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Edge illumination X-ray phase-contrast tomography
(EIXPCT) is an emerging X-ray phase-contrast tomog-
raphy technique for reconstructing the complex-valued
X-ray refractive index distribution of an object. Con-
ventional image reconstruction approaches for EIXPCT
require multiple images to be acquired at each tomo-
graphic view angle. This contributes to prolonged data-
acquisition times and elevated radiation doses, which
can hinder in-vivo applications. In this work, a new
‘single-shot’ method is proposed for joint reconstruc-
tion (JR) of the real and imaginary-valued components
of the refractive index distribution from a tomographic
data set that contains only a single image acquired at
each view angle. The proposed method is predicated
upon a non-linear formulation of the inverse problem
that is solved by use of a gradient-based optimization
method. The method is validated and investigated by
use of computer-simulated and experimental EIXPCT
data sets. © 2016 Optical Society of America

OCIS codes: (110.7440) X-ray imaging; (110.3010) Image recon-
struction techniques.
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Edge illumination X-ray phase-contrast tomography (EIX-
PCT) [1–3] is an emerging X-ray phase-contrast technique for
reconstructing the complex-valued refractive index distribution
of an object, which will be denoted as n(r) = 1− δ(r) + iβ(r),
i ≡

√
−1. All mathematical functions in this study will be

assumed to be bounded and have compact support. Conven-
tional image reconstruction methods for EIXPCT contain two
steps. In the first step, phase-retrieval is performed at each to-
mographic view angle. Two tomographic data sets, also known
as sinograms, are computed that permit δ(r) and β(r) to be inde-
pendently reconstructed by use of a reconstruction algorithm,
such as the filtered backprojection (FBP) algorithm. To perform
the phase-retrieval step, two or more distinct images are gen-
erally required to be acquired at each tomographic view angle
[4]. This is undesirable for in-vivo imaging because it can in-

crease imaging times and radiation dose. To circumvent this,
single-shot methods have been proposed that can remove the
need to acquire multiple images per view angle. However, pre-
viously proposed single-shot EIXPCT methods require restric-
tive assumptions regarding the scanning geometry [5] or object
[6], or require use of an energy-sensitive detector [7].

In this work, a new single-shot method for EIXPCT is es-
tablished that circumvents these assumptions. In the proposed
method, the phase-retrieval and image reconstruction steps are
combined into a single step. Estimates of δ(r) and β(r) are com-
puted directly from the single-shot tomographic measurement
data by use of a non-linear joint reconstruction (JR) method as
described below.
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Fig. 1. An experimental set up. A1 is the pre-sample mask and
is placed before the sample. A2 is the detector mask and is
placed immediately before the detector with a pixel size P. S
is the X-ray source. The distance between the source and A1 is
denoted as zso and the distance between A1 and the detector is
denoted as zod.

Consider a canonical EIXPCT system as depicted in Fig. 1
[2, 8]. The coordinate r = (x, y) describes a stationary refer-
ence coordinate system. The origin of the reference system cor-
responds to the assumed origin of tomographic scanning. A
rotating coordinate system (xr , yr) will be utilized to describe
the tomographic measurements and is related to the reference
system as xr = x cos θ + y sin θ, yr = y cos θ + x sin θ. Here,
θ denotes the tomographic view angle that is measured from
the positive x-axis, yr denotes the detector coordinate, and the
positive xr-axis denotes the direction of the incident of the X-
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ray beam, assuming an incident X-ray plane-wave or spherical
wave in the paraxial limit.

An aperture (pre-sample mask) denoted by A1 is placed be-
tween the X-ray source S and the to-be-imaged object that is
denoted by O. The distance from the source to A1 is denoted
as zso. Another aperture (detector mask), denoted by A2, is lo-
cated immediately in front of the detector and is parallel to the
pre-sample mask A1 and is at a distance zod from it. The relative
positions of the two apertures along the yr-axis can be changed
by moving the pre-sample mask. Translating A1 by ∆ξ results
in the measurement of different deflected X-ray beam compo-
nents. In this way, differential phase information is encoded in
the measured X-ray wave intensity I(θ, yr ; β, δ).

