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Abstract— An important field in exploratory sensory data

analysis is the segmentation of time-series data to identify

activities of interest. In this work, we analyse the performance

of univariate and multi-sensor Bayesian change detection

algorithms in segmenting accelerometer data. In particular, we

provide theoretical analysis and also performance evaluation on

synthetic data and real-world data. The results illustrate the

advantages of using multi-sensory variance change detection in

the segmentation of dynamic data (e.g. accelerometer data).

Index Terms— Variance Change Detection, Multivariate

Change Detection.

I. INTRODUCTION

Many real world data streams can be characterised by
segments in which the statistical parameters of the data are ap-
proximately stationary. In particular the detection of changes in
variance of univariate time series data has found applications
in fields ranging from biomedical engineering [1] to financial
time series analysis [2]. With the advent of low cost multi-
sensory data acquisition devices, the need for the processing
of multi-channel datasets for detecting the joint changes in
such sensors has become apparent.

Univariate algorithms for estimating the transition times
for sensory data with piecewise constant changes in the
variance are broadly separated into two categories: namely
i) algorithms based on statistical significance tests [2] and ii)
Bayesian methods, that is, identifying a posterior distribution
and obtaining the corresponding maximum a posteriori (MAP)
estimates of the change point locations and other parameters
of interest [3][4]. These techniques have found a wide range of
applications in the segmentation of time series data, however, a
need had arisen for the development of multi-sensor extensions
of such algorithms for more accurate segmentation. The work
in [5] proposed to detect the joint changes in the variance from
two different sensors by modelling correlations between the
channels; where it was assumed that the change point locations
for each sensor may occur at differing time instants. While the
proposed algorithm is able to exploit channel dependencies in
order to estimate change point locations, the method however
does not utilise common transition times which increases the
number of parameters to estimate. The work in [6] proposed a
set of multivariate (multi-sensor) covariance models, ranging
from: 1) the independent variance model, that is, identifying
segments through changes in the variance of the multi-sensor
data, 2) the sparse precision matrix model, that is, identifying
changes in the correlation structure of the data.

In this work we seek to segment a 3-axis accelerometer
data pertaining to human activity by combining a variation of
the multi-sensor independent variance model proposed in [6]
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Fig. 1: N sensors with variance �2
n,k, where n = 1, . . . , N is the

sensor index and k = 1, 2, 3 is the segment.

along with the Markov Chain Monte Carlo (MCMC) scheme
proposed in [3]. In particular, we propose the common vari-
ance model (a variation of the independent variance model),
such that both the derivation of the posterior is simplified
and theoretical analysis of the common variance model (by
extension the independent variance model) can be carried out.

II. MULTIVARIATE CHANGE POINT ALGORITHM

Given a multivariate signal, X = [x1, . . . ,xT ] 2 RN⇥T,
where N corresponds to the total number of sensors, such
that each channel vector xt 2 RN is distributed according to
a multivariate Gaussian distribution with a covariance ⌃k cor-
responding to a particular segment k, namely, xt ⇠ N (0,⌃k).
There exists an unknown sequence of common transition time
points, ⌧K = [⌧1, . . . , ⌧K�1], such that ⌧0 = 0 and ⌧K = T ,
where xt belongs to segment index k if ⌧k�1 < t  ⌧k and
K is the total number of segments (please refer to Fig. 1 for
an example).

The independent variance model in [6] utilises the following
covariance, ⌃k = diag(�2

1 , . . . ,�
2
N ), where given a vector,

diag(.) creates a diagonal matrix. In this work we propose to
utilise the common variance model in order to simplify the
derivation and theoretical analysis of the multi-sensor change
point model. That is, we propose to model the covariance
in each segment as follows, ⌃k = �

2
k IN⇥N, where IN⇥N is

the identity matrix. The common variance model assumes that
the variance �

2
n,k for each sensor and segment is effectively

drawn from a distribution with mean �

2
k. It should be noted

that, the common variance model is more restrictive than the
independent variance model. The change in variance between
two adjacent segments across all the sensors must either be
increasing or decreasing. However, by using the common vari-
ance model, we can provide theoretical performance analysis
of the multi-sensor model. The estimation of the transition
times is based on the Bayesian inference approach proposed in
[3], where the posterior distribution for both the number and
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locations of the transition points was first derived and then
MCMC sampling of the posterior was carried out in order
to obtain estimates of the respective parameters. To this end,
the posterior distribution of the parameters {K, ⌧K ,�

