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Abstract: Superhydrophobic surfaces on mold steel substrates were fabricated via simple and environment-

friendly electrochemical technology followed by fluoroalkylsilane (FAS) modification. The microstructure, 

crystal structure, chemical composition, and wettability of the sample surfaces were investigated using scanning 

electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier 

transform infrared spectroscopy (FTIR) and optical contact angle measuring instrument. The influences of 

current density and electrochemical machining time on wettability were also studied. The results show that, 

after the electrochemical processing, the mold steel substrates were covered with a layer of passive films, which 

have micro/nano binary rough structures composed of rugged plateau structures and rupture-like shapes. Before 

fluorination, the obtained sample surfaces showed superhydrophilicity (the water contact angles were almost 

0°), while the sample surfaces became superhydrophobic (the water contact angles were 167.2° and the water 

rolling angles were 4.3°) after fluorination. The proposed method is simple, economical and environmental-
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friendly, and has great potential for large-scale industrial applications. 
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1. Introduction 

 

Superhydrophobic surfaces refer to surfaces whose water contact angles are greater than 150°[1]. On that 

basis, it can be divided into two types: low adhesive superhydrophobic surfaces (the water rolling angles are 

lower than 10°) and high adhesive superhydrophobic surfaces[2] (the droplets still adhere to the surface even 

after the surface is turned upside down). To date, superhydrophobic surfaces have attracted researchers’ attention 

and have been widely concerned due to a wide range of applications in self-cleaning[3,4], anti-icing[5,6], fluid 

drag reduction[7 ,8 ], corrosion resistance[9 ,10 ], anti-adhesion coating[11 ], water–oil separation[12 ,13 ] and 

liquid directional transportation[14]. 

Steel, as a basic alloy, has become the most widely used metal due to its low price, reliable mechanical 

properties and other excellent characteristics in construction, manufacturing and other industries[15]. It is even 

considered as material basis of contemporary society[16]. Furthermore, mold steel is one of the most important 

materials for producing mold products with high precision, high complexity, high consistency and high 

productivity at a very low cost[17]. With the fast development of steel industry and mold industry, the research 

on the processing performance of mold steel has become more and more important. Therefore, considering the 

industrial background of mold steel, fabrication of superhydrophobic coatings on mold steel has considerable 

industrial significance. 

The fabrication of superhydrophobic surfaces is achieved in two key steps: the preparation of micro/nano 

binary rough structures and low surface energy modification. At present, numerous methods have been 
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developed to fabricate superhydrophobic surfaces. However, the metal substrates are limited in aluminum, 

titanium, copper, and the research on other metal materials especially steel substrates is still inadequate. Chen 

et al. [18]firstly pre-treated the stainless substrate with 200 μm silicon dioxide and then immersed the 

substrate in plating bath solution for 4 h at 80 °C to prepare nanoscale Ni layer, and successfully obtained 

superhydrophobic surfaces with a contact angle of 150° after low surface energy modification; Tan et al.[19] 

plated nickel surface on steel via electro-deposition nickel process, followed by stearic acid modification. The 

superhydrophobic surface on steel substrate was obtained, with a water contact angle of 154.4°. A widely used 

approach of coating nanoparticles on the surface was applied due to its low cost. Li et al. [20] used 

hydrofluoric acid solution to etch stainless 304 SS and 316 SS, and immersed the steels in 50% nitric acid 

solution after rinsing the etched steels with deionized water. Water contact angles of the prepared surfaces on 

304 SS and 316 SS substrates were 159.9° and 146.6°, respectively; Gao et al. [21] immersed GCr15 steel 

substrate in 10 v% sulfuric acid solutions added with H2O2 for 1 h and soaked samples in 0.5 v% FAS-13 in 

ethyl alcohol at 70 °C for 12 h, followed by dried in vacuum. The superhydrophobic GCr15 surface was 

obtained via chemical etching, followed by modification, with a water contact angle of 163.5°; Choi et al.[22] 

used HNO3 as the electrolyte and set up a three-electrode system for fabricating micro/nano binary rough 

structures of rounded grain shapes on SS 316 substrates via common metallographic technique of grain 

boundary etching[23] which is accompanied with polarization. The superhydrophobic SS 316 substrates were 

