained via

the formula

J (z|x) =
∑

c∈P

J (z|c,x)P (c|x). (4.33)

4.3.3 Markov Chain Monte Carlo Method of Inference

The fundamental idea underpinning the DPMM is to consider each point of a dataset

in turn and compute the likelihood that the point should be included in a previously

found cluster or added to a new cluster. This process is then repeated iteratively

through the dataset until the most likely combination of the datapoints into clusters

is discovered. As demonstrated in Section 4.3.2 for a dataset consisting of N entries

the problem requires a summation over N points into at most N clusters. This type

of problem has been considered in the field of combinatorial mathematics where Bell

numbers are used to describe the total possible partitions of a set (Bell, 1934; Bell,

1938). As pointed to by Verity et al. (2014) even for very small datasets with 10
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data entries the Bell number is large, B10 = 115975. Therefore, adopting a brute

force approach by directly trying to apply the DPMM on even small datasets is

computationally expensive. Hence it is necessary to use a probabilistic sampling

method to infer the best clustering of a given set of data.

When performing statistical inference a well studied and highly effective method

to minimise problems of expensive computational time is to appeal to a class of

algorithms known as Markov Chain Monte Carlo (MCMC) methods (Berg, 2004;

Gamerman, 1997; Gilks, Richardson and Spiegelhalter, 1996). MCMC algorithms

are used to reconstruct a probability distribution. The algorithm starts from some

initial value and constructs a new value, for example by adding a random number,

and then compares the current and new value using some chosen criteria in order to

determine whether to keep the current value or move to the new value. Since this

step only requires the current and new values, i.e. no past dependence, a Markov

chain is being constructed. This method must be repeated until a required level of

convergence is achieved. The latter step is the Monte Carlo method. By carefully

choosing the comparison technique at each stage of the algorithm it can proven that

this method will converge on the original probability distribution.

4.3.4 Gibbs Sampling for DPMM

A specific type of MCMC algorithm which has been used for DPMM inference is

known as a Gibbs sampler. In the research of Neal (2000) a full account of the

application of Gibbs sampling to DPMM is provided. Here an overview of the work

of Neal is presented.
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Recall that the index ci links the location of event xi to a source zci . Assume

that on the current step of the Gibbs sampling method a draw of value k is made

for ci. Then let c−i := {cj|j 6= i} be the subset of indices excluding ci. From this

subset make a further definition of the subset c−i,k := {cj|j 6= i, j = k} of index ck

with k 6= i. Corresponding to c−i,k we have the value N−i,k = |c−i,k| which represents

the number of elements of the subset c−i,k. In this case formula 3.6 from Neal (2000)

implies that given the most recent source locations we have

if k ∈ c−i

P (ci = k|c−i,xi, z1,...,∞, α) = b
N−i,k

N − 1 + α
F (xi|zk) (4.34)

else if k /∈ c−i

P (ci = k|c−i,xi, z1,...,∞, α) = b
α

N − 1 + α

∑

ω∈Ω

F (xi|ω)G0(ω) (4.35)

for some normalising constant b. These formulas hold for i = 1, ..., N .

In terms of the CRP (4.34) states that the probability of placing xi in an already

occupied cluster is proportional to the number N−i,k of other data points associated

to that cluster. On the other hand (4.35) states that there exists a probability

proportional to α of xi being assigned to a new cluster. After finding the most likely

of these two situations for each i it is then possible to draw a new set of zci based

on the formula derived in (4.31).

As discussed by Verity et al. (2014) the formulations in (4.34) and (4.35) can be



170

simplified by removing the dependence on α via integration. In particular, using the

function t defined in (4.27) Verity et al. (2014) derive the formula

if k ∈ c−i

P (ci = k|c−i,xi, z1,...,∞) = b′t(u−i)N−i,kF (xi|zk) (4.36)

else if k /∈ c−i

P (ci = k|c−i,xi, z1,...,∞) = b′t(u−i + 1)
∑

ω∈Ω

F (xi|ω)G0(ω) (4.37)

with u−i denoting the number of unique elements of the set c−i. The value b′ is

used to indicate a new constant of proportionality.

The last step in deriving the formulae for the Gibbs sampling method is to move

from the discrete setting into the case of continuous space. In this case the functions

F (·) and G0(·) are probability density functions (pdfs). To simplify the calculations

needed for the DPMM these pdfs are assumed to be conjugate. Conjugate means

that the density functions F (·) and G0(·) belong to the same family (Gelman et

al., 2014). A common example of conjugation is when the pdfs take the form of

an exponential. In this case the relationship between posterior and prior density

functions corresponds, according to Bayes’ theorem, to exponential multiplication

which results in arithmetical changes to the exponent. A well studied example of an

exponential family are Gaussian distributions. As discussed earlier in this chapter

the 2 dimensional multivariate Gaussian is employed.
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We can now describe the analogous probabilities to (4.36) and (4.37), under the

assumption of continuous space and conjugate pdfs

if k ∈ c−i

P (ci = k|c−i,xi) = b′′t(u−i)N−i,k

∫

Ω

F (xi|ω)dy−i,k(ω) (4.38)

else if k /∈ c−i

P (ci = k|c−i,xi) = b′′t(u−i + 1)

∫

Ω

F (xi|ω)dG0(ω). (4.39)

The term y−i,k(ω) represents a posterior distribution over the ω which stems from the

prior G0 and the observed data points xj where j 6= i and cj = k. As in the previous

derivations a new constant of proportionality b′′ has been introduced. It should be

noted however than none of the proportionality constants actually require numerical

evaluation since we only need to sample from the distributions and compare their

relative likelihoods when using the DPMM for cluster analysis.

4.3.5 DPMM Parameter Fitting

A major assumption that has been made throughout the current exposition of the

DPMM is that at each step of the MCMC algorithm only the clustering of data points

needs to be computed. This neglects the fact that the probability distributions being

used to determine the clusters have parameter values which require initialisation.

Specifically, under the model used here where the risk surface consists of multivariate
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distributions over the source locations there are two parameters - the mean and the

standard deviation. In the description of the group allocation method described in

Section 4.3.4 it can be seen that the mean is actually integrated out of the model

to improve efficiency. However, the standard deviation has to be user-defined. One

method described by Stevenson (2013) is to set the standard deviation manually by

consulting a histogram of pairwise distances between the event data points. But

this clearly introduces subjectivity into the problem. Therefore, Stevenson (2013)

proposes incorporating the method now described into the MCMC algorithm which

results in an adaptive model-derived estimation of the standard deviation parameter.

On the level of distributions the adaptive estimation method proposed by Steven-

son (2013) is manifested in the following way

X|µ, σ ∼ N (µ, σ), (4.40)

µ ∼ N (µ̃, σ), (4.41)

σ ∼ IG(δ, β), (4.42)

where X = (x1, ...,xN) is the vector of observed event data, N denotes a normal

distribution and IG is an inverse gamma distribution.

In the case of a one dimensional example a random variable xi which has an

N (µ, σ2) distribution has a probability density function given by (Ross, 2010)

f(xi) =
1√

(2πσ2)
exp

{
−(xi − µ)2

2σ2

}
. (4.43)

When analysing multidimensional data, as in this chapter, this one dimensional
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density can be generalised. For a random vector of N dimensions, denoted X, with a

multivariate normal distribution having parameters N (µ,Σ) the probability density

function is given by the formula (Ross, 2010)

f(X) =
1

(2π)
N
2 |Σ| 12

exp

{
−1

2
(X− µ)TΣ−1(X− µ)

}
, (4.44)

where, (X − µ)T denotes the usual vector transpose, which, takes a column vector

to a row vector.

In application to the DPMM the source locations are assumed to correspond to

the same standard deviation σ with this value assumed to hold in both the x- and

y-axes dimensions for each data point. Here the value of σ represents knowledge

about the dispersal distance expected around the sources. A justification for this

assumption in the context of PIRA IED studies can be found in the research of

Horgan et al. (2013). In particular, the research group of Horgan et al found that

63.4% of PIRA members travelled less than 4 miles to commit their attacks.

A final assumption needed to simplify the model is that the dispersal patterns

along the x- and y-axes are independent. This simplifying assumption removes any

matrix multiplications arising from covariance and minimises the number of parame-

ters to be fitted. Furthermore, under this independence assumption it is only neces-

sary to derive formulae in one dimension with the formulae in the second dimension

being the same with a simple change in variable name.

Here we will refer to the spatial x-components via Xx and the y-components as

Xy. The formulae derived using Xx will be the same for Xy except for a change of
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variable.

In each group update step of the MCMC algorithm the density function mod-

elling the event data is dependent on an N (µx, σ
2) distribution. Incorporating this

information into (4.44) yields the following density

f(Xx|µx, σ2) =
1

(2πσ2)
N
2

exp

{
− 1

2σ2

N∑

i=1

(xi − µx)2

}
. (4.45)

For the density in (4.45) to be useful it is also necessary to draw values for the

mean and variance at each update step. To achieve this objective it is assumed

that each source location is drawn from a prior distribution modelled as a bivari-

ate normal. For this source distribution we follow the same labelling notation as

in Stevenson (2013) denoting the means along each spatial dimension via the pair

(dx, dy) and the corresponding variances (T 2
x , T

2
y ). With these definitions for the prior

on source locations it is now possible to obtain the following likelihood which models

the joint conditional distribution of event data Xx and mean µx along the x-axis

spatial direction

f(Xx, µx|dx, σ2, T 2
x ) =

1

(2πσ2)
N
2

1√
(2πT 2

x )
exp

{
−1

2

N∑

i=1

(xi − µx)2

σ2
+

(µx − dx)2

T 2
x

}
. (4.46)

This formula is simply the multiplication of the function in (4.45) by the prior over

the source locations.

Observe that the formula in (4.46) contains an exponential function which can
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be simplified. In particular, this formula can be written in the form

f(µx|Xx, dx, σ
2, T 2

x ) =
1√

(2πε2x)
exp

{
−(µx − θx)2

2ε2x

}
. (4.47)

To derive this formula observe that the exponent on the right hand side of (4.47)

takes the form

µ2
x − 2µxθx + θ2

x

ε2x
(4.48)

whilst the exponent in (4.46) can be expressed as

µ2
x

(
N

σ2
+

1

T 2
x

)
− 2µx

(∑
xi

σ2
+
dx
T 2
x

)
+

(∑
x2
i

σ2
+
d2
x

T 2
x

)
. (4.49)

Comparing the expansions in (4.48) and (4.49) yields the following identities

ε2x =
1

N
σ2 + 1

T 2
x

θx =

∑
xi

σ2 + dx
T 2
x

N
σ2 + 1

T 2
x

. (4.50)

The significance of the identities derived in (4.50) is that the density from which µx

is drawn can be obtained using the distribution

µx ∼ N
(∑

xi
σ2 + dx

T 2
x

N
σ2 + 1

T 2
x

,
1

N
σ2 + 1

T 2
x

)
. (4.51)

Since we made the simplifying assumption earlier that the dispersal along each spatial

axis is independent the same formula in (4.51) holds for the y-dimension after a
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change of notation

µy ∼ N




∑
yi

σ2 + dy
T 2
y

N
σ2 + 1

T 2
y

,
1

N
σ2 + 1

T 2
y


 . (4.52)

Recall that X = (x1, ...,xN) denotes the vector of event data points, where, each

xi = (xi, yi) is a two dimensional point. Each run of the MCMC algorithm assigns to

each data point xi a group via the index ci as outlined in the previous Section 4.3.4.

Moreover, each group defined by a set of the form {xi|ci = j} has a corresponding

cardinality Nj. Let the pair (µjx, µ
j
y) represent the x and y axes means for the event

data assigned to the jth group. From (4.45) we have the following density formulas

f(xi : ci = j|µjx, σ2) =
1

(2πσ2)
Nj
2

exp

{
−
∑

i:ci=j

(xi − µjx)2

2σ2

}
, (4.53)

f(yi : ci = j|µjy, σ2) =
1

(2πσ2)
Nj
2

exp

{
−
∑

i:ci=j

(yi − µjy)2

2σ2

}
. (4.54)

Assuming that the number of groups found on the current step of the MCMC is k then

by combining the density functions for each of the k groups via multiplication the

formula for the complete density function describing the event data can be obtained

via

f(Xx|µ1
x, ..., µ

k
x, σ

2) =

1

(2πσ2)
N1
2

· · · 1

(2πσ2)
Nk
2

exp

{
−
∑

i:ci=1

(xi − µ1
x)

2

2σ2
· · · −

∑

i:ci=k

(xi − µkx)2

2σ2

}
(4.55)
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and

f(Xy|µ1
y, ..., µ

k
y, σ

2) =

1

(2πσ2)
N1
2

· · · 1

(2πσ2)
Nk
2

exp

{
−
∑

i:ci=1

(yi − µ1
y)

2

2σ2
· · · −

∑

i:ci=k

(yi − µky)2

2σ2

}
.

(4.56)

The final parameter that still remains undetermined in the equations derived thus

far is the variance σ2. To draw this parameter an appeal is made to the theory of

conjugate priors. A conjugate prior/posterior relationship simply means that the

prior and posterior distribution are from the same family of distributions (Raiffa and

Schlaifer, 2000). This is usually the case with densities which utilise exponential

functions due to the additive property of the exponents.

It is a standard result that the conjugate prior distribution of a normal distri-

bution with known mean and unknown variance is the inverse gamma distribution

(Gelfand et al., 1990). In the context of the present study of the DPMM an inverse

gamma (IG) distribution of the following form is fitted to the variance parameter σ2

σ2 ∼ IG(δ, β),

f(σ2|δ, β) =
βδ

Γ(δ)

(
1

σ2

)δ+1

exp

{
− β

σ2

}
,

(4.57)

where Γ is the gamma function as defined in Section 4.3.2 as Γ(α) =
∫∞

0
sα−1e−sds.

Multiplying the densities along each axis given by (4.55) and (4.56) and the

inverse gamma prior over the variance given by (4.57) yields the equation
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f(X, σ2|µ1
x, ..., µ

k
x, µ

1
y, ..., µ

k
y) =

βδ

Γ(δ)

(
1

σ2

)δ+1+N
1

(2π)N
exp

{
− 1

σ2

[
β +

k∑

j=1

∑

i:ci=j

[(xi − µjx)2 + (yi − µjy)2]

2

]}
.

(4.58)

Observe that the distribution in (4.58) is again an inverse gamma distribution.

This was the motivating reason to select the IG conjugate prior to the normal distri-

bution. As a result of this observation draws for the variance can now be constructed

using the distribution defined by

σ2 ∼ IG

(
δ +N + 1,

[
β +

k∑

j=1

∑

i:ci=j

[(xi − µjx)2 + (yi − µjy)2]

2

])
. (4.59)

An important remark concerning the result derived in (4.59) is that the inverse

gamma distribution requires the specification of the parameters δ and β. A simple

approach that can be taken to solve this problem is to set the parameters so that

the inverse gamma distribution is uninformative as discussed in Stevenson (2013).

However, in crime science much research has been conducted to numerically quantify

distance-to-crime relationships so it would be preferable to set the inverse gamma

parameters more precisely based on prior knowledge. In the context of the study of

PIRA IED attacks research quantifying the distance travelled by PIRA members to

conduct their attacks has been undertaken by Horgan et al. (2013). Specifically the
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research of Horgan et al found that 63.4% of PIRA attackers travelled less than 4

miles to conduct attacks.

