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A recent update of the World Health Organization 
(WHO) classification of brain tumors introduced mo-

lecular markers that add greater prognostic accuracy than 
histopathologic findings alone (1,2). Isocitrate dehydro-
genase (IDH) genotype and epigenetic 1p/19q codeletion 
are two key molecular markers. Patients with IDH wild-
type gliomas have a worse prognosis than those with IDH- 
mutant gliomas. Patients with 1p/19q uncodeleted gliomas  
have a worse prognosis than those with codeleted IDH-mu-
tant gliomas (3). The establishment of in vivo biomarkers 
that enable prediction of IDH and 1p/19q status would thus 
be relevant for patient management (4) and clinical trials.

Diffusion MRI is a potential method for provid-
ing such in vivo biomarkers. It enables assessment of the 

microstructure of the whole tumor at a relatively high spa-
tial resolution and is easily accessible. Diffusion-tensor im-
aging (DTI) is currently the most used method (5). DTI 
parameters such as mean diffusivity (MD) and fractional 
anisotropy (FA) correlate with changes in cellular density 
and in extracellular matrix features induced by glioma in-
filtration and growth.

Several studies aimed to grade gliomas with use of 
DTI. Most of these have demonstrated significantly 
lower MD values in high-grade gliomas (6–12), but 
the majority failed to differentiate WHO grade II gli-
omas from grade III gliomas due to overlapping MD 
and FA values. A limitation of the above studies is that 
the authors did not stratify patients according to IDH 
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Purpose: The primary aim of this prospective observational study was to assess whether diffusion MRI metrics correlate with iso-
citrate dehydrogenase (IDH) status in grade II and III gliomas. A secondary aim was to investigate whether multishell acquisitions 
with advanced models such as neurite orientation dispersion and density imaging (NODDI) and diffusion kurtosis imaging offer 
greater diagnostic accuracy than diffusion-tensor imaging (DTI).

Materials and Methods: Diffusion MRI (b = 700 and 2000 sec/mm2) was performed preoperatively in 192 consecutive participants 
(113 male and 79 female participants; mean age, 46.18 years; age range, 14–77 years) with grade II (n = 62), grade III (n = 58), or 
grade IV (n = 72) gliomas. DTI, diffusion kurtosis imaging, and NODDI metrics were measured in regions with or without hyper-
intensity on diffusion MR images and compared among groups defined according to IDH genotype, 1p/19q codeletion status, and 
tumor grade by using Mann-Whitney tests.

Results: In grade II and III IDH wild-type gliomas, the maximum fractional anisotropy, kurtosis anisotropy, and restriction frac-
tion were significantly higher and the minimum mean diffusivity was significantly lower than in IDH-mutant gliomas (P = .011, 
P = .002, P = .044, and P = .027, respectively); areas under the receiver operating characteristic curve ranged from 0.72 to 0.76. 
In IDH wild-type gliomas, no difference among grades II, III, and IV was found. In IDH-mutant gliomas, no difference between 
those with and those without 1p/19q loss was found.

Conclusion: Diffusion MRI metrics showed correlation with isocitrate dehydrogenase status in grade II and III gliomas. 
Advanced diffusion MRI models did not add diagnostic accuracy, supporting the inclusion of a single-shell diffusion-tensor im-
aging acquisition in brain tumor imaging protocols.
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diffusion MRI metrics correlate with IDH genotype. We tested 
the hypothesis that IDH wild-type lower-grade gliomas have 
foci of significantly lower diffusivity and higher restricted frac-
tion. In addition, we investigated whether advanced models such 
as NODDI and diffusion kurtosis imaging would offer greater 
diagnostic accuracy than DTI.

Materials and Methods

Participants
All participants gave informed written consent for the surgi-
cal procedure and this prospective study, according to the 
World Medical Association Declaration of Helsinki state-
ment for research involving human subjects. This prospec-
tive study was approved by the local institutional review 
board and performed between April 2012 and November 
2015. Patients were included in this study if (a) MRI with 
multishell diffusion was performed less than 2 weeks be-
fore surgery and (b) glioma was diagnosed with histopatho-
logic examination and molecular analysis. Patients who had 
previously undergone brain surgery were included. Exclu-
sion criteria were diagnosis of WHO I gliomas, ependymo-
mas, metastases, and other nonglial brain tumors and age 
younger than 12 years.