obtained, with a contact angle of 163.9° ± 1.2° and a roll-off angle of 10.7° ± 1.8°, respectively. However, due 

to the use of strong acids, the aforementioned methods will put pressure on the environment and bring higher 

production cost to the process. Wu et al. [24] irradiated stainless substrates with femtosecond laser pulses, 

fabricating typical laser-induced periodic microstructures to obtain superhydrophobic surfaces, with a contact 

angle of 166.3° and a rolling angle of 4.2°. However, machining process such as laser machining is relatively 

complicated and expensive due to its high requirements of equipment and energy consumption. 
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Therefore, it is significant to propose a simple, high efficient, low cost and environmental-friendly method 

to fabricate superhydrophobic surfaces on steel substrates. 

Electrochemical machining (ECM) technology has been widely used in various process of industrial 

production[25]. ECM is an effective way to fabricate micro/nano binary rough structures which is necessary to 

superhydrophobic surfaces. Indeed, ECM technology is simply, fast, and very reproducible. Moreover, it 

includes anode oxidation processing, electrochemical etching, electrochemical deposition and others, therefore, 

it is able to create a large variety of surface morphologies including fibers, tubes, needles, sheets and others[26]. 

We demonstrated that ECM was used to create surface structures with roughness on Zn [27] and Mg alloy 

surfaces [28] to achieve superhydrophobicity. The processing of anode oxidation and electrochemical etching 

occurred, respectively. 

In this paper, a simple method was proposed to prepare superhydrophobic surfaces on mold steel substrate 

via ECM based on passivation property of steel. We used the mold steel as anode, and formed the passive films 

on its surface via ECM, so that the micro/nano binary rough structures can be created. After reduction of surface 

energy of the passive films, superhydrophobic surfaces were obtained. The proposed method was low cost, 

simple and environmental-friendly. 

 

2. Experimental 

 

2.1 Materials 

Anode material: Φ24 mm × 5 mm GCr15 mold steel plate (from Shenzhen An FENG Company); 

Cathode material: Φ20 mm × 90 mm brass rod (from Shenzhen An FENG Company);  

Anhydrous alcohol and NaNO3 were purchased from Beijing Chemical Factory; 
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FAS [tridecafluoroctyltriethoxysilane, C8F13H4Si(OCH2CH3)3]: 95% purity from Degussa Company 

 

2.2 Fabrication of superhydrophobic surfaces 

 

During the electrochemical machining process, the bubbles produced by the products of electrolysis and the 

liquid pump will affect the conductivity distribution of the electrolyte in process[29]. In order to guarantee that 

the electrolyte was kept at a certain velocity the state of which must be turbulent[ 30 ], considering the 

characteristics of the workpiece, we designed a special fixture made by nylon material to obtain lateral flowing 

electrolyte. Furthermore, large area electrochemical machining can be realized by tuning the size of the fixture. 

Fig. 1 shows the scheme of electrochemical machining system, electrolyte flow, electrical control system and 

the fixture. 

 

Fig. 1 Scheme of ECM system. (a) Electrolyte flow; (b) electrical control system; (c) fixture 
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The surface of the cathode brass was polished using 400#, 800#, 1500#, 2000# metallographic abrasive 

papers on metallographic polisher and then put into the special fixture, as shown in Fig. 1 (a). Prior to 

electrochemical machining, the mold steel (GCr15) substrates were polished using 400#, 800#, 1500#, 2000# 

metallographic abrasive paper on metallographic polisher, and then ultrasonically cleaned by water and 

anhydrous ethanol to remove the impurities and the oxide\hydroxide layer on the surfaces. After drying by 

compressed air, the mold steel samples were put into a special fixture as shown in Fig. 1 (a). 

ECM system mainly consists of the following parts: the power section with constant-current and stabilized-

voltage supply to ensure a constant current density; the electric control part of the time relay to precisely control 

the electrochemical machining time [Fig. 1 (b)]; the electrochemical reaction section using the special fixture 

to achieve lateral flowing electrolyte [Fig. 1 (c)]; the electrolyte flow control system for precise control of 

electrolyte; and the electrolyte circulatory system that is composed of three-grade-filtration to remove the waste 

from electrochemical machining for preventing the influence of produced waste. 