To adapt the model in (4.59) to use prior information about expected dispersal

distance for the data studied, Faulkner et al. (2017) and Stevenson (2013) discuss

a change of space from a prior over σ2 to a one over σ. Firstly we use the formula

discussed in the work of Glen (2011) which shows that the expected value for an

inverse gamma distributed random variable Xr is given by the formula

ε = E(Xr) = βr
Γ(δ − r)

Γ(δ)
(4.60)

for δ > r. Therefore, for a fixed expected value of X the following relationship exists

β =

(
ε

Γ(δ)

Γ(δ − r)

) 1
r

. (4.61)

In addition to the expected value formula in (4.61) a transformation formula is

also required. As found in Tanizaki (2004) if for random variables X and Y there is

a one-to-one function ψ such that Y = ψ−1(X) then the following formula holds

fY (y) = |ψ′(y)| fX(ψ(y)), (4.62)

where, fX and fY are the density functions for the random variables X and Y ,

respectively, and ψ
′

is the first derivative of ψ.

With the expectation formula from (4.61) and setting ψ(y) = y2 in the change-

of-variable formula from (4.62) it follows that the prior on the standard deviation is
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given via the formula

f(σ|δ, ε) =
2βδ

Γ(δ)

(
1

σ

)2δ+1

exp

{
−
(

εΓ(δ)

σΓ(δ − 1
2
)

)2
}
. (4.63)

Here, the value of ε is interpretable as the expected dispersal distance for the data

being studied. Observe that a user-specified value for δ is also required. As explained

by Stevenson (2013) this parameter is less important than the value of ε and can be

set to provide a diffuse fat-tailed distribution which carries little prior information.

The value of δ needs to satisfy the condition that it is > 0.5 so that the model in

(4.63) is well-defined. We follow the same convention as used in Stevenson (2013)

and have the parameter δ = 1.

On each iteration of the MCMC Gibbs sampler the standard deviation parameter

σ can be now be updated so that the parameter’s value is fitted automatically. Notice

that in this section to obtain the prior on the standard deviation the group means for

the multivariate normals used in the DPMM had to be realised. This is in comparison

to the previous Section 4.3.4 where these means values were integrated out of the

model. In a similar way the group allocations can be found on each iteration of the

MCMC method by integrating out the means. However, prior to performing the

update step of the standard deviation in (4.63) the mean values must be realised

following the steps in this section.

In the research of Faulkner et al. (2017) and Stevenson (2013) the MCMC method

for DPMM fitting was coded into a piece of R (Team, 2017) software. The R code

is maintained on GitHub at https://github.com/stevenlecomber/Rgeoprofile-1.1.0.

The analyses in the remainder of this chapter will be based on this R software which
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will be adapted to include a study of temporal dynamics.

4.4 DPMM Analysis of PIRA IED Factories

In the previous sections of this chapter the mathematical foundation and implemen-

tation methods for using the DPMM have been introduced. Thus far the focus has

been on utilising the DPMM to find groupings of datapoints based on their spatial

configuration. Although this purely spatial model has proven useful in a number of

research topics (Faulkner et al., 2015; Faulkner et al., 2017; Verity et al., 2014) there

is scope for improving the model via the inclusion of temporal dynamics. In partic-

ular, temporal data can enrich insights from spatial patterns by providing a natural

ordering for the data being studied thus allowing for a more detailed description of

the underlying phenomena to be discovered.

As outlined already the outcome of applying the DPMM is a jeopardy surface

illustrating the most likely source locations of a set of events based on grouping

of their spatial coordinates. Here the objective is to look at this jeopardy surface

for IED attacks committed by PIRA in Belfast during The Troubles in Northern

Ireland. However, instead of studying IED attacks in isolation we will also consider

how the spatial patterns evolved over time in relation to the closing of IED factories

by British Security Forces.

Two datasets were required to perform the analyses in this chapter. One dataset

covered the dates and locations of PIRA IED attacks whilst the second dataset

provided the same information but for factory closures. The method devised to
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incorporate events from both datasets was two-fold. Firstly, new datasets of IED

attacks were constructed by extracting all events which occurred prior to the date

of each recorded IED factory discovery. In this case the factory closure dates are

employed as temporal boundaries for the entire time span of IED attacks. This

generates one dataset corresponding to each factory. Secondly, the DPMM model is

fitted to each of these datasets using the Gibbs method. This procedure yields a set

of jeopardy surfaces delineating the timescale of PIRA attacks according to times

when factory closures arose. By comparing and contrasting the final set of jeopardy

surfaces the aim is to analyse the space-time impact of disrupting IED manufacturing

on subsequent IED attacks.

4.5 Analysis

4.5.1 Model Calibration

Before implementing the spatio-temporal version of the DPMM one important model

parameter requires calibration. In particular, in Section 4.3.5 a prior distribution was

found to enable the MCMC procedure for the DPMM to automatically update the

standard deviation used to model dispersion in the data. As part of the derivation of

the formula describing this prior distribution (4.63) it was stated that the user must

specify an initial expected value for the dispersal distance associated to the data

being studied. In the context of PIRA it was found in the research of Horgan et al.

(2013) that 63.4% of PIRA members travelled less than 4 miles to conduct attacks.

Therefore, we shall take this value as an initialisation for the dispersal distance.
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As well as defining an initial parameter value for the DPMM in the R code ver-

sion of the model authored by Faulkner et al. (2017) and Stevenson (2013), and

utilised in this chapter, the dispersal distance is required to be in units of latitude

decimal degrees. To perform the conversion from miles a two step procedure was per-

formed. Firstly from the R package “Measurements” by Birk (2016) the conv unit

function was employed to find the conversion of 1 mile to 1609.344 metres. Then

from the R package “Geosphere” by Hijmans, Williams and Vennes (2016) the func-

tion distm was used to find the conversion between 1 latitude decimal degree and

metres. To define 1 lat of distance in the input to distm the coordinates of the

first factory location and another fictional location 1 latitude degree decimal away

{(54.5961886,−5.9858976), (55.5961886,−5.9858976)} was used. This resulted in a

conversion of 1 latitude decimal degree to 110716.5 metres. It should also be noted

that whilst utilising the distm function the method for computing distance was set

to “distVincentyEllipsoid” which uses an ellipsoidal model for highly accurate and

computationally efficient calculations (Vincenty, 1975). Moreover, the “distVincen-

tyEllipsoid” method calculates “great-circle-distance” between inputs thus handling

issues arising from the Earth’s curvature. Finally these two conversions were com-

bined to find the distance conversion of 4 miles as 4
(

1609.344
110716.5

)
= 0.05814285 latitude

decimal degrees, which, was the initialising value for equation (4.63).

4.5.2 Results

The results of applying the DPMM according to the steps outlined in the previous

sections are now presented. In Table 4.3 information is presented which illustrates
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the composition of the final datasets after using the IED factory closure dates as

temporal boundaries. It should be observed from this table that there are a total

of 16 datasets. This is in comparison to the value of 19 factory closures discussed

in Section 4.1. Of the 19 factory closures 10, 12, 15 and 16 were found to contain

no more additional IED events compared to the previous closure. Therefore, the

influence of these factory closures are considered in datasets 11, 13 and 17. To avoid

confusion the final datasets will be labelled 1-15. A final dataset denoted by 16 covers

all IED attacks which appeared in the dataset before and after the final recorded

factory closure. The final IED event in Belfast was recorded on 24/05/1998 whilst

the final recorded factory find was 14/03/1994. A decision to have this additional

dataset was taken to ensure that the impact of the last recorded factory closure could

be analysed.

In Figures 4.1(a) - 4.1(o) and Figure 4.2 plots of the DPMM jeopardy surfaces

are presented. The IED event locations are shown as red circles, the most recent

factory closure is highlighted via a black triangle and the previous factory closures

are displayed as blue squares. It should be noted that in these figures the map

boundaries are determined from the IED locations. Therefore, when factory locations

fall outside these boundaries they are not shown. The definition of the plot area is

made in this way to ensure that the final model represents the best fit to the event

data rather than imposing preconceived ideas about the source locations. Note that

Figure 4.2 has no black triangle since this map is used to show the remaining IED

events which occurred after the final factory closure in Figure 4.1(o). An overview

of the datasets studied in each figure appears in Table 4.3.
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In the plots of Figures 4.1(a) - 4.1(o) and Figure 4.2 likely source locations are

determined via their hitscore. The hitscore is calculated by ranking the surface

generated by the multivariate normals used in the DPMM and dividing by the size

of the total search area. Each grouping of events found using the DPMM has an

associated hitscore which can be interpreted as the percentage of space that must be

searched to locate the source location. Therefore, the hitscore provides a measure

of fit of the DPMM. A lower hitscore is associated with a better model fit and vice

versa for a higher hitscore. As a benchmark value a 0.5 hitscore would be indicative

of a random search over the given area. Graphically, a heatmap of the hitscores

is presented in the plots of Figures 4.1(a) - 4.1(o) and Figure 4.2 with the lowest

hitscores in white and the highest in dark red with shades of a white-yellow-dark red

scale moving between the two extremes. Also in Table 4.3 the hitscore associated to

the new factory closure being considered in each dataset is presented.
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Table 4.3: Datasets Analysed using the DPMM

Factory Closure Closure Date Number of
Data

Points

Hitscore

1 1 / July / 1970 5 0.70

2 24 / November / 1972 17 0.90

3 11 / May / 1974 19 0.15

4 8 / March / 1979 61 0.28

5 11 / August / 1981 67 0.41

6 28 / August / 1982 72 0.95

7 21 / March / 1988 88 0.46

8 22 / August / 1988 89 0.17

9 7 / November / 1988 98 0.23

10 28 / April / 1990 135 0.40

11 18 / May / 1991 145 0.09

12 13 / January / 1992 158 0.85

13 15 / June / 1992 162 0.06

14 18 / August / 1993 172 0.49

15 14 / March / 1994 175 0.03

16 NA / NA / NA 192 NA



187

Jeopardy Surface Legend

IED Attack Previous Factory New Factory Orientation

Phase 1, Factory 1

●

●

●

●

●

(a)

Phase 1, Factory 2

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

(b)

Phase 1, Factory 3

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

(c)

Phase 2, Factory 4

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

(d)



188

Phase 3, Factory 5

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

(e)

Phase 3, Factory 6

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●●●

(f)

Phase 3, Factory 7

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●●●

●●

●●●●
●

●●

●

●

●

●●

●●

(g)

Phase 3, Factory 8

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●●●

●●

●●●●
●

●●

●

●

●

●●

●●●

(h)



189

Phase 3, Factory 9

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●●●

●●

●●●●
●

●●

●

●

●

●●

●●●●
●

●●●●
●

●●

(i)

Phase 4, Factory 10

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●●●

●●

●●●●
●

●●

●

●

●

●●

●●●●
●

●●●●
●

●●●●●●●

●

●●●●●

●

●
●

●●●●●●●●●●●

●

●●●●●●●

●

●●●

(j)

Phase 4, Factory 11

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●●●

●●

●●●●
●

●●

●

●

●

●●

●●●●
●

●●●●
●

●●●●●●●

●

●●●●●

●

●
●

●●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●

●●●●●●●●

(k)

Phase 4, Factory 12

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●●●

●●

●●●●
●

●●

●

●

●

●●

●●●●
●

●●●●
●

●●●●●●●

●

●●●●●

●

●
●

●●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●

●●●●●●●●●●●●

●

●

●●
●●●

●
●

(l)



190

Phase 4, Factory 13

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●●●

●●

●●●●
●

●●

●

●

●

●●

●●●●
●

●●●●
●

●●●●●●●

●

●●●●●

●

●
●

●●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●

●●●●●●●●●●●●

●

●

●●
●●●

●
●●

●

●●

(m)

Phase 4, Factory 14

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●●●

●●

●●●●
●

●●

●

●

●

●●

●●●●
●

●●●●
●

●●●●●●●

●

●●●●●

●

●
●

●●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●

●●●●●●●●●●●●

●

●

●●
●●●

●
●●

●

●●

●

●● ●

●

●●● ●●

(n)

Phase 4, Factory 15

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●●●

●●

●●●●
●

●●

●

●

●

●●

●●●●
●

●●●●
●

●●●●●●●

●

●●●●●

●

●
●

●●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●

●●●●●●●●●●●●

●

●

●●
●●●

●
●●

●

●●

●

●● ●

●

●●● ●●●●●

(o)

Figure 4.1: (a)-(o) Jeopardy surface distribution of PIRA IED attacks (red circles) before the
closure of IED factories. Old factories closures are marked via blue squares whilst the new closure
in each figure is marked with a black triangle. On the jeopardy surfaces white areas indicate likely
source locations whilst red areas have a lower probability of containing a source.
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Phase 5, All Factories
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Figure 4.2: Jeopardy surface covering all PIRA IED attacks which occurred after the final recorded
factory closure. Red circles highlight IED attacks and blue squares mark the locations of all
previously identified factory closures. On the jeopardy surface white areas indicate likely source
locations whilst red areas have a lower probability of containing a source.

4.6 Discussion

Before analysing the results in Section 4.5.2 it is necessary to recall the sociological

phases of PIRA outlined in the literature review in Chapter 1. In the research of

Asal et al. (2013) five distinct time periods of the conflict in Northern Ireland were

identified which correspond to operational and tactical shifts of the PIRA. These

fives phases and summaries of the shifts observed in the organisation’s structure are

� 1969-1976 - Phase 1: During this phase the organisation was arranged in

a military style consisting of brigades, battalions and companies. Within this

army structure each unit of the organisation was given responsibility for a
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specific geographical area of combat.

� 1977-1980 - Phase 2: A cell-based structure was adopted. This approach

was characterised by PIRA fracturing into small groups of members known

as Active Service Units (ASUs) (Horgan and Taylor, 1997). The aim of this

re-structuring was to improve the organisation’s secrecy by making it harder

to infiltrate. This change in structure was successful with 465 fewer charges

for paramilitary activity within a year (Smith, 1997). During this phase new

leaders were also appointed for the organisation including Gerry Adams and

Martin McGuinness (Moloney, 2003).

� 1981-1989 - Phase 3: This period began with the Hunger Strikes by Provi-

sional IRA members protesting against the conditions of their incarceration. A

catalyst moment during this period was the death of a PIRA member known

as Bobby Sands who had been elected to Westminster whilst in prison and died

on hunger strike (English, 2004). This incident resulted in a rise of sympathy

for PIRA and its political wing Sinn Féin. As a result the Republican cam-

paign moved into the political arena through the Sinn Féin party who now had

similar levels of prestige as their militant wing, PIRA.

� 1990-1994 - Phase 4: Secret meetings occurred involving top ranking PIRA

leaders who were negotiating a ceasefire with the British Government.

� 1995-1998 - Phase 5: Finally the peace talks were announced and a ceasefire

ratified in the Good Friday Agreement. For many this signalled the end of “The

Troubles”.
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Returning to the present chapter these qualitative descriptions of the phases of

PIRA can be compared to the DPMM plots from Section 4.5.2. Specifically the

timestamps of factory closures in Table 4.3 are related to the five phases in the

following manner

� 1969-1976 - Phase 1: Figures 4.1(a) - 4.1(c).

� 1977-1980 - Phase 2: Figure 4.1(d).

� 1981-1989 - Phase 3: Figures 4.1(e) - 4.1(i).

� 1990-1994 - Phase 4: Figures 4.1(j) - 4.1(o).

� 1995-1998 - Phase 5: Figure 4.2.

It can be seen that the jeopardy surfaces in Figures 4.1(a) - 4.1(c) are highly

concentrated around a single area. This observation relates to the sociological de-

scription of PIRA in phase 1 as having a military style approach to the conflict. In

particular, this military-type strategy could be leading to the source of attacks being

centralised hence producing the concentration over one area found by the DPMM.

