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Major Depression Impairs the Use of 
Reward Values for Decision-Making
Samuel Rupprechter1, Aistis Stankevicius1, Quentin J. M. Huys2,3, J. Douglas Steele4 & 
Peggy Seriès1

Depression is a debilitating condition with a high prevalence. Depressed patients have been shown to 
be diminished in their ability to integrate their reinforcement history to adjust future behaviour during 
instrumental reward learning tasks. Here, we tested whether such impairments could also be observed 
in a Pavlovian conditioning task. We recruited and analysed 32 subjects, 15 with depression and 17 
healthy controls, to study behavioural group differences in learning and decision-making. Participants 
had to estimate the probability of some fractal stimuli to be associated with a binary reward, based 
on a few passive observations. They then had to make a choice between one of the observed fractals 
and another target for which the reward probability was explicitly given. Computational modelling 
was used to succinctly describe participants’ behaviour. Patients performed worse than controls at the 
task. Computational modelling revealed that this was caused by behavioural impairments during both 
learning and decision phases. Depressed subjects showed lower memory of observed rewards and had 
an impaired ability to use internal value estimations to guide decision-making in our task.

Although major depressive disorder (MDD) is a debilitating condition with a high prevalence and substantial 
economic impact1. A core symptom of clinical depression is anhedonia2 and patients often display impairments 
in executive function, working memory and attention3,4.

Another common symptom during depressive episodes is “bleak and pessimistic views of the future”2. The 
theory of learned helplessness posits that people with a pessimistic explanatory style (attributing their help-
lessness to a stable, global, internal cause) are at greater risk of developing depression5. There exists extensive 
evidence that patients diagnosed with MDD exhibit features of Beck’s Negative Cognitive Triad, which is char-
acterized by negative and pessimistic views about oneself, the world and the future6, consistent with a pervasive 
pessimistic cognitive bias. The Beck Depression Inventory (BDI7) and the Beck Hopelessness Scale (BHS8) both 
measure aspects of this triad and Cognitive Behavioural Therapy (CBT), which targets these negative biases can 
be an effective treatment for depression9,10. Here we used a novel experimental paradigm and computational 
models of decision-making in order to supplement these subjective clinical interviews and rating scales with 
objective behavioural evidence.

Behavioural impairment in MDD has consistently been found with at least two tasks (see Chen and col-
leagues11 for a review): the Iowa Gambling Task (see Must and colleagues12 for a mini review) and the Signal 
Detection Task (see Huys and colleagues13 for a meta-analysis). In both paradigms, participants repeatedly 
choose between options and observe probabilistic reward outcomes based on their choices. Depressed patients 
are impaired in their ability to properly integrate their reinforcement history to adjust future behaviour.

We used a probabilistic reward-learning task, which has previously been reported to demonstrate individual 
behavioural differences that were associated with Life Orientation Test — Revised (LOT-R; measuring optimism) 
scores14, as well as neuroticism scores (see Supplement) in healthy subjects. In the task, participants were asked 
to maximize their rewards by choosing between fractal stimuli, for which they could estimate the probability of 
reward from previous passive observations, and another target associated with an explicit reward probability 
value. Here we tested patients with depression as well as healthy controls and used a computational modelling 
approach to describe their behaviour. This allowed us to formulate specific hypotheses, corresponding to distinct 
computational models, about both the learning and the decision process during the task. While focusing on group 
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differences, we also explored how participants’ ratings of depression severity, optimism and neuroticism affected 
their performance across groups.

Specifically, we tested whether there was objective evidence for: (a) a behavioural difference in learning and 
decision-making between MDD subjects and healthy controls, and (b) a pessimistic bias about the likelihood of 
reward in MDD, and then performed exploratory analyses, probing for (c) a correlation between computational 
model parameters and ratings of depression severity or neuroticism.