Under the parameters of the electrochemical machining as shown in Table 1, passive films composed of 

micro/nanometer-scale binary rough structures can be fabricated. 

Table. 1 Processing parameters of ECM 

Parameters of ECM Number 

Electrolyte concentration 25% (wt%) NaNO3 

Electrolyte flow q/L·h-1 120 

Processing time t/s 2~120 

Current density i/A·cm-2 2~9 

Inter-electrode gap h/mm 0.5 

When the time relay control system stopped running, suggesting that the electrochemical machining process 

was over, the workpiece material was removed from the fixture and cleaned with deionized water for 2~3 times. 
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After dried by compressed air, the samples were immersed into 1 wt% FAS ethanol solution for 1 hour followed 

by dried at 80 °C for 20 min. 

 

2.3 Sample Characterization 

 

The wettability including water contact angles (CA) and water rolling angles (RA) were measured using an 

optical contact angle measurement (krüss, DSA100, German) and self-made rolling angle measuring instrument 

at room temperature. The water volumes that were used in contact angle and rolling angle measurements were 

5 μL and 10 μL, respectively. The surface micro/nano-scaled morphologies were investigated via a scanning 

electron microscope (SEM, JSM-6360LV, Japan). The chemical compositions were characterized using X-ray 

photoelectron spectroscopy (XPS, Thermo, ESCALAB-150Xi, America) and Fourier transform infrared 

spectroscopy (FTIR, JASCO, Japan). The crystal structure was analyzed via X-ray diffraction system (XRD-

6000, Japan). 

 

3. Results and discussion 

 

3.1 The influence of current density on wettability and morphologies 

3.1.1 The morphologies and chemical compositions of the sample surfaces 

Fig. 2 (a) shows the SEM images of passive film morphologies formed on GCr15 mold steel at different 

current densities after 90 s electrochemical machining process. As shown in Fig. 2 (a1), there were only a few 

scratches on the untreated sample surface. By contrast, there were many rugged plateau structures and well-

proportioned micron particles and a few nano-scaled particles on the surface of passive films when current 

density i = 2 A·cm-2, as shown in Fig. 2 (a2). When the current density increased (i = 5 A·cm-2), the micron 
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particles on the surface of passive films were broken, forming sub-micron and nano-scaled rupture-like particles, 

and we could then obtain the micro/nano-scaled binary rough structures as shown in Fig. 2 (a3). When the 

current density increased to 9 A·cm-2, the electrochemical action was so strong that micron particles were 

massively broken, therefore there were mainly nano-scaled particles on the surfaces as shown in Fig. 2 (a4). Fig. 

2 (b) shows XRD pattern of GCr15 surface before and after ECM. The diffraction peak was mainly formed by 

α-Fe, indicating that GCr15 was almost composed of polycrystalline ferrite and main crystal structures were 

unchanged after ECM. Fig. 2 (c) shows the XPS spectrum of GCr15 with passive film after ECM (i = 5 A·cm-

2, t = 90 s). Combined with Table. 2, the results indicate that Fe of passive film was mainly in the form of Fe[II] 

and Fe[III], and that a certain amount of Cr was in the form of Cr[II] and Cr[III], with few Cr[VI][31]. Table. 2 

shows chemical compositions of GCr15 surfaces before and after ECM according to XPS spectrum. Compared 

with original GCr15, the content of C increased greatly and a large amount of O appeared, suggesting that the 

forming process of passive films was accompanied by carburizing and oxidation filled with Fe and Cr. Fig. 2 

(d) shows the FTIR spectra of sample surfaces before and after FAS modification. 1374 cm-1, 1242 cm-1, 

1197 cm-1, 1143 cm-1, were assigned to the C−F stretching vibration of the −CF2− and –CF3− groups of the FAS 

molecules[28]. 1089 cm-1 can be explained by the asymmetric stretching of newly reacted Si-O-Si bonds[32]. 