MRI Examination
MRI studies were performed with the same 3.0-T MRI unit 
(Magnetom Verio; Siemens, Erlangen Germany). Diffusion 
MRI was performed with the following parameters: repetition 
time, 15 seconds; echo time, 96 msec; eight volumes with b = 
0, 20 volumes with b = 700 sec/mm2, and 40 volumes with b = 
2000 sec/mm2; 64 axial sections; field of view, 256 3 256 mm2; 
and isotropic resolution of 2.0 3 2.0 3 2.0 mm3. The acquisi-
tion time for the diffusion MRI sequence was approximately 
20 minutes. The conventional MRI protocol included a 
T2-weighted turbo spin-echo sequence (repetition time msec/
echo time msec, 5420/106; 40 sections; field of view, 240 3 
240 mm2; voxel size, 0.47 3 0.47 3 3 mm3) and a T1-weighted 
magnetization-prepared rapid acquisition gradient-echo se-
quence (repetition time msec/echo time msec/inversion time 
msec, 1800/2.7/900; nominal isotropic spatial resolution of  
1 mm) before and after injection of a gadolinium-based contrast 
agent (Gadovist, Bayer Schering Pharma, Berlin, Germany; 0.1 
mL per kilogram of body weight).

Image Processing
Diffusion MR images were corrected for motion and eddy 
current distortions by using ExploreDTI (20), which also 
corrects the b matrix accordingly (21). The diffusion ten-
sor was estimated from each shell separately (b = 700 and 
2000 sec/mm2) as well as from both shells combined by us-
ing the nonlinear robust estimation of tensors by outlier re-
jection algorithm in ExploreDTI (22). With the same soft-
ware, the diffusion kurtosis tensor was estimated from both 
shells by using the robust extraction of kurtosis indexes with 
the linear estimation approach (23); mean kurtosis and KA 
maps were derived. The NODDI model was fitted to both 

Abbreviations
DTI = diffusion-tensor imaging, FA = fractional anisotropy, IDH = iso-
citrate dehydrogenase, KA = kurtosis anisotropy, MD = mean diffusivity, 
NODDI = neurite orientation dispersion and density imaging, ROI = 
region of interest, WHO = World Health Organization

Summary
Diffusion metrics from three models correlated with isocitrate dehy-
drogenase genotype in grade II and III gliomas. Advanced diffusion 
models did not add significant diagnostic accuracy. Diffusion-tensor 
imaging plays a role in the identification of those who may benefit 
from more aggressive treatments despite lacking high-grade features 
at neuropathologic examination.

Implications for Patient Care
 n Metrics derived from diffusion-tensor imaging, diffusion kurtosis 

imaging, and neurite orientation dispersion and density imaging 
correlated with isocitrate dehydrogenase genotype in grade II and 
III (ie, lower-grade) gliomas.

 n The results of diffusion-tensor imaging and multishell advanced 
models were comparable in the identification of those patients 
who may require more aggressive treatment due to worse prog-
nosis despite being classified as having a lower-grade glioma with 
neuropathologic examination.

 n Diffusion MRI has the potential to contribute to stratifying pa-
tients with lower-grade glioma in clinical trials.

genotype. Only the authors of recent retrospective DTI stud-
ies have stratified lower-grade gliomas by IDH and 1p/19q 
status. They have reported lower apparent diffusion coeffi-
cient and higher FA values in IDH wild-type astrocytomas 
(13) and oligodendrogliomas (14) but no significant differ-
ences between gliomas with and gliomas without 1p/19q loss 
(15). If confirmed in a large prospective study, these findings 
would expand the use of DTI in gliomas.

Other investigators have shown that advanced models 
with a high b value provide better performance than DTI 
with regard to glioma grading. Diffusion kurtosis imaging 
(16) parameters, most commonly mean kurtosis and kurtosis 
anisotropy (KA), can help characterize the non-Gaussian dif-
fusion contribution. Higher mean kurtosis values have been 
reported in high-grade compared with low-grade gliomas 
(17,18). Alternatively, multicompartment models have been 
proposed to improve specificity to brain microstructure by 
measuring the diffusion of water molecules in different com-
partments. One such model is neurite orientation dispersion 
and density imaging (NODDI) (19). NODDI separates the 
contribution of three main tissue compartments where water 
diffusion is restricted, hindered, or free. NODDI parameters 
such as restriction fraction, isotropic fraction, and orienta-
tion dispersion index might be more sensitive to glioma mi-
crostructure than are conventional DTI metrics. A multishell 
acquisition protocol is required for application of advanced 
diffusion models, with the drawback that it increases imag-
ing time. Therefore, it would be important to assess whether 
advanced models with high b values would also be beneficial 
in stratifying lower-grade gliomas according to IDH status.