Methods and Materials
Participants. The main dataset analysed here consists of thirty-nine subjects (Tables 1 and S1) including 
19 patients meeting DSM-IV criteria for a diagnosis of MDD and 20 control participants without a history of 
depression or other psychiatric disorder. The task was performed during fMRI scanning and in the following 
this will be referred to as “fMRI dataset”. Importantly, patients were unmedicated. Diagnosis was made accord-
ing to the MINI PLUS (v5.0) structured diagnostic interview15. The mean BDI score of the patient group (24.7) 
can be regarded as “moderate severity” depression (see Supplement for additional information on questionnaire 
scores). Data collection took place at the Clinical Research Imaging Centre, Ninewells Hospital and Medical 
School, Dundee. The study was approved by the East of Scotland Research Ethics Service (UK Research Ethics 
Committee, study reference 13/ES/0043) and all experiments were performed in accordance with relevant guide-
lines and regulations. Written informed consent was obtained from all subjects.

MDD and control groups of the fMRI dataset were matched for age, sex and National Adult Reading Test 
(NART) scores, which were used to estimate premorbid IQ16. Exclusion criteria included claustrophobia, serious 
physical illness, pre-existing cerebrovascular, neurological disease, previous history of significant head injury, 
and receipt of any medication likely to affect brain function. All subjects were recruited using the University 
of Dundee advertisement system HERMES and were paid £20 plus up to £10 dependent on task performance. 
Four patients and three controls were excluded from further analysis from the fMRI dataset, after performance 
results showed that they did not choose the higher reward (in the 48 trials in which the reward probability was 
not the same) in at least 50% of cases. Two additional participants were excluded from all analysis, because they 
did not complete the study. Model comparison and primary data analysis, which used the fMRI dataset, therefore 
included 15 participants with MDD and 17 controls.

To further validate our results, we also analysed a second dataset we had previously collected to validate the 
experiment outside the scanner. In the following, this will be referred to as “Pilot dataset”. It included 3 MDD and 
21 control participants (Tables 1 and S1). Recruitment and assessment was performed in the same way as above 
and the same ethics statement applies. Model comparison was performed on the fMRI dataset and the best per-
forming model was then separately fitted to the Pilot dataset.

Experiment. The paradigm (Fig. 1) was adapted from Stankevicius and colleagues14. The experiment was 
implemented in MATLAB R2007b (The MathWorks, Inc., Natick, MA) using the Psychophysics Toolbox17–19. 
Additional details about the experiment are provided in the Supplement and the fMRI analysis will be reported 
elsewhere. Here we focus on behavioural differences, model fitting and best model identification.

Participants passively observed fractal stimuli, which were followed by either a reward (depicted by a pound sym-
bol) or no reward (no symbol). Interleaved with these observations were decision screens, during which they were 
asked to make a choice between one of the fractal stimuli they had observed, and an explicit numeric probability value. 
Participants were asked to choose the higher probability (or reward) value option, which required them to estimate the 
value of the fractal stimuli they had observed. There were seven possible differences in the numeric value probability. 
Either option could have a higher probability value of 10%, 20% or 30% (each of which was the case for 8 decision 
trials) or they could have the same probability of reward (in 12 trials). Our Pilot dataset used a slightly different task, in 
which possible differences ranged from −90% to +90% instead (in 10% intervals, each displayed in 4 decision trials).

Participants observed a variable number of fractals between decision screens, but each fractal was observed 
exactly four times before it was used within a decision. Each fractal was used in a single decision and in total 
participants made 60 decisions (and therefore observed fractals 240 times). The sequence of observations and 
decisions was pseudo-random, and identical for all subjects. Performance feedback was only given at the end of 
the experiment. Data collection for each subject lasted approximately 2 hours, which included collection of rating 
scale data (see Table S1).

Behavioural Performance Data Analysis. We tested for differences in average reaction time, IQ and 
other questionnaire scores between the groups using Welch’s t-tests. We measured participants’ performance 
in terms of how often the fractal was chosen as a function of the difference between the probabilities of the two 