In terms of the counter-terrorism responses in phase 1 it can be seen that the factory

closures appeared away from the central mass of the jeopardy surfaces. One possible

explanation for this distribution is that the centralised nature of PIRA in phase 1

acted as a form of protection for IED factories in more central parts of Belfast.

Moving to phase 2 of PIRA the organisation was seen in sociological research

to have begun shifting to a cellular operation to thwart infiltration from British

authorities. The DPMM model in Figure 4.1(d) demonstrates a similar pattern
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where it can observed that the concentration of mass on the jeopardy surface begins

to disperse more widely over Belfast. An important shift in the discovery of bomb

factories for phase 2 was that the recorded location is now closer to the central

high probability source area found in the phase 1 plots. This indicates that the

infiltration from the security forces was yielding better intelligence penetrating the

protected area identified by the phase 1 DPMM results.

Phase 3 of PIRA corresponds to the longest period identified in the sociological

research. During this phase there was an uptick in violence by PIRA with Moloney

(2003) drawing an analogy between the tactics of PIRA in the 1980’s and the waves of

attacks conducted by the People’s Army of Vietnam, known as the “Tet Offensive”,

in 1968. In Figures 4.1(e) - 4.1(i) the dispersal pattern observed in Figure 4.1(d) can

be seen continuing in phase 3. Of particular interest in Figures 4.1(e) - 4.1(i) is the

appearance of source areas in the North and North-West of Belfast. This highlights

the expansionist nature of PIRA attacks in phase 3. The change in dispersal of

possible source locations also resonates with the aim to wage a “war of attrition

against enemy personnel which is aimed at causing as many casualties and deaths as

possible so as to create a demand from their people at home for their withdrawal”

stated as an objective in the PIRA “Green Book” (O’Brien, 1999). The increased

diffusion of potential source locations as identified by the DPMM is also reflecting

the relationship between the PIRA and security forces. In particular, as more factory

closures occur the potential sources of new IED factories are shifted away from the

previous factory closure indicating a certain level of displacement in factory locations.

In phases 4 and 5 PIRA began secret channels of communication with the British
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Government to conduct peace negotiations ending in the announcement and ratifi-

cation of the Good Friday Agreement. As noted by Asal et al. (2013) PIRA used

IED attacks as a leverage in negotiations with the British authorities. Moreover,

Coogan (2002) discusses the ability of PIRA to “turn...bombing[s] on and off like a

tap”. These elements of the groups evolution are captured by the DPMM as further

fracturing into numerous IED source locations. In this case the model could be seen

to be providing evidence of PIRA using IEDs more strategically to strengthen the

group’s hand during the peace deal discussions. Moreover, as PIRA was using IEDs

more strategically as bargaining leverage the dispersal patterns observed might be

the organisation utilising factories on a more temporary basis. This latter observa-

tion is particularly obvious in Figure 4.2 with the appearance of more disjoint source

locations.

It is also interesting to consider the hitscore values presented in Table 4.3. These

hitscores indicate how much of the search area identified by the DPMM must be

searched to identify the closed factory locations considered in each dataset. Another

interpretation of the hitscore is as a goodness of fit measure, whereby, a lower hitscore

implies a better model fit. It can be seen from Table 4.3 that in general the hitscores

for the closed factories are low. This observation suggests that the DPMM is good

at locating the known factory locations. In addition, the low hitscores give evidence

for Hypothesis 5 that the DPMM can find the locations of closed IED factories.

When the hitscores are high this may be explained by data quality. In particular, it

was described in Section 4.1 that the IED dataset had to be filtered to obtain data

on a street level, which, reduced the number of data points available for use from
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the original dataset. Since some of the IED events in the unfiltered dataset did not

have street level data these entries would not have been analysed in this chapter.

Therefore, some of the located IED factories may have been related to events not

considered by the DPMM. Moreover, to improve computational efficiency, and due

to limited data, the research in this chapter focused only on Belfast. However, it

may be possible that some of the recorded IED factories were linked to IED attacks

outside of the Belfast area. Without more data and expertise to link factories to

IEDs this issue remains.

Combining these phase-by-phase observations it can be seen that this temporal

version of the DPMM provides important lessons for the construction of effective

counter-terrorism strategies. The jeopardy surfaces produced in this chapter demon-

strate that over the course of “The Troubles” factory raids were occurring more

frequently within source locations identified by the model. However, the DPMM

was also revealing potential IED factory locations which do not appear to have been

discovered by authorities working to counter PIRA attacks. In particular, observe

that at the top of Figures 4.1(h) - 4.1(o) there is clearly a source being identified by

the DPMM but with no follow-up factory raids. Therefore, had the framework as

illustrated in this chapter been employed as part of the authorities tools to identify

factories there is a chance that at least one further closure could have been achieved.

Another factory identification may also have had further implications in terms of

intelligence gathering.

Further to the contributions the DPMM can make to counter-terrorism practi-

tioners the model can also be useful to academics. In particular, obtaining terrorism
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data can be a difficult task due to security issues. This problem could become more

significant when trying to conduct research on currently active terrorist groups. In

this chapter the ability of the DPMM to realise IED sources without prior informa-

tion concerning the number of sources can assist researchers in collating datasets.

Specifically, the sources identified by the DPMM could act as a guide for researchers

to understand geographical patterns of terrorist activity based on open source data

of attacks.

Overall the DPMM has proven to be a very useful tool to further uncover shifting

tactical and hierarchical structures used by PIRA during its IED campaign. This

gives evidence to support Hypothesis 7 stating that the temporal framework for the

DPMM could lead to new insights into spatio-temporal patterns of IED usage. The

similarities between the findings of sociological research and this empirical space-time

usage of the DPMM give credit to the model as a good method for counter-terrorism

researchers and practitioners to understand terrorist groups. In addition to this

support for the DPMM model it has been shown that the model can act as a testing

tool to understand the impacts of counter-terrorism events aimed at closing IED

factory locations. In particular, we have seen some level of displacement of areas

most likely to contain the sources of IED attacks suggesting that following a factory

closure there is a need to increase security operations to stifle the emergence of any

new factories opening. Moreover, we saw that the negotiating period of PIRA was

characterised by more temporary usage of disjoint IED factories. This suggests that

if militant groups choose to begin moving away from conflict towards a ceasefire

and political integration there is a need for security forces to increase intelligence
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gathering to remain ahead of factory openings. These observations provide support

for Hypothesis 6, which, considers the efficacy of the DPMM to provide a method of

assessing count-terrorism policies aiming to close IED factories.

In future research the work in this chapter could be progressed by including tem-

poral dynamics directly inside the framework of the DPMM model. In particular,

having a specific time component as part of the model formulation could allow for

greater usage of the model as a predictive tool by stepping forward the time compo-

nent to uncover future potential dynamics. Another useful extension of the research

presented in this chapter could be to find spatio-temporal boundaries for PIRA IED

attacks. In particular, in Chapter 2 it was demonstrated how the Hawkes process

can be used to determine temporal phase boundaries mathematically. Therefore, a

coupling of the methods used in this chapter and those of Chapter 2 might present

an opportunity to determine quantitatively both the spatial and temporal phase

changes for terrorist group activity.

Finally, it should be noted that in Figures 4.1(a) - 4.1(o) and Figure 4.2 an

implicit temporal memory is incorporated into the model since the effect of past

factory closures is not considered. The impact of this treatment of time is that some

of the IED events in later figures are possibly leading to false groupings of attacks.

In a real-world situation this problem could be managed by utilising more detailed

data about which IED events correspond to which factories. Having this additional

detail would enable practitioners to remove IED events which are no longer relevant

to the model. Hence, although this chapter provides a good prototype of how the

DPMM can be used its full potential and accuracy is likely being underestimated.
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5.1 Introduction

In a paper published by Moore (1965) an observation was made that the number

of transistors in integrated circuity was approximately modelled by the equation

2y where y is the number of years since 1959. Qualitatively this observation, that

the number of transistors doubles each year, has become known as Moore’s Law.

Due to a self-fulfilling nature, which observed the technology industry aiming to

improve their products at this pace (Brock, 2006), Moore’s Law is considered to

have been a dominant theory underpinning much of the growth seen in technological

advancements over the last five decades.

Alongside a rapid growth in technological capabilities has been the globally ex-

panding reach and accessibility of the world wide web. First presented by Tim

Berners Lee to CERN in 1989 (McPherson, 2010) the world wide web has expanded

the ability of the human race to rapidly share information across the globe. This has

lead to advancements in scientific discovery and research as academics can seamlessly

share and discuss their ideas. In the discussion of Coffman and Odlyzko (2002) the

idea of a Moore’s Law for the rate of growth of the internet is presented suggesting

a link between the developments observed physically in the technology sector and

wider usage of virtual data accessible via the web.

Combined new technologies and their use for data sharing are quickly beginning

to evolve the landscape of 21st Century scientific research. The observance of this

shift in research methods has been discussed by Hey, Tansley and Tolle (2009). In

particular, the authors of the latter highlight four phases of progression in science
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based research - empirical, theoretical, computational and data exploration. The em-

pirical phase is described as the observation of natural phenomena and involved the

manual collection of data approximately a thousand years ago concerning the changes

observed in people’s environments. As scientific reasoning and methods progressed

the next shift was towards a theoretical approach to studying the world around a

few hundred years ago. The theoretical phase saw the introduction of mathematical

models and their use to abstract and generalise ideas and understandings obtained

from empirical studies. More recently science has transitioned through the computa-

tional phase in the last few decades where the models which were introduced in the

theoretical stage could now be simulated using newly available computational power

afforded by the advancements in computer design. The current phase is that of data

exploration. Now with new computational hardware and rapid sharing features pro-

vided by the web a combination of empirical, theoretical and computational research

can be undertaken in large volumes on “big datasets”.

An introduction to “Big Data” and its implications for modern society can be

found in the book of Mayer-Schönberger and Cukier (2013). Big data is commonly

described as exhibiting three properties known as volume, variety and velocity. Vol-

ume of data is simply a measure of the size of modern datasets which are now able

to be stored in increasing magnitude due to the improved effectiveness and efficiency

of modern hard drives. Within these large datasets it is possible to store a variety of

information ranging from easily tabulated structured data, such as, numerical values,

to unstructured data which requires more involved preprocessing, for example, collec-

tions of text documents. Finally, data is frequently moving either across the web on
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external networks or through computers on internal networks leading to the a metric

of data velocity. When referring to Big Data in scientific studies Demchenko et al.

(2013) also include two more “v’s” of big data - veracity and value. Veracity relates

to the need to have some method of data validation to ensure that the data being

obtained provides a reliable basis for accurate analyses. Additionally, determining

the added value provided by a dataset ensures that the scope of research remains

focused to avoid scientific pitfalls, such as, linking correlation and causation.

With the beginning of a new phase in research centered on data exploration there

is a requirement to develop new tools and techniques which can enable researchers

to collate and analyse Big Data sources. There are three main branches of research

which cover this area (Getoor and Machanavajjhala, 2012) - information retrieval,

data mining and machine learning. Information retrieval (IR) is a term first coined

by Mooers (1950) and aims to connect users with data. This can involve searching

both structured datasets, such as, organised tabular databases and unstructured

datasets, for example, searching text documents for key words or phrases (Manning,

Raghavan and Schütze, 2008). A number of approaches to IR already exist including

studies of Boolean, vector and probabilistic models (Baeza-Yates and Ribeiro-Neto,

2011; Manning, Raghavan and Schütze, 2008; Roelleke, 2013).

Having retrieved data via some combination of IR methods the next step is to

obtain value from the data. A primary method to achieve this goal is to use the

knowledge discovery in database (KDD) process. As described by Fayyad, Piatetsky-

Shapiro and Smyth (1996) the KDD process is a method which segments the man-

aging of large datasets into multiple steps moving from data retrieval to analysis
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and then result validation. One of the main steps in the KDD process is data min-

ing which is “a process of discovering useful patterns and trends in large datasets”

(Larose and Larose, 2014). As with IR the field of data mining has begun rapidly

growing as researchers develop tools to manage “Big” datasets. Some of the cur-

rent methods of performing data mining are classification, regression, clustering,

summarisation, dependency modelling and change and deviation detection (Fayyad,

Piatetsky-Shapiro and Smyth, 1996).

Machine learning (ML) is an umbrella term which covers tools and techniques

developed to enable computers to derive value from data via learned structures and

patterns (Alpaydin, 2014). There are two main classes of machine learning - super-

vised and unsupervised (Alpaydin, 2014; Masashi, 2016; Müller and Guido, 2017).

In the case of supervised learning some initial training input and observed output

is used to train a ML algorithm. On the other hand, in unsupervised learning only

inputs are provided to the ML algorithm. Methods of IR and data mining can be

used as tools to develop machine learning approaches and vice versa (Aggarwal and

Zhai, 2012; Craven et al., 2000; Liu and Motoda, 2001).

As the power of computing resources has grown, and the accessibility of data has

increased, the applications of Big Data, and the tools required for its analysis, have

become more widespread. Of particular interest in this chapter is the usage of these

techniques as a basis for mathematical studies of terrorism and counter-terrorism.

In particular, multiple books and research papers have been published examining

a range of possibilities to use newly developed technological tools to monitor and

analyse terrorist activity in real or near-real time (Baesens et al., 2009; Chen et al.,
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2008; Leslie, 2016; Memon et al., 2009; Thuraisingham, 2003; Toure and Gangopad-

hyay, 2016). As in all areas of research these novel approaches to study terrorism

must ensure that the data being utilised provides an accurate reflection of real-world

events. If there is a failure to retrieve good data or a reliance on incomplete datasets

then any resulting conclusions may be incorrect and lead to poor counter-terrorism

strategy design.

In this chapter the aim is to address the issues of developing tools to automatically

collate terrorism databases and methods to evaluate their usefulness. In particular,

an important issue that the tools and techniques of information retrieval and machine

learning can be used to tackle is information overload in manual data collection.

For example, when collecting data concerning terrorist attacks there are a plethora

of local and international news sources from which information can be gathered.

Collating datasets from many sources manually is time intensive requiring a large

outlay of human capital to be effective. However, with the speed and efficiency of

modern computers and communication methods via the web there is potential to

greatly simplify the task of data retrieval. Two main contributions will be made in

this thesis. Firstly, an IR tool will be implemented in Python which can interact with

online news articles to retrieve terrorism event data. Secondly, a unique evaluation

dataframe will be designed combining methods of temporal and textual similarity

measurements to compare the IR dataset to a manually collected database.
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5.2 Datasets

5.2.1 Manually Collected Dataset

The manually collected dataset is derived from the Armed Conflict Location and

Event Dataset (ACLED) project (Raleigh et al., 2010). As part of the ACLED

project numerous research analysts are involved in collecting and storing data about

conflicts in Africa as well as South and South East Asia. The database released from

ACLED appears in two versions. The first dataset has complete year-on-year daily

coverage of data since the project began in 1997. In the second dataset a real-time

rolling coverage is provided which details recent weekly updates of events. The real-

time data is annually reviewed and integrated into the complete dataset which is

then released as a new full coverage archive.

In this chapter to complement the earlier research of Chapter 4 the focus will be

the Al Shabaab militant group in Somalia. Moreover, to simulate a real-world setting

for the tools developed the real-time ACLED data will be considered. Specifically, the

2017 ACLED rolling coverage dataset, which is manually collected, will be compared

to an automatically retrieved dataset, which is detailed in Section 5.2.2. The final

event date recorded in the ACLED database is 14/10/2017 . The data collected for

the ACLED project covers the topics displayed in Table 5.1.