LetH denote the two-dimensional (2D) Radon transform op-
erator that, when acting on β(r), is defined as

p(θ, yr ; β) ≡ Hβ(r) =
∫

L(yr,θ)
β(r)dxr , (1)

where the path of integration L(yr, θ) is a line that is parallel to
xr axis and goes through (0, yr). Similarly, letD denote the first-
order derivative of the 2D Radon transform with respect to the
detector coordinate yr:

D(θ, yr ; δ) ≡ ∂

∂yr
p(θ, yr ; δ) =

∂

∂yr

∫

L(yr,θ)
δ(r)dxr . (2)

In terms of these quantities and assuming a monochromatic
incident wavefield with wavelength λ, the EIXPCT imaging
model can be expressed as [8]

I(θ, yr; β, δ) =

exp

(

− 2π

λ
p(θ, yr ; β)

)

ITC

(

∆ξ − zod

M
D(θ, yr ; δ)

)

, (3)

where M ≡ (zso + zod)/zso. The quantity ITC(∆ξ) represents
the illumination curve that describes the relationship between
the measured intensity and the aperture position when the ob-
ject is absent and is typically acquired by a separate calibra-
tion procedure. In single-shot imaging, the aperture offset ∆ξ
is fixed at a given tomographic view angle θ, as only a single
image is recorded, but ∆ξ may vary between view angles. As
such, the notation ∆ξθ will be employed.

In practice, D(θ, yr; δ) is often small enough for Eq. (3) to be
linearized by use of a Taylor expansion [8] as

I(θ, yr; β, δ) = exp

(

− 2π

λ
p(θ, yr ; β)

)

×
[

ITC(∆ξθ)−
zod

M
I ′TC(∆ξθ)D(θ, yr ; δ)

]

, (4)

where I ′TC(∆ξθ) denotes the first-order derivative of the illumi-
nation curve at aperture position ∆ξθ.

Next, in order to formulate image reconstruction in single-
shot EIXPCT as a numerical optimization problem, the
imaging model in Eq. (4) is discretized. Let the vectors
β = [β1,1, β1,2, ..., β1,Nx

, β2,1, ..., βNx,Ny
]T ∈ R

N and δ =

[δ1,1, δ1,2, ..., δ1,Nx
, β2,1, ..., δNx ,Ny

]T ∈ R
N represent the values of

β(r) and δ(r) sampled at the N = Nx Ny vertices ri,j = (xi , yj)
(i = 1, 2, ..., Nx and j = 1, 2, ..., Ny) of a Cartesian grid. Consider
that Q samples of the wavefield intensity corresponding to sam-
pled values of yr are acquired at each of P tomographic view
angles. The vector I(β, δ) ∈ R

PQ contains a lexicographical or-
dering of these values. The notation [·]i will be employed to

denote the i-th component of the vector enclosed by the brack-
ets.

Discrete representations of the 2D Radon transform and its
first-order derivative will be denoted as H ∈ R

PQ×N and
D ∈ R

PQ×N, respectively. Finally, let ∆ξ ∈ R
P denote the

collection of aperture offsets employed at the different tomo-
graphic view angles. Is should be noted that in previously pro-
posed single-shot methods, the aperture offset was assumed to
be fixed for all view angles. However, as described below, the
proposed image reconstruction method will permit exploration
of more general single-shot data-acquisition protocols in which
the aperture offset varies with view angle. The quantity [∆ξ]⌈ i

Q ⌉
corresponds to the aperture offset employed at the tomographic
view angle corresponding to the measurement [I(β, δ)]i, where

⌈ i
Q ⌉ defines the smallest integer larger than i

Q . In terms of these

quantities, a discrete version of the imaging model can be ex-
pressed as

[I(β, δ)]i = exp

(

− 2π

λ
[Hβ]i

)

×
[

ITC([∆ξ]⌈ i
Q ⌉
)− zod

M
I ′TC([∆ξ]⌈ i

Q ⌉
)[Dδ]i

]

, (5)

where i = 1, 2, ..., PQ.
Based on the discrete imaging model, JR of β and δ can be

formulated as a numerical optimization problem. Let Im and
I(β, δ) denote the measured intensity data and the intensity
data simulated by use of Eq. (5) for a specified choice of δ and
β, respectively. Penalized least squares estimates of δ and β can
be jointly determined as

(β̃, δ̃) = arg min
β̃,δ̃

||Im − I(β̃, δ̃)||2 + R(β̃, δ̃), (6)

where R(β̃, δ̃) is a penalty function that imposes regularization
on the estimates. The first term in the objective function in Eq.
(6) - the data fidelity term - is non-convex. However, as demon-
strated below, this will not prevent accurate image reconstruc-
tion. In this work, the penalty function was taken to be of the
form R(β̃, δ̃) = l1Rβ(β̃) + l2Rδ(δ̃), where l1 and l2 denote reg-

ularization parameters, and Rβ(β̃) and Rδ(δ̃) are differentiable
functions.

