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KEY POINTS: 

 

 Variation at 6p21.31, 6q23.3, 11q23.1, 16p11.2 and 20q13.12 influences risk of HL 

 Genetic predisposition implicates germinal centre dysfunction, disrupted T-cell function, and 

NF-κB activation in the pathogenesis of HL  
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ABSTRACT 

 

To further our understanding of inherited susceptibility to Hodgkin lymphoma (HL), we performed a 

meta-analysis of seven genome-wide association studies totalling 5,325 HL cases and 22,423 

controls. We identify five new HL risk loci at 6p21.31 (rs649775, P = 2.11 × 10-10), 6q23.3 (rs1002658, 

P = 2.97 × 10-8), 11q23.1 (rs7111520, P = 1.44 × 10-11), 16p11.2 (rs6565176, P = 4.00 × 10-8) and 

20q13.12 (rs2425752, P = 2.01 × 10-8). Integration of gene expression, histone modification and in 

situ promoter capture Hi-C data at the five new and 13 known risk loci implicates dysfunction of the 

germinal centre reaction, disrupted T-cell differentiation and function, and constitutive NF-κB 

activation as mechanisms of predisposition. These data provide further insights into the genetic 

susceptibility and biology of HL. 
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INTRODUCTION  

 

Hodgkin lymphoma (HL) comprises classical Hodgkin lymphoma (cHL) (∼95% of cases) and nodular 

lymphocyte predominant HL (NLPHL, ∼5% of cases)1. While cHL and NLPHL are defined by the 

Hodgkin and Reed-Sternberg (HRS) cell and the lymphocyte predominant (LP) cell respectively, both 

diseases are thought to arise from the malignant transformation germinal centre (GC) B-cell2,3. 

Furthermore, both cHL and NLPHL demonstrate a paucity of these neoplastic B-cells within a 

background of reactive inflammatory cells that includes large populations of CD4+ T-cells4,5. 

A viral or infectious agent has long been considered a major etiological factor for HL, with Epstein-

Barr virus (EBV) being the posited infectious agent6,7. However, the EBV genome is only identifiable 

in a variable number of HL cases and epidemiological data supports a causal role for the virus in EBV-

positive HL only8. Evidence for genetic susceptibility to HL is provided by the elevated familial risk as 

well as the high concordance between monozygotic twins9,10. More recently, genome-wide 

association studies (GWAS) have confirmed an HLA association for HL and have identified single 

nucleotide polymorphisms (SNPs) at 13 non-HLA loci influencing risk11,12.  

To gain further insight into HL susceptibility, we have conducted a meta-analysis of data from seven 

independent GWAS and report five new HL risk loci11-13. Integration of gene expression, histone 

modification and in situ promoter capture Hi-C data (PCHi-C) at the five new and the 13 known risk 

loci provides evidence for cell-type specificity in B- and T-cells and implicates dysfunction of the 

germinal centre reaction, disrupted T-cell differentiation and function, and constitutive NF-κB 

activation as mechanisms by which loci influence HL risk.  
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MATERIALS AND METHODS 

 

Ethics 

Collection of patient samples and associated clinico-pathological information was undertaken with 

written informed consent. Relevant ethical review boards approved the individual studies in 

accordance with the tenets of the Declaration of Helsinki (UK-GWAS MREC 03/1/096, German-GWAS 

University of Heidelberg 104/2004 and UK-GWAS-NSHLG MREC 09/MRE00/72). The diagnosis of HL 

in all cases was established in accordance with World Health Organisation guidelines. 

Genome-wide association studies 

We used GWAS data generated on three non-overlapping case–control series of Northern European 

ancestry, which have been the subject of previous analyses (Supplementary Tables 1 and 2)11. The 

UK-GWAS was based on 622 cases ascertained through the Royal Marsden Hospital National Health 

Service Trust Family History study during 2004–200814, and 5,677 controls from the UK Wellcome 

Trust Case Control Consortium 2 (WTCCC2)15. The German-GWAS comprised 1,001 cases ascertained 

by the German Hodgkin Study Group during 1998–2007, and 2,092 controls from the Heinz Nixdorf 

Recall (HNR) study16. The UK-NSHLG-GWAS utilised 1,717 cases ascertained through the NSHLG 

(http://www.public.ukcrn.org.uk) from 2010 to 201311. Controls comprised: (1) 2,976 cancer-free 

men recruited by the PRACTICAL Consortium—the UK Genetic Prostate Cancer Study (UKGPCS) 

(age < 65 years), a study conducted through the Royal Marsden NHS Foundation Trust and SEARCH 

(Study of Epidemiology & Risk Factors in Cancer), recruited via GP practices in East Anglia (2003–

2009), (2) 4,446 cancer-free women from across the UK via the Breast Cancer Association 