Group
No. 
Subjects Age

Sex 
(F/M) BDI Neuroticism LOT-R NART

fMRI Patients 15 17–41 12/3 24.7 ± 13.1 46.3 ± 7.1 9.1 ± 5.5 46.8 ± 4.2

fMRI Controls 17 18–33 13/4 4.2 ± 5.6 29.8 ± 8.0 18.4 ± 3.1 46.6 ± 3.2

Pilot Patients 3 N/A N/A 27.7 50.7 9.3 45.3

Pilot Controls 21 N/A N/A 10.1 ± 12.2 34.4 ± 11.5 14.5 ± 5.5 44.0 ± 11.3

Table 1. Demographics of participants from both dataset versions (see Table S1 for more details). BDI, Beck 
Depression Inventory; LOTR, Life Orientation Test – Revised; NART, National Adult Reading Test; Data given 
as n or mean ± std. Due to the small number of Pilot patients, standard deviations are not shown for this group.
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options (assuming exact estimations for the fractal probabilities; i.e. if a fractal was followed by reward three 
times, and followed by non-reward once, the fractal probability would be 75%). We fitted a sigmoid function with 
two parameters (intercept α, slope β) to the psychometric curves of individuals:

ς α
β

= +
+ − ×

.x
x

( ) 1
1 exp( ) (1)

Computational Modelling. Three different families of models were fitted to the data (see Table 2 for a 
summary), representing distinct hypotheses about how participants make decisions during the task. All models 
assume that participants estimate an internal “value” for each fractal they observe and compare this value to the 
displayed probability when asked to make a choice.

First, we fitted variations of a family of reinforcement learning (RL) models that incorporate trial-by-trial pre-
diction errors and a learning rate parameter. During each trial, the fractal is associated with an expectation about 
reward based on the internal value and this expectation is updated after observing the reward or lack thereof. Such 
RL models have been used extensively to describe reward-based learning and much research has gone into under-
standing the connection between prediction errors and the dopamine system20. In two of the models (‘RL-basic’ and 
‘RL-learning’), the initial value parameter was allowed to vary between 0 and 1, and could therefore act in a similar 
way as the mean of the prior belief in the Bayesian model (see below). The other two RL models (‘RL-unbiased’ and 
‘RL-learning-unbiased’) kept the bias parameter fixed at 0.5, which corresponded to a prior belief that reward was 
equally likely from the fractal or the explicit option. Two of these models (‘RL-learning’ and ‘RL-learning-unbiased’) 
aimed at testing whether learning was different following rewards versus no-rewards (“punishment”) by including 
separate learning parameters for each outcome. It has been proposed that there may be heightened asymmetry 
between learning from positive and negative outcomes in depression and separate learning rate parameters can be 
used to account for this (see Chen et al.11 for a review). They were also used in the previous version of this task14.

Figure 1. Experimental paradigm. Subject passively observed different fractal stimuli which were followed 
by reward (a pound symbol) or no reward (blank screen). Interleaved with these observations were decision 
prompts in which they had to make a choice between one of the observed fractals (for which they could estimate 
reward probability) and an explicit numeric probability value in order to maximize their reward. An example of 
a longer sequence is shown at the bottom with the encased subsequence depicted above.
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Table 2. Model specification. The second column shows how internal values for a fractal i are updated after 
observing an outcome r in trial t. The Bayesian model does not model learning on a trial-by-trial basis. The 
third column depicts the choice rule that is used to calculate the probability of choosing the fractal over the 
alternative option (Equation 3). The initial value is set to zero or modelled by v0. φi is the displayed probability 
when asked to make a choice for fractal i. ε is the learning rate; β is the inverse temperature parameter; A is 
the memory parameter; ρ is the reward sensitivity parameter; α and γ are the parameters of the Beta prior. Ni 
and ni are the number of times a fractal i was observed and followed by reward respectively. See main text and 
Supplement for additional details.
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Next, we fitted the winning model of Stankevicius and colleagues14 (see Table 2 and Supplement), which tests 
the hypothesis that subjects behave as Bayesian observers during the task. This model assumed that at the decision 
time for a given fractal, participants estimate the number of times the fractal was followed by a reward (the likeli-
hood) and combine this evidence with a prior belief about the probability of rewards associated with the fractals. 
Although the observations are not modelled on a trial-by-trial basis, this model assumes that the likelihood is 
computed by (implicitly) counting, and perfectly remembering, the number of times each fractal is associated with 
reward. In the original experiment, Stankevicius and colleagues14 found that the mean of the participants’ prior 
belief distribution correlated positively with their optimism scores (LOT-R). A more recent analysis of the same 
data also revealed a negative correlation of the prior mean with neuroticism scores (see Supplement). This means 
optimists and people scoring low on neuroticism overestimated the reward associated with fractal stimuli and that 
in this task, optimism and neuroticism acted as a prior belief, biasing performance in situations of uncertainty.