The results of FTIR confirmed that the FAS had been successfully treated on passive films, and that the 

modified surface was under the state of low surface energy with micro/nano-scaled binary rough structures. As 

a result, the superhydrophilic sample surfaces became superhydrophobic. Fig. 2 (e) shows that the untreated 

GCr15 surfaces were silvery white, while the surfaces of GCr15 with passive film were dark gray or black after 

ECM. 
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Fig. 2 Surface morphology, crystal structure and chemical composition. (a) SEM images of passive film 

morphology formed at different current densities (t = 90 s); (b) XRD patterns of GCr15 surface before 

(bottom) and after (top) ECM; (c) XPS spectrum of passive film on GCr15 surface after ECM; (d) FTIR 

spectra of GCr15 surfaces before and after ECM; (e) Optical images of passive films formed at different 

current densities (t = 90 s): (a) i = 0 A·cm-2; (b) i = 2 A·cm-2; (c) i = 5 A·cm-2 

Table. 2 The element composition of GCr15 surfaces before (top) and after ECM (bottom) via XPS analysis 

Name C1s Fe2p O1s Cr2p 

Atomic (%)  20.76 64.87 0 13.51 

Atomic (%) 29.48 19.53 46.8 4.18 
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3.1.2 Wettability of the mold steel GCr15 surfaces 

 

Fig. 3 shows the images of water contact angles on original GCr15 surfaces before and after FAS modification. 

The water contact angle was about 80.5° on original GCr15 surface, showing hydrophilicity because of its high 

surface energy [Fig. 3 (a)]. The water contact angle on original GCr15 surfaces after FAS modification was 

107.2°, showing hydrophobicity [Fig. 3 (b)]. This is because the structure of fluoroalkylsilane includes one –

CF3 group with 6.7 mJ/m2 surface energy and five –CF2– groups with 18 mJ/m2 surface energy[33]. So that the 

FAS has low surface energy and does not change the microstructures of the surface in the process of low surface 

energy modification. The comparison results clearly demonstrates the effect of low surface energy modification 

using FAS. However, the modified surface was still not superhydrophobic due to the lack of rough micro/nano 

structures[34].  

 

Fig. 3 The optical images of the water droplets on original mold steel surfaces before (a) and after (b) FAS 

modification without ECM process; and water droplets on mold steel surfaces with passive films (after ECM) 

before (c) and after (d) FAS modification. 
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Fig. 3 (c) and (d) shows the optical images of the water contact angles on GCr15 surfaces with passive films 

obtained by ECM (i = 5 A·cm-2, t = 90 s) before and after FAS modification. The machined surfaces before FAS 

modification shows superhydrophilicity, and water droplets spread rapidly on the surfaces [Fig. 3 (c)]. On the 

basis of Wenzel’s theory[35], roughening a surface enhances its hydrophilicity, resulting in the hydrophilic 

GCr15 surfaces to become superhydrophilic[36]. However, after FAS modification, superhydrophilic GCr15 

surfaces were transformed into superhydrophobic surfaces, with the water contact angle and rolling angle being 

167.2° and 4.4°, respectively [Fig. 3 (d)]. Therefore, the preparation of passive films with micro/nano binary 

rough structures by electrochemical machining and the low surface energy modification via FAS treatment were 

necessary to fabricate superhydrophobic surfaces. On a superhydrophobic surface, water droplet was supported 

by both solid surface structures and air-pockets in the Cassie-Baxter state[37]. The equation of the contact angle 

is described as follows  

cos𝜃𝑐  = 𝑓1(𝛾𝑆𝐺 − 𝛾𝑆𝐿)/𝛾𝐿𝐺 − 𝑓2  = 𝑓1cos𝜃 −  𝑓2 (1) 

  Where 𝜃𝑐 and 𝜃 represent the contact angles on the rough and smooth surfaces after FAS modification; 

𝑓1 and 𝑓2 are the area fractions of solid and air on the surface. In this case, 𝜃𝑐  = 167.2°, 𝜃 = 107.2° and 

𝑓1 + 𝑓2 = 1, Therefore, according to Equation (1), when a water droplet was put on the surface, only 4.12% 

of apparent area contacted with the solid surface, and 95.88% of the area only contacted with air. 

Fig. 4 (a) and (b) shows the influence of the current density in electrochemical machining on the wettability 

of mold steel GCr15 surfaces with passive films (all samples were treated with FAS before contact angle and 

sliding angle measurements). When the current density was relatively smaller (i < 4 A·cm-2), the water contact 

angles increased obviously, but water droplets still could not roll off, which indicates that the surfaces were 

still highly adhesive to water. While the current density i = 4 A·cm-2, low adhesive superhydrophobic surfaces 

could be prepared, the water contact angle was 165.3° and the water rolling angle was 9.2°. Better 
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superhydrophobicity can be achieved when current density i = 5 A·cm-2, the water contact angle was 167.2° 

and the water rolling angle was 4.4°.  