Consortium (BCAC). Details of the genotyping platform and quality control measures applied to each 

of the three GWAS have been described previously and are detailed in Supplementary Tables 3 and 

411,14,17,18. Briefly, individuals with a low call rate (< 95%) as well as all individuals evaluated to be of 

non-European ancestry, were excluded (Supplementary Figure 1). Eigenvectors for the GWAS data 

sets were inferred using smartpca (part of EIGENSOFT) by merging cases and controls with Phase III 

HapMap samples19. For apparent first-degree relative pairs, we excluded the control from a case–

control pair or the individual with the lower call rate (Supplementary Table 3). SNPs with a call rate 

< 95% were excluded as were those with a MAF < 0.01 or displaying deviation from Hardy–Weinberg 

equilibrium (HWE) (i.e., P < 10−6, Supplementary Table 4). GWAS data were phased with SHAPEIT320, 

and imputed to >10 million SNP using IMPUTE4 v1.021 and a merged reference panel consisting of 

data from 1000 Genomes Project (phase 3)22 and UK10K (EGAD00001000776)23. Imputation was 
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conducted separately for each study from set of SNPs common to cases and controls. Poorly 

imputed SNPs (defined by an information measure < 0.80) were excluded. Tests of association 

between SNPs and HL were performed using logistic regression under an additive genetic model in 

SNPTESTv2.5.224. The adequacy of the case–control matching was evaluated using Q–Q plots of test 

statistics (Supplementary Fig. 2). The inflation factor λ1000 was based on the 90% least-significant SNP 

scaled to 1000 cases and 1000 controls.  

In addition to analysing data from these three GWAS, we made use of pre-processed association test 

statistics for HL risk from a meta-analysis of three additional GWAS (USC-IARC-UC-GWAS) comprising 

1,816 HL cases and 7, 879 contols12,25,26, and an analysis of 432 HL cases and 337,208 unaffected 

individuals13 from the UK Biobank accessed through the Global Biobank Engine. 

Meta-analysis 

Meta-analyses were performed under a fixed-effects model using META v1.724. Cochran’s Q-statistic 

to test for heterogeneity and the I2 statistic to quantify the proportion of the total variation due to 

heterogeneity were calculated; an I2 value ≥ 75% is considered to be characteristic of large 

heterogeneity27. Where the same controls were used in both the UK-GWAS and the USC-IARC-UC 

GWAS, these controls were excluded from the UK-GWAS association analysis. 

Cell culture 

L-428 HL cells were obtained from DSMZ and were cultured at 37°C in RPMI 1640 supplemented 

with 10% heat inactivated FBS (Thermo Scientific). Cell line identity was confirmed by STR-profiling. 

Cells were regularly tested for mycoplasma contamination (PromoCell, PK-CA91). 

ChIP-seq analysis  

L-428: ChIP-seq was performed on H3K27Ac and H3K4me3, for using antibodies obtained from 

Diagenode. Briefly, after cell lysing, sonication of nuclei was performed 293 (UCD-300, BioRuptor) to 

obtain 150-500bp fragments. ChIP reaction was performed on a Diagenode SX-8G IP-Star Compact 

using Diagenode automated Ideal Kit reagents (C01010011). Protein A beads were incubated for 10 

hours with 3-6μg of antibody and 2-4 million of sonicated cell lysate. ChIP samples were de-

crosslinked at 65°C for 4 hours and subsequently treated for 30 minutes with RNAse Cocktail and 

proteinase K. DNA was then purified (MiniElute PCR purification kit, Qiagen), followed by library 

preparation according to manufacture (HTP Illumina library preparation kit, KAPA Biosystems). 

Fourteen cycles of PCR were performed, followed by size selection for 200-400bp fragments and 

final library purification (GeneRead Size Selection kit, 301 Qiagen). ChIP libraries were sequenced 
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using HiSeq 2000 (Illumina) with 100bp single-ended reads. Generated raw reads were filtered for 

quality (Phred33 ≥ 30) and length (n ≥ 32), and adapter sequences were removed using Trimmomatic 

v0.2235. Reads passing filters were then aligned to the human reference (hg19) using BWA v0.6.1. 

Peak calls are obtained using MACS2 v 2.0.1.  

Histone modification data from primary blood cells: H3K27Ac and H3K4me3 data from >100 

samples from >30 cell types from the Blueprint Epigenome Consortium were analysed28. 

Cell-specificity analysis 

Overlap enrichment analysis of HL risk SNPs with H3K4me3 and H3K27Ac peaks was performed as 

described by Trynka et al29. Briefly, we evaluated whether the HL risk SNPs and SNPs in LD (r2 > 0.8) 

with the sentinel SNP, were enriched at H3K4me3 and H3K27Ac ChIP-seq peaks, in blood cells and 

the HRS cell line L-428 by a permutation procedure with 105 iterations.  

