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Abstract
Objectives To determine the diagnostic accuracy and interobserver concordance of whole-body (WB)-MRI, vs. 99mTc bone scintig-
raphy (BS) and 18fluoro-ethyl-choline (18F-choline) PET/CT for the primary staging of intermediate/high-risk prostate cancer.
Methods An institutional review board approved prospective cohort study carried out between July 2012 and November 2015,
whereby 56 men prospectively underwent 3.0-T multiparametric (mp)-WB-MRI in addition to BS (all patients) ± 18F-choline
PET/CT (33 patients). MRI comprised pre- and post-contrast modified Dixon (mDixon), T2-weighted (T2W) imaging, and
diffusion-weighted imaging (DWI). Patients underwent follow-up mp-WB-MRI at 1 year to derive the reference standard. WB-
MRIs were reviewed by two radiologists applying a 6-point scale and a locked sequential read (LSR) paradigm for the suspicion
of nodal (N) and metastatic disease (M1a and M1b).
Results The mean sensitivity/specificity of WB-MRI for N1 disease was 1.00/0.96 respectively, compared with 1.00/0.82 for
18F-choline PET/CT. The mean sensitivity and specificity of WB-MRI, 18F-choline PET/CT, and BS were 0.90/0.88, 0.80/0.92,
and 0.60/1.00 for M1b disease. ROC-AUC did not show statistically significant improvement for each component of the LSR;
mean ROC-AUC 0.92, 0.94, and 0.93 (p < 0.05) for mDixon + DWI, + T2WI, and + contrast respectively. WB-MRI had an
interobserver concordance (κ) of 0.79, 0.68, and 0.58 for N1, M1a, and M1b diseases respectively.
Conclusions WB-MRI provides high levels of diagnostic accuracy for both nodal and metastatic bone disease, with higher levels
of sensitivity than BS for metastatic disease, and similar performance to 18F-choline PET/CT. T2 and post-contrast mDixon had
no significant additive value above a protocol comprising mDixon and DWI alone.
Key Points
• Awhole-bodyMRI protocol comprising unenhancedmDixon and diffusion-weighted imaging provides high levels of diagnostic
accuracy for the primary staging of intermediate- and high-risk prostate cancer.

• The diagnostic accuracy of whole-body MRI is much higher than that of bone scintigraphy, as currently recommended for
clinical use.

• Staging using WB-MRI, rather than bone scintigraphy, could result in better patient stratification and treatment delivery than is
currently provided to patients worldwide.
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Abbreviations
BS Bone scintigraphy
BVC Best value comparator
DWI Diffusion-weighted imaging
LSR Locked sequential read
mp-WB-MRI Multiparametric whole-body MRI
MTB Multidisciplinary tumour board
PLND Pelvic lymph node dissection
PSMA Prostate-specific membrane antigen
ROC-AUC Receiver operator characteristic area under

the curve
SAD Short-axis diameter

Introduction

Since patient survival in intermediate- and high-risk prostate
cancer depends heavily on TNM stage [1], accurate tumour
staging should underpin all prognostication and management
decisions. However, the mainstay of imaging-based staging
decisions is still based on 99mTc bone scintigraphy (BS) ±
pelvic CT, as is still advised at least eight international guide-
lines [2]. Whilst these modalities are simple to implement,
their diagnostic accuracy remains severely limited [3, 4],
which has driven the development of a number of imaging
methods for cancer staging,

While choline PET/CT offers improved sensitivity and
specificity for both nodal [4, 5] and metastatic disease vs.
BS and conventional CT [4], PET involves ionising radiation
exposure and has a spatial resolution limited to 5 mm [6], poor
contrast resolution, and financial and logistical difficulties
which limit its use. Whole-body (WB)-MRI offers potential
solutions to these problems, with improved spatial and con-
trast resolution [7], lack of ionising radiation, and comparable
performance characteristics to choline PET/CT as shown by a
number of early studies [8–12]. Although prostate-specific
membrane antigen (PSMA) PET/CT has demonstrated con-
siderable early promise [13], its availability is limited and
incurs considerable cost. Furthermore, since prostate cancer
patients commonly undergo multiparametric (mp) prostate
MRI, the possibility of a one-stop staging modality has been
raised [12] whereby mp-WB approaches could also be ap-
plied. However, the interobserver concordance of WB-MRI
remains uncertain, as does a definition of what constitutes an
optimal acquisition. Further validation regarding diagnostic
accuracy is also required.