2
K ,�},

where �

2
K = [�2

1 , . . . ,�
2
K ], is given by

p(K, ⌧K ,�

2
K ,�|X) / p(X|K, ⌧K ,�

2
K)p(K, ⌧K |�)p(�)p(�2

K)
(1)

where p(X|K, ⌧K ,�

2
K) is the likelihood function, p(K, ⌧K |�)

corresponds to the prior distribution on both the number of
transition times as well as the transition time points, p(�2

K)
is the prior on the variance within each segment and p(�)
is unit interval uniformly distributed prior on �. A binomial
prior probability is utilised for K and the instance of the
transition times ⌧K , p(K, ⌧K |�) = �

K(1 � �)T�K�1. An
inverse Gamma distribution prior (with ↵ = 1 and � a
user defined parameter) is utilised for the joint variance for
each segment �

2
k ⇠ IG(↵,�). The posterior density (1)

is proportional up to a normalizing constant to the joint
probability, p(K, ⌧K ,�

2
K ,X), where by integrating out the

nuisance parameter �

2
K and �, we obtain an expression for

the posterior density for the parameters {K, ⌧K}, that is

p(K, ⌧K |X) /
K�1Y

k=1

2⇡�K
2 (⌧k+1�⌧k�1) �

↵�
�
K
2 (⌧k+1 � ⌧k � 1) + ↵

�

�(↵)

⇥

0

@
⌧k+1�1X

j=⌧k

x

T
j xj + 2�

1

A
�(K

2 (⌧k+1�⌧k�1)+↵)�
�(K + 1)�(T �K)

(2)
The samples were drawn from the posterior distribution (2)

by using the Metropolis-Hastings algorithm as outlined in [3]
(however we do not update the hyperparameters), where the
MAP criterion was then used to determine both the number
of segments and change point locations.
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Fig. 2: The performance of the multi-sensor (red bar), sensor averaged
(green bar) and single sensor (blue bar) methods. Performance
measures include: (upper panel) true positives, (middle panel) false
positives and (lower panel) absolute error in change point location
estimation.

III. PERFORMANCE ANALYSIS

In this section we provide theoretical justification for the
asymptotic performance advantage of utilising the multi-sensor
change detection model over averaging across the sensor
observations and using the univariate model in [3] (it should be
noted that it is trivial to prove the performance improvement
of the multi-sensor model against the segmentation of only a
single sensor). That is, consider the following scenario: a set
of N sensors with the variance in the first segment given by,
{�2

1,1, . . . ,�
2
N,1} and the variance in the second segment given

by {�2
1,2, . . . ,�

2
N,2}, with �

2
n,2 > �

2
n,1, 8n = 1, . . . , N .

That is, each sensor may obtain a variance that is distinct
from all other senors, however, the variance between adjacent
segments is strictly increasing (the same argument can be made
for the variance decreasing between the two segments). The
data points are distributed as follows, xn,k(t) ⇠ N (0,�2

n,k) for
each segment k = 1, 2, with both segments �

2
n,k ⇠ D(�2

k, �̄k)
being drawn from a distribution, D, such that the sample
mean and variance corresponds to the both first moment,
�

2
k, and dispersion, �̄k, of a distribution respectively (an

example of such a distribution is the uniform distribution).
The maximum likelihood estimator (that is, the first term in
the right hand side of (1)) for the joint variance between the
sensors is given by �̂

2
k = 1

N

PN
n=1 �̂

2
n,k for each segment

k = 1, 2, where �̂

2
n,k = 1

T�1

PT
t=1 x

2
n,k(t), assuming that

the data points xn,k(t) are zero mean. While the variance
estimator for the average across the sensors is given by,
�̂

2
a,k = 1

T�1

PT
t=1

⇣
1
N

PN
n=1 xn,k(t)

⌘2
. The corresponding

expectation of the respective estimators of the variance condi-
tioned on �

2
k = [�2

1,k, . . . ,�
2
N,k], are given by

E{�̂2
k|�2

k} = E

(
1

N

NX

n=1

�̂

2
n,k

�����
2
k

)
=

1

N

NX

n=1

�

2
n,k.

E{�̂2
a,k|�2

k} = E

8
<

:
1

T � 1
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!2 �����
2
k

9
=

;

=
1

N

2

NX

n=1

�

2
n,k.