Promoter capture Hi-C  

In situ Hi-C libraries for L-428 were prepared as previously described30,31. Briefly, 25 million cells were 

fixed in 1% formaldehyde for 10 min. Cross-linked DNA was digested with HindIII (NEB, R0104) and 

chromatin ends were filled and marked with biotin-14-dATP (ThermoFisher, 19524-016). The 

resulting blunted ended fragments were ligated at 16°C in the nucleus with T4 DNA ligase (NEB, 

M0202) to minimise random ligation. DNA purified after crosslinking was reversed by proteinase K 

(Ambion, AM2546) treatment. DNA was sheared by sonication (Covaris, M220) and 200-650bp 

fragments selected. Biotin tag DNA was pulled down with streptavidin beads and ligated with 

Illumina paired end adapters (Illumina). Six cycles of PCR were performed to amplify libraries before 

capture. Promoter capture was based on 32,313 biotinylated 120-mer RNA baits (Agilent 

Technologies) targeting both ends of HindIII restriction fragments that overlap Ensembl promoters 

of protein-coding, non-coding, antisense, snRNA, miRNA and snoRNA transcripts (Supplementary 

Data). After library enrichment, a post-capture PCR amplification step was carried out using 6 

amplification cycles. Hi-C and PCHi-C libraries were sequenced using HiSeq 2000 technology 

(Illumina). Reads were aligned to the GRCh37 build using Bowtie2 v2.2.632 and identification of valid 

di-tags was performed using HiCUP v0.5.933. To declare significant contacts, HiCUP output was 

processed using CHiCAGO v1.1.834. Data from three independent biological replicates were 

combined to define definitive set of contacts. Publicly accessible PCHi-C data generated in B- and T-

cell populations were downloaded from the Open Science Framework35.  

Chromatin interactions relevant to HL risk loci were defined as contacts overlapping with HL risk 

SNPs and SNPs in LD (r2 >0.8 with the sentinel SNP), with promoters within a 2Mb window of the 
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sentinel SNP, and with a score ≥ 5.034. Plotting of HL association data and chromatin contacts was 

performed using visPIG36. 

Expression quantitative trait loci analysis 

An analysis of associations between the SNPs (r2 > 0.8) at each locus and tissue-specific changes in 

gene expression was performed using summary statistics from three publicly available resources: (i) 

lymphobastoid cell line (LCL) expression from the MuTHER (n = 825) consortium37; (ii) LCL expression 

from the GTEx consortium (n = 114)38; (iii) CD4+ and CD8+ T-cells from 313 individuals39. Statistical 

significance was assigned after correcting for the number of probes at each locus (microarray) or the 

number of transcripts at each locus (RNA-seq) for each expression dataset. 

Genetic correlation with infection 

To estimate the genetic correlation between specific infections and all HL, and NSHL and MCHL 

subtypes40, we used LD score regression. Summary statistics for self-reported infectious diseases 

from over 200,000 participants in 23andMe included41: chickenpox, shingles, cold sores, 

mononucleosis, mumps, hepatitis B, plantar warts, positive tuberculosis test results, streptococcus 

throat infection, scarlet fever, pneumonia, bacterial meningitis, yeast infections, urinary tract 

infections, tonsillectomy, childhood ear infections, myringotomy, measles, hepatitis A, rheumatic 

fever, common colds, rubella, and chronic sinus infection. 

Mendelian randomisation 

We performed two-sample MR using SNPs associated with specific infection-related traits as IVs. 

SNPs associated with each of the infection-related traits at genome-wide significance (i.e. P ≤ 5.0 × 

10−8) were used as IVs41. We analysed infection-related traits for which >2 SNPs had been shown to 

be associated with the specific infection (tonsillectomy, mumps infection, childhood ear infection 

and yeast infections). To avoid co-linearity between SNPs for each trait, we excluded SNPs that were 

correlated (i.e. r2 value of ≥ 0.01) within each trait, and only considered the SNPs with the strongest 

effect on the trait for use as IVs. Where data on an IV was not present in the outcome trait, a proxy 

was utilised (r2>0.6). Details of the IVs used are detailed in Supplementary Data. For each SNP, we 

recovered the chromosome position, risk allele, association estimates (per-allele log-OR) and 

standard errors. The allele that was associated with increased risk of the exposure was considered 

the effect allele. The odds ratios (OR) of HL, NSHL and MCHL per unit of standard deviation 

increment for each infection-related trait, were estimated using the ‘Mendelian randomisation’ R 

package42. Given that traits analysed are binary outcomes, the maximum likelihood method was 
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employed with the resulting causal effect estimate representing the odds for HL risk per unit 

increase in the log OR for infection-related trait. 
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RESULTS 

 

Association analysis 

We analysed summary level GWAS data generated on HL cases and controls of European ancestry11 

from three sources (Supplementary Tables 1-4): (1) two GWAS of UK cases and controls and one 

GWAS of German cases and controls, totalling 3,077 cases and 14,546 controls (Discovery GWAS)11; 

(2) the Stanford Global Biobank Engine, an analysis of 432 HL cases from the UK Biobank13 and (3) a 

meta-analysis of three published HL GWAS totalling 1,816 HL cases and 7,879 controls (USC-IARC-

UC-GWAS)12,25,26.  