The gradients of the objective function f (β̃, δ̃) with respect
to the vectors β̃ and δ̃ are given by

∇β̃ f (β̃, δ̃) = 2I′∗
β̃
(I(β̃, δ̃)− Im) + l1∇β̃Rβ(β̃), (7)

∇δ̃ f (β̃, δ̃) = 2I ′∗
δ̃
(I(β̃, δ̃)− Im) + l2∇δ̃Rδ(δ̃), (8)

where I′∗
β̃
∈ R

N×PQ and I′∗
δ̃
∈ R

N×PQ denote the adjoint oper-

ators corresponding to the derivatives of I(β̃, δ̃) with respect to
β̃ and δ̃, respectively. The adjoint operators, applied to a small
vector ǫ ∈ R

PQ, can be computed as

I′∗
β̃

ǫ = − 2π

λ
H∗x and I′∗

δ̃
ǫ = −D∗y, (9)

where

[x]i =
(

ITC([∆ξ]⌈ i
Q ⌉
)− zod

M
I ′TC([∆ξ]⌈ i

Q ⌉
)[Dδ̃]i

)

× exp

(

− 2π

λ
[H β̃]i

)

ǫi, (10)

[y]i =
zod

M
I ′TC([∆ξ]⌈ i

Q ⌉
) exp

(

− 2π

λ
[H(β̃)]i

)

ǫi, i = 1, 2, ..., PQ.

(11)
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A batch gradient algorithm is proposed for solving Eq. (6).
Pseudocode for the algorithm is provided in Algorithm 1. The
iteration stops when the objective function value falls below a
specified threshold.

Algorithm 1. JR of β̃ and δ̃ using a batch gradient algorithm

1: Calibrate the illumination curve
2: Read in measured data I

3: Initialization: β̃
(0) ← 0; δ̃

(0) ← 0; k← 0
4: while stopping criterion is not satisfied do
5: k← k + 1

6: Calculate the intensity data I(β̃
(k)

, δ̃
(k)

)

7: Compute cost ||Im − I(β̃
(k)

, δ̃
(k)

)||2 + R(β̃
(k)

, δ̃
(k)

)

8: dβ ← −∇β||Im − I(β̃
(k)

, δ̃
(k)

)||2 + l1∇βRTV(β̃
(k)

) ⊲

∇β denotes the derivative w.r.t. β̃

9: dδ ← −∇δ||Im − I(β̃
(k)

, δ̃
(k)

)||2 + l2∇δRTV(δ̃
(k)

) ⊲ ∇δ

denotes the derivative w.r.t. δ̃

10: (β̃
(k+1)

, δ̃
(k+1)

)← (β̃
(k)

, δ̃
(k)

) + τ(dβ, dδ) ⊲ τ is the
step size obtained by a line search method

Computer-simulation studies were first conducted to
demonstrate the feasibility of achieving accurate JR of β and
δ from idealized noiseless measurements by use of Algorithm
1. The numerical phantoms shown in Figs. 2a and 2b were em-
ployed to represent β and δ. The phantoms contained 256× 256
pixels of size 100 µm× 100 µm and the values of β and δ were
representative of soft tissue. Both phantoms contained multiple
materials.
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Fig. 2. Numerical phantoms utilized to represent (a) β and (b)
δ in the computer-simulation studies.

Noiseless simulated intensity data were computed by use
of Eq. (3). At each view angle, 400 samples of the wavefield
intensity were specified along the detector array. The illumi-
nation curve was modeled after experimental measurements
[5]. It was specified as a Gaussian distribution ITC = 0.13 +
0.87 exp(−∆ξ2/1.84× 10−10), where ∆ξ has units of m and ITC

has arbitrary units. The offset ∆ξ was specified as ∆ξ = 9.6 µm,
as ∆ξ ± 9.6 µm corresponded to the locations of largest deriva-
tive of the illumination curve. The imaging parameters were:
zso = 1.6 m, zod = 0.4 m, λ = 10−10 m.

Two distinct single-shot EIXPCT data sets were computed
using the methodology described above. The first data set was
a conventional single-shot data in which the aperture offset was
constant at 720 evenly spaced view angles that spanned a 2π an-
gular range; this data set will be referred to as the constant aper-
ture position (CAP) plan. The offset value was ∆ξ = 9.6 µm.
The second single-shot data set was non-conventional and its
design was motivated by the flexibility of the proposed JR
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Fig. 3. Computer-simulation results corresponding to the CAP
plan. Reconstructed estimates of β (MSE = 1.8×10−24) and δ
(MSE = 1.3× 10−19) are shown in subfigures (a) and (c). Line
profiles through the reconstructed images and corresponding
true phantoms are shown in subfigures (b) and (d).
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Fig. 4. Computer-simulation results corresponding to the AAP
plan. Reconstructed estimates of β (MSE = 3.5×10−23) and δ
(MSE = 7.5× 10−18) are shown in subfigures (a) and (c). Line
profiles through the reconstructed images and corresponding
true phantoms are shown in subfigures (b) and (d).