It should be noted that the source of the data for the ACLED database is split into

two categories - non-local and local. Here the local sources are specific to ACLED

which is connected to local organisations working regionally and reporting events to
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Table 5.1: ACLED Data Headings

Heading Data

Date Date of the event (DD/MM/YYYY)

Location Administrative areas and latitude/longitude coordinates

Event Type
{battle, civilian killing, riots, protests,
recruitment activity}

Event Actors
{rebels, governments, militias, armed group, protesters,
civilians}

Change in Territory Details of any changes seen in area control

Source Source of data {Non-Local, Local}

Notes Notes covering details of the event

Fatalities Estimated number of fatalities

the ACLED team. The non-local sources are more readily available articles which

can be retrieved online. These two categories will be compared separately to the IR

dataset as explained using the framework detailed in Section 5.4. The number of

events across the two datasets are non-local sources - 268 and local sources - 881.

5.2.2 Automatically Collected Dataset

In the first unique contribution made in this chapter an automated information

retrieval (IR) tool was written in a Python script. Specifically using the Python

requests module (Chandra and Varanasi, 2015) an automated tool was constructed
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Table 5.2: Automated Article Retrieval Data Headings

Heading Data

Date Date of the event (DD/MM/YYYY)

Description Article title and first sentence from article

which searches Google news for user defined terms. Once the results have been

retrieved for a search the Hypertext Markup Language (HTML) structure returned

is saved to a csv file. To extract relevant data the saved HTML structures are parsed

by searching for tags where important information is contained and retrieving the

corresponding text. This textual data is then used to form an event database. In

particular, for the database studied in this chapter the search term used was simply

“al Shabaab” in an attempt to observe as many events as possible involving the

group. In addition to a direct search for articles the code performs the search for

each month of the year. The motivation for this temporally disaggregated searching

method was that it resulted in a higher number of returned articles compared to

longer time-frame searches. Data headings, and their descriptions, found in the final

dataset are illustrated in Table 5.2.

In contrast to the ACLED dataset the IR data has only non-local sources having

been collected entirely from online news articles. In total 960 articles were obtained

using the Python IR tool.
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5.3 Comparison Techniques

In this chapter the aim is to compare and contrast the data obtained from the

manually collected ACLED data and an automatically retrieved dataset from online

news sources. The two types of data appearing in Tables 5.1 - 5.2 are dates of events

and textual data. Two tools from the current literature are employed in this chapter

to analyse these types of data. The background of these pre-existing techniques are

now introduced.

5.3.1 Dynamic Time Warping

To compare the event dates a technique known as Dynamic Time Warping (DTW)

was employed to study the similarity between the datasets. In the research papers

of Berndt and Clifford (1994), Ding et al. (2008) and Keogh and Ratanamahatana

(2005) the fundamental motivations and assumptions for using the model are de-

scribed alongside experimental applications demonstrating the approaches effective-

ness. Principally, DTW is a search algorithm which provides a mapping between a

template time series T = {t1, t2, ..., tm} = {tj}mj=1 and a second comparison time se-

ries S = {s1, s2, ..., sn} = {si}ni=1. This mapping aims to find the minimum distance

between the time series.

The initial step for constructing the DTW algorithm is to align the indices of

the template time series against the second time series in a two dimensional grid. In

this case the grid consists of points (i, j) which can be interpreted as a comparison

between time points si and tj. With this grid so constructed a vector of each of the
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possible elements wk = (i, j)k can be constructed. Selecting one element from each

consecutive vector leads to a possible warping path

W = w1, w2, ..., wk, ..., wK . (5.1)

For each of the points on this grid a comparison can quantified using some distance

function d(si, tj). A simple approach to measuring distance between time points is

to use an absolute value measure as described by Berndt and Clifford (1994)

d(wk) = d((i, j)k) = |(si − tj)k|. (5.2)

After defining an approach to measuring the distance between time points the

main DTW problem can be introduced. In particular, the aim now is to find the

optimal warping path between the series S and T by minimising the cumulative

distance

DTW (S, T ) = min
W

K∑

k=1

(d(wk)) . (5.3)

It should be observed that the cumulative summation in equation (5.3) is defined

over the range of all possible warping paths. For large datasets this optimisation

problem will be computationally expensive due to its combinatorial nature. There-

fore, some assumptions are made about the DTW to improve efficiency (Berndt and

Clifford, 1994)

1. Monotonicity - the time series used in the problem are assumed to be mono-

tonically increasing in time, such that, the indices of S and T satisfy ik−1 ≤ ik
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and jk−1 ≤ jk,

2. Continuity - each subsequent element in the warping path must only pass

through neighbouring points so that ik − ik−1 ≤ 1 and jk − jk−1 ≤ 1,

3. Warping Window - when comparing points (i, j) from the grid there is a max-

imum distance of comparison |i − j| ≤ ω, where, ω is a positive integer value

defining the window width,

4. Slope Constraint - to avoid large movements in any single direction it is possible

to define a restriction on the steepness of possible warping paths,

5. Boundary Conditions - fixing the start of each warping path to (1, 1) and the

end to (n,m) ensures the path always moves between the lowest left-hand-side

of the grid and finishes at the highest right-hand-side.

With the above assumptions the final DTW can be formulated as a dynamic

programming problem using the function

γ(i, j) = d(i, j) + min [γ(i− 1, j), γ(i− 1, j − 1), γ(i, j − 1)] . (5.4)

From the equation in (5.4) the DTW is computed via a recurrence formula which

computes the cumulative summation of the current grid element distance d(i, j) and

the minimum of the cumulative summations at neighbouring elements. The form of

the DTW in (5.4) is known as the symmetric version of the problem due to its use

of both previous points found diagonally on the grid. An asymmetric version of the

equation in (5.4) also exists by choosing only one of the diagonals. However, the
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research of Sakoe and Chiba (1978) found that the symmetric form of the problem

to be the better choice.

The advantage of the approach to DTW using (5.4) is that the algorithm does

not require re-computing previous path distances. In particular, at each step of the

dynamic programming technique a table of values is computed which can be used to

find the next entry of the cumulative sum in (5.4). To complete the DTW and find

the minimised path matching series S and T this table can be traversed backwards

finding the points corresponding to the lowest cumulative distance values.

In this chapter an implementation of the DTW in Python by Rouanet (2018) was

used to perform temporal analyses.

5.3.2 Term Frequency - Inverse Document Frequency

The second area of overlap that is important to this thesis, and terrorism studies

more broadly, is the spatial data of terrorist activity. Table 5.1 illustrates that the

ACLED dataset contains location data whilst the IR dataset described in Table

5.2 has only textual information in the form of the article titles and the articles

first sentence. A simple method that could be used to overcome this difference

between the databases would be to simply scan each of the IR article titles and

first sentences for the locations in the ACLED database. However, this approach

presents multiple difficulties. In particular, difference in the spelling of place names,

such as, (“Mogadisho”, “Mogadishu”) and (“Buulo Gaduud”, “Bulo-Gadud”) can

prove difficult to cross-reference.

In addition to comparing spatial data between the datasets it is also of interest to
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compare the text data contained in the “notes” section of ACLED to the “descrip-

tion” information in the IR events. This further analysis between the two datasets

was used to provide insight into the usefulness of the IR data to offer more detail

about the events being recorded.

To overcome the difficulties of comparing textual data and provide a comparison

between location and notes data of the ACLED and IR datasets a method known as

term frequency - inverse document frequency (tf-idf) was employed. As the name of

the technique indicates tf-idf is a two step approach for comparing text documents.

Term frequency (tf) is the study of occurrence of a notion or combination of no-

tions within a single document (Luhn, 1957). As noted by Luhn the more frequently

a word or combination of words within a document the more important the word or

combination is likely to be for the subject being studied. Hence a simple measure of

the relative importance of different parts of text within a document can be obtained

using a simple word frequency. However, the problem with such a simplistic result

is that when comparing multiple documents according to simple word frequencies

words, such as, “terrorism” in papers in the field of terrorism studies can lead to

broad matching results making searches less useful.

To resolve the issue of matching documents with highly occurring keywords but

low overall importance Spärck Jones (1972) suggested utilising a term weighting

approach. In particular, when searching across a range of documents high frequency

terms which likely have little meaning are given low weighting whilst terms of more

rarity are given a greater weighting. This inverse relationship leads to the term

inverse document frequency (idf). Under this scheme the issue of retrieving irrelevant
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documents containing the word “terrorism” in a field studying terrorism is largely

resolved. A commonly used formula to find the inverse document frequency for a

term ti occurring ni times in a collection of N documents is (Robertson, 2004)

idf(ti) = log

(
N

ni

)
. (5.5)

The term frequency (tf) multiplied by the inverse document frequency (idf) yields a

measure of importance of a term to a document in a collection of documents.

As well as being useful as a matching tool for searching databases of documents for

keywords the tf-idf can also be extended to a document comparison tool using a tf-idf

cosine weighting (Peters, Braschler and Clough, 2012). The tf-idf can be considered

a mapping from the space of the text documents to the d-dimensional real space Rd.

For example, one could form a vector of all words across all documents and for each

vector element the tf-idf value could be computed. After the tf-idf calculation each

document is now a vector of real numbers in space whose dimension is equal to the

total number of words. Hence for two documents with tf-idf vectors denoted d1 and

d2 it is possible to compute the cosine of their angle θ via

cos(θ) =
d1 · d2

‖d1‖ ‖d2‖
. (5.6)

For two similar documents the formula in (5.6) will have tf-idf vectors close in space

and thus a small angle difference leading to a value of cos(θ) near to 1. On the other

hand, documents which are dissimilar will lead to values of cos(θ) nearer 0. Note also

that since tf-idf vectors contain only non-negative values we have that θ ∈ [0°, 90°].
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In this chapter the tf-idf implementation from Python’s scikit-learn module (Pe-

dregosa et al., 2011) was used to perform the textual analyses.

5.4 Dataset Comparisons

To compare the ACLED and IR datasets a novel approach of combining dynamic

time warping and the tf-idf methods was designed. In particular, a hybrid method

was developed to evaluate the similarity between the two sets of data based on the

event timings and textual descriptions.

5.4.1 Event Date Comparisons

For the temporal component of the data the standard DTW defined in Section 5.3.1

was adapted. Specifically for each of the dates observed in the IR database the set

of closest dates in the ACLED database were identified. The cardinality of this set

can range from a single element to multiple elements if there were multiple entries

for a single date. However, at this top level of analysis the aim is to simply identify a

closest date matching the IR event recording. In this case a perfectly matched date

found in the IR and ACLED event recordings would produce a distance of 0 whilst

any dissimilarity would be measured in the number of days difference.

5.4.2 Location Comparisons

As previously described in Section 5.2 the ACLED dataset has separate columns

containing location data for the observed events. In the ACLED dataset the location
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data is split into multiple columns covering different levels of spatial disaggregation.

To compare this spatial information to that contained in the IR dataset the tf-idf

method was employed. Specifically, each of entry of location data from the ACLED

database was compared with the the text strings obtained from the IR dataset via

tf-idf. To improve the efficiency of these textual based comparisons in the next level

of analysis conducted the sets of closest event matches between the IR and ACLED

databases from Section 5.4.1 were looped over and the IR elements in each set had

their title and first sentence data compared to the corresponding ACLED event

location data. To achieve this comparison the following procedure was performed for

the elements of each closest events sets

1. Split text strings from IR data entry into a list of words in Python.

2. For each of these list elements extract all words beginning with an uppercase

letter. This step follows from the observation that location names are written

with capital letters.

3. For each upper case word lower all the characters, remove punctuation and

perform a character comparison to the lower cased version of the location data

from the ACLED event. The character comparison was performed using the

tf-idf described in Section 5.3.2. In this context the tf-idf was set to perform a

character comparison which considers similarity based on the number of letters

matched between the inputs. This approach is used to overcome the issue of

the different spelling of location names, such as, (“Mogadisho”, “Mogadishu”)

and (“Buulo Gaduud”, “Bulo-Gadud”).
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4. Return the highest matching value,

5. Repeat the above procedure for all location information of the event contained

in the ACLED database.

The matching value from this procedure will be a number in the range [0, 1], where,

0 represents no match and 1 represents a perfect match.

5.4.3 Event Note Comparisons

The final comparison technique performed between the databases was to compare

the “notes” section of the ACLED events to the “description” data in the IR dataset.

Similar to the location comparison the textual comparison was conducted using the

tf-idf implementation of the scikit-learn module. However, instead of decomposing

the text into characters the full sentences were passed as inputs to the function.

The matching value, in the range [0, 1], as before, was then returned. In addition,

the note comparisons were made using the set of closest times found between the

ACLED and IR datasets in Section 5.4.1 using the dtw method.

5.4.4 Comparisons Framework

These analyses yield three results, where, the IR data used is listed first and the data

from the ACLED database is listed second

1. (Date) and (Date) time comparison

2. (Date, Description) and (Date, Locations) location comparison
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Table 5.3: Example of Matching Events

Dataset Event Date Event Details

ACLED 15/08/2017

“Five police officers have been killed by Al-Shabaab
militia while on patrol along Bothai-Ijara road,
within Garissa County. One officer sustained injuries
during the attack while another one managed to
escape unhurt.”

IR 15/08/2017
“Nairobi - Five police officers have been killed by
Al-Shabaab militia while on patrol along Bothai-Ijara
road, within Garissa County. One officer sustained...”

3. (Date, Description) and (Date, Notes) event description comparison

As described in Section 5.2 the sources for the ACLED can be divided into local

and non-local categories. To further disaggregate the comparisons made between the

ACLED and IR databases the above analyses were repeated using the non-locally

sourced ACLED data and only locally sourced ACLED data.

An example of the type of matches observed between the IR and ACLED databases

is shown in Table 5.3. In particular, this table illustrates the best time-text match

between the ACLED non-local dataset and IR dataset. It can be observed that the

timestamps in Table 5.3 are identical whilst the textual descriptions of the events are

almost identical. However, since the text in the IR data entry is only a snippet of the

full article the final sentence is truncated reducing the overall matching according to

the tf-idf to 68.2%.
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5.5 Results

Sections 5.5.1 - 5.5.2 present the results of the analyses described in Sections 5.4.1

- 5.4.3. Two sets of results are presented according to comparisons between the IR

dataset and the non-locally sourced ACLED data and the IR dataset and only locally

sourced ACLED data.

Each set of results consists of six graphs. The first plot is a simple barcode of the

event times occurring in each dataset. These event times are then compared using

the DTW with plots provided showing the warping path between the ACLED and

IR timeseries. After analysing temporal relationships the textual comparisons for

each set of closest event times are made via the tf-idf method. The highest tf-idf

values for these comparisons are plotted for both location and event text descrip-

tions. Finally, cumulative percentages of the tf-idf values are shown illustrating the

percentage of event comparisons with tf-idf exceeding threshold values in the range

{0.1, 0.2, ... , 1.0}. These cumulative plots indicate the distribution of tf-idf values.
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5.5.1 ACLED Non-Local Source Comparison
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Figure 5.1: (a) Barcode plot comparing the timeseries of IR and ACLED events in days since each
datasets first event. (b) Time warping path between the IR and ACLED timeseries. This path is
derived from the dynamic time warping (DTW) method.
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Figure 5.2: Location and event description comparison of the ACLED and IR datasets. For each
event in the IR dataset the closest datapoint in the ACLED database in time and location is shown
in red. Similar results are shown in blue for the closest event in time and event textual description.
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Figure 5.3: (a) Percentage of event locations matched with a tf-idf value greater than or equal to
threshold values {0.1, 0.2, ... , 1.0}. (b) Percentage of event descriptions matched with a tf-idf
value greater than or equal to threshold values {0.1, 0.2, ... , 1.0}.