In a meta-analysis of data from the seven studies, we identified new genome-wide significant 

associations for HL (Figure 1 and Table 1), at 6p21.31 (rs649775, P = 2.11 × 10-10, marking ITPR3-

UQCC2-IP6K3), 6q23.3 (rs1002658, P = 2.97 × 10-8, marking OLIG3-TNFAIP3), 11q23.1 (rs7111520, P = 

1.44 × 10-11, marking POU2AF1), 16p11.2 (rs6565176, P = 4.00 × 10-8, marking MAPK3-CORO1A) and 

20q13.13 (rs2425752, P = 2.01 × 10-8, marking NCOA5-CD40). In addition, we identified a promising 

association at 1p13.2 (rs2476601, P = 4.20 × 10-7, marking PTPN22). 

The bimodal incidence of HL and the higher rate of nodular sclerosis Hodgkin lymphoma (NSHL) and 

EBV-negative HL in young adults suggest differences in the etiology of HL subtypes8. Case-only 

analysis however provided no evidence for an age or histological subtype association for the five 

new risk SNPs. (Supplementary Tables 5 and 6). 

 

Cell specificity of associations  

Trynka et al., have recently shown that chromatin marks highlighting regulatory regions, overlap 

with phenotype-associated variants in a cell-type specific manner29. To examine for cell-type 

specificity of the five new and 13 known HL risk loci we analysed H3K4me3 and H3K27Ac chromatin 

marks which annotate regulatory regions, in over 125 samples from 38 hematopoietic cell types 

from BLUEPRINT28,29 and the HRS cell line L-428. The H3K27Ac histone mark is predominantly 

associated with enhancers and of all the histone marks demonstrates the greatest enrichment of 

promoter interacting regions35. The H3K4me3 histone mark is predominantly associated with 

promoters and transcribed regions, and has previously been shown to be the most phenotypically 

cell-type specific29,43. Cell types showing the strongest enrichment of risk SNPs at H3K4me3 marks 

were CD4+ T-cells from venous blood (P = 2.9 × 10-3), CD3- CD4+ CD8+ positive thymocytes (P = 5.7 × 
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10-3) and tonsillar derived germinal centre B-cell (P = 6.3 × 10-3) (Supplementary Table 7). Cell types 

with the strongest enrichment of risk SNPs at H3K27Ac marks were CD8+ T-cells from venous blood 

(P = 3.0 × 10-4), CD3+ CD4+ CD8+ thymocytes (P = 5.6 × 10-4), CD4+ thymocytes (P = 2.7 × 10-3) and L-

428 (P = 7.9 × 10-3) (Supplementary Table 8). Based on the co-localisation of variants with active 

chromatin marks, we calculated an enrichment scores for each genetic association (Figure 2)29. High 

SNP regulatory scores were also shown in T-cells cells at 3p24.1, 6q22.33, 6q23.3 and 10p14 risk loci, 

in B-cells at 2p16.1, 3q28, 8q24.21, 11q23.1 and 20q13.12 risk loci and in HRS cells at 3p24.1, 

5q31.1, 6q22.33, 6q23.3, 10p14, 13q34 16p13.13 and 20q13.12. 

 

Identification of candidate target genes at HL risk loci 

Most GWAS loci map to non-coding regions of the genome and influence gene regulation44. Hence, 

to gain insight into the biological mechanisms for the associations at the 5 new and 13 known HL risk 

loci, we first performed expression quantitative trait locus (eQTL) analysis on expression data in B-

cell lymphoblastoid cell lines (LCL) and in CD4+ and CD8+ T-cells. We identified eQTLs in LCL at 

6p21.31 (ITPR3), 6q23.3 (AHI1, ALDH8A1), 10p14 (GATA3), 11q23.1 (COLCA1, COLCA2), 13q34 

(UPF3A, CDC16), 16p13.13 (SOCS1), 16p11.2 (MAPK3, BOLA2) and 20q13.12 (WFDC10B); in CD4+ T-

cells at 6q23.3 (AHI1) and 13q34 (CDC16); and in CD8+ T-cell at 3p24.1 (EOMES), 6q23.3 (AHI1) and 

13q34 (CDC16) (Table 2 and Supplementary Tables 9 and 10). 