This Bayesian model comes with some limitations. First of all, it does not allow us to distinguish between 
observation and decision phases, because it ignores individual observation trials. More importantly, the model 
assumes perfect memory of observations, which is an unrealistic assumption, especially since memory impair-
ments in MDD are exceedingly common3,4,21–23.

To overcome these limitations, we therefore also fitted two additional trial-by-trial models (‘Leaky’ and 
‘Leaky-ρ’), which include neither a learning rate nor a prediction error, but which include a discounting factor 
(also termed a ‘memory’ parameter). Note that the Leaky model is equivalent to the Bayesian model assuming a 
flat prior and non-optimal (“leaky”) memory. Internal value estimates are updated after observing fractal i and 
associated reward r at observation t as

= × ++V A V r , (2)i
t

i
t

i
t1

where A ( < <A0 1) is the memory parameter (the closer it is to 0, the more a subject “forgets” about their 
observations and the less they take into account previously observed rewards) and = +r 1i

t  if observation t of 
fractal i was rewarded and 0 otherwise. Initial internal values were set to zero. A second model in this family 
(Leaky-ρ) includes a scaling (“reward sensitivity”) parameter on observed rewards, to capture participants’ sub-
jective valuations of observed rewards. Notably, reward processing (dysfunction) has been identified as a promis-
ing phenotype of depression1.

The probability of choosing an action was calculated by passing estimated and explicitly displayed reward 
probability values through a softmax function. For the Leaky model, fractal i was chosen (as opposed to the dis-
played reward probability φi) with probability
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where f(x) = x/4 is a deterministic function which transforms the internal value estimates to a probability compa-
rable to φ. The shape of the sigmoid function was determined by the β parameter. The higher this inverse temper-
ature parameter, the more deterministic decisions become, while lower values lead to “noisier” decision-making. 
When the values of actions are unknown, this parameter governs the balancing of exploration and exploitation in 
reinforcement learning24. Higher values mean actions are chosen more greedily, lower values lead to suboptimal 
actions being chosen more often to explore the environment. Here participants were asked to maximize their 
reward, which means they were asked to always choose the option with the higher probability of reward and there 
was no advantage of “exploring” the other option. Each fractal was only associated with a single decision and feed-
back was only given at the end of the experiment and not after each decision. This makes it unlikely that individ-
uals consciously decided to choose the option they thought had a lower probability just to explore the alternative. 
More plausibly, participants made wrong choices when they either were not certain about what they had observed 
or had incorrectly estimated the probability of a certain fractal leading to reward. Note that variations in the two 
parameters (A and β) produce separable behavioural effects. Beta affects the probability of choosing the option 
estimated to have higher probability of reward on all decision-trials. Memory primarily affects the trials in which 
the fractal should have a higher chance of reward (if perfectly estimated) than the displayed numeric probability 
(see Supplement).

Model Fitting and Model Comparison. We used model fitting and comparison procedures previously 
described by Huys and colleagues25. Parameters were maximum a posteriori (MAP) estimates incorporating an 
empirical prior, estimated from the data. Parameters were initialized with maximum likelihood values; then an 
expectation-maximization procedure was used to iteratively update the estimates (see Supplement). We calcu-
lated the integrated Bayesian Information Criterion (iBIC25) for all fitted models to find the model that best fitted 
the data, taking into account complexity. Simulations were run to verify that both the fitting and comparison 
procedure recovered reasonable parameters and chose the correct type of model when generating and re-fitting 
data using known parameters and models (see Supplement).