The primary aim of the present study is to determine the diag-
nostic accuracy of WB-MRI vs. BS and 18fluoro-ethyl-choline
(18F-choline) PET/CT for the primary staging of intermediate-
and high-risk prostate cancer, using a multiparametric vertex-to-

feet acquisition protocol and a locked sequential read (LSR) par-
adigm to determine the additive value of each MRI sequence.
Secondary aims include assessment of lesion distribution, inter-
observer concordance, and intermodality concordance with BS
and 18F-choline PET/CT.We hypothesise that (i)WB-MRI has a
higherdiagnostic accuracy thanBS, (ii)WB-MRIhasgood inter-
observer concordance, and (iii) a multiparametric whole-body
acquisition has a greater diagnostic accuracy than T1-weighted
imaging plus DWI.

Materials and methods

Our institutional review board approved this prospective
single-centre study. Informed written consent was obtained
from each participant, whereby 56 consecutive men (mean
age 67.9 years, range 51.9–84.4) were identified at
Multidisciplinary Tumour Board (MTB) meetings and recruit-
ed to the study between July 2012 and November 2015.
Inclusion criteria were (i) men aged 18 or over and (ii) new
diagnosis of intermediate- or high-risk prostate cancer accord-
ing to the D’Amico criteria [14]. Exclusion criteria were (i)
contraindications to MRI, e.g. severe claustrophobia or MR
unsafe device, (ii) prior therapy for prostate cancer, and (iii)
men unable to provide informed consent. A recruitment flow
diagram is shown in Fig. 1.

Standard imaging comprised BS in all patients ± 18F-choline
PET/CT, in 33 patients. The decision to perform a 18F-choline
PET/CTwas made on a case-by-case basis whereby the risk of
extraprostatic disease was considered to be high at MTB dis-
cussion; however, the result of the WB-MRI was blinded to the
MTB members, so it did not influence the decision to perform
PET/CT. WB-MRI was performed within a mean of 15.9 days
(range 0–49) of BS.

Multiparametric WB-MRI protocol

All patients were imaged on a 3.0-T wide-bore system
(Ingenia, Philips), with whole-body coverage from the vertex
to feet using a head coil, two anterior surface coils, and table-
embedded posterior coils. Coronal pre-contrast modified
Dixon (mDixon), axial T2 turbo spin echo (TSE), and axial
diffusion-weighted imaging (DWI) with body signal suppres-
sion at 4 b-values (b0, b100, b300, and b1000) were per-
formed, from which an ADC map was constructed. Post-
contrast mDixon imaging was then carried out following a
20 ml injection of intravenous gadoterate meglumine
(Dotarem®, Guebert).

Full acquisition parameters are provided in Table 1.
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99mTc scintigraphy protocol

Whole-body imaging was performed in all patients, using an-
terior and posterior views, 256 × 1024 matrix, and energy
window(s) of 140 keV, 2–4 h after a single injection of
Tc99 m-methylene diphosphonate (MDP).

18F-choline PET/CT protocol

Thirty-three patients underwent 18F-choline PET/CT on an
integrated 64-slice scanner (Discovery VCT; GE Healthcare)
from the vertex to mid-thigh, 60 min after an intravenous
injection of 18F-fluoro-ethyl-choline tracer (198–410 MBq;
average activity, 327.4 MBq). A low-dose, unenhanced CT
scan was initially performed for attenuation correction and
image fusion at 120 keV and 10 mA with couch movement
0.8 s and 30 mm per rotation. Whole-body PET emission
images were then acquired and reconstructed using the
Houndsfield units from the CT to a resolution of 128 × 128
with 5-mm slice thickness.

Follow-up WB-MRI

Patients were invited to attend a follow-up WB-MRI 1 year
after their initial scan using an identical acquisition protocol to
inform the reference standard. Twenty-nine of the fifty-six
patients attended the 1-year scan, and 16 of these patients
had undergone PET-CT at baseline (Fig. 1). Of the 27 who
did not attend, two patients died, 16 refused a second atten-
dance, and 9 were lost to follow-up.

BS and 18F-choline PET/CT image review

Nuclear medicine physicians reviewed the BS and 18F-
choline PET/CT staging studies as part of standard clin-
ical care using GE Advantage workstations. Disease
positivity was defined as accumulation of radiotracer,
greater than the surrounding background and incompat-
ible with normal physiological activity.