Chromatin looping interactions between enhancer elements and promotors are central to regulation 

of gene expression45. To link risk loci to candidate target genes we analysed PCHi-C data. Firstly, we 

examined physical interactions at genomic regions annotated by HL risk loci (including variants with 

an r2 > 0.8) using publicly accessible PCHi-C in naïve and total B-cells, as well as CD4+ and CD8+ T-

cells35. Secondly, we generated and analysed PCHi-C data for the HRS cell line L-428. We observed 

concordance between H3K27Ac peaks and chromatin contacts in B-, T- and HRS cells for specific HL 

risk loci. Notable chromatin contacts were found in the B-lineage at 2p16.1 (REL), 6p21.31 (BAK1), 

8q24.21 (MYC, PVT1), 13q34 (RASA3), 16p.13.13 (RMI2) and 20q13.12 (CD40); in the T-lineage at 

3p24.1 (EOMES, AZI2), 6p21.31 (BAK1), 6q22.33 (THEMIS, PTPRK), 6q23.3 (MYB), 13q34 (RASA3) and 

16p13.13 (SOCS1, RMI2); and in L-428 at 3p24.1 (AZI2, CMC1), 6q23.3 (MYB), 6q23.3 (TNFAIP3) and 

16p13.13 (SOCS1, RMI2) (Table 2, Supplementary Figure 3 and Supplementary Data).  

 

Shared susceptibility with infection 
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The association between EBV with HL, coupled with epidemiological reports of HL also being 

associated with non-EBV infections46-49, suggests shared susceptibility a priori. Support for such an 

assertion is provided by a recent report implicating a number of the HL loci, including 6q23.3, 

16p11.2 and 20q13.12, as well as the HLA region, as determinants of risk of infection41. 

To investigate co-heritability between HL and susceptibility to infection, we implemented cross-trait 

LD score regression40. Using summary-level GWAS data, we estimated genetic correlations between 

HL and over 20 self-reported infections in 200,000 23andMe participants41. Overall no statistically 

significant correlation was shown between any specific infection and HL, NSHL or mixed cellularity 

Hodgkin lymphoma (Supplementary Table 11). Following on from this, for infections with greater 

than two genetically defined instrumental variables (IVs), we performed a Mendelian randomisation 

(MR) analysis to identify a potential causal relationship with HL. For tonsillectomy, yeast infections 

and childhood ear infections, no statistically significant associations were demonstrated 

(Supplementary Tables 12). A nominally significant positive association between self-reported 

mumps infection and HL was found (P = 0.04), however this was not significant after correction for 

multiple testing. 
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DISCUSSION 

 

By utilising publicly available summary statistics we have increased the power of our study allowing 

us to identify five new HL risk loci, thus bringing the total number of HL risk loci to 18. Whilst our 

reliance on such data has restrained our ability to examine subtype-specific effects, it is likely that 

the newly described risk loci have generic effects on HL susceptibility as with the known risk loci at 

5q31.1 and 19p13.311.  

At the new and known HL risk loci, we observed an enrichment of active regulatory regions in 

germinal centre B-cells, CD4+ thymocytes, CD4+ T-cells and CD8+ T-cells. Furthermore, whilst some 

HL risk loci locate to H3K27Ac peaks in both B- and T-cells, a number display lineage-specificity. 

Motivated by this finding, we have utilised PCHi-C and gene expression data in these cell types to 

identify targets subject to regulatory control by HL risk SNPs. While in part speculative, and requiring 

functional validation, integrating proximity, cell specificity of risk loci, gene expression and PCHi-C 

data, our analyses highlight three biological processes and their associated genes as a basis of HL 

susceptibility (Table 2): the germinal centre reaction (2p16.1, REL50; 3q28, BCL6 and mir-2851,52; 

6p21, HLA53; 6q23.3, MYB54; 8q24.21, MYC55; 11q23.1, POU2AF156; 16p11.2, MAPK357; 19p13.3, 

TCF358; 20q13.12, CD40)59,60, T-cell differentiation and function (3p24.1, EOMES61; 5q31,1, IL1362; 

6q22.33, PTPRK and THEMIS63,64; 6q23.3, MYB65; 6q23.3, AHI166; 10p14, GATA367; 16p13.1, SOCS1 

and CLEC16A68,69; 16p11.2, MAPK3 and CORO1A70,71) and constitutive NF-κB activation (2p16.1, 

REL72; 3p24.1, AZI273; 6q23.3, TNFAIP374; 20q13.12, CD4075,76).   