Results
Model-free Analysis. A summary of all questionnaire scores of the two groups is displayed in Table S1. 
National Adult Reading Test (NART) scores indicated no difference in IQ between the groups (t(26.3) = 0.158, 
p = 0.876). Overall, participants did not respond in 17 of 1920 trials (0.89%). Mean response times were not 
significantly different between groups (RT patients μ ± σ = 2286 ± 455 ms; RT controls μ ± σ = 2185 ± 360 ms; 
t(26.6) = 0.692, p = 0.495).
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Figure 2 shows the fitted sigmoid curves using the average of the fitted parameters for each group. The fit-
ted offset parameter (α) was not significantly different between groups (t(28.1) = 0.023, p = 0.982), but the 
slope parameter (β) was significantly different (t(26.3) = −2.383, p = 0.025), with controls having steeper 
curves (β controls μ ± σ = 0.566 ± 0.316), indicating they were significantly better at learning (β patients 
μ ± σ = 0.350 ± 0.185). Stankevicius and colleagues14 recorded a systematic bias in optimistic people towards 
choosing fractals. We did not find such a systematic bias in healthy participants (as compared to MDD patients) 
towards choosing fractals, but the difference in the slope parameters indicated performance differences between 
the groups that we further examined using computational modelling. We were particularly interested in under-
standing whether those differences stemmed from observation phase or decision phase abnormalities.

Model-based Analysis. Model selection using iBIC showed that the Leaky model best described partici-
pants’ performance in our data (Fig. 3), indicating that in our dataset participants did not seem to rely on their 
prior beliefs, but were limited by their working memory.

The memory parameter differed significantly between groups (z = −2.153, p = 0.031; A patients μ ± σ =  
0.90 ± 0.04, median = 0.91; A controls μ ± σ = 0.92 ± 0.09, median = 0.96). This indicates that patients discounted 
their estimated values more than controls on each trial, possibly indicating impairments in working memory. The 
choice sensitivity parameter (β) was also significantly different between groups (z = −2.341, p = 0.019; β patients 
μ ± σ = 4.67 ± 1.45, β controls μ ± σ = 5.89 ± 1.33), meaning that controls found it easier to follow their internal 
estimations, while patients chose more randomly. There was a trend suggesting a correlation between parameter 
estimates (r = 0.349, p = 0.051). We performed additional simulations by systematically varying the parameters to 
see if parameter recovery of one parameter was systematically influenced by the other parameter and convinced 
ourselves that parameter correlation did not cause problems during inference (see Supplement).

We were also interested in understanding whether there existed interesting relationships between model 
parameters and questionnaire scores. This exploratory analysis revealed a negative relationship between beta 
and neuroticism across groups (see Supplement). As this was indistinguishable from a group level effect, we then 
combined our fMRI dataset with our Pilot dataset and focused on healthy participants only. Within the pooled 
control groups, there was also a significant negative relationship between beta and neuroticism (t(35) = −2.679, 
p = 0.011) after controlling for dataset version (Figure S6). This means high neuroticism was related to more 
variable decision-making in controls.

Further analyses details are reported in the Supplement.

Figure 2. Average sigmoid functions (solid lines) fitted to psychometric curves (dashed lines) of the two 
groups of the fMRI dataset. Dashed lines depict the average proportion of responses in which the fractal was 
chosen as a function of the difference between estimated and explicit reward probabilities. Solid lines show the 
average of simple sigmoid functions fitted to the psychometric curves of individuals. A perfect observer would 
never choose the fractal when the explicit probability is higher (−30%, −20%, −10%) and always choose the 
fractal when the estimated probability is higher (10%, 20%, 30%). An unbiased observer would be expected to 
choose the fractal in half of the trials when reward probability is the same for both options. Error bars represent 
between subjects standard errors.

Figure 3. Results of the model comparison. iBIC values of different models relative to the best fitting model 
Leaky. A difference of 10 or higher is considered strong evidence for the model with the lower value13.
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Discussion
Here we used a probabilistic reward-learning task associated with computational modelling to capture behav-
ioural differences between groups of depressed and healthy participants. We found evidence for impairments 
in MDD subjects during both learning and decision-making. Our results demonstrate a strong association 
between depression and participants’ inability to make decisions based on their internal value estimations. 
MDD patients also showed decreased memory of observed rewards throughout the task. We did not find evi-
dence for a systematic pessimistic bias about the likelihood of reward in depressed participants (see Supplement 
for a discussion).