According to the SEM images and pictures of mold steel GCr15, the original surface was silvery white 

[Fig. 4 (c1)], and there were just some scratch traces on the surface [Fig. 4 (d1)]. When the current density i = 

2 A·cm-2, the surface became gray white [Fig. 4 (c2)], with some microstructures on it [Fig. 4 (d2)]. When the 

current density increased to 3 A·cm-2, the treated surface was still gray white [Fig. 4 (c3)], but some 

microstructures were ruptured and some nanostructures appeared [Fig. 4 (d3)], causing the surfaces to be more 

superhydrophobic. When the current density i ≥ 4 A·cm-2, the surfaces became black dark [Fig. 4 (c4)-(c9)], 

because the reaction was so strong that the anodic corrosion speeded up, and C deposited on the anode; 

meanwhile, the microstructures were continuously broken up to form more nanostructures, thereby forming 

micro/nano-scaled binary rough structures [Fig. 4 (d4)-(d9)]. As a result, the surface hydrophobicity was 

improved[38].  
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Fig. 4 Wettability and surface morphology of superhydrophobic GCr15 mold steel. (a) (b) The influence of the 

current density in ECM processing on the wettability on passive films formed on GCr15 surfaces; (c) Optical 

images of passive films formed at different current densities (t = 90 s);(d) SEM images of passive film 

morphology formed at different current densities (t = 90 s) 

 

3.2 The influence of ECM processing time on surface wettability and morphologies 

Fig. 5 (c) and (d) shows the influence of processing time (2 s, 5 s, 10 s, 20 s, 40 s, 60 s, 90 s, 120 s) on the 

wettability of mold steel GCr15 surfaces with passive films (all samples were treated with FAS before contact 

angle and sliding angle measurements). When the processing time t < 20 s, with the time increasing, the water 

contact angles became larger and larger, and the water rolling angles obviously decreased. However, when the 

processing time t > 20 s, the water contact angles and rolling angles did not significantly change with the 
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increase of the processing time. As shown in Fig. 5 (c) and (d), the superhydrophobic surface could be obtained 

after only 2 s ECM, with water contact angle and rolling angle being respectively 152.8° and 27.2°. Additionally, 

the relatively optimum hydrophobicitiy was achieved when processing time t = 90 s, with the water contact 

angles of 167.2° and the water rolling angles of 4.4°. Compared with the innovative method of grain boundary 

etching for fabricating superhydrophobic surface on stainless 316 [22], superhydrophobicity was achieved with 

a higher contact angle and a smaller rolling angle. 

 

 

Fig. 5 Surface morphology and wettability of superhydrophobic GCr15 mold steel. (a) SEM images of passive 

film morphology that formed at different processing times (i = 5 A·cm-2); (b) Optical images of passive films 

that formed at different processing times (i = 5 A·cm-2);(c) (d) The influence of the ECM processing time on 

the wettability of passive films that formed on GCr15 surfaces 
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Fig. 5 (a) shows the SEM images of mold steel GCr15 surfaces under 5 A·cm-2 current density with different 

electrochemical machining times (0 s, 2 s, 5 s, 10 s, 20 s, 40 s, 60 s, 90 s, 120 s). As shown in Fig. 5 (a1), 

common sample surfaces only had some polished scratch traces. When the processing time t = 2 s, the structures 

were mainly composed of microscale plateau-like shapes, with a few nanoscale concaves [Fig. 5 (a2)]. When 

the processing time t = 5 s, the plateau-like shape microstructures were broken down, thus forming the 

micro/nano-scaled binary rough structures [Fig. 5 (a3)]. With time increasing, the quantity and the degree of the 

rupture-like structures also increased, thereby forming the micro/nano-scaled structures that were necessary to 

achieve superhydrophobicity [Fig. 5 (a4)-(a9)]. Fig. 5 (b) shows optical images of the passive films that formed 

at different processing times under the current density of i = 5 A·cm-2. Common surfaces were silver white [Fig. 