WB-MRI review

Images were prepared for review using the scanner worksta-
tion for mDixon images and Osirix (v. 7.0 Pixmeo). Two
board-certified radiologists (reader 1, NR with 12 years of
experience and reader 2, HS with 9 years of experience) inde-
pendently reviewed anonymised WB-MR datasets using an
Osirix workstation (v. 7.0 Pixmeo), aware of the presenting
serum prostate-specific antigen (PSA) level only and blinded
to all other clinical and imaging results.

The body was divided into nine nodal regions (external
iliac, internal iliac, common iliac, paraaortic, presacral, other
abdominal, inguinal, thoracic, and neck) using standard ana-
tomic definitions. Ten skeletal sites were assessed for the pres-
ence of disease (skull, cervical spine, thoracic spine, lumbar
spine, pelvis, sternum, clavicle/scapula, ribs, upper limb, and
lower limb). Scans were reviewed using a LSR paradigm,
whereby each radiologist initially reviewed the unenhanced
mDixon and DWI and scored the suspicion of disease at each
site using a 1–6 ordinal scale (1, definitely not present; 2,
probably not present; 3, possibly not present; 4, possibly pres-
ent; 5, probably present; 6, definitely present) for each disease
site, according to the TNM7th edition staging system (N0/N1,
M1a/M1b/M1c).

The score was specifically assigned at each site using the
imaging features as follows on the pre-contrast mDixon and
DWI sequences: 1, no lesion evident; 2, poorly visible lesion
evident on T1-weighted imaging only—low T1 signal bone
focus or lymph node visible but not convincing for malignant
involvement or < 5-mm short axis diameter (SAD); 3, definite
lesion visible on T1-weighted imaging but not DWI, lymph
node 6–9 mm in SAD; 4, definite lesion on T1 with mild
increase in high b-value diffusion signal vs. background noise,
lymph node 10–12 mm in SAD; 5, definite lesion seen on T1

Fig. 1 Patient recruitment flow diagram
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and DWI with moderate increase in high b-value DWI signal
vs. background noise, lymph node 12–14 mm SAD; 6, defi-
nite lesion seen on T1 and DWI with large increase in high b-
value signal vs. background noise, lymph node ≥ 15 mm
SAD. T2W images were then revealed and sites rescored as
negative or positive. A negative score was assigned where
there was no lesion or where features favoured benignity
(e.g. fatty nodal hilum or high T2 signal of haemangioma),
and a positive score assigned for features that favour malig-
nancy (rounded nodal morphology, low T2 signal in node or
bone lesion). Positive T2 appearances were scored up a point
on the initial 1–6 scale (e.g. 3/6 on mDixon/DWI becomes
4/6), and negative T2 appearances were scored down a point
(3/6 on mDixon/DWI becomes 2/6). Lastly, post-contrast
mDixon images were revealed and a final WB-MRI score
was assigned. Here, lesional enhancement was scored up a
point on the 1–6 scale and down a point if there was no en-
hancement. The time to report WB-MRI studies was recorded
for both readers. Where discordancy arose between the two
radiologists, a third board-certified radiologist with 12 years
of experience (reader 3, SP) adjudicated and rescored discor-
dant sites using all available MR images, also aware of the
PSA level only.

Derivation of WB-MRI reference standard

A panel comprising two board-certified radiologists (SP and
EJ with 12 and 6 years of experience), and an oncologist with
8 years of experience (RD) reviewed baseline and follow-up
WB-MRIs, in combination with all available clinical and ra-
diological information at least 1 year from baseline imaging to
carry out a patient-based analysis, and assign patients into the
following categories using the definitions below for all

modalities. Patients were included in the M1a sensitivity/
specificity analysis if:

(i) they had undergone baselineWB-MRI and had a positive
18F-choline PET/CT for nodal assessment; or

(ii) they had a baseline WB-MRI and negative 18F-choline
PET/CT and also underwent follow-up WB-MRI to al-
low final arbitration.

Similarly, patients were included in the M1b sensitivity/
specificity analysis if:

(i) they had undergone baselineWB-MRI and had a positive
18F-choline PET/CT or BS for bone assessment; or

(ii) they had a baseline WB-MRI and negative 18F-choline
PET/CT and BS, and also underwent follow-up WB-
MRI to allow final arbitration.