Our findings extend the relationship between germline genetics and tumor biology44, as evidenced 

by enrichment of active chromatin marks for HL risk loci in L-428, and the finding of many of the 

target genes for HL GWAS associations are subject to somatic alterations in HRS cells, namely REL77, 

TNFAIP3 and SOCS178-80. The composite cellular basis of the HL tumor represents a pre-eminent 

example of the importance of the cellular microenvironment for the development of cancer. Hence, 

it is entirely conceivable that some of the HL risk loci may impact on the development of the B-cell 

tumor indirectly. Support for such an assertion is the observation of T-cell specificity as well as the 

finding of an eQTL at 3p24.1 (EOMES) in CD8+ T-cells. Notably, EomesHi T-betLo PD-1Hi CD8+ T-cells 

are considered to delineate a key subset of exhausted CD8+ T-cells81,82 which may contribute to an 

immunosuppressive tumor microenvironment and is a feature of peripheral blood T-cells in HL83. 
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There are a number of reasons for the observed lack of concordance between the PCHi-C and eQTL 

analysis at risk loci. Firstly, the resolution of the Hi-C library using HindIII, a 6-base pair cutter, is 

approximately 10kb. As such, we are unable to detect concordant chromatin contacts at risk loci 

which influence the expression of genes located <10kb. Secondly, it is recognised that the range at 

which gene expression is perturbed to influence disease risk, may be narrow and as such may not be 

detected by an eQTL analysis. Finally, given the risk loci are likely to act in specific cell populations, 

and our expression data is limited by broad B- and T-cell populations, it is possible that we have not 

captured the cell type to analyse expression. As such we would view both methods as 

complimentary in identifying target genes. 

The established association between EBV and risk of HL, coupled with other epidemiological 

observations provides strong a priori evidence for infection being a major etiological risk factor for 

HL. While our MR analysis failed to implicate a causal relationship with any of the self-reported 

infection traits, we acknowledge that our study had limited power. It is, however, possible that 

pleiotropism between the 6p21.1, 6q23.3, 16p11.2 and 20q13.12 risk loci for HL and tonsillectomy is 

consistent with some form of a shared biological basis. This is intriguing since tonsillectomy has 

previously been linked to HL in some epidemiological observational studies46. 

In conclusion, our study provides further evidence for inherited susceptibility to HL and support for 

cell-type specificity at HL risk loci. Furthermore, through the integration of gene expression, histone 

modification and in situ PCHi-C data, our data highlights dysfunction of the germinal centre reaction, 

perturbed T-cell function and constitutive NF-κB activation as mechanisms by which genetic risk loci 

influence HL pathogenesis.  
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Table 1: Summary results for newly identified Hodgkin lymphoma risk loci. Freq, frequency; bp, base pair; OR, odds ratio; CI, confidence interval; I2 proportion of the total 
variation due to heterogeneity.¥ Summary statistics from 1,200 cHL patients and 6,417 controls26. †Genes at each risk locus are given for identification purposes only and 
does not necessarily indicate biological functionality. 

 
 

 
 Risk  Discovery GWAS meta-analysis UK Biobank USC-IARC-UC-GWAS Meta-analysis 

Locus Nearest genes† allele (freq) Position (hg19, bp) P value OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value OR (95% CI) I2 (%) Phet 

1p13.2, rs2476601 PTPN22 A (0.12) 114377568 3.92 × 10-3 1.15 (1.04-1.26) 3.21 × 10-4 1.42 (1.17-1.72) 3.70 × 10-3 1.24 (1.07-1.44)¥ 4.20 × 10-7 1.21 (1.12-1.30) 20 0.29 

6p21.31,  rs649775 
ITPR3- UQCC2-

IP6K3 
A (0.11) 33684313 4.00 × 10-6 1.25 (1.14-1.38) - - 8.22 × 10-6 1.36 (1.19-1.55) 2.11× 10-10 1.29 (1.19-1.40) 0 0.54 

6q23.3,  rs1002658 OLIG3-TNFAIP3 T (0.18) 137981584 3.86 × 10-6 1.19 (1.11-1.28) - - 2.15 × 10-3 1.18 (1.06-1.31) 2.97 × 10-8 1.19 (1.12-1.26) 0 0.53 

11q23.1, rs7111520 POU2AF1 A (0.70) 111249611 4.33 × 10-7 1.17 (1.10-1.24) - - 4.39 × 10-6 1.24 (1.13-1.35) 1.44 × 10-11 1.19 (1.13-1.25) 0 0.68 

16p11.2, rs6565176 MAPK3-CORO1A T (0.48) 30174926 8.64 × 10-6 1.14 (1.08-1.21) 3.44 × 10-4 1.28 (1.10-1.23) - - 4.00 × 10-8 1.16 (1.10-1.22) 0 0.46 

20q13.12, rs2425752 NCOA5-CD40 T (0.23) 44702120 2.23 × 10-4 1.13 (1.06-1.20) 2.94 × 10-4 1.30 (1.12-1.50) 3.77 × 10-3 1.14 (1.09-1.20) 2.01 × 10-8 1.15 (1.10-1.21) 56 0.06 
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Table 2: Integration of expression quantitative trait loci, histone modification, promoter capture Hi-C data at non-HLA Hodgkin lymphoma risk loci to identify candidate 
causal genes at Hodgkin lymphoma risk loci. bp, base pair; cHL, classical Hodgkin lymphoma; NSHL; nodular sclerosis Hodgkin lymphoma; SNP, single nucleotide 
polymorphism; LCL, lymphoblastoid cell lines; LD, linkage disequilibrium. ¥SNPs (r2 < 2.5 kilobases from ChIP-seq peak).  