5 (b1)], while the sample surfaces after ECM process became dark grey [Fig. 5 (b2)] and even black [Fig. 5 (b3)-

(b9)]. 

3.3 Analysis of the reason for formation of micro/nano rough structures 

In this experiment, we employed electrochemical machining method to obtain the micro/nano structures. 

During the electrochemical machining process, GCr15 surface was covered with the passive film, which is 

dense, highly adhesive to water and protective[39]. At present, the correlation analysis of the formation of the 

passive film is mainly composed of phase-formation theory [40] and adsorption theory[41]. The passive film is 

generally considered to be composed of two or more layers of compound films[42]. Fig. 6 shows the forming 

process of the passive films on GCr15 surface, where M represented Fe and Cr. The chemical reactions in this 

process were as follows. 

O2+H2O+e-→OH- Reaction 1 

M2++ H2O→M(OH)2+H+ Reaction 2 
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MO+ H2O+ OH-→MOOH+ e- Reaction 3 

M3++O2+ e-→M2O3 Reaction 4 

 

Fig. 6 Pattern of forming of passive film on GCr15 surface 

Based on the phase-forming theory, the hydroxide and oxyhydroxide such as FeOOH and CrOOH in the form 

of Fe[II] and Cr[II] firstly appeared and formed the surface passive film due to hydration reactions like 

Reaction.1, 2, 3. Hydroxide accounted for the majority in surface layer. At the same time, oxygen was going 

through the surface layer of the passive film, forming rupture-like and micro-porous structures on the surface 

layer, because of strong electrochemical machining process. According to adsorption theory[43], oxidized Fe2+ 

and Cr2+ and free Fe3+ and Cr3+
 formed dense oxide in the inner layer of passive film. Cr2O3 was generally 

considered to play a key role in the compactness and completeness of the passive film[44]. The micro/nano-

scale binary rough structures that realized superhydrophobicity were formed due to compound effects on the 

same surface[45]. The passivation is actually a part of processing of polarization which was used for grain 

boundary etching and further controlling micro structures[23]. 

In this process, we could control damage degree of the surface layer that caused by forming process of the 

http://dict.youdao.com/w/hydroxide/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/oxyhydroxide/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/hydroxide/#keyfrom=E2Ctranslation
http://dict.youdao.com/w/oxide/#keyfrom=E2Ctranslation
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inner layer by adjusting electrochemical machining parameters, and further control the microstructures and 

wettability of mold steel GCr15 surface. 

3.4 Durability of superhydrophobic surfaces 

Under optimum ECM parameters (i = 5 A·cm-2 and t = 90 s), the samples still showed high 

superhydrophobicity with a water contact angle of 161.8° after exposure to air for one year under normal 

ambient conditions [Fig. 7]. This indicates that the superhydrophobic surfaces fabricated via the ECM methods 

have good durability to the environment. 

 

Fig. 7 The microscope images of the water droplets on original surface (left) and surface after storing one 

year (right) 

4. Conclusions 

 

(1) We had developed a simple, low cost and environmentally friendly method to fabricate superhydrophobic 

surfaces on mold steel GCr15 substrate. The passive films that were composed of micro/nano binary rough 

structures were formed on the samples via electrochemical machining so that the superhydrophobic sample 

surfaces could be obtained after FAS modification. The water contact angles of the obtained sample surfaces 

were 167.2°, while the water rolling angles were only 4.4°. 

(2) The passive films on GCr15 were compound films with two layers. The surface layer was composed of 
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hydroxide and oxyhydroxide with the form of Fe[II] and Cr[II], and the inner layer was composed of Fe2O3 and 

Cr2O3. 

(3) Based on the microstructures and chemical compositions investigated via SEM, XPS, XRD and FTIR, 

micro/nano binary rough structures including rugged plateau and rupture-like special structures and low surface 

energy modification were essential to fabricate superhydrophobic surfaces. 

(4) The current density of electrochemical machining had great influence on the wettability. The 

superhydrophobicity could only be obtained while i > 3 A·cm-2. Additionally, processing time had little effect 

on surface wettability under 5 A·cm-2 proper current density, and superhydrophobic surfaces could be prepared 

within just a few seconds. 
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