The reference standard was subsequently derived using the
following definitions:

True positive (TP) sites:

(i)LesiononWB-MRI (defined as suspicion level 4/5/6)which
is BS and/or 18F-choline PET/CT positive (if performed). Follow-
up WB-MRI (if performed) also demonstrates lesion progression
without systemic therapy, decrease with systemic therapy, or new
lesions. (ii)LesiononWB-MRIwhich is negativeonconventional
imaging but progresses onWB-MRI follow-up without systemic
therapy, or new lesions appear onWB-MRI follow-up.

True negative (TN) sites: No lesion onWB-MRI (defined
as suspicion level 1/2/3) and BS and 18F-choline PET/CT
concordantly negative. In addition, follow-up WB-MRI

Table 1 Whole-body MRI
acquisition parameters. Imaging plane T2-TSE mDixon

(pre- and post-contrast)
DWI (b0, b100, b300, b1000)

Transverse Coronal Transverse

TE (ms) 80 1.02/1.8 71

TR (ms) 1228 3.0 6371

FOV (mm × mm) 500 × 300 502 × 300 500 × 306

Voxel size (mm × mm) 1 × 1 2.1 × 2.1 4 × 4.2

Number of slices 40 120 40

Slice thickness (mm) 5 5 5

Acquisition matrix 500 × 286 144 × 238 124 × 72

ETL 91 2 39

Acceleration factor (SENSE) 2 2 2.5

Pixel bandwidth (Hz) 537 1992 3369

Scan time (min) 15.2 5.5 × 2 47

T2-TSE T2-weighted turbo spin echo, mDixon modified Dixon, DWI diffusion-weighted imaging, TE time of
echo, TR time of repetition, FOV field of view, ETL echo train length, SENSE sensitivity encoding

Eur Radiol



Recruited patients 
(n=56)

a

b

Inter-reader 
concordance

(n=56)

WB-MRI
(n=56)

Bone Scan
(n=56)

Choline PET/CT
(n=33)

Intermodality 
concordance

(n=56)

Intermodality 
concordance

(n=33)

Recruited patients
(n=56)

M1b analysis
(n=33)

WB-MRI + Bone Scan 
± Choline PET/CT + 
± WB-MRI follow-up 

(n=34)

N analysis
(n=31)

M1a analysis 
(n=30)

Reference standard 
imaging incomplete 

(n=22)

WB-MRI LSR ROC-
AUC analysis

(n=34)

Inter-modality 
Diagnostic accuracy 

analysis
(n=18)

M1b analysis
(n=18)

N analysis
(n=18)

M1a analysis 
(n=17)

WB-MRI + Bone Scan 
+ Choline PET/CT +
WB-MRI follow-up

(n=18)

Fig. 2 Flow diagrams of the statistical methods used in the study. a Flow diagram of intermodality and inter-reader concordance. b Flow diagram for
WB-MRI LSR ROC-AUC and intermodality diagnostic accuracy analyses. c Patient-based reference standard
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remains negative. WB-MRI follow-up was therefore re-
quired to assign TN cases.
False positive (FP) sites: Lesion onWB-MRI that was BS
and 18F-choline PET/CT negative and unchanged at fol-
low-up. WB-MRI follow-up was therefore required to
assign FP cases.
False negative (FN) sites: No lesion on WB-MRI but
positive BS and/or 18F-choline PET/CT.

A flow diagram of the statistical methods and reference
standard used in this study is provided in Fig. 2.

A similar reference standard was used to compare BS and
18F-choline PET/CT, whereby positive scans concordant with
WB-MRI were considered as true positive, with follow-up
WB-MRI used for arbitration of discordant and negative BS
and 18F-choline PET/CT findings. The details for this refer-
ence standard are provided in the supplementary materials.

Statistical analysis

Statistical analysis was performed using SPSS Statistics ver-
sion 23 (2015, IBM) as below:

1. The distribution of positive lesions for each stagingmodality
(BS, 18F-choline PET/CT, and WB-MRI) for local nodal
(N0/N1) and metastatic disease (M1a/M1b/M1c) using the

TNM classification, following the adjudication of discordant
sites by the third board-certified radiologist. Percentages
were recorded (i) for all patients (n = 56) and (ii) for patients
undergoing 18F-choline PET/CT (n= 33) (Fig. 2a).