Our study of a large population of patients with gliomas 
was conceived with a prospective design to confirm whether 
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between the groups defined according to histo-
pathologic characteristics and genetics. Because 
the latter are provided for a single sample per 
participant, one ROI mean value per diffusion pa-
rameter had to be chosen in each participant. To 
reflect what is routinely done in neuropathologic 
examination, where the most aggressive compo-
nent of the tumor is taken into consideration, 
and on the basis of the biologic interpretation of 
diffusion MRI parameters, we selected the maxi-
mum values for restricted fraction, isotropic frac-
tion, orientation dispersion index, FA, mean kur-
tosis, and KA and the minimum value for MD. 
The same approach was followed in previous DTI 
studies on this topic (14,15).

Neuropathologic Examination
Surgery was performed by a team of three board-
certified neurosurgeons as previously described 
(25). Diffusion MR images were available on 
a neuronavigation system (Brainlab, Munich, 
Germany). Hyperintense foci at diffusion-
weighted imaging were sampled in all patients. 
One board-certified neuropathologist made all 
histomolecular diagnoses (B.F., with 12 years of 
experience). Tumor grade was determined ac-
cording to the 2007 WHO classification (26). 
An IDH-1 mutational analysis was conducted 
with immunohistochemistry analysis by using 
antibody to IDH R132H in all cases. Wild-type 
cases were then validated by means of pyrose-

quencing. The 1p/19q codeletion status was assessed with 
fluorescence in situ hybridization, and the cell proliferation 
index was measured with immunohistochemistry analysis 
by using the MIB-1 antibody against the Ki-67 protein.

Statistical Analysis
The x2 test was used to compare the hyperintensity on diffu-
sion MR images obtained with a b value of 2000 sec/mm2 and 
contrast enhancement frequencies across groups.

To address the main objective of our study, we first focused 
on the relationship between diffusion MRI results and groups 
defined according to IDH mutation genotype. Subsequently, the 
IDH mutation group was further divided according to 1p/19q 
phenotype; these two groups were compared among themselves 
and with IDH wild-type gliomas. Finally, we compared the dif-
fusion metrics among the groups defined according to tumor 
grade and histotype to be able to relate our results to those of 
most previous studies.

The Mann-Whitney test was used to evaluate the statistical 
significance of the differences. P , .05 after Bonferroni correc-
tion was considered indicative of a statistically significant differ-
ence; all tests for each metric were considered as independent (11 
metrics 3 6 tests = 66 comparisons). A receiver operating char-
acteristic curve analysis was also performed for all comparisons.

The McNemar test was used to compare the accuracy be-
tween multishell and single-shell models in predicting the IDH 

shells by using the NODDI Matlab Toolbox (MathWorks, 
Natick, Mass) (24); restricted fraction (volumetric fraction 
of the compartment with restricted diffusion in the NODDI 
model), orientation dispersion index, and isotropic fraction 
were estimated.

Diffusion MRI Analysis
Multiple regions of interest (ROIs) were delineated on 
trace-weighted images obtained with a b value of 2000 sec/
mm2 in all participants by consensus between a neuroradiol-
ogist (A.B., with 20 years of experience in neuroradiology) 
and a biomedical engineer (M.F., with 5 years of experience 
in experimental neuro-oncology). ROIs were chosen with 
the aim of sampling the heterogeneity of the lesion after 
inspecting T2-weighted images, diffusion-weighted images, 
MD maps, and postcontrast T1-weighted images. Only the 
solid parts of each tumor were considered; necrotic areas, 
cystic intratumoral areas, and areas of presumed perilesional 
vasogenic edema were excluded from the analysis. On aver-
age, three ROIs per participant were delineated. The diam-
eter of the ROI was approximately 8 mm. In each ROI, 
the mean and standard deviation of the estimated diffusion 
parameters were computed.

The relationship between the information derived from 
MRI and that from neuropathologic and genetic analyses was 
assessed by comparing the values of each diffusion parameter 

Figure 1: Distribution of participants with glioma according to World Health 
Organization (WHO) grade, isocitrate dehydrogenase (IDH) status, and 1p/19q 
codeletion. In right column, histopathologic grade is specified for each subgroup of 
lower-grade glioma. GBM = glioblastoma, mut = mutant, NOS = not otherwise 
specified, wt = wild type.
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genotype was mutant in 55 of the 62 grade II 
gliomas, 41 of the 58 grade III gliomas, and 11 of 
the 72 grade IV gliomas. A chart showing strati-
fication according to IDH and 1p/19q status is 
shown in Figure 1.