5.5.2 ACLED Only Local Source Comparison
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Figure 5.4: (a) Barcode plot comparing the timeseries of IR and ACLED events in days since each
datasets first event. (b) Time warping path between the IR and ACLED timeseries. This path is
derived from the dynamic time warping (DTW) method.
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Figure 5.5: Location and event description comparison of the ACLED and IR datasets. For each
event in the IR dataset the closest datapoint in the ACLED database in time and location is shown
in red. Similar results are shown in blue for the closest event in time and event textual description.
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Figure 5.6: (a) Percentage of event locations matched with a tf-idf value greater than or equal to
threshold values {0.1, 0.2, ... , 1.0}. (b) Percentage of event descriptions matched with a tf-idf
value greater than or equal to threshold values {0.1, 0.2, ... , 1.0}.
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5.6 Discussion

The graphs in Section 5.5 compare and contrast the ACLED dataset to the automat-

ically mined IR dataset. There are two sets of results corresponding to a different

disaggregation of the ACLED data according to the data’s recorded source. In Fig-

ures 5.1 - 5.3 comparisons are made using only the data in the ACLED set derived

from non-local sources, which, covers all articles and events manually read on the

internet. The second set of graphs in Figures 5.4 - 5.6 are used to study the similarity

between the ACLED data sourced from local projects, which, is reported to ACLED

from local organisations, and the IR dataset.

To investigate the difference of temporal event records between the two datasets

a Python implementation of the DTW method (Rouanet, 2018) of Section 5.3.1 was

used. The results are presented in Figures 5.1(b) and 5.4(b). It can be observed from

these plots that on a purely temporal basis the IR dataset events are more closely

aligned to the locally source ACLED data. Moreover, it was found that 94% of event

times had an exact match between the IR and local sourced ACLED data compared

to only 56% for the IR and non-locally sourced ACLED data.

In addition to studying the temporal event records further depth of analysis can

also be obtained by comparing locations data from the ACLED and IR datasets. In

particular, for the set of events identified as having the closest distance in the previous

temporal comparison a search for location data was performed. This comparison

was undertaken using the tf-idf measure outlined in section 5.3.2. In this case the

ACLED dataset was used as a benchmark with the source locations from the dataset
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compared character-wise to the words in the event descriptions obtained using IR as

discussed in 5.4.2. The higher the percentage from this comparison the more likely

it is that the ACLED location recording was mentioned in the event description.

By comparing the plots in Figures 5.2 and 5.5 it can be seen that the location

comparisons for both non-local and local sources produce similar results. In partic-

ular, the non-local analysis has a mean tf-idf of 0.55 and standard deviation of 0.09.

On the other hand, the only local comparison has a mean tf-idf of 0.57 and standard

deviation of 0.08.

The plots in Figures 5.3(a) and 5.6(a) show the cumulative percentage of tf-

idf comparisons with value greater than values in the range {0.1, 0.2, ... , 1.0}.

Both non-local and local source data yielded similar patterns of high cumulative

percentages which decrease rapidly around the 0.5 threshold.

The final comparison that was made between the ACLED data and the IR dataset

was to analyse the difference between the textual content provided for the ACLED

events and the event descriptions in the IR data. In a similar approach as the one

taken to compare spatial details for each of the closest matches found in time between

the events a match percentage between their event descriptions was calculated. As

before the tf-idf metric was used to compare this textual data.

From the graphs in Figures 5.2 and 5.5 it can be seen that compared to locations

comparison the textual descriptions of the ACLED and IR datasets have lower tf-idf

values. This indicates a lower accuracy when considering the textual event data in

each dataset. The mean tf-idf value for the non-local comparisons was 0.13 with a

standard deviation of 0.07. On the other hand the local source data results had a
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mean tf-idf of 0.14 and standard deviation 0.07.

In the graphs of Figures 5.3(b) and 5.6(b) it can be observed that the cumula-

tive percentages of tf-idf values are similar for the non-local and only local results.

Moreover, these plots show that the textual comparisons are worse than the results

obtained for location comparisons.

It is interesting to note that the IR dataset has 960 data entries which is greater

than the 268 non-local source entries in the ACLED database. In particular, this

provides evidence that the IR technique presented in this chapter could be of benefit

to supplement the ACLED data collection method. It can be observed from Figures

5.1(a) - 5.1(b) that there is divergence between the IR and non-local source ACLED

time series. However, this may be explained by the use of less widely used news

sources by the ACLED data gathering team, such as, online news organisations

based in Somalia. As a consequence it may be that the ACLED non-local source

data is obtaining some data that is unlikely to occur in a standard browser search.

This issue could be resolved by redesigning the IR tool developed in this chapter to

work with the specific websites used for the ACLED project.

Within the local source ACLED dataset there are 881 events. When compared

to the local source ACLED data it can be seen from Figures 5.4(a) - 5.4(b) that

there is a close relationship with the event times recorded in the IR dataset. Hence

the IR tool is able to find news sources which provide information as effectively as

local source organisations. This observation is promising since IR methods like those

used in this chapter provide a cheaper and simpler option for obtaining data about

terrorism related conflicts.
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For both the non-local and local source ACLED data the textual comparisons

with the IR dataset yield similar results. Location comparisons were matched with

higher accuracy than event descriptions. This fall in accuracy may be the result of

considering only first article sentences in the IR database which may not be providing

a good summary of the main article text.

The results of the research conducted in this chapter indicate partial evidence

for Hypothesis 8. In particular, this hypothesis described the possibility of produc-

ing an automatic data retrieval tool that could collect temporal, spatial and event

description details comparable to a manually collected dataset. As has been dis-

cussed temporal data was matched with high accuracy between the IR and ACLED

datasets. With lower matching some spatial and event description data was also

found to be contained in the IR collected database.

As has been demonstrated in all the previous chapters of this thesis temporal

dynamics can prove very useful for providing insights into terrorist groups and their

activities. Therefore, having such quickly accessible data automatically collected

yields great potential in the field of terrorism studies. A particularly useful ap-

plication of this approach to data collection is the ability to monitor in near real

time terrorist events and integrate the feed into mathematical models to generate

a fully automated terrorism analysis tool. For example, the timestamps from the

IR dataset could be used as input into the Hawkes point process model in Chapter

2 to generate a live alert system for monitoring shifts in a terrorist organisation’s

structure. The advantages of employing such a technique would likely be reaped by

both academics and practitioners. In particular, in real world scenarios the ability
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to constantly monitor terrorist activity is essential to provide quick and effective

counter-measures. Moreover, since the research in this chapter is based on open

source materials the IR tool developed provides a computationally cheap method

without security constraints to analyse terrorist activity. The IR tool developed in

this chapter also has a flexible search function meaning it can easily be used to gather

data on emerging terrorist threats.

Although the location and textual data from the IR method were not as close to

the ACLED data there is still some evidence that such an approach can be useful.

An immediate extension of the research in this chapter would be to study natural

language processing methodologies and to adapt them to generate a tool which can

more accurately extract textual information from many different website layouts.

This would likely provide a much richer automated dataset and would improve the

depth of location and description data of events greatly. Again this additional au-

tomated data could be integrated directly into mathematical models yielding more

in-depth real time event analyses.



CHAPTER 6

CONCLUSION AND FUTURE RESEARCH
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The aim of this thesis was to demonstrate the effectiveness of mathematical mod-

elling as a method of studying terrorism and providing new insights. In particular,

via the the translation of the theory of crime science into mathematical language

it was hoped that novel approaches to understanding terrorist activity with open

sourced data could prove to be a fruitful area of research.

Initially in Chapter 1 the foundations of crime science and terrorism literature

were provided to give contextual meaning to the thesis. Within this literature atten-

tion was drawn to two main groups - the Provisional Irish Republican Army (PIRA)

and Al Shabaab (AS). These organisations provided the case studies which were used

to test the models constructed throughout the later chapters.

Alongside a review of the literature in Chapter 1 was a brief introduction to the

topics which would be covered in the thesis. The first of these areas was introduced

as a study of the Hawkes process. Specifically, the Hawkes process was described

as a self-exciting point process capable of capturing dynamics associated with an

initial shock followed by a sequence of after-shocks. A foundation for applying this

type of model had already been demonstrated in previous work by this thesis author,

where, the Hawkes process had shown potential for capturing the temporal dynamics

associated with the IED attacks conducted by the PIRA. One of the drawbacks of

this previous research was its reliance on sociological theory as a basis for conducting

analysis between the various phases changes observed with the PIRA organisation.

To overcome this limitation in this thesis the research was extended so that the

mathematical approach could be conducted independently from the predetermined

boundaries. By considering the problem of change point detection in terms of an
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optimisation problem it was shown in Chapter 2 that new insights could be obtained

regarding the PIRA organisational structure and its attack patterns. To further this

mathematical investigation a new sociological study could be conducted to try to

reconcile the findings of the found change points with the broader theory surrounding

the PIRA.

The Hawkes process studied in Chapter 2 had a simple constant background rate

which it was found did not provide a good fitting model in the context of Al Shabaab

attacks in Somalia. Therefore, to gain a further level of numerical detail in Chapter

3 a Hawkes process with time dependent background rate was analysed. Based on

observed wet-dry weather seasonality in Somalia an attempt was made to model the

influence of environmental factors on the attack patterns of the Al Shabaab group.

The specific form used for the background rate was a Fourier expansion model for

the underlying rate of attacks. Although some improvements were observed over the

Hawkes process with a constant background rate the seasonal Hawkes process studied

in Chapter 3 still failed to fully capture the underlying dynamics of the AS attacks.

This result warrants further investigation of different forms of point processes in

the modelling of the AS group. One possible extension would be to experiment with

different kernels as opposed to the exponential decay utilised in the Hawkes processes

of this thesis.

In the previous chapters the Hawkes processes studied were fitted only to temporal

data with spatial information being encoded implicitly via the grouping of events

according to geographical boundaries. To study the spatial nature of terrorism more

exactly in Chapter 4 a Dirichlet Process Mixture Model (DPMM) was introduced.
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The DPMM was used in an attempt to find a mathematical approach to determining

the locations of PIRA bomb making factories based on the observed locations of IED

events. Moreover, by using the timestamps of factory closures as temporal boundaries

the DPMM was used to study the effects of these closures on terrorist activity in

Northern Ireland. From the results of Chapter 4 it can be seen that the DPMM had

some success in matching areas were bomb making plants were found. Moreover,

in some cases the model discovered likely areas for bomb factories prior to their

actual closure. These positive results provide evidence that the DPMM is effective

at locating sources of IED manufacturing. In an applied setting such a model could

be useful for highlighting areas most likely to be the source of terrorist IED factories

thus reducing the required resources to trace and close down terrorist operations.

One of the main drawbacks of the research conducted using the DPMM was a

lack of detail concerning the relationship between factories and IED attacks. In

particular, since it was not possible to remove events according to each factories

closure the results obtained may have been altered by historical dependence in the

data. Therefore, more precise data about the factories and IED events may greatly

improve the accuracy of the results obtained with the DPMM. Another approach

to improve the research of Chapter 4 would be to include a temporal component

inside the model. Specifically, temporal dynamics have been treated implicitly with

the use of factory closure timestamps. An explicit temporal treatment within the

DPMM could allow more interesting findings to be obtained concerning the space-

time evolution of the PIRA.

For the final research chapter of this thesis an important topic across all branches
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of numerical studies has been explored. It was explained in Chapter 5 that data,

and the methods used to collect and analyse its contents, have undergone a rapid

evolution which is only set to increase in the future. In particular, with high volume

and velocity “Big Data” provides many opportunities to expand human knowledge

immensely in many different regards. However, pitfalls associated with analysing

large datasets must be carefully guarded against. This is especially relevant in areas

of critical importance, such as, terrorism studies whereby lives may be potentially

put at risk by pursuing poor policy. Nonetheless, it was shown in Chapter 5 that

tools can be constructed to provide information about terrorism automatically with

the additional benefit of real-time analysis.

Comparing event timings found from this automated tool and those from a man-

ually collected database, using the method of dynamic time warping, demonstrated

a good match. Moreover, utilising the term frequency - inverse document frequency,

there is evidence to suggest spatial information can also been obtained automatically

with some degree of accuracy. Less accuracy was found when comparing event de-

scriptions of the automatically and manually collected data. A possible explanation

for the fall in accuracy compared to temporal data is that the automatic data col-

lection method was only retrieving the first sentence of each online article. Due to

the varying nature of website designs it can be difficult to find a single algorithmic

approach to finding article text. Therefore, there is scope to extend the research in

Chapter 5 by employing more sophisticated natural language processing techniques

to enhance the detail of automated database recordings.

This thesis has highlighted several significant contributions mathematical mod-
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elling can make to the field of terrorism research. However, it is also necessary to

consider the limitations of the types of approaches which have been presented.

One of the major problems surrounding modelling techniques is accurately detect-

ing the underlying distribution of the data being analysed. In particular, throughout

each chapter in this thesis assumptions have been made concerning the precise ana-

lytical forms of the models studied. For example, within the Hawkes point process

model an exponentially decaying kernel is used to model PIRA and AS attacks. Al-

though the model choice is supported by current literature and statistical techniques

other models may exist which have even greater potential to capture terrorism dy-

namics. Hence, the research in this thesis could likely be advanced by considering

more general methods of model fitting. In particular, the field of machine learning

is presently a very active area of research which can provide methods for finding

generalised model frameworks which adapt to data inputs.

In addition to choosing the best models in each chapter the research outcomes also

depend on the data utilised. When conducting terrorism research using only open

source data there are limitations on attainable insights. This observation was made

in relation to the DPMM in Chapter 4, where, allocating IED factories to sources was

not possible. A similar situation may also be present in other chapters. In particular,

the Hawkes process models the ability of past events to trigger future occurrences.

Without further information attributing attacks to particular cells within PIRA or

AS it was not possible to determine precisely which events were related. With this

extra detail more refined research outcomes could have been achieved highlighting

the size of the influence of different parts of terrorist groups on the overall attack
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profile. Such findings have the potential to enable counter-terrorism practitioners

to allocate resources most efficiently and effectively. These types of issues would

likely be overcome in a real world scenario, where, practitioners have access to more

detailed closed source datasets.

Alongside the data analysis and modelling results in each chapter is a discussion

of the research outcomes. When presenting these discussions the arguments pre-

sented mainly focused on linking the quantitative findings to the present literature.

However, the models and techniques developed in this thesis may have lead to new

insights if considered from a social science perspective. An example of the unique

insights offered by this thesis was observed in Chapter 2. Specifically, the change

point detection methods developed using the Hawkes process model resulted in new

dates for the phases of the PIRA. Therefore, engaging more widely the social sci-

ence community with the research presented in this thesis would likely lead to much

greater depth from the analysis outcomes.