2. The inter-reader agreement of WB-MRI (n = 56) and agree-
ment betweenWB-MRI (following the consensus read) and
BS (n = 56) and 18F-choline PET/CT (n = 33) following
adjudication by the third board-certified radiologist were
assessed using Cohen’s κ statistics, interpreted according to
Landis and Koch [15], whereby < 0 indicates no agreement;
0–0.20, slight; 0.21–0.40, fair; 0.41–0.60, moderate; 0.61–
0.80, substantial; and 0.81–1, almost perfect agreement (Fig.
2a).

3. Receiver operator characteristic area under the curve (ROC-
AUC) was calculated for WB-MRI studies (Fig. 2b), for
both readers following each component of the LSR, apply-
ing thresholds for each level of suspicion (1–6) vs. the ref-
erence standard (Fig. 2c). Differences in ROC-AUC values
for each component of the LSR were assessed according to
[16], using a significance level of p < 0.05. Youden’s index
[17] was used to determine the optimal cutoff of the ROC
curve providing the highest combination of sensitivity and
specificity.

4. An intermodality diagnostic accuracy study was performed
(Fig. 2b), whereby the sensitivity, specificity positive (PPV),
and negative (NPV) predictive values were then determined

c

PET/CT negative + 
WB-MRI changed at 

follow-up
(n=2)

PET/CT positive
(n=6)

M1a/N
(n=31)

M1b 
(n=33)

TP 
(n=8)

TN 
(n=20)

FP 
(n=1)

FN 
(n=2)

TP 
(n=10)

TN 
(n=21)

FP 
(n=0)

FN 
(n=2)

PET/CT negative + 
WB-MRI stable at 

follow-up
(n=20)

PET/CT negative + 
WB-MRI stable at 

follow-up
(n=1)

PET/CT positive
(n=2)

PET/CT and Bone 
scan negative + WB-

MRI changed at 
follow-up (n=0)

PET/CT and/or Bone 
scan positive

(n=10)

PET/CT and Bone 
scan negative + WB-
MRI stable at follow-

up (n=20)

PET/CT and Bone 
scan negative + WB-
MRI stable at follow-

up (n=0)

(PET/CT) and/or Bone 
scan positive

(n=2)

Fig. 2 (continued)
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at each TNM stage for a cohort of patients undergoing BS,
18F-choline PET/CT, and WB-MRI against the same refer-
ence standard (Fig. 2c), using a score of ≥ 4 as positive for
the WB-MRI.

Results

Fifty-six patients (mean age 67.9 years, range 51.9–84.4
years), median PSA 20.05 (IQR 10.07–61.20). Fifty patients
were ‘high-risk’ and 6 patients ‘intermediate-risk’. Maximum
Gleason score was 3 + 3 for two patients, 3 + 4 for nineteen
patients, 4 + 3 for fourteen patients, 4 + 4 for five patients, 4 +
5 for thirteen patients, and 5 + 5 for one patient.

The mean time of radiologists to report each component of
the LSR was 15 min for mDixon + DWI, and an additional
6.5 min for T2W and 4 min for post-contrast scans.

No suspicious lesion (scoring 4, 5, or 6) was identified
below the mid-thigh level on any imaging modality. Two
cases had suspicious lesions in the cervical and thoracic spine;
otherwise, no disease was identified above the diaphragm.
The review panel also found that all sites of positive disease

on both BS, 18F-choline PET/CT, andWB-MRI were anatom-
ically matched.

The distribution of N/M disease for each imaging modality
(BS, 18F-choline PET/CT, andWB-MRI) is presented in Table 2.

Concordance statistics (κ) between WB-MRI readers,
between WB-MRI consensus and BS, and between WB-
MRI consensus and 18F-choline PET/CT are presented in
Table 3.

ROC-AUC statistics for ‘TNM’-based nodal and met-
astatic status following each part of the LSR are pre-
sented in Table 4 against the follow-up based reference
standard.

No significant differences were detected between the mean
ROC-AUC for each component of the LSR (p < 0.05), so the
simplest WB-MRI combination was chosen for further analy-
sis (DWI + mDixon). Youden’s index confirmed the optimal
cutoff of the ROC-AUC was ≥ 4 in all cases. The sensitivity
and specificity for BS, 18F-choline PET/CT, and WB-MRI
were therefore calculated using a threshold of ≥ 4 as positive
against the follow-up reference standard. Results are
displayed in Table 5, along with their numerators and
denominators.