Qualitative Assessment of MR Images
MR images in two representative participants 
with WHO grade II and grade III IDH wild-
type gliomas are shown in Figures 2 and 3, re-
spectively. Hyperintensity on diffusion-weighted 
images and low MD were present in nine of the 
62 grade II gliomas, 31 of the 58 grade III gli-
omas, and 61 of the 72 grade IV gliomas. En-
hancement on postcontrast T1-weighted images 
was found in five of the 62 grade II gliomas, 24 
of the 58 grade III gliomas, and 70 of the 72 
grade IV gliomas. Hyperintensity on diffusion-
weighted images associated with enhancement 
occurred in two of the 62 grade II gliomas, 18 of 
the 58 grade III gliomas, and 60 of the 72 grade 
IV gliomas. The frequency of hyperintensity and 
enhancement increased with grade (P , .001); 
however, diffusion hyperintensity tended to be 
more frequent than enhancement in lower-grade 
gliomas (although not significantly according to 
the x2 test, P = .26 for grade II and P = .19 for 
grade III).

Correlation of Diffusion MRI Metrics with 
IDH Genotype and 1p/19q Loss
To test our hypothesis that the occurrence of foci 
with hyperintensity at diffusion MRI is associ-
ated with molecular and histopathologic mark-
ers of poor prognosis, we focused on 120 lower-
grade gliomas. IDH wild-type gliomas showed 
significantly higher maximum restricted fraction, 
maximum KA, and maximum FA, as well as lower 
minimum MD (derived from the single-shell 
model with b = 2000 sec/mm2), when compared 

with IDH-mutant gliomas (Fig 4 and Tables 1, 2; unadjusted 
P values are in Table E1 [online]). All three models provided 
at least one significantly different parameter with an effect 
size larger than 1. Receiver operating characteristic curves are 
shown in Figure 5, and the associated area under the curve, 
accuracy, sensitivity, specificity, and positive and negative pre-
dictive values are reported in Table 3. The four significantly 
different metrics had similar areas under the curve, ranging 
from 0.72 to 0.76. The accuracies of the single-shell versus the 
multishell model in identifying the correct IDH genotype were 
not significantly different (P . .05), except for minimum MD, 
which had significantly lower accuracy with respect to maxi-
mum restricted fraction (P , .001), as reported in Table 4.

In IDH-mutant gliomas, we found no significant differ-
ence between participants with and those without 1p/19q 
codeletion (P . .99 for all after Bonferroni correction) 

wild-type genotype. The absolute difference of the model’s accu-
racy, including the 95% confidence interval, was also computed 
for each comparison.

The correlation between the MIB-1 proliferation index 
and each diffusion metric was evaluated with the Pearson cor-
relation coefficient.

Results

Participants
Presurgical MRI was performed in 192 participants (113 
men, 79 women; mean age, 46.18 years; age range, 14–77 
years) with 62 WHO grade II gliomas (35 astrocytomas, 14 
oligodendrogliomas, 13 oligoastrocytomas), 58 grade III gli-
omas (22 astrocytomas, 16 oligodendrogliomas, 20 oligoas-
trocytomas), and 72 grade IV gliomas (glioblastomas). IDH 

Figure 2: Images in 64-year-old woman with astrocytoma isocitrate dehydroge-
nase wild-type grade II (MIB-1 = 3%) infiltrating dorsal aspect of left arcuate fascic-
ulus in frontoparietal white matter. Axial, A, unenhanced T2-weighted MR image, 
B, gadolinium-based contrast agent–enhanced T1-weighted image, C, diffusion MR 
image, and, D, mean diffusivity map. Mass is hyperintense on T2-weighted image, 
with no enhancement after intravenous injection of contrast agent. On diffusion MR 
image, outer component of mass had high signal intensity, with very low diffusiv-
ity. Despite diagnosis of grade II glioma, the patient’s overall survival time after 
surgery was 10 months. To sample tumor diffusivity heterogeneity, round 8-mm-
diameter regions of interest were delineated in areas with high, intermediate, and 
low signal intensity on diffusion MR image. Positions of the three regions of interest 
used in this participant are indicated in A.
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(Tables 1, 2). In IDH wild-type gliomas, no sig-
nificant differences among grades II, III, and IV 
gliomas were found (P . .99 for all after Bonfer-
roni correction). If we consider grade IV gliomas 
alone, only maximum KA was significantly dif-
ferent between IDH wild-type and IDH-mutant 
gliomas (P = .039).