Depression is characterized by behavioural, emotional and cognitive symptoms23. It is well established that 
MDD patients display cognitive impairments including deficits in executive function, working memory, attention 
and psychomotor processing speed3,4. Behavioural differences in reinforcement learning performance between 
groups of depressed and healthy participants have been reported previously (see Chen and colleagues11 for a 
review). In the Iowa Gambling Task subjects repeatedly choose from one of four different decks of cards with 
different reward and punishment contingencies (unknown to the player). High immediate rewards (or losses in 
an adapted version) are followed by even higher losses (or rewards) at unpredictable points for some decks. Other 
decks are associated with lower immediate rewards but even lower unpredictable losses. MDD patients typically 
choose more often from disadvantageous decks, displaying a worsened sensitivity to discriminating reward and 
punishment (see Must and colleagues12 for a mini review). In the Signal Detection Task participants observe in 
each trial one of two hard to distinguish stimuli for a very short time and are asked to indicate which stimulus 
they observed. Correct answers are sometimes rewarded, but unbeknownst to subjects, one of the stimuli is 
rewarded three times as often as the alternative. Whilst healthy people show a bias towards choosing the more fre-
quently rewarded option, MDD patients do not develop this bias (see Huys and colleagues13 for a meta-analysis), 
an effect thought to be related to anhedonia.

In both the Iowa Gambling Task and the Signal Detection Task participants undergo instrumental condi-
tioning, in which chosen actions are reinforced or punished. Subjects learn from their individual choices and 
the rewards that follow, and will not experience the same reinforcement history, because their rewards depend 
on their choices. Findings of differences in behaviour or neural activity between groups therefore have to deal 
with potentially confounding effects of unequal reinforcement histories. Our experiment contains a Pavlovian 
conditioning phase, during which conditioned stimuli (fractals) are paired with reward and no choices are made. 
All participants passively observed the exact same sequence of stimuli and these rewards. Participants could not 
learn from their instrumental choices in our task, because each fractal stimulus was only associated with a single 
decision and feedback was only displayed at the end of the experiment.

Computational modelling was used to capture the behaviour of participants during the task and formal 
model comparison to choose the best fitting model, from which we identified the best fitting parameters for 
each participant. MDD patients performed worse on our task and the model-based analysis showed that this was 
due to differences in two model parameters. First, patients discounted (or forgot) previous reward history more 
than comparison subjects, consistent with reported impairments in working memory and attentional deficits3,4. 
Dombrovski and colleagues found suicide attempters (but intriguingly not non-suicidal depressed elderly peo-
ple) had lower memory parameter values than control participants in a probabilistic reversal learning task26. Our 
finding is also consistent with another recent study by Pulcu and colleagues which reported increased discounting 
of rewards in MDD27, although discounting in our task was related to past rewards, while Pulcu and colleagues’ 
task involved future rewards. Notably, a link between working memory and delay discounting has previously 
been reported28,29. Second, we found MDD patients had more difficulty following their internal value estimations 
of different stimuli, making decisions more randomly. It is possible that patients had a lower confidence in their 
ability to perform the task, similar to how learned helplessness theories view depression as a consequence of an 
organism’s diminished belief about its ability to influence outcomes5. Taken together, our results therefore suggest 
that MDD is associated with dysfunctions in both learning and decision-making.

Neuroticism is associated with a vulnerability to many common psychiatric disorders including depres-
sion30,31. Stress reactivity is thought to be a core aspect of neuroticism, with individuals scoring highly on neu-
roticism showing greater sensitivity to aversive (stressful) events31. A large population based study concluded 
that neuroticism increases vulnerability to depression because of increased sensitivity to stressful life events32. 
In addition to group differences discussed above, we were interested in exploring possible relationships between 
participants’ fitted model parameter values and questionnaire scores. Within control participants, across two 
different versions of the task, we recorded a negative relationship between self-reported neuroticism and a model 
parameter capturing a subject’s ability to use internal value estimates, meaning higher neuroticism scores were 
associated with a more variable decision process. Taking this exploratory analysis further, we found that this 
association also existed across healthy and MDD groups. However, we could not reliably distinguish this from a 
group-level effect, and future work is needed to address this.

In conclusion, our results demonstrate impairments in MDD in a probabilistic reward-learning task during 
both learning and decision-making phases of the experiment. Patients, naturally scoring higher on neuroticism 
than controls, had a decreased memory of previous rewards and were less able use internally estimated values to 
guide decision-making in our task.
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