Typical examples of lesions missed on BS which are de-
tected by WB-MRI are provided in Figs. 3 and 4.

Discussion

WB-MRI is gaining momentum as a staging modality in pros-
tate cancer, but requires further validation prior to being intro-
duced into clinical practice. Firstly, our results show that WB-
MRI detected more positive bony metastatic (M1b) disease
than 18F-choline PET/CT and BS with 8, 6, and 3 positive
lesions forWB-MRI, 18F-choline PET/CT, and BS respective-
ly. We then confirmed that WB-MRI had the highest sensitiv-
ity of all modalities for detecting metastatic bone disease: 0.90
vs. 0.80 for 18F-choline PET/CT and 0.60 for BS for specific-
ities of 0.88, 0.92, and 1.00 respectively. This finding is in
accordancewith ameta-analysis which compared the diagnos-
tic accuracy of BS, 18F-choline PET/CT, and WB-MRI and
gave pooled sensitivities and specificities of 0.97/0.95, 0.91/
0.99, and 0.79/0.82 for WB-MRI, 18F-choline PET/CT, and
BS [4] respectively. High diagnostic sensitivity could reflect

Table 2 Distribution of lesions on each imagingmodality. The first row
for each N/M stage represents a comparison between patients who
underwent BS, 18F-choline PET/CT, and WB-MRI (n = 33), and the sec-
ond row represents a comparison between the patients who underwent BS
and WB-MRI (n = 56)

BS 18F-choline PET/CT WB-MRI

N0 – 23/33 (69.7%) 26/33 (78.8%)

– – 43/56 (76.8%)

N1 – 10/33 (30.3%) 7/33 (21.2%)

– – 13/56 (23.2%)

M0 30/33 (90.9%) 21/33 (63.6%) 22/33 (66.7%)

43/56 (76.8%) – 34/56 (60.7%)

M1a – 6/33 (18.2%) 3/33 (9.1%)

– – 6/56 (10.7%)

M1b 3/33 (9.1%) 6/33 (18.2%) 8/33 (24.2%)

13/56 (23.2%) – 16/56 (28.6%)

M1c – 0/33 (0%) 0/33 (0%)

– – 0/56 (0%)

Table 3 Interobserver and
intermodality concordances Local nodes

(N1)
Metastatic nodes
(M1a)

Metastatic bones
(M1b)

Interobserver concordance for WB-MRI
(n = 56)

0.79 0.68 0.58

Concordance of WB-MRI vs. BS (n = 56) – – 0.68

Concordance of WB-MRI vs. 18F-choline
PET/CT (n = 33)

0.77 0.37 0.64

WB-MRI whole-body MRI, BS 99m Tc bone scintigraphy
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the fact that DWI sequences are designed to probe small
changes in tissue microstructure, as found in the early cellular
phase of a metastasis, before a sclerotic reaction has been
effected in bone [18].

High and very similar sensitivities/specificities were also
shown forWB-MRI and 18F-choline PET/CT for nodal disease,
with values of 1.00/0.96 and 1.00/0.82 for N1 disease and 0.75/
0.93 and 0.75/0.92 for M1a disease respectively. Both of the
cross-sectional modalities therefore appear more accurate than
conventional CT, which is again in accordance with a meta-
analysis which reported pooled sensitivities and specificities
of 0.42/0.82 for CT [3], vs. 0.49/0.95 for choline PET/CT [5].
MRI studies which incorporate DWI into their scanning proto-
cols report a heterogenous sensitivity for lymph nodes which
ranges from 0.17 [19] to 0.73 [20].Whilst both of these studies
used extended pelvic lymph node dissection as the reference
standard, the lower sensitivity reported by Pinaquy and col-
leagues [19] could relate to their chosen b-values of 0 and
100 s/mm2, which contravenes the recommendations of inter-
national consensus guidelines [21], and emphasises the need for
optimised scanning technique. In concordancewith the findings
of our study, the specificity of MRI for nodal detection is
thought to be high, with a limited number of studies quoting
values ranging from 86% [20] to 98% [22].