Correlation of Diffusion MRI Metrics 
with Glioma Grade, Histotype, and Cell 
Proliferation Index
DTI, diffusion kurtosis imaging, and NODDI 
metrics of grade IV gliomas were significantly 
different from those of grade II and III gliomas 
(Tables 1, 2). Among lower-grade gliomas, none 
of the metrics were significantly different between 
grade II and III gliomas or between astrocytomas 
and oligodendrogliomas (histotype) (P . .99 for 
all after Bonferroni correction). No correlation 
was found between any diffusion metric and the 
cell proliferation index; on the other hand, MIB-1 
significantly increased with tumor grade as ex-
pected (P , .001 for all comparisons between 
WHO grades).

Discussion
Our results showed that minimum MD values 
were significantly lower and maximum restricted 
fraction values were significantly higher in IDH 
wild-type gliomas than in IDH-mutant WHO 
grade II and III gliomas. Maximum KA and maxi-
mum FA values were also significantly higher in 
IDH wild-type gliomas. These results held true 
with Bonferroni correction, the most conserva-
tive approach to multiple comparison correction 
(27). The results also showed that the benefit of 
upgrading the imaging protocol for advanced dif-
fusion models is small, meaning that identification 
of IDH status with DTI is as good as that with 
multishell methods.

Recent advances in neuro-oncology have 
shifted the focus from histopathologic grading 
to molecular features that have been integrated 
into the WHO classification. Grading is no lon-
ger the most relevant information requested to 
neuroradiologists, especially in nonenhancing 
lower-grade gliomas. To stay relevant, imaging 
must adapt to this paradigm shift and its role 
should be redirected to identify molecular sta-
tus. Noninvasive prediction of IDH wild-type 
lower-grade gliomas is clinically important 
and challenging. These tumors have a malig-
nant clinical course despite a more indolent 
appearance on conventional MR images. They 
also have a lower-grade appearance at histo-
pathologic examination: low cellularity, a low 

Figure 3: Images in 58-year-old man with anaplastic astrocytoma grade III 
(isocitrate dehydrogenase wild type, MIB-1 = 30%) infiltrating right temporal pole, 
amygdala, hippocampus, and insula. A, Axial fluid-attenuated inversion-recovery, 
or FLAIR, B, axial T2-weighted, and, C, axial T1-weighted MR images obtained after 
injection of gadolinium-based contrast agent and, D, coronal fluid-attenuated inver-
sion-recovery MR image, E, axial diffusion MR image, and, F, mean diffusivity map. 
Mass is homogeneously hyperintense on T2-weighted fluid-attenuated inversion-
recovery image, with no enhancement after intravenous injection of contrast agent. 
However, the mass has heterogeneous signal intensity on diffusion MR image: The 
component in the superior aspect of the temporal pole had high signal intensity with 
very low diffusivity. The component in right hippocampus is hypointense with higher 
diffusivity. Progression-free survival time was 18 months, followed by a second sur-
gery; overall survival time was 37 months. To sample tumor diffusivity heterogeneity, 
round 8-mm-diameter regions of interest were delineated in areas with high, interme-
diate, and low signal intensity on diffusion MR image. Positions of the three regions 
of interest used in this participant are indicated in B.
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knowledge. A key novelty of our study 
is that we acquired advanced multi-
shell diffusion data, which allowed us 
to further investigate whether more 
complex models offered any clini-
cal benefit. The benefit gained with 
advanced models was small in our 
study. Our comparison of the three 
models demonstrated that maximum 
FA was comparable to maximum KA 
and maximum restricted fraction in 
the stratification of tumors accord-
ing to IDH status. This has an impact 
on clinical applications because DTI 
metrics can be acquired in less time 
than multishell data.