In concluding this thesis it is hoped that the mathematical modelling utilised

to study many different aspects of terrorism, terrorist groups and counter-terrorism

strategies has demonstrated that mathematics has great potential in this field of

study. Going forward the expansion of this type of approach in terrorism and crime

science literature will enhance many future research endeavours and provide new and

profound insights. In addition, extending these types of mathematical approaches

beyond the confines of academia and into the tools employed by practitioners will

likely prove to be highly beneficial and offer valuable depth of understanding.
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In this paper a unique dataset of improvised explosive device (IED) attacks

during “The Troubles” in Northern Ireland (NI) is analysed via a Hawkes process

model. It is found that this past dependent model is a good fit to IED attacks

yielding key insights about the nature of terrorism in NI. We also present a novel

approach to quantitatively investigate some of the sociological theory surrounding

the Provisional Irish Republican Army (PIRA) which challenges previously held

assumptions concerning changes seen in the organisation. Finally we extend our

use of the Hawkes process model by considering a multidimensional version which

permits both self and mutual-excitations. This allows us to test how the PIRA

responded to past IED attacks on different geographical scales from which we

find evidence for the autonomy of the organisation over the six counties of NI

and Belfast. By incorporating a second dataset concerning British Security Force

(BSF) interventions, the multidimensional model allows us to test counter-terrorism

(CT) operations in NI where we find subsequent increases in violence.

1 Introduction

Terrorism is a major international concern which shows little signs of abating.

There is therefore great importance in developing scientific approaches to under-

stand the behavioural underpinnings of terrorism in order to prevent and disrupt

these activities. The ability to gain such insights through real world experimen-

tation is questionable due to the risks associated with unsuccessful approaches.

One of the cheapest and most adaptable methods of research in this area is

mathematical modelling [33]. Such modelling provides not only a vast number

of well-developed tools and techniques but also the opportunity to experiment

freely without unnecessary safety risks or ethical concerns.

Several advances have been made in this field of late, leading to a vari-

ety of conclusions with policy making implications. Braithwaite and Johnson [7]

studied the interactions of insurgent attacks and Coalition counter-insurgency op-

erations in Iraq. The authors were able to conclude from space-time patterns

that indiscriminate counter-insurgency operations resulted in a backlash effect by

insurgents whilst discriminate operations had the opposite effect. Along similar

lines Lewis et al. [29] apply self-exciting point process models to study violent

civilian deaths in Iraq during the U.S.-led invasion. They found a two to six
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lines Lewis et al. [29] apply self-exciting point process models to study violent

civilian deaths in Iraq during the U.S.-led invasion. They found a two to six

month timescale for violent deaths which correspond to a series of related at-

tacks. Hence, quick interventions could help to drastically lower the problem of

violent deaths in Iraq. In a similar spirit a study by Mohler [35] found evidence

that terrorist attacks in Northern Ireland followed a pattern of self-excitation

lasting 9.3 weeks. The line of investigation taken by these sorts of studies have

important consequences for tackling the types of terrorism seen in NI where in-

surgency and civilian deaths were major issues [20]. These approaches marked a

large departure from political science-inspired methodologies that generally linked

the quantity of terrorist attacks to “root causes” like socio-economic indicators

that are quasi-static and fail to provide insight into the triggers needed for a

strategic intervention.

The methods employed in these terrorism studies [7, 20, 29, 35] along with

several others [14, 22, 55] share similarities with the modelling of spatio-temporal

phenomena in crime pattern theory [8]. In that context it is assumed that crim-

inal activity forms a series of quantifiable patterns at the macro scale [16, 44].

Mathematical descriptions of these patterns, or more generally ‘crime hotspots’,

can be explored and exploited in real-time. By targeting susceptible areas with

preventative measures there is potential for great reductions in subsequent crime.

This approach has since been shown to be effective in a number of real-world

applications including policy [2, 17, 31], and predictive policing [6, 27].

It is from this point of view that we aim to approach the issue of terror-

ism during the conflict in NI. In this paper we seek to add to the literature

concerning spatio-temporal patterns of terrorism by studying a unique dataset

of IED attacks in NI between 1970-1998. Specifically for the case of NI this

paper is focused on the group known as the Provisional Irish Republican Army

(PIRA). Although there are extensive historical accounts and a growing body of

social science research related to this group [3, 19, 25, 26, 51] there is a gap

for a wider scope of mathematical investigations of their activities.

The PIRA was predominantly formed from members of the Catholic commu-

nity in NI [56] and saw itself as “the legal representatives of the Irish people,

[who] are morally justified in carrying out a campaign of resistance against for-

eign occupation forces and domestic collaborators” [39]. The active period of the

PIRA between 1969-1998 can be traced out in five phases [3]. These phases and

their historical context are described below.

• 1969-1976 - Phase 1: During this phase the organisation was arranged in a

military style having brigades, battalions and companies.

• 1977-1980 - Phase 2: A cell-based structure was adopted. This approach was

characterised by PIRA fracturing into small groups of members known as Ac-

tive Service Units (ASUs) [25]. This approach aimed to improve the organisa-

tion’s secrecy by making it harder to infiltrate.

• 1981-1989 - Phase 3: The Republican campaign moved into the political arena
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through the Sinn Féin party who now had similar levels of prestige as their

militant wing, PIRA.

• 1990-1994 - Phase 4: Secret meetings involving top ranking PIRA leaders

negotiating a ceasefire with the British Government.

• 1995-1998 - Phase 5: Peace talks announced with a ceasefire ratified in the

Good Friday Agreement signalling for many the end of “The Troubles”.

During its active phases the PIRA successfully developed a large arsenal of

IEDs which it employed with devastating effects for both the security forces and

civilians [53]. In particular, the impact of violence was felt heavily by the civil-

ian population which constituted approximately 54% of all deaths [20]. Moreover,

the deaths caused by the NI conflict were highly concentrated in Belfast, where

approximately 47% of fatalities occurred [20].

In analogy to the studies of Braithwaite and Johnson [7], Lewis et al. [29] and

Mohler [35] we make an attempt to understand the driving forces behind IED

attacks in NI. Our extension to the present literature revolves around the access

we have to a unique dataset of IED events which allows us to study a specific

type of terrorist activity in great detail at a fine temporal scale. The dataset we

use provides ample evidence for any past dependence on insurgent attacks and

this study attempts to understand these dynamics in greater detail. The model

chosen to explore this question is a Hawkes self-exciting point process. It makes

use of a response function (or kernel) which holds information pertaining to the

long-term influence of previous events and has been shown to well represent a

number of past dependent processes including gang related violence [18, 24, 52],

email exchanges to infer organisation leadership [21], burglary [34, 50] and violent

deaths in conflicts as previously mentioned [29]. It also provides an opportunity

to examine each of the five phases of PIRA activity separately, as is done in

Model 1 and all subsequent models, offering direct quantitative insights into how

the group behaved and reacted through the stages of the Republican campaign.

As well as studying temporal patterns of insurgency Lewis et al. [29] also

compare Hawkes processes in different regions of Iraq to understand spatial in-

fluences seen during waves of violent attacks. Similarly in this paper we un-

dertake spatial disaggregation of PIRA attacks according to the six counties of

NI and we also separate Belfast due to its significance during “The Troubles”

as discussed above [20]. This additional spatial information is to yield insights

about the extent to which PIRA units in NI acted autonomously as suggested

by Horgan and Taylor [25]. This latter study forms the theoretical basis for

Models 2 and 3.

The PIRA did not act in isolation however, and in this contribution, we

also aim to explore the interplay between PIRA and the British Security Forces

(BSF) by employing a multidimensional Hawkes process. Previous studies into

British counter-terrorism (CT) strategies in NI [12, 28, 40] found evidence that

the actions of BSFs could undermine the effort to curb Republican terrorism

and even result in a negative backlash increasing the number of attacks. For

instance, in 1988 an operation by BSFs resulted in the deaths of three PIRA
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members in Gibraltar. An analysis of subsequent PIRA attacks found positive

increases related to the incident 36 months after it occurred [28]. The inclusion

of additional mutually exciting terms in the Hawkes process has been seen to

represent other interacting systems in the past including multiple gang networks

[50], but, to the best of our knowledge, has yet to be applied to yield insights

into CT strategies.

To test the CT strategies employed in NI two types of events will be assessed

in this paper. Firstly, from the discussion above concerning the background of

the PIRA it was pointed out the organisation drew the majority of its volun-

teers from the Catholic community [56]. Consequently deaths of Catholic civilians

resulting from BSF operations may be expected to prompt a significant retalia-

tion from the PIRA. We investigate this effect in Model 4. Moreover, following

the case study findings of Lafree, Dugan and Korte [28], as discussed above, the

backlash effect of BSF actions which killed PIRA members will be considered

in Model 5. With such insights we aim to uncover a useful methodology by

which CT practitioners and academics can judge the efficacy of past strategies

to combat terrorism.

Alongside the contributions this paper aims to make concerning the use of

the Hawkes process we also present a novel approach to deal with the issue we

refer to as edge effects. This effect is the result of events outside the observa-

tion period influencing those inside [46]. Whereas in previous studies using the

Hawkes process the data analysed is in a single time series [18, 29] with the

segmentation of our data according to the five phases of PIRA it is possible

that events in previous phases may have influenced those in future ones. As a

consequence of this a moving time window approach was considered whereby the

data points from adjacent phases were combined to find the quantitatively best

fitting model.

The structure of presentation will be in 6 sections. In Section 2 a discussion

of the datasets used for this paper will be provided. Then in Section 3 the

mathematical models that have been studied will be introduced in more detail.

This section will also contain further information about the method used to ob-

tain model parameters. Next in Section 4 the numerical results of the paper will

be provided. This will begin with a description of the novel approach we have

taken to examining edge effects in the data analysed. Alongside the results a

discussion will be provided about how the model parameters can be interpreted.

Finally in Section 5 the findings of the paper will be discussed with their po-

tential impacts for both the academic community and practitioners demonstrated

as well as a brief overview of future research topics.

2 Data

This paper utilises a unique dataset of PIRA IED events from 1970 to 1998.

This dataset was collected through an exhaustive coding of newspaper reports

and other open source outlets. Please see Asal et al. [3] for a full outline of

the data collection and verification process. In total, the dataset spans 5461 IED
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Table 1. PIRA IED Dataset Event Fields

Field Values

Date Year (1970-1998)/Month (1-12)/Day (1-31)

Location {Antrim, Armagh, Belfast, Derry, Down, Fermanagh, Tyrone}

Target {Political, Military, Police, Paramilitary,
Government, Transport, Civilian, Foreign}

Table 2. BSF Dataset Event Fields

Field Values

Date Year (1970-1976)/Month (1-12)/Day (1-31)

Religion {Catholic, Protestant}

Status {Civilian, British Security, Republican Paramilitary,
Loyalist Paramilitary, Irish Security}

Organisation Responsible {British Security, Republican Paramilitary,
Loyalist Paramilitary, Irish Security, Unknown}

Geographical Location {Belfast North/East/South/West,
County Antrim/Armagh/Derry/Down/Fermanagh/Tyrone,
Derry, Britain, Europe, Republic of Ireland}

events. For each event there are numerous details concerning the IED attack and

groups involved. Details of the event fields relevant to our study are given in

Table 1. It should be noted here that when discussing BSFs we refer to both

military and police targets. For further details on all the information contained

in the dataset the reader is referred to Asal et al. [3].

Alongside the study of PIRA related attacks in isolation, an additional inves-

tigation was made into how BSF attacks impacted upon further PIRA attacks.

The dataset concerning BSF attacks was obtained from the Conflict Archive on

the Internet (CAIN) [53]. In Table 2 the event fields and possible values for

this dataset are presented. In this study only the events which occurred in NI

were considered. There were a total of 131 Catholic civilian deaths recorded in

the final dataset of BSF events. Of these entries 78 were found to correspond

to Phase 1 of PIRA activity. This lead to a only a small number of data

points being available in the other phases with 12, 34 and 7 points for Phases

2, 3 and 4 respectively and 0 for Phase 5. Due to this distribution of data,

results were only obtainable for Phase 1. The number of PIRA IED events in

Phase 1 targeting BSFs was 144. See Sections 4.8 and 4.9 for further details.
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3 Methodology

3.1 Poisson Process

The first model studied serves as a baseline to compare with the Hawkes process

[18]. The specific baseline model tested was a Poisson process model specified

via a single parameter N/T, where N = number of events and T = time of the

final event measured from time 0 [47]. The Poisson process assumes that each

event is independent and thus that the system has no memory of attacks in

the past.

3.2 Univariate Model

Moving to a more complex model this paper will consider the influence of self-

excitations of PIRA IED attacks. The method we used is based on studying

an intensity function which describes the rate of IED incidents as a function of

time and conditional on the past history of events. The intensity function takes

the following form [23] for a given set of event times {ti}Ni=1.

λ(t) = µ+ k0

∑

t>ti

g(t− ti;ω) (3.2)

The response function g is taken to be of the form g(t) = ωe−ωt. The expo-

nential form for the response function is routinely used in studies of crime and

insurgency data [18, 29, 52]. It makes good intuitive sense for events which are

clustered in time and allows for a physical interpretation of each component of

the intensity function. In the example of IED attacks the constant µ can be

considered as a background rate at which IED events occur. After an initial

IED attack there may be further attacks, for example, a PIRA unit may wish

to follow up on the success of a previous attack, and the constant k0 captures

the jump in the IED event rate. However, an indefinitely higher rate is unre-

alistic and eventually the rate will return to the background rate. The rate of

decay is controlled by the term ω. The additional ω preceding the exponential

term acts as a normalisation constant so that the jump factor multiplied by the

response function can be viewed as the number of offspring after an event and

the density of the time interval for the increase in activity [46].

Parameter estimation for the intensity function can be undertaken via the

method of maximum likelihood estimation (MLE) [42]. This process involves find-

ing the parameters which maximise the following log-likelihood function derived

by Rubin [48]:

log L({ti};µ, k0,ω) =
N∑

i=1

log(λ(ti))−
∫ T

0

λ(t) dt,

where tN = T will be taken as the final time of observation in a similar ap-

proach taken by Ozaki [42]. For the form of the intensity function given in
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(3.2) the log-likelihood becomes

log L =

N∑

i=1


log


µ+ k0

∑

ti>tj

ωe−ω(ti−tj)


+ k0

(
e−ω(T−ti) − 1

)

− µT.

A number of assumptions are built into this formulation. First, all parame-

ters used in the intensity function should be positive [29] to ensure the model

remains realistic. Second, the set of points {ti}Ni=1 should be measured from

time zero. However, since the Hawkes process depends on the infinite past, this

assumption is not achievable in a real world setting and it may be difficult

to eradicate the influence of events outside the observation period on those in-

side [46]. More details on how this problem was handled for this paper will be

discussed in Section 4.1.

A further assumption is that the set of times should be unique [30]. Our

dataset contains several simultaneous events and thus to satisfy the requirement

for uniqueness, events in the same county, or multiple events in Belfast, on the

same day were regarded as a single event. However, to avoid losing too much

detail, events in different counties, or events inside and outside of Belfast, on

the same day were distinguished via the addition of a random timestamp (as

in Bowsher [5]). This is justified by looking at the command and functional

structure of the PIRA which reveals that at the county and Belfast levels IED

attacks were fairly autonomous [25].

Finally, a restraint on the response function g ensures that the model is non-

explosive (see Varadhan [54] for further details concerning explosive stochastic

processes). This assumes that the integral of g over t should be strictly less

than unity [42]. Our choice of g satisfies this condition.

3.3 Multidimensional Model

After examining the past dependent nature of IED attacks based on self-excitations

the second type of model investigated will also include mutual-excitations. For

example, such models will be used to consider the influence of PIRA attacks

and BSF attacks on further PIRA attacks.