(3)

As a result, consider the expected difference (using the it-
erative property of conditional expectation on (3)) between
two adjacent segments, that is, E{�̂2

2 � �̂

2
1} = �

2
2 � �

2
1

and E{�̂2
a,2 � �̂

2
a,1} = 1

N (�2
2 � �

2
1), for both the common

variance and sensor averaged models, respectively. As the
number of sensors increases, N ! 1, we observe that,
E{�̂2

a,2��̂

2
a,1} ! 0, implying that the estimator of the variance

using averaging will degrade in performance as the number
of sensors increases asymptotically; since it is required that
the expected difference between the variance of two adjacent
segments needs to be greater than zero for any algorithm to
detect a change point.

IV. SIMULATIONS

The performance of the multi-sensor variance change point
detection algorithm was verified on both synthetic and real
world data. In particular a comprehensive comparison in the
performance is carried out with: 1) only a single sensor and
2) averaging across all the sensors univariate change point
detection algorithm [3].
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Fig. 3: An example of a segment of the tri-accelerometer data with
corresponding changes in variance identified by visual inspection
(dashed black lines).

A. Synthetic Data

The first synthetic simulation includes a multi-sensory sig-
nal, x(n), consisting of data points drawn from a multivariate
Gaussian distribution with instantaneous changes in the vari-
ance at random points in time. In particular, the instantaneous
power changes for each segment and sensor were selected
randomly along with both the number of samples in the
segment and the total signal length; where the total number of
samples was selected uniformly between [200, 500] and each
segment (common to the multivariate data) length was selected
with uniform probability between the interval [50, 100]. The
variance for each segment was dependant on the variance
of the previous segment; specifically, a scale increase or
decrease (for all sensors) was selected with equal probability.
Furthermore, the magnitude of the scale decrease was selected
with uniform probability between [0.4, 0.65] and for a scale
increase [1.4, 2.4] (for each channel both the scale increase
and decrease was drawn independently).

We evaluated the performance of the respective algorithms
using the following measures: the proportion of false pos-
itives and true positives along with the absolute error in
the change point location estimate. The following parameters
were selected for the respective algorithms: 1) Multi-sensor:
� = 5, 2) single sensor: � = 5 and 3) sensor averaged:
� = 0.00005. Furthermore, data pre-processing procedures
were first applied, that is, data channel de-correlation along
with the normalization of the respective channels.

From Fig. 2, it can be observed that the multi-sensor
model significantly outperformed, both the sensor averaged
and single sensor univariate change detection algorithms. In
particular, the multi-sensor model had lower change point
location estimation error, when compared with both the sensor
averaged and single sensor univariate algorithms. Furthermore,
the proportion of true positives was significantly higher than
both sensor averaged and single sensor univariate algorithms.
While the proportion of false positives was approximately
equal to the sensor averaged univariate algorithm.
B. Accelerometer Data

This section assesses the performance of the multi-sensor
model on real world tri-axial accelerometer data obtained from
UCI data repository [7][8]. We utilised the accelerometer data
pertaining to the ‘brush teeth’ activity, where the subject had
an accelerometer attached to the wrist, while performing the
activity. The pre-processing of the data set consisted of first
segmenting the data into non-overlapping windows of sample
length 500; where within each non-overlapping window first

TABLE I: Performance of the multi-sensor, single sensor and sensor
averaged models, when processing accelerometer data.

Methods True Positives False Positives
Multi-Sensor 0.87 0.15
Sensor Averaged 0.83 0.26
Single Sensor 0.72 0.27

differencing, channel wise de-correlation and normalization
were then carried out, such that the respective algorithms
were then applied to the pre-processed data. As the data did
not include labels corresponding to the change in variance,
we inferred this from the data sets (example is shown in
Fig. 3), where variance-wise segmentation of the data set can
be inferred via visual inspection.

The following parameters were selected for the respective
algorithms: 1) Multi-sensor: � = 7.5, 2) single sensor:
� = 5 and 3) sensor averaged: � = 1.5. Furthermore, we
evaluated the performance of the respective algorithms, using:
true positives and false positives. From Table I, it can be
observed that the multi-sensor model outperformed both the
single sensor and sensor averaged univariate algorithms, with
respect to both the true positives and more significantly having
a lower number of false positives.

V. CONCLUSIONS
In this work we assessed the performance of both univariate

and multi-sensor Bayesian change detection algorithms in the
segmentation of accelerometer data. Namely, we demonstrated
that by exploiting the inter-sensor dependencies of tri-axial
accelerometers, more accurate activity segmentation based on
the variance can achieved. In future work we will seek to
include labels in the segmentation of the accelerometer data
corresponding to activities of interest.
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