method. In this data set, referred to as the alternating aperture
position (AAP) plan, intensity data were collected at 360 evenly
spaced view angles that spanned a π angular range. However,
instead of keeping the aperture offset fixed, it was alternated
between ∆ξ = 9.6 µm and ∆ξ = −9.6 µm, changing value at
every view angle. The AAP plan addresses the situation when
single-shot measurements are not available over a complete 2π
range. Images were reconstructed from both data sets by use of
Algorithm 1 with l1 = l2 = 0 (i.e., no regularization).

The reconstructed images and image profiles corresponding
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to the CAP plan are shown in Figs. 3. These results confirm that
the JR algorithm can reconstruct highly accurate images from
idealized single-shot data. A similar observation holds true for
the AAP plan results shown Fig. 4. The AAP plan results sug-
gest, for the first time, that a full 2π angular scanning range can
be traded for a reduced scanning range of (at least) π if addi-
tional diversity in the measured data are created by varying the
aperture offset as a function of view angle.
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Fig. 5. Estimates of β (top row) and δ (bottom row) that were
jointly reconstructed from the (a),(d) CAP data set, and (b),(e)
AAP data set. The corresponding estimates obtained by use of
the conventional two-step method are shown in subfigures (c)
and(d).

(a) (b)

Fig. 6. Profiles through the reconstructed images for all data
acquisition plans at the white dashed line indicated in Figs. 5c
and 5f. The profiles corresponding to the estimates of β and δ
are shown in subfigures (a) and (b), respectively.

To demonstrate the value of the JR method under realistic
conditions, studies that utilized experimental EIXPCT data sets
were conducted. The experimental data were acquired in a pre-
vious study [5]. The imaged sample corresponded to a chicken
bone and the mean X-ray energy was 17 keV. Addition details
regarding the imaging system and imaging parameters can be
found in reference [5]. As in the computer-simulation studies,
intensity data were acquired at 720 view angles that were uni-
formly distributed over a 2π angular range. At each view angle,
two intensity measurements were acquired corresponding to
approximately symmetric positions on the illumination curve.
A CAP data set was formed by retaining the measurements cor-
responding to one side of the illumination curve. An AAP data
set was formed by keeping either the measurement correspond-
ing to the positive or negative side of the illumination curve, in
an alternating fashion as a function of view angle. Images were
reconstructed from the CAP and AAP data sets by use of Algo-

rithm 1. The penalty functions Rβ(β̃) and Rδ(δ̃) were specified
as a smoothed version of the total variation semi-norm [9]. Suit-
able values of the regularization parameters l2 and l1 were man-
ually determined and fixed for use with both data sets. Images
were also reconstructed by use of a conventional (non-single-
shot) approach in which both images acquired at each view an-
gle were employed to perform phase-retrieval, followed by ap-
plication of the FBP algorithm to determine estimates of β and
δ [5]. In this case, a π angular scanning range was utilized. In
all cases, the pixel size of the reconstructed images was 9.9 µm.

The reconstructed images and corresponding image profiles
reconstructed from the experimental data sets are displayed in
Figs. 5 and 6. In all of the reconstructed images, the features
of the bone structure can be clearly identified. Moreover, as
evident from the nearly overlapping image profiles, the images
reconstructed from the CAP and AAP single-shot data sets by
use of the JR method are close in quantitative value to those
reconstructed by use of the conventional two step approach.

In summary, a new JR method was proposed for single-
shot EIXPCT. The proposed JR method, in effect, combines the
phase-retrieval and image reconstruction steps into one. The JR
method was formulated as a numerical optimization problem
and a gradient-based algorithm was developed for its solution.
The proposed method possesses advantages over previously-
proposed single-shot methods for EIXPCT. The method does
not require the assumption of a single material object [6]. More-
over, it does not require a parallel-beam geometry [5] and can
be applied to the case of a cone-beam geometry where the in-
cident beam divergence must be considered. Additionally, the
method does not require use of an energy-sensitive detector [7]
and can be employed with readily available integrating X-ray
detectors. Finally, the flexibility of the method permits explo-
ration of innovative data-acquisition protocols for single-shot
EIXPCT, such as the AAP plan, which can relax requirements on
the range of angular scanning. Additional studies are required
to comprehensively evaluate the numerical and statistical prop-
erties of the method.

This work was supported in part by NIH award EB02060401
and NSF award CBET1263988.
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