The multidimensional Hawkes process model can be defined in a similar way

as was done for the one-dimensional case. Here, with two adversaries, we require

a two-dimensional model. Now there are two sets of event times which will

be labelled {ta}Na=1 and {tb}Mb=1 and two counting processes, Nr(t), r ∈ {1, 2},
which form a two-dimensional counting process N(t). Each individual process has

intensity function defined by [23]

λr(t) = µr + k0

∑

t>ta

g(t− ta;ω) + s0
∑

t>tb

h(t− tb;ν), (3.3)

where the two response functions are defined by g(t) = ωe−ωt and h(t) = νe−νt.
The form chosen for the response functions is chosen by analogy to the research

of Short et al. [50]. In particular, in extending the work of Egesdal et al. [18],
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to study interactions between multiple gangs, results were obtained indicating

that exponential response functions may prove useful to study mutual-excitations

between gangs.

Similar to the univariate case described in Section 3.2 we can interpret the

model in a real world setting. In the case of modelling influences on PIRA

attacks one could, for example, take event times {ta} to represent times of

PIRA IED attacks and times {tb} as BSF attacks. The background rate µr,

jump rate k0 and response function g have the same interpretation as that given

in the one-dimensional case. Similarly the parameter s0 represents the jump in

IED attacks following a mutual-excitation, such as, retaliation against a BSF

attack whilst ν controls the temporal scale over which this mutual-excitation

persists. The parameter ν also acts as a normalisation constant for the response

function h so that the product of the jump factor s0 and the response function

h can be interpreted as the number of offspring events and the density for

the increase in activity following a mutually exciting incident [46]. In this two-

dimensional system the second intensity function would model the influence of

past BSF and PIRA IED attacks on BSF attacks.

To compute parameter estimates the MLE can again be employed. This MLE

takes the following form [50]

log L({ta};µ,k0,ω,s0,ν) =
N∑

a=1

log(λ1(ta))−
∫ T

0

λ1(t) dt,

where, T = max{maxa{ta},maxb{tb}}. A similar formula holds for λ2(t) and {tb}.
As in the one-dimensional case, all parameters must be positive [23] to make

the model realistic and events in the infinite past should be considered [46].

Likewise, event times must be unique [30]. The condition necessary for the model

to be non-explosive is reformulated in the higher dimensional case. In particular,

consider the 2x2 matrix G whose entries are formed of the integrals
∫ ∞

0

grs(t) dt, r, s ∈ {1, 2},

for each response function occurring in the definitions of λr. Then the condition

for the model to be non-explosive is that the spectral radius defined as

ρ = max
i
{|ei|} < 1,

where ei represent the eigenvalues of G [9]. Again this assumption has been

checked and found to be satisfied for the models studied in this paper with

the exception of Model 5 (see Table 3 below) which has a spectral radius of

1.0124. This case should therefore be treated with care and may be the result

of a small dataset for this model (see the model analysis in Section 4.9 for

further details).
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Table 3. Models

Model Number Event Times Interpreted Dataset

0 Number of {ti} = IED events in NI PIRA Events

1 {ti} = IED events in NI PIRA Events

2 {ti} = IED events in Belfast PIRA Events

3 {ta} = IED events in Belfast PIRA Events
{tb} = IED events in the six counties of NI PIRA Events

4 {ta} = IED events targeting BSFs in NI PIRA Events
{tb} = BSF events which killed Catholic civilians BSF Events

5 {ta} = IED events targeting BSFs in NI PIRA Events
{tb} = BSF events which killed PIRA members BSF Events

3.4 Table of Models

Having given the general form of the models in this paper the specific models

that were studied are summarised in Table 3. In particular, this table presents

an interpretation of the event times used in each model. For clarity the datasets

being studied in each model are also listed corresponding to the information

in Tables 1 and 2. Times ti correspond to the univariate model presented in

Section 3.2 whilst times ta and tb correspond to the multidimensional model

from Section 3.3. In Section 4, where the numerical results of this paper are

provided, the order of presentation will correspond to the ordering of models

shown in Table 3.

3.5 Computational Methodology

Finding the parameters which maximise the log-likelihoods can be undertaken in

numerous ways [42]. For this paper optimisation of the log-likelihood functions

were undertaken in the Python programming language using the SciPy Optimize

package Nelder-Mead [37, 49]. The Nelder-Mead algorithm was chosen based on

previous observations of its effectiveness when applied to point process models

[45] and also its performance during preliminary coding. It should be noted at

this point that this optimisation procedure finds the minimum value, hence the

equivalent problem of finding the minimising parameters of − log L was consid-

ered. To obtain further computational efficiency a recursive algorithm described

by Liniger [30] was used to compute values of the intensity function.

Another important point, which is made by Egesdal et al. [18], is that due

to the nonlinear nature of the minimisation it is not guaranteed that a global

minimum will be found. Therefore, there is a need to begin the optimisation
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procedure at multiple points and take the parameters yielding the lowest value

of − log L and subject to the conditions given earlier.

Having derived each model’s parameters we then go on to assess its goodness

of fit. To determine the overall model fit residual analysis was employed. The

basic ideas of this approach can be found in Brown et al. [10] and are also

summarised below.

Consider a point process formed of the set of event times {ti} with intensity

function λ. Perform the following integrals which transform the set {ti} to the

set {τi}

τi =

∫ ti

0

λ(t) dt.

If the model is a good fit then the residuals {τi} are independent and dis-

tributed according to a stationary Poisson process with unit rate [43]. Therefore,

the inter-arrival times given by

Yk = τk − τk−1
are exponentially distributed. Setting τ0 = 0 [10] and applying these procedures

for the intensity function given in (3.2) the following formula is obtained

Y1 = µt1,

Yk = µ(tk − tk−1)− k0

k−1∑

i=1

e−ω(tk−ti) − e−ω(tk−1−ti), 1 < k ≤ N.

If the inter-arrival times are exponentially distributed then

Uk = 1− e−Yk (3.5)

form a set of independent uniform random variables over [0, 1). Therefore, to

test the goodness of fit of the Hawkes process it remains to determine if the

corresponding Uk do indeed come from a uniform distribution.

A quantitative test that can be used to check this assumption on the distri-

bution of the Uk values is the Kolmogorov-Smirnov (KS) test [32]. The KS

test in this case works by comparing the value of the test statistic Dn =

maxk

(
|Uk − k−1

N |, | kN −Uk|
)

[57] to a critical value Dα (see O’Connor and Kleyner

[41] for a table of critical values). Statistical significance is obtained if the con-

dition Dn < Dα is found to hold in which case there is evidence to suggest

goodness of fit of the model.

Another method we used, which compares the fit of different models, is the

Akaike Information Criterion (AIC) [1]:

AIC = 2k − 2 log L,

where, k is the number of parameters being fitted in the model and log L is

the maximum of the log-likelihood function. The model yielding the lowest value

for AIC is deemed the better fit: more parameters are penalised whilst a greater

value for the log-likelihood is rewarded. Burnham and Anderson [11] point out

the AIC difference is not a significance test in the sense of critical values and
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requires some judgement. For general guidance Burnham and Anderson [11] sug-

gest that 0 − 2 shows little difference between models, 4 − 7 considerably more

evidence for a difference and > 10 is classified as a significant difference. It is

important that the AIC should only be used to compare models which are fitted

with the same dataset [11], as was done for the comparisons in this paper.

4 Numerical Results

4.1 Determining Phase Boundaries

Initially we will be focused on PIRA IED attacks across all of the counties of

NI and Belfast. Each phase of the events as outlined in Asal et al. [3] will

be explored separately to offer a quantitative description of the changes in the

Republican campaign.

The phases may not be treated in isolation, however. As discussed in Sec-

tion 3.2, the historical dependence of the Hawkes process means that events

outside of the observation period may influence those inside leading to spurious

parameter values [46]. Thus, Phase 1 may influence events in Phase 2, Phase 2

may influence Phase 3 and so on. To avoid this edge effects issue, a systematic

approach is required to deal with the phase boundaries.

We propose a novel approach to examine the impact of edge effects (see

also Nichols and Schoenberg [38] for another similar approach in the field of

seismology). Specifically, a moving time window was used to include the influence

of events from Phase i in Phase i + 1 for i = 1, 2, 3, 4. This method is best

illustrated via example. Consider Phases 1 and 2. First, we calculated the MLE

parameters that result from the dataset consisting of Phase 2 only. Then adding

one point from Phase 1 the MLE parameters were recalculated. This was then

repeated with two points from Phase 1 and so on until the MLE parameters

for all the data in Phases 1 and 2 combined had been calculated. Finally we

determined which of these models provided the best fit compared to the others

using the KS test. It was decided that a more positive difference ∆ = Dα −
Dn gives more certainty that statistical significance has been reached. Thus the

choice of the best fitting model, and hence the most sensible phase boundaries

to use, was decided based on maximising ∆.

Since Phase 1 was effectively the start of the conflict, and the beginning of

the PIRA as an organisation, we do not assume there will be any substantial

effects from previous events outside the dataset. Therefore, the boundaries for

Phase 1 were unchanged from their original definition as in Asal et al. [3].

In Table 4 the number of points that were required to maximise the difference

between the critical value and KS test statistic are given for the remaining four

phases. It can be seen that very few points were required to fix the correct

mathematical boundaries for Phases 2 and 3 and it was found that with so

few points there was little change in the parameter values compared to the

unadjusted phases. However, in Phase 4 it was necessary to include 65% of

data points from Phase 3 which significantly changed the parameter values from
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Table 4. Edge Effects Results

Phase Number of Data Points Added New Boundary

1 - 27/01/1970

2 11 24/10/1976

3 11 22/08/1980

4 494 11/4/1984

5 41 22/5/1994

those found for the original Phase 4 boundary. This is illustrated clearly by the

plots in Figure 1 which show the variation in the values of ∆ and the three

model parameters as each data point is added from Phase 3 to Phase 4. A

similar observation was also made for the case of edge effects in Phase 5.

The boundaries found from this edge effects analyses will be used throughout

the remainder of this paper. This ensures consistency and enables comparisons

between models. From here on in reference to a model’s MLE parameters means

the parameters found using the boundaries stated in Table 4.

4.2 Comparing Models

4.3 Table of Results

For brevity, all model results are listed concurrently for each phase in Tables

5 to 7, but care should be taken when making a comparison of the different

models. A comparison may be made within each of the three investigations:

PIRA events across NI, PIRA events in Belfast and outside, PIRA and BSF

events in NI, but not directly between them, except for model fit. See Section

3.5 for more detail.
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Figure 1. Figure (a) shows the values of ∆ = Dα − Dn for each point added from
Phase 3 to Phase 4. Figures (b)-(d) show the corresponding changes in the MLE
parameter values.
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Table 5. PIRA events across NI.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
Model 0 µ 0.3020 0.2541 0.2250 0.3028 0.0957

AIC 3359.6 1784.4 3834.3 5190.5 1079.7

Model 1 µ 0.0543 0.1721 0.0800 0.0597 0.0270
k0 0.8241 0.3233 0.6529 0.8040 0.7231
ω 0.0542 0.7685 0.0426 0.0316 0.0901

KS Test 0.0686 0.0528* 0.0465* 0.0343* 0.0455*
KS Critical 95% 0.0492 0.0701 0.0490 0.0396 0.1072
KS Critical 99% 0.0590 - - - -

AIC 3083.7 1717.6 3750.5 5004 987

* Significant at 95% level.

Table 6. PIRA events in Belfast and outside.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
Model 2 µ 0.0375 0.0397 0.0222 0.0175 0.0178

k0 0.7364 0.6456 0.7123 0.8766 0.5925
ω 0.0246 0.0298 0.0135 0.0103 0.0874

KS Test 0.0715* 0.0996* 0.0477* 0.0679** 0.0693*
KS Critical 95% 0.0726 0.1096 0.0878 0.0640 0.1626
KS Critical 99% - - - 0.0767 -

AIC 2015.1 967 1724.8 2707.8 556

Model 3 µ 0.0396 0.0299 0.0189 0.0099 0.0131
k0 0.6441 0.5783 0.7126 0.7449 0.3842
ω 0.0272 0.0339 0.0135 0.0138 0.1001
s0 0.0647 0.0949 0.0208 0.1085 0.2336
ν 0.7840 0.3976 1.1336 0.1099 0.1681

KS Test 0.0561* 0.0961* 0.0667* 0.0562* 0.1745**
KS Critical 95% 0.0726 0.1096 0.0878 0.0640 0.1626
KS Critical 99% - - - - 0.1948

AIC 2013.6 973 1726.1 2716.4 552.3

* Significant at 95% level. ** Significant at 99% level.

4.4 Model 0

For this model we look at just a Poisson process applied to IED attacks across

NI. Even this simple framework manages to capture a difference in rate across

the five phases, showing Phase 4 as having the highest probability of a ran-

dom event in a given time window with µ = 0.3028. This is in contrast to the

Hawkes process in Model 1 where Phase 2 is found to have the highest back-

ground rate whilst µ is much lower in Phase 4, suggesting that events in Phase

4 were heavily dependent on the past. Historical dependence is also seen for the

other phases since the background parameter values found for Model 1 are all

significantly lower than those of the Poisson process in Model 0. According to

the AIC comparisons Model 1 is also shown to provide a better model fit in

each phase.
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Table 7. PIRA and BSF events in NI.

Phase 1
Model 4 µ 0.0189

k0 0.1138
ω 0.9716
s0 1.0694
ν 0.0137

KS Test 0.1122*
KS Critical 95% 0.1133
KS Critical 99% -

AIC 1057.8

Model 5 µ 0.0212
k0 0.2411
ω 0.2757
s0 0.9774
ν 0.0087

KS Test 0.1205**
KS Critical 95% 0.1133
KS Critical 99% 0.1358

AIC 1070.4

* Significant at 95% level. ** Significant at 99% level.

4.5 Model 1

The next model studied was a Hawkes process with a single self-exciting term

applied to IED events across NI.

4.5.1 Goodness of Fit

Qualitative evidence for the model’s ability to represent the data is gained from

visualisation of the intensity function. In Figure 2 a plot of the intensity func-

tion over time for the Hawkes process in Phase 1 is presented. Here the peaks

and troughs of the model are seen to follow closely the patterns of event times

observed in the actual data.

The overall goodness of fit of Model 1 in each phase is determined via the KS

test results. The critical values for the 95% confidence level have Dα = 1.36√
N

[41].

For Phase 1 it was found that the KS test statistic exceeded the critical value

even when considering the 99% confidence level with Dα = 1.63√
N

[41]. Hence there

is insufficient evidence in this case to conclude that the model is accurately

capturing the dynamics of the data.

Although the KS test results for Phase 1 gave a negative result for the

model fit there is some evidence for goodness of fit in a KS plot. Following the

method outlined in Brown et al. [10] Uk, as defined in (3.5), is plotted against

the hypothesized cumulative distribution, evaluated at k−0.5
N . If Uk is indeed

uniformly distributed, the resulting graph should be a 45◦ line. The results of

performing this procedure are shown in Figure 3 for Model 1 in each phase

of the PIRA. Upper and lower bounds are also shown, obtained by plotting

the lines y = x ± Dα [13]. In cases where points do deviate from the best fit
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Figure 2. Top graphs show event times of IED attacks and the intensity function for
Model 1 in Phase 1. The bottom graphs are the same but only for the first 500
days.

line they still remain within or close to the error bounds, suggesting that the

Hawkes process generally represents the data well.