An advantage of biophysical 
models is that they enable biologic 
interpretation of diffusion data. Tra-
ditionally, decreased MD in gliomas 
has been interpreted as an increase in 
tumor cellularity (6,12,31–33). This 
may be true in glioblastomas, which 
contain foci of very high cellularity. 
However, we also observed decreased 
MD in IDH wild-type lower-grade 
gliomas, where high cellularity is not a 
reported histopathologic feature. This 
suggests that the underlying mecha-
nism may be different. A recent PET 
study with the amino acid O-(2-18F-
fluorethyl)-l-tyrosine showed that ra-
diotracer uptake (ie, high metabolic 
activity and cellular density) did not 
co-localize with foci of low diffusivity 
in nonenhancing lower-grade gliomas, 
which suggests that tumor cellularity 
determines a smaller portion of the 
diffusion MRI signal than other mi-
crostructural elements, such as the vol-

ume of extracellular space, the distribution of macromolecules 
in the extracellular matrix, and vessels (34). We observed in-
creased restricted fraction in the NODDI model, which can be 
driven either by increased volume of the intracellular space (eg, 
increased cellularity) or by decreased volume of the extracellular 
space. Our observations indicate that changes in the volume of 
the extracellular space may play a role in the modulation of the 
diffusion signal and may drive the observed changes in restricted 
fraction, mean kurtosis, and MD. It has been suggested that dif-
fusivity in gliomas may be affected at least in part by decreased 
hydrophilic components or the expression of hyaluronan in the 
extracellular matrix (35).

NODDI also helped explain the DTI and diffusion kurto-
sis imaging anisotropy results: FA and KA were higher in IDH 
wild-type gliomas than in IDH-mutant lower-grade tumors, 
which suggests that the integrity of fibers was preserved. On the 
contrary, the higher orientation dispersion index values suggest 

mitotic index, and no neoangiogenesis. Thus, DTI might 
help identify those patients who may benefit from early and 
more aggressive therapy. It is unlikely that diffusion MRI 
will replace biopsy to determine tumor genotype; however, 
it could be used as a surrogate biomarker during follow-up. 
Currently, only proton MR spectroscopy has been shown to 
help differentiate IDH mutation in selected patients with 
glioma. It demonstrates a small signal of 2-hydroxygluta-
rate in IDH-mutant gliomas. Early studies have shown that 
MR spectroscopy has a high diagnostic accuracy, but it may 
be user-dependent (28,29). Its implementation is feasible 
in highly specialized clinical centers, but it is less accessible 
than DTI and it may not sample the whole tumor (30).

Using a prospective study design, we confirmed the recently 
published results by Xiong and colleagues (13–15). The sample 
size and the effect size in our study are large. Replication of re-
search is very important because it improves precision of prior 

Figure 4: Box plots of diffusion-tensor imaging (left), diffusion-kurtosis imaging (middle), and 
neurite orientation dispersion and density imaging (NODDI) (right) metrics in lower-grade gliomas 
stratified according to isocitrate dehydrogenase (IDH) status (IDH mutant and IDH wild type). 
Horizontal red line indicates median, and bottom and top edges of box indicate 25th and 75th 
percentiles, respectively. Whiskers extend to the most extreme data points not considered outli-
ers. Outliers are plotted individually by using red crosses. FA = fractional anisotropy, fR-max = 
maximum restricted fraction (volumetric fraction of compartment with restricted diffusion in NODDI 
model), KA-max = maximum kurtosis anisotropy, MD-min = minimum mean diffusivity, MK-max = 
maximum mean kurtosis, ODI-max = maximum orientation dispersion index. ∗ = statistically signifi-
cant difference (P , .05).



Figini et al

Radiology: Volume 00: Number 0— 2018  n  radiology.rsna.org 7

Table 1: Bonferroni-corrected P Values for All Comparisons and All Considered Diffusion MRI Parameters

Parameter

IDH-Mutant  
(n = 96) vs IDH  
WT (n = 24) Glioma  
(WHO II and III)

IDH-Mutant 1p/19q 
Codeleted (n = 59) vs IDH-
Mutant 1p/19q  
Uncodeleted (n = 60)  
Glioma (WHO II and III)

IDH-Mutant (n = 11) 
vs IDH WT (n = 60) 
Glioma (WHO IV)

WHO II vs 
WHO III

WHO II vs 
WHO IV

WHO III vs 
WHO IV

fR-max .044* .99 .99 .99 ,.001* ,.001*
KA-max ,.001* .99 .039* .99 .007* ,.001*
FA-max (both  
 shells)

.065 .99 .99 .99 .133 .018*

FA-max (b =  
 700 sec/mm2)

.011* .99 .99 .99 .008* .003*

FA-max (b =  
 2000 sec/mm2)

.081 .99 .99 .99 .303 .011*

MD-min (both  
 shells)

