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Abstract—We propose waveform design for a dual-functional
multi-input-multi-output (MIMO) system, which carries out both
radar target detection and multi-user communications using a
single hardware platform. By enforcing both a constant modulus
(CM) constraint and a similarity constraint with respect to
referenced radar signals, we aim to minimize the downlink multi-
user interference. Unlike conventional approaches which obtain
suboptimal solutions to the generally NP-hard CM optimization
problems involved, we propose a branch-and-bound method to
efficiently find the global minimizer of the problem. Simulations
show that the proposed algorithm significantly outperforms the
state-of-art by achieving a favorable trade-off between radar and
communication performance.

I. INTRODUCTION

The limited bandwidth is the bottleneck in the development

of future wireless technologies. As the number or communi-

cation devices and services increases, there is need for more

spectrum. On the other hand, the spectrum earmarked for radar

applications is under-utilized. In view of this, the spectrum

regulators are now seeking the possibility for releasing spectral

bands previously available to radars only, for shared used

by radar and communication systems [1]. This has motivat-

ed work on spectrum sharing that controls the interference

between radar and communication systems. Recent works on

coexistence of MIMO radar and communication systems can

be found in [2]–[4].

In a cooperative coexistence scenario, the signaling schemes

of the cooperating systems are designed by an entity that plays

the role of a moderator [2]. The systems are required to share

with the moderator node information such as channel state

information (CSI), or radar probing waveforms, which might

not be always easy to implement in practice. Given both the

computational and hardware costs of the coexistence schemes,

a more favorable approach is to design a dual-functional wave-

form, referred as the RadCom waveform, which realizes both

radar and multi-user communication operations on a single

platform. In such designs, the information bits are typically

modulated by varying the sidelobe levels of radar beampatterns

[5], or by shuffling the radar transmit waveforms across the

antennas [6]. In these approaches, each communication symbol

is represented by one or more radar pulses, which results in

a low data rate of the order of the pulse repetition frequency

(PRF) of radar. To address this issue, the work of [7] develops

a series of beamforming approaches to support simultaneous

target detection and multi-user communications, which will

not affect the original modulation scheme and the data rate

of the communication system. However, the beamforming

approaches in [7] only focus on the average power constraints,

and do not address the design of constant modulus (CM)

signals.

In practice, for both radar and communications, the utiliza-

tion of constant modulus waveforms can avoid signal distortion

when low-cost non-linear power amplifiers are used. Design

of such waveforms has been addressed for MIMO radar and

massive MIMO communication systems via various optimiza-

tion techniques, such as Semidefinite Relaxation (SDR) [8],

manifold based algorithm [9] and successive Quadratic Con-

strained Quadractic Programming (QCQP) Refinement (SQR)

[10]. However, due to the non-convexity and NP-hardness

underlying the CM constrained problems, only suboptimal

solutions can be obtained by the aforementioned methods. To

the best of our knowledge, efficient global algorithms for CM

waveform design have received little attention in the existing

literature.

This paper considers a CM waveform design for dual-

functional MIMO RadCom systems, where the downlink

multi-user interference (MUI) is minimized under both con-

stant modulus and radar signal similarity constraints. In con-

trast to existing approaches that only guarantee the local

optimality of the solutions, our technique can efficiently yield

the global minimizer of the problem by using a branch-

and-bound (BnB) algorithm. Numerical results show that the

proposed algorithm considerably outperforms the conventional

SQR algorithm in terms of the performance trade-off between

communications and radar.

II. PROBLEM FORMULATION

We consider a dual-functional MIMO RadCom system,

which simultaneously transmits radar probing waveforms and

communication symbols to downlink users. The joint system is

equipped with a uniform linear array (ULA) with N antennas,

serving K single-antenna users, while looking for radar targets



at the same time. The received symbol matrix at the downlink

users can be given as

Y = HX+W, (1)

where X = [x1,x2, ...,xL] ∈ C
N×L is the transmitted signal

matrix, with L being the length of the communication frame,

H = [h1,h2, ...,hK ]
T ∈ C

K×N is the channel matrix, and

W = [w1,w2, ...,wL] ∈ C
K×L is the noise matrix, with

wj ∼ CN (0, N0IN ) , j = 1, 2, ..., L.

Following [7], we rely on the following assumptions: 1)

The transmitted signal matrix X is used as dual-functional

waveform for both radar and communication operations; 2)

The downlink channel H is flat Rayleigh fading, and remains

unchanged during one communication frame/radar pulse; 3)

The channel H is perfectly estimated by pilot symbols.

Given the desired constellation symbol matrix S ∈ C
K×L

for downlink users, the received signals can be rewritten as

Y = S+ (HX− S)
︸ ︷︷ ︸

MUI

+W, (2)

For each user, the entry of S is assumed to be drawn from

the same constellation. The second term in (2) represents the

MUI signals. The total MUI energy can be measured as

PMUI = ‖HX− S‖2F . (3)

It has been proven in [11] that the sum-rate of the downlink

users can be maximized by minimizing the MUI energy in (3).