A potential strength of our study was the use of a vertex-to-
feet protocol which enabled direct comparison with BS and
could assess potential lesions outside of the field of view for
18F-choline PET/CT.Whole-body cross-sectional studies regard-
ing disease distribution in the PSA screening era are welcome
since strongest data regarding disease distribution is provided by
an autopsy study prior to PSA screening era, which did not
routinely examine the peripheral skeleton [23]. Complete body
coverage has been both suggested [24, 25] and deemed unnec-
essary [9], which is perhaps could partially be due to the uncer-
tainty regarding disease distribution in the PSA screening era.
Since no lesions were detected below the knee or extravertebral
lesions above the diaphragm, our data suggests that scanning
below the knee may indeed be unnecessary, and a cervical and
thoracic spine MRI may be a reasonable compromise for detect-
ing disease above the diaphragm, and is in keeping with the
findings of another study [9], which reported all patients with
peripheral metastases occurring in high-risk prostate cancer (60
in total) also had vertebral metastases, and no metastases

Table 4 ROC-AUC for each
component of the LSR,
performed as part of a patient-
based analysis according to the
reference standard

ROC-AUC N0/N1 (n = 30) M1a (n = 31) M1b (n = 33) Mean ROC-AUC

Reader 1

mDixon + DWI 0.97 (0.91–1.00) 0.99 (0.96–1.00) 0.86 (0.72–1.00) 0.94

+ T2-TSE 0.98 (0.94–1.00) 0.99 (0.95–1.00) 0.93 (0.84–1.00) 0.96

+ contrast 0.98 (0.94–1.00) 0.97 (0.91–1.00) 0.90 (0.76–1.00) 0.95

Reader 2

mDixon + DWI 0.94 (0.81–1.00) 0.87 (0.60–1.00) 0.86 (0.73–1.00) 0.89

+ T2-TSE 0.94 (0.82–1.00) 0.87 (0.60–1.00) 0.94 (0.83–1.00) 0.91

+ contrast 0.94 (0.82–1.00) 0.87 (0.60–1.00) 0.93 (0.82–1.00) 0.91

ROC-AUC receiver operator characteristic area under the curve, LSR locked sequential read, TSE turbo spin echo.
Figures in parentheses represent 95% confidence intervals

Table 5 Performance characteristics of BS, 18F-choline PET/CT, and
WB-MRI carried out as a patient-based analysis vs. the reference standard

N1 (n = 18) M1a (n = 17) M1b (n = 18)

BS

Sensitivity – – 0.60 (3/5)

Specificity 1.00 (13/13)

PPV 1.00 (3/3)

NPV 0.87 (13/15)
18F-choline PET/CT

Sensitivity 1.00 (7/7) 0.75 (3/4) 0.80 (4/5)

Specificity 0.82 (9/11) 0.92 (12/13) 0.92 (12/13)

PPV 0.77 (7/9) 0.75 (3/4) 0.80 (4/5)

NPV 1.00 (9/9) 0.92 (12/13) 0.92 (12/13)

WB-MRI: reader 1

Sensitivity 1.00 (7/7) 1.00 (4/4) 0.80 (4/5)

Specificity 0.91 (10/11) 0.85 (11/13) 1.00 (13/13)

PPV 0.88 (7/8) 0.67 (4/6) 1.00 (4/4)

NPV 1.00 (10/10) 1.00 (11/11) 0.93 (13/14)

WB-MRI: reader 2

Sensitivity 1.00 (7/7) 0.50 (2/4) 1.00 (5/5)

Specificity 1.00 (11/11) 1.00 (13/13) 0.76 (10/13)

PPV 1.00 (7/7) 1.00 (2/2) 0.62 (5/8)

NPV 1.00 (11/11) 0.86 (13/2) 1.00 (10/10)

WB-MRI mean

Sensitivity 1.00 0.75 0.90

Specificity 0.96 0.93 0.88

PPV 0.94 0.83 0.81

NPV 1.00 0.93 0.97

WB-MRI whole-body MRI, BS 99m Tc bone scintigraphy, NPV negative
predictive value, PPV positive predictive value. WB-MRI mean is the
mean of the two readers
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occurred below the knee. With further confirmatory work, scan-
ning the abdomen, pelvis, and femora using pre-contrast mDixon
and DWI at 2 b-values paired with a whole spine MRI as a
routine staging examination could be applied and would have
approximately 700 images, vs. 12,000 images per patient in the
present study. Reducing the number of images may further im-
prove the interobserver concordance by reducing the complexity
of imaging datasets. We found interobserver concordance to be
‘substantial’ for N1 and M1a disease (κ = 0.79 and 0.68 respec-
tively), and ‘moderate’ for M1b (0.58), whereby the lower con-
cordance in bone metastases could be explained by the non-
specific features of bone lesions on MRI, and the fact that acqui-
sitions were tailored for WB cancer staging rather than bone
lesion characterisation. Furthermore, the more subjective criteria
applied for assessing bone lesions vs. nodal size measurements
may have given rise to further heterogeneity in the data and thus
lower levels of concordance.