 
Locus Sentinel SNP Position 

(bp, hg19) 
Gene(s) 
in LD 
block 

Coding 
variant(s) 

Promotor
/UTR 
variant(s) 

Expression 
quantitative 
trait loci in LCL 

Expression 
quantitative 
trait loci in T-
cell 

H3K27Ac histone peak¥ Hi-C 
contact(s) in 
naïve or 
total B-cells 

Hi-C 
contact(s) in 
T-cells 

Hi-C 
contact(s) in 
HRS cell 

Evidence of 
perturbation in 
HL 

Candidate biological mechanism 

2p16.1 rs2420518 
 

61054980      Naïve B-cell REL REL  REL84 Constitutive NF-κB activation (REL)72 
 
Altered B-cell differentiation and 
germinal centre reaction (REL)50 

3p24.1 rs3806624 27764623 EOMES  EOMES 
(3'-UTR) 

 EOMES (↑) 
(CD8+) 

Effector memory CD8+ T-cell 
Plasma cell 
L-428 

AZI2, CMC1, 
NEK10, 
OXSM, 
NGLY1, 
ZCWPW2 

EOMES, 
AZI2, CMC1, 
NEK10, 
OXSM, 
NGLY1, 
ZCWPW2 

AZI2 
CMC1 
 

EOMES85 
 
 
 

Exhausted CD8 T-cell phenotype 
(EOMES)61,81,82 
 
Constitutive NF-κB activation (AZI2)73 
 

3q28 rs4459895 187954414 LPP     CD38- naïve B-cell 
Naïve B-cell 
Germinal centre B-cell 
L-428 

   BCL686 Dysfunction of B-cell germinal centre 
reaction (BCL6, mir-28)51,52 
 

5q31.1 rs848 131996500 IL-13 (p.Gln144Arg) 
 

IL-13 
(3'-UTR) 

  L-428    IL-1387 Altered CD4+ T-cell function (IL-13)62 

6p21.31 rs649775 33684313 ITPR3 
UQCC2 
IP6K3 

 IP6K3  
(3'-UTR) 

ITPR3 (↓)  CD4+ T-cell 
CD8+ T-cell 
Effector memory CD8+ T-cell 
Naïve B-cell 
Class switched memory B-cell 

BAK1, 
SYNGAP1, 
GGNBP1, 
LINC00336 

BAK1, 
GRM4, 
SYNGAP1, 
KIFC1, CUTA, 
PHF1, 
GGNBP1, 
LINC003336 

  Altered B-cell differentiation (ITPR3)88 
 

6q22.33 rs9482849 128288536 PTPRK 
 

    CD4+ T-cell 
Central memory CD4+ T-cell 
CD8+ T-cell 
Effector memory CD8+ T-cell 
L-428 

PTPRK 
THEMIS 

  PTPRK89 Altered T-cell differentiation (PTPRK, 
THEMIS)63,64 
 

6q23.3 rs9402684 135419305 HBS1L     CD3- CD4+ CD8+ thymocyte 
CD3+ CD4+ CD8+ thymocyte 
CD4+ T-cell 
Central memory CD4+ T-cell 
CD8+ T-cell 
Effector memory CD8+ T-cell 
Germinal centre B-cell 
Plasma cell 
L-428 

MYB 
 

 MYB 
 

 Altered T-cell differentiation (MYB)65,90 
 
 
Altered B-cell differentiation and 
germinal centre reaction (MYB)54 
 

6q23.3 rs6928977 135626348 AHI1 
 

  AHI1 (↑) 
ALDH8A1 (↑) 

AHI1 (CD4+ and 
CD8+)  (↑) 

CD3+ CD4+ CD8+ thymocyte     Altered T-cell differentiation (AHI1)66 

6q23.3 rs1002658 137981584      L-428 RP11-
204P2.3 

 TNFAIP3 
 

TNFAIP378 
 

Constitutive NF-κB activation 
(TNFAIP3)74 

8q24.21 rs34748721 129195943      Naïve B-cell 
Class switched memory B-cell 

CASC11, 
MYC, PVT1, 
RNU1-106P, 
MIR1207 

  MYC91 
 

Dysfunction of B-cell germinal centre 
reaction (MYC)55,76 

10p14 rs2388486 8099021 GATA3   GATA3(↓)  CD3- CD4+ CD8+ thymocyte 
CD3+ CD4+ CD8+ thymocyte 
CD4+ T-cell 
CD8+ T-cell 