.036* .99 .99 .99 ,.001* ,.001*

MD-min (b =  
 700 sec/mm2)

.069 .99 .99 .99 ,.001* ,.001*

MD-min (b =  
 2000 sec/mm2)

.027* .99 .99 .99 ,.001* ,.001*

MK-max .122 .99 .99 .99 ,.001* .001*
ODI-max .353 .99 .99 .666 ,.001* .469
fiso-max .99 .99 .99 .99 .99 .99

Note.—FA-max = maximum fractional anisotropy, fiso-max = maximum isotropic fraction, fR-max = maximum restricted fraction,  
IDH = isocitrate dehydrogenase, KA-max = maximum kurtosis anisotropy, MD-min = minimum mean diffusivity, MK-max = maximum 
mean kurtosis, ODI-max = maximum orientation dispersion index, WHO = World Health Organization, WT = wild type.
* Significant difference.

Table 2: Effect Size for All Comparisons and All Considered Diffusion MRI Parameters

Parameter

IDH-Mutant  
(n = 96) vs IDH-WT  
(n = 24) Glioma  
(WHO II and III)

IDH-Mutant 1p/19q  
Codeleted (n = 59) vs  
IDH-Mutant 1p/19q  
Uncodeleted (n = 35)  
Glioma (WHO II and III)

IDH-Mutant  
(n = 11) vs IDH-WT  
(n = 60) Glioma  
(WHO IV)

WHO II  
(n = 62) vs  
WHO III  
(n = 58)

WHO II  
(n = 62) vs  
WHO IV  
(n = 72)

WHO III  
(n = 58) vs  
WHO IV  
(n = 72)

fR-max 1.07* 20.35 0.65† 0.36 1.20* 0.78†

KA-max 1.23* 20.52 0.90† 0.00 0.72† 0.64†

FA-max (both  
 shells)

1.00* 20.39 0.64† 20.10 0.49 0.57†

FA-max (b =  
 700 sec/mm2)

1.14* 20.39 0.67† 20.02 0.64† 0.62†

FA-max (b =  
 2000 sec/mm2)

0.99† 20.40 0.64† 20.14 0.45 0.57†

MD-min (both  
 shells)

20.88† 0.45 20.55† 20.29 21.29* 20.90†

MD-min (b =  
 700 sec/mm2)

20.88† 0.47 20.62† 20.23 21.18* 20.89†

MD-min (b =  
 2000 sec/mm2)

20.91† 0.45 20.32 20.32 21.36* 20.93†

MK-max 0.84† 20.14 0.20 0.34 1.14* 0.78†

ODI-max 0.69† 20.02 0.10 0.53 1.06* 0.40
fiso-max 20.49† 0.25 20.38 0.17 20.28 20.50†

Note.—FA-max = maximum fractional anisotropy, fiso-max = maximum isotropic fraction, fR-max = maximum restricted fraction,  
IDH = isocitrate dehydrogenase, KA-max = maximum kurtosis anisotropy, MD-min = minimum mean diffusivity, MK-max = maximum 
mean kurtosis, ODI-max = maximum orientation dispersion index, WHO = World Health Organization, WT = wild type.
* Effect size greater than 1 in absolute value.
† Effect size greater than 0.5 in absolute value.
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that fibers are actually more dispersed in IDH wild-type gliomas 
and that, in IDH-mutant gliomas, the higher extracellular wa-
ter content may be responsible for the decrease in FA and KA. 
The orientation dispersion index is indeed less affected by excess 
water content.

We observed no significant differences in diffusion MRI 
metrics between IDH-mutant gliomas with and without 
1p/19q loss. This result also confirmed previous findings by 
Xiong et al (15). It may indicate either that epigenetic phe-
notypes do not induce microstructural changes or that dif-
fusion is not sensitive enough to detect these. No significant 
correlation was found between diffusion MRI metrics and 
the cell proliferation index. This finding is additional indirect 
evidence that tumor cellularity may not be the major factor 
driving increased restricted fraction in lower-grade gliomas. 
Our findings do not support the results reported by Xiong et 
al (14), who found significantly lower Ki-67 levels in mutant 
rather than IDH wild-type oligodendrogliomas.

In the near future, machine learning classifiers using multidi-
mensional datasets may show advantages to univariate methods 
used in this study. The authors of a recent study with machine 
learning analysis (36) showed a prediction accuracy of 92% 
(54 of 59 cases; area under the receiver operating characteristic 
curve = 0.921), relying on tumor volume and texture informa-
tion from DTI data of 59 patients with grade II and III glioma.