A final test is to inspect a plot of Uk+1 against Uk to ensure that the Uk

are independent [4]. If serial correlation occurs it is most likely to be between

adjacent time intervals, hence if these plots reveal some patterning it suggests

that the transformed times are not independent. The graphs in Figure 4 present

this analysis for each phase of the IED data. Although there is some patterning

occurring in the plots for Phases 1 and 4 overall these plots appear to show

little correlation between the neighbouring points of the sequence {Uk}. This

serves as reassurance that independence exists and the Hawkes process is a good

representation of IED attacks.

An AIC comparison to the simple Poisson process in Model 0 shows that

Model 1 provides a better fit in each phase.

4.5.2 Interpreting Parameters

The parameter ω−1 gives information concerning the average length of time a

series of attacks persists. In Phase 1 the average attack window is 1
0.0542 = 18.5

days. The rate of decay then has a large increase in Phase 2 yielding an av-
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(a) (b)

(c) (d)

(e)

Figure 3. Figures (a) - (e) show KS plots for Hawkes process Model 1 in Phases 1-5
respectively. Data points falling on the solid goodness of fit line imply a perfect model
fit with the dashed lines representing 95% error bounds.

erage time window of 1.3 days. The work of Asal et al. [3] points out that

in Phase 1 there was a more militaristic style of operation within the PIRA

which could suggest better attack coordination allowing for longer periods of re-

lated waves of attacks. However, this organisational structure made the PIRA

susceptible to infiltration by Security Forces thus prompting a shift to a cellular

based approach in Phase 2 [3]. One of the consequences of infiltration could

be reflected in the shorter attack window, which might be representing the fact
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(a) (b)

(c) (d)

(e)

Figure 4. Figures (a) - (e) show serial correlation plots for Hawkes process Model 1
in Phases 1-5 respectively. A random dispersion of data points indicates goodness of
fit of the model.

that many PIRA members were imprisoned [19], thus, there would have been

fewer members to carry out attacks. In Phase 3 the attack window becomes

23.5 days. This phase saw a resurgence of violence by the PIRA with Moloney

[36] describing the 1980’s as a period of escalating violence similar to the “Tet

Offensive” launched by the People’s Army of Vietnam in 1968. In particular, the

decay rate found could represent the PIRA using sustained attacks to weaken

British resolve to remain in NI. This also links to the PIRA objectives de-

scribed in the organisation’s Green Book [39]. One of these objectives was to
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use a “bombing campaign aimed at making the enemy’s financial interests in our

country unprofitable”. Another objective was to wage a “war of attrition against

enemy personnel which is aimed at causing as many casualties and deaths as

possible so as to create a demand from their people at home for their with-

drawal”.

Phases 4 and 5 then show an increasing trend for the decay rate. In Phase

4 the average time window for attacks is 31.6 days and in Phase 5 it is

11.1 days. These periods were characterised by secret meetings and negotiations

that eventually led to the Good Friday Agreement [3]. The PIRA used IED

attacks as a bargaining tool with the British Government [3] and as noted by

Coogan [15] PIRA had the ability to “turn ... bombing[s] on and off like a

tap”. So these shortening periods of IED usage may have been the PIRA using

its capabilities as a way to achieve leverage with the British Government during

peace negotiations rather than for a war of attrition.

The parameter µ can be interpreted as the background rate at which new

events randomly occurred. The trend appears to be for the parameter to increase

from Phase 1 to 2 and then fall in the remaining three phases. The rise in

Phase 2 may be related to the fact that the organisation of PIRA was shifting

and hence with less control members were conducting attacks more randomly.

However, as the “Tet Offensive” campaign began in Phase 3 attacks became

more systematic. Finally de-escalation of violence over Phases 4 and 5 explain

the decreases in the value of µ.

The final parameter k0 can be interpreted as the jump in the rate of events

following an initial event. Phase 1 has the highest value for this parameter. This

could again be a result of the military structure of the PIRA leading to more

flexibility to escalate events. As before the drop in Phase 2 may be related

to imprisonment of PIRA members hindering the extent to which attacks could

occur. The rise in Phase 3 may also be interpreted as PIRA adopting a “Tet

Offensive” approach and the Green Book objectives both explained above. The

final phases have relatively high values of k0. This can be linked to the PIRA

using IED attacks to demonstrate its capabilities during peace negotiations also

as described above.

4.6 Model 2

The work of Fay, Morrissey and Smyth [20] demonstrates that violence during

“The Troubles” was highly concentrated in Belfast. Thus in Model 2 we refine

the geographical scale of investigation to this region considering a single term

self-exciting Hawkes process applied to PIRA IED events.

4.6.1 Goodness of Fit

The results in Table 6 show that there is strong quantitative evidence for Model

2 providing a good fit to the data. The KS plot for the model in Phase 2 is

shown in Figure 5(a). It was not felt that the data stayed close enough to the
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(a) (b)

Figure 5. Figures (a)-(b) show KS plots for Hawkes process Model 2 in Phases 2 and
4 respectively. Data points falling on the solid goodness of fit line imply a perfect
model fit with the dashed lines representing 95% error bounds.

Figure 6. Serial correlation plot for Hawkes process Model 2 in Phase 4. A random
dispersion of data points indicates goodness of fit of the model.

line of best fit to conclude a good fit of the Hawkes process. For the model

in Phase 4 the KS test had to be conducted at the 99% level of confidence to

obtain a significant outcome. Despite this the KS plot for Phase 4, as shown

in Figure 5(b), gives some qualitative evidence for goodness of fit of the model

even at the 95% level. There also appeared to be some patterning in the serial

correlation plot for Model 2 in Phase 4 as shown in Figure 6.

4.6.2 Interpreting Parameters

Since Belfast was such a central stage in the NI conflict it is not too surprising

that the trends for the parameter values in Model 2 are similar to those seen

for Model 1. However, Model 2 in Phase 2 does not share the same significant

changes in parameter values as observed for Model 1. This implies the PIRA

attacks in Belfast were less susceptible to internal and external changes. One

explanation for this observation is the existence of a Northern Command Unit

being based in Belfast since 1969 [25]. As such it may have been easier for
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PIRA to quickly adapt to internal and external events, such as, the mass im-

prisonment of PIRA members which led to the organisation becoming cell-based

in Phase 2 [19].

4.7 Model 3

The next model considered was a multivariate Hawkes process. With this model

we aimed to capture the influence on PIRA IED attacks in Belfast based on

self-excitations of past PIRA attacks in Belfast and mutual-excitations of past

PIRA attacks in the six counties of NI.

4.7.1 Goodness of Fit

It can be seen from the results table presented earlier that the increased com-

plexity from using a multivariate Hawkes process in Model 3 does not yield a

better fitting model compared to Model 2. This may be due to the autonomy

of ASUs in the counties of NI and Belfast [25].

Nonetheless, in all but one case there is quantitative evidence for goodness

of fit of the models. For the model in Phase 5 goodness of fit was found

only after the KS test was conducted at the 99% level. The models in Phases

2, 3 and 5 did not have strong qualitative evidence for the goodness of fit

of the model as shown by KS plots in Figure 7. Nonetheless, the transformed

time data for each model appeared to be independent as measured by a serial

correlation plot.

4.7.2 Interpreting Parameters

From the parameter values presented in Table 6 more evidence is gained for

the relative autonomy of the Belfast Brigade from the other PIRA units. In

particular, it can be seen that the value of the jump from self-excitations, k0,

is much higher than that for mutual-excitations, s0. Whilst the opposite is true

for the decay rate of self-excitations, ω, and those of mutual-excitations, ν. This

suggests that the events in the six counties of NI had little impact on IED

attacks in Belfast and the impact they did have was short lived. Also it can

be seen that the self-excitation part of the model is very similar to that of the

Belfast only case in Model 2 suggesting that Model 2 is sufficient for studying

the internal dynamics of PIRA attacks in Belfast.

4.8 Model 4

In the final two models examined in this paper the focus will be on the in-

fluence of actions by BSFs in NI. These models are only examined in Phase 1

and on spatially aggregated data across NI due to a lack of data concerning

BSF attacks. The first of these models is a multivariate Hawkes process con-

sidering the influence on PIRA attacks against BSFs based on self-excitations
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(a) (b)

(c)

Figure 7. Figures (a) - (c) show KS plots for Hawkes process Model 3 in Phases 2,
3 and 5 respectively. Data points falling on the solid goodness of fit line imply a
perfect model fit with the dashed lines representing 95% error bounds.

of past IED attacks against BSFs and mutual-excitations of past BSF attacks

which killed Catholic civilians. The decision to study the impact of the deaths

of Catholic civilians resulted from the fact that the PIRA were heavily rooted

in the Catholic community [56]. In our datasets the number of IED attacks

targeting BSFs is 144 and the number of Catholic civilian deaths resulting from

BSF events is 78.

4.8.1 Goodness of Fit

Results of applying goodness of fit tests to Model 4 are shown in Table 7.

Quantitatively Model 4 appears to provide a good fit to the IED data. Qual-

itatively, however, it should be noted that the data points in the KS plot do

not lie on the line of best fit, as can be seen in Figure 8. Nonetheless, the

serial correlation plot, although not included here, does suggest independence of

the data points.



23

Figure 8. KS plot for multidimensional Hawkes process Model 4. Data points falling
on the solid goodness of fit line imply a perfect model fit with the dashed lines
representing 95% error bounds.

4.8.2 Interpreting Parameters

Interpreting the MLE parameter values for Model 4 it can be seen that BSF

attacks, which lead to the death of Catholic civilians, actually caused a backlash

in terms of leading to an increase in IED attacks. In particular, the jump

parameter, s0, is high compared to the other values seen in this paper implying

that following an incident involving the death of a Catholic civilian the PIRA

were likely to respond with a large increase in IED attacks targeting BSFs.

Also the decay rate of this increase in attacks, ν, is small suggesting a lengthy

period of increased violence equivalent to an average of 73 days. This prolonged

retaliation by PIRA may be seen as an attempt by the organisation to obtain

public legitimacy by acting as defenders of the Catholic population. Such results

also give support for the sort of findings made by Braithwaite and Johnson [7]

where less discriminatory counter-insurgency operations were found to result in

an increase in violence.

4.9 Model 5

The final model studied in this paper is similar to Model 4 except now the in-

fluence of BSF attacks which killed PIRA members is considered. In our dataset

there are 58 recorded incidents of BSF events resulting in PIRA member deaths.

4.9.1 Goodness of Fit

Goodness of fit test results are shown in Table 7. These results show that,

based on the AIC, Model 5 performs worse than Model 4 at modelling PIRA

attacks targeting BSFs. This result indicates that Catholic civilian deaths were

better predictors of a backlash by the PIRA. Moreover, the KS test is only

significant for Model 5 when considered at the 99% level. The KS plot for

Model 5, shown in Figure 9, suggests that the data points are not falling on

the line of best fit so there is not enough qualitative evidence to declare a
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Figure 9. KS plot for multidimensional Hawkes process Model 5. Data points falling
on the solid goodness of fit line imply a perfect model fit with the dashed lines
representing 95% error bounds.

significantly good fit. However, the serial correlation plot did suggest that the

data points were independent.

4.9.2 Interpreting Parameters

The parameter values for Model 5 also suggest an increase in violence against

BSFs following a BSF event leading to the death of a PIRA member. The

increase in the rate of IED attacks, given by s0, following such an operation

is high compared to other values seen in this paper and the length of time

this increase is sustained, given by ν, is quite long at an average of 115 days.

These observations may be the result of PIRA trying to revenge the death of

its members as well as demonstrating defiance. This is similar to the findings

of Lafree, Dugan and Korte [28] which suggested an increase in PIRA attacks

following BSF operations which killed PIRA members. When planning CT strate-

gies these observations, and similar ones for Model 4, imply that after a civilian

or terrorist death quick interventions are necessary to avoid long time periods

of increased violence.

5 Discussion

We began this paper by outlining the importance of mathematical modelling in

terrorism and stressing in particular the contributions such modelling could make

to improving CT responses. From a firm foundation of criminological theory con-

cerning spatio-temporal patterns of crime and a mathematical model known as a

Hawkes process we then proceeded to model IED attacks during the NI conflict.

The first step taken in this paper was to divide the IED dataset we used into

five phases corresponding to organisational changes within the PIRA as described

by Asal et al. [3]. Although this allowed for a greater depth of analysis it did

introduce the issue of edge effects where events in one phase influence those

in the next phase. To account for this a novel approach was found using a



25

moving time frame to incorporate events from the previous phase where an

improvement was then judged using the KS test. It was found that in Phases

2 and 3 very few data points were needed to achieve the best fitting model.

However in Phases 4 and 5 more significant edge effects were found. For each

phase new mathematical boundaries were fixed for the analyses in this paper.

Such findings raise interesting questions relating to the timing of tactical and

organisational shifts within the PIRA that may have previously been missed.

Having defined the phase boundaries of PIRA we then moved to analyse six

models aimed at capturing different temporal patterns of IED usage by the

organisation at different geographical scales.

Initially in Model 1 we examined the self-exciting nature of IED attacks across

the whole of NI. For this case it was found that the model outperforms a

simple Poisson process, defined by Model 0, as measured by the AIC. Moreover,

quantitative and qualitative evidence suggested that this model was capturing

the temporal patterns of IED attacks. With the model specified we were then

able to compare its predictions to historical accounts of the PIRA illustrating

how such models could be used in practise to determine how terrorist groups

respond to past events.

Being the center of much of the violence seen during “The Troubles” [20] we

then decided to refine the geographical scale to focus on Belfast. Here it was

found that there was quantitative and qualitative evidence to suggest the model

is good at capturing past influences on further IED attacks. In addition, a

study of the model parameters revealed a similar pattern to Model 1 although

with some difference in Phase 2. But again using historical accounts of the

PIRA we were able to account for this difference. This shows that by adjusting

the spatial scale it is possible to gain more refined information about a terrorist

organisation demonstrating the depth of insights that can be gained from Hawkes

process models.

Having studied univariate models the next model considered was a multidi-

mensional model which aimed to examine the interplay between IED attacks

in Belfast and those in the six counties of NI. It was found that the ad-

ditional complexity did not yield significant improvements over the self-exciting

model in Belfast only. However, it was found that this could be accounted for

by examining the autonomous nature of Active Service Units of the PIRA in

the counties of NI and Belfast. Hence this gives an example of how Hawkes

processes can also be used to uncover simultaneous influences on different com-

ponents of terrorist organisations over a range of spatial scales. Quantitative and

some qualitative evidence also exists confirming these models are capturing some

of the IED dynamics studied.

For the final two models our focus was on determining the effectiveness of

multidimensional Hawkes processes for testing CT strategies. The first of these

models was used to investigate how BSF attacks which lead to the death of

Catholic civilians influenced PIRA attacks. On the other hand the second model

examined the influence of BSF attacks leading to PIRA member deaths. The

former model proved to be a better fit for the IED data both in terms of a
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direct comparison using the AIC and using quantitative and qualitative goodness

of fit tests. Although with small datasets for this investigation some care should

be taken when drawing conclusions from these models. Despite this the param-

eter values for both models were consistent with previous research showing the

retaliatory nature of terrorist groups. This indicates that important lessons can

be learned from Hawkes processes concerning how terrorist groups will respond

to different events.

In conclusion, it is hoped that this paper has shown the adaptability of

Hawkes process models to study a range of areas within CT. For future re-

search it is planned to extend these models further using an explicit spatial

component as opposed to the implicit approach taken here. This should allow

further details concerning the patterning of PIRAs attacks to be uncovered and

also enable more depth to be gained concerning hotspots of terrorism during

the NI conflict. It would also be interesting to take a sociological point of view

on the results found here and in particular examine again the changes that

occurred in the PIRA to align theory with the mathematical phase boundaries

that we have found.
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