   GATA392 Altered T-cell differentiation (GATA3)67 
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Effector memory CD8+ T-cell 
Germinal centre B-cell 

10p14 rs3781093 8101927 GATA3   GATA3 (↓)  CD4+ T-cell 
CD8+ T-cell 

   GATA3 Altered CD4+ T-cell differentiation 
(GATA3)67 
 
Altered B-cell differentiation (GATA3)93 

11q23.1 rs7111520 111249611 POU2AF1   COLCA1 (↑) 
COLCA2 (↑) 

 CD4+ T-cell 
Central memory CD4+ T-cell 
CD8+ T-cell 
CD38- B-cell 
CD38- naïve B-cell 
Naïve B-cell 
Germinal centre B-cell 
Unswitched memory B-cell 
Class switched memory B-cell 
Plasma cell 

FDX1 FDX1, 
PPP3R1B, 
ALG9, 
FDXACB1, 
DIXDC1 

 POU2AF194 Dysfunctional germinal centre reaction 
(POU2AF1)56 
 

13q34 rs112998813 115059729 UPF3A   CDC16 (↑) 
UPF3A (↓) 

CDC16 (CD4+ 
and CD8+) ↑) 

CD4+ T-cell 
Central memory CD4+ T-cell 
CD8+ T-cell 
Effector memory CD8+ T-cell 
CD38- naïve B-cell 
Naïve B-cell 
Germinal centre B-cell 
Unswitched memory B-cell 
Class switched memory B-cell 
Plasma cell 

 RASA3, 
TMEM255B, 
GASA6 

 CDC1685 
 

Disrupted cell cycle regulation (CDC16)95 
 
Dysfunction of mRNA surveillance 
(UPF3A)96 
 

16p13.13 rs34972832 11198938 CLEC16A   SOCS1 (↑)  CD4+ T-cell 
Central memory CD4+ T-cell 
CD8+ T-cell 
Effector memory CD8+ T-cell 
Naïve B-cell 
Germinal centre B-cell 
Class switched memory B-cell 
Plasma cell 
L-424 

RMI2 SOCS1, 
RMI2, 
PRM2, 
PRM3, 
TNP2, 
HNRNPCP4 

SOCS1 
RMI2 

SOCS180 T-cell dysfunction (SOCS1)68. 
 
Altered T-cell differentiation (CLEC16A)69 
 
B-cell dysfunction (CLEC16A)97 
 
 
Genomic instability (RMI2)98 

16p11.2 rs6565176 30174926 CORO1A  CORO1A 
(5’-UTR) 

MAPK3 (↓) 
BOLA2 (↓) 
 

 CD4+ T-cell 
CD8+ T-cell 
Effector memory CD8+ T-cell 
Naïve B-cell 
Class switched memory B-cell 

   MAPK399 
CORO1A100 

T-cell dysfunction (CORO1A and 
MAPK3)63,70,71 
 
Dysfunction of B-cell germinal centre 
reaction (MAPK3)57,101,102 

19p13.3 rs2012125 1630341 TCF3A     CD38- B-cell 
Naïve B-cell 
Class switched memory B-cell 

    Dysfunction of B-cell germinal centre 
reaction (TCF3A)103 
 

20q13.12 rs2425752 44702120 NCOA5 
CD40 

  WFDC10B (↑)  Central memory CD4+ T-cell 
CD8+ T-cell 
Effector memory CD8+ T-cell 
Naïve B-cell 
Germinal centre B-cell 
L-428 

CD40 TP53RK  CD40104 Dysfunctional germinal centre reaction 
(CD40)53,60 
 
Constitutive NF-κB activation (CD40)75,76 
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FIGURE LEGENDS 

Figure 1: Genome-wide meta-analysis P values of Hodgkin’s lymphoma risk (–log10P, y axis) plotted against their chromosomal positions (x axis). Novel 

HL risk loci and candidate gene are in orange. 

Figure 2: Heat map of SNP scores for H3K27Ac and H3K4me3 at each Hodgkin lymphoma risk locus. SNP score calculated as per Trynka et al.29 For each 

SNP at a given locus, the score represents the height of the closest ChIP-seq peak divided by the distance to the summit in each each cell line, normalised 

across all immune cell types. Thus, a SNP within a chromatin mark that is active in only one cell type will have a high score of 1 (red) in that cell type and 0 

(white) in others. In contrast, a SNP close to chromatin marks that are not cell type specific will have similarly modest scores across cell types. Genes at 

each risk locus are given for identification purposes only and do not necessarily indicate biological functionality.  

 