The LSR paradigm allowed the incremental value of addition-
al sequences to be assessed, whereby adding T2W and post-
contrast mDixon sequences did not improve ROC-AUC signif-
icantly. These results could be used to streamlineWB-MRI scan-
ning protocols in research and clinical practice. For example,
performing pre-contrast mDixon + DWI alone could save
10-min reporting time and 20-min scan time and avoid the need
for cannulation and gadolinium administration. Furthermore, as
suggested by the MET-RADS-P consensus guidelines [25], the
use of 2 b-values rather than 4 could be sufficient—especially for
primary staging purposes, which would reduce scan time by a
further 25min.Whilst theMET-RADS-P guidelines were based
on expert opinion, WB-Dixon and DWI were recommended in

combination with whole spine T1 and short tau inversion recov-
ery (STIR), meaning our findings provide evidence to support a
similarsimplescanningprotocolwhencharacterisingoncological
burden in prostate cancer.

Another potential strength of our study was the choice of a
reference standard based on follow-up MRI rather than on best
value comparator (BVC) alternatives [8] which rely upon imag-
ing tests such as BS and plain radiographs with limited perfor-
mance characteristics.Whilst TPwas assignedwithout follow-up
imaging when BS and MRI were concordant due to the high
specificity of BS in the context of prostate cancer, we did not
assign TN without MRI follow-up, since genuine lack of sensi-
tivity, i.e. FN results on both modalities, is also possible.

The limitations of this study include patient number, its single-
centre nature, and a relatively low number of positive cases.
Furthermore, not all patients underwent 18F-choline PET/CT,
meaning patients with a negative BS in whom the suspicion for
metastatic disease remained high may have been more likely to
be selected for 18F-choline PET/CT vs. patients with clear evi-
dence of metastases on BS, leading to lower apparent levels of
diagnostic accuracy for 18F-choline PET/CT.

In addition, not all patients underwent WB-MRI follow-up at
1 year, which could lead to selection bias, e.g. patients who were
feeling well or unwell at the time of follow-up may be more
likely to refuse the second scan. However, the most common
reason provided at telephone consultation was that they had in-
curred too many imaging tests and therefore declined further
participation. Whilst incorporation bias likely gave rise to the
high values of sensitivity and specificity (e.g. vs. pelvic lymph
node dissection (PLND) as a nodal reference standard), it would

Fig. 3 Example of discordant skeletal site in a 64-year-old man with a
serum prostate-specific antigen level of 25.2. Top left: Negative 99mTc
bone scintigram (BS), Top right: 18F-choline PET/CT showing an area of
increased tracer avidity at the right inferior pubic ramus consistent with a
metastasis. Bottom left: Axial T2W TSE showing the lesion is of low

signal intensity. Bottom right: the lesion has increased diffusion-weighted
signal on b = 1000s/mm2. The lesion was considered as an example of a
true positive whole-body MRI, true positive 18F-choline PET/CT, and
false negative BS
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not have been practical or ethically acceptable to perform nodal
dissection for the purposes of the study, and selecting patients
who are undergoing PLND would incur spectrum bias.

Further work could include performing a lesion-based anal-
ysis in the same cohort of patients, whereby the number of
lesions detected and their anatomical sites could be
established. Further validation of WB-MRI could also be car-
ried out in multicentre trials, where economic and clinical
utility could also be considered. The findings of the present

study are not limited to WB-MRI and can be used to inform
rational PET-MRI protocols, e.g. in combination with
prostate-specific membrane antigen (PSMA) PET tracer.

Conclusion

WB-MRI provides high levels of diagnostic accuracy for both
nodal and metastatic bone disease, with higher levels of sen-
sitivity than BS for metastatic disease, and similar perfor-
mance to 18F-choline PET/CT. T2 and post-contrast mDixon
had no significant additive value above a protocol comprising
mDixon and DWI alone.
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