Limitations of our study must be acknowledged. The ROI-
based approach, which was based on tumor characterization 
with conventional and diffusion MRI, could have introduced 
operator-dependent variability; however, it allows more flex-
ibility than automated methods. NODDI uses a multicompart-
ment model that has been optimized for normal white matter. 
In future studies, assumptions must be optimized for pathologic 
tissues with glioma cells infiltrating and modulating the extracel-
lular matrix.

In conclusion, diffusion metrics from the three models cor-
related with IDH wild-type in lower-grades gliomas. No signifi-
cant differences were found among IDH wild-type grade II, III, 
and IV gliomas. Advanced diffusion MRI models did not add 
diagnostic accuracy. IDH wild-type lower-grades gliomas tend 
to be heterogeneous and have 
foci with reduced diffusivity and 
higher anisotropy values. These 
patients may benefit from more 
aggressive treatments, despite 
having nonenhancing gliomas 
on conventional MR images and 
lacking high-grade features at 
neuropathologic examination.
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Figure 5: Receiver operating characteristic curves for comparison 
between isocitrate dehydrogenase (IDH) status (IDH mutant or IDH 
wild type) in lower-grade gliomas. Only those diffusion MRI metrics 
associated with significant differences between the two groups were 
reported. Curves show an overall similar performance of the four  
metrics in differentiating IDH-wildtype and IDH-mutant gliomas.  
FA-max = maximum fractional anisotropy (b = 700 sec /mm2),  
fR-max = maximum restricted fraction (volumetric fraction of compart-
ment with restricted diffusion in neurite orientation dispersion and 
density imaging), KA-max = maximum kurtosis anisotropy, MD-min = 
minimum mean diffusivity (b = 2000 sec/mm2).

Table 3: Performance of Diffusion MRI Metrics in the Comparison of IDH-Mutant and 
IDH Wild-Type Grade II and III Gliomas

Parameter
MD-min  
(b = 2000 sec/mm2)

FA-max  
(b = 700 sec/mm2) KA-max fR-max

AUC 0.73 0.74 0.76 0.72
Accuracy (%) 68 (81/120) 79 (95/120) 74 (89/120) 78 (94/120)
Sensitivity (%) 71 (17/24) 62 (15/24) 71 (17/24) 54 (13/24)
Specificity (%) 67 (64/96) 83 (80/96) 75 (72/96) 84 (81/96)
PPV (%) 35 (17/49) 48 (15/31) 41 (17/41) 46 (13/28)
NPV (%) 90 (64/71) 90 (80/89) 91 (72/79) 88 (81/92)
Optimal threshold 9.89 × 1024 sec/mm2 0.19 0.16 0.34

Note.—Numbers in parentheses are numbers of participants included for each parameter. Values 
correspond to the optimal threshold according to the Youden index. AUC = area under the receiver 
operating characteristic curve, FA-max = maximum fractional anisotropy, fR-max = maximum 
restricted fraction, IDH = isocitrate dehydrogenase, KA-max = maximum kurtosis anisotropy, MD-
min = minimum mean diffusivity, NPV = negative predictive value, PPV = positive predictive value.
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Table 4: Comparison of the Multishell Model against Single-Shell Model in the Pre-
diction of IDH Wild-Type Genotype

Comparison Unadjusted P Value*
Difference of Models' Ac-
curacy†

FA-max (b = 700 sec/mm2) vs fR-max .73 0.008 (20.085, 0.102)
FA-max (b = 700 sec/mm2) vs KA-max .06 0.050 (20.025, 0.125)
MD-min (b = 2000 sec/mm2) vs fR-max ,.001‡ 20.108 (20.176, 20.040)
MD-min (b = 2000 sec/mm2) vs KA-max .14 20.067 (20.142, 0.009)

Note.—Parameters for multishell models were fR-max and KA-max. Parameters for single-shell 
models were FA-max (b = 700 sec/mm2) and MD-min (b = 2000 sec/mm2). FA-max = maximum 
fractional anisotropy, fR-max = maximum restricted fraction, IDH = isocitrate dehydrogenase, 
KA-max = kurtosis anisotropy, MD-min = mean diffusivity.
* Determined with the McNemar test.
† Numbers in parentheses are 95% confidence intervals.
‡ Statistically significant (P , .0125) with corrected threshold.