To guarantee the radar performance, we use a constant-

modulus signal as the referenced waveform, and enforce

a similarity constraint between the designed waveform and

its referenced counterpart. Following [10], we employ the

infinity norm in the constraint, and formulate the following

optimization problem to minimize the MUI:

min
X

‖HX− S‖2F (4a)

s.t ‖vec (X−X0)‖∞ ≤ η, |xi,j | =
√

PT /N, ∀i, j, (4b)

where X0 is the referenced radar signal, η is the tolerance

threshold that ensures the similarity between the two wave-

forms, PT denotes the total transmit power and xi,j is the

(i, j)-th entry of X. Note that both the objective function and

the constraints in problem (4) are separable. Hence, it can be

simplified using the normalized variables as

min
x

∥
∥
∥

√

PT /NHx− s

∥
∥
∥

2

s.t ‖x− x0‖∞ ≤ ε, |x (n)| = 1, ∀n,
(5)

where ε = η
√

N
PT

, x ∈ C
N×1, x0 ∈ C

N×1 are the columns of

X and X0 normalized by

√
PT

N
, s ∈ C

K×1 is the column of

S, and x (n) denotes the n-th entry of x. Since problem (4) can

be solved by solving the problem (5) for each column of X

concurrently, we will focus on (5) in the following discussion.

For notational convenience, we omit the column index.

Note that 0 ≤ ε ≤ 2 since both x and x0 have unit modulus.

The similarity constraint can be rewritten as [8]

arg x (n) ∈ [ln, un] , ∀n, (6)

where
ln = arg x0 (n)− arccos

(
1− ε2

/
2
)
,

un = arg x0 (n) + arccos
(
1− ε2

/
2
)
,

(7)

which leads to the following equivalent formulation of the

problem

min
x

f (x) =
∥
∥
∥H̃x− s

∥
∥
∥

2

s.t. arg x (n) ∈ [ln, un] , |x (n)| = 1, ∀n,
(8)

where H̃ =
√

PT

N
H. For each x (n), the feasible region is

an arc on the unit circle as shown in Fig. 1, which makes the

problem non-convex, and NP-hard in general. In the following,

we consider a global optimization algorithm for solving (8),

which is based on the general framework of the branch-and-

bound (BnB) methodology [12].
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Fig. 1. Feasible region and convex hull of problem (8).

III. THE BRANCH-AND-BOUND FRAMEWORK

A typical BnB algorithm requires to partition the feasible

region into several subregions, where we formulate corre-

sponding subproblems. For each subproblem, we obtain a

sequence of asymptotic lower-bounds and upper-bounds by

well-designed bounding functions. In each iteration, we update

the bounds and the set of the subproblems following the BnB

rules until convergence, i.e., the difference between the upper-

bound and lower-bound goes to zero.

It is well understood that the worst-case complexity for the

BnB algorithm is of exponential order with respect to N , i.e.,

corresponding to searching all branches of the subproblems

exhaustively [12]. Nevertheless, by carefully choosing the

tightest bounds, it is possible to efficiently identify and prune

the unqualified branches, which accelerates the algorithm

significantly.

Let us denote the feasible region, i.e., the arc shown in Fig.

1, as θn = arc (ln, un). Problem (8) can be compactly written

as

P (Θ0) : min
x

f (x) s.t. x ∈ Θ0. (9)



where Θ0 = θ1 × θ2 × ... × θN , and f (x) is defined in

(8). By the above notations, a subproblem can be denoted as

P (Θ), where Θ ⊆ Θ0 is the corresponding subregion. We then

find the lower and upper bounds of P (Θ) by the following

bounding functions

fL (Θ) = f (xl) , fU (Θ) = f (xu) , (10)

where xl is a relaxed solution that achieves the lower-bound,

and xu is a feasible solution for P (Θ) that yields the upper-

bound. The above bounding functions will be specified in the

next section. Here we only use fL and fU to introduce the BnB

framework for notational convenience. In the BnB algorithm,

we store all the subproblems in a problem set S , which will

be updated together with the global bounds in each iteration

by the following rules [12]:

1) Branching: Pick a problem P (Θ) ∈ S that yields

the smallest lower-bound. Equally divide Θ into two

subregions following some subdivision rules detailed

in the following, and generate two subproblems. Then

delete P (Θ) in the problem set.

2) Pruning (optional): Evaluate the qualification of the

two subproblems, if their lower-bounds are less than the

current global upper-bound, add them into S .

3) Bounding: Choose the smallest lower-bound and upper-

bound from S as the bounds for the next iteration.

Note that the pruning step is only for saving the memory of

storing S , and will not affect the effectiveness of the BnB

procedure. This is because by choosing the smallest bounds in

S , one can always avoid the unqualified branches. For clarity,

we summarize our BnB algorithm in Algorithm 1.

Algorithm 1 Branch-and-Bound Method for Solving (5)

Input: H̃,S,x0, 0 ≤ ε ≤ 2, tolerance threshold δ > 0,

bounding functions fL and fU .

Initialization: Let Θ0 be the initial feasible region of

problem (27), S = {P (Θ0) , fU (Θ0) , fL (Θ0)} be the

initialized subproblem set. Set UB = fU (Θ0), LB =
fL (Θ0).
while UB − LB > δ do

Branching

a) Pick P (Θ) ∈ S , such that fL (Θ) = LB. Update

S = S\P (Θ).
b) Divide Θ into ΘA and ΘB following the chosen

subdivision rule.

Bounding

a) Compute fU (Θi) and fL (Θi) for P (Θi) , i = A,B,
and add them to S .

b) Update UB and LB as the smallest upper-bound and

lower-bound in S , respectively.

end while

Output: xopt = the feasible solution that achieves UB.

To ensure that Algorithm 1 converges in a finite number of

iterations, the chosen subproblem for branching, the subdivi-

sion rule and the bounding functions fL and fU should satisfy

the following conditions [12]:

1) The branching is bounding-improving, i.e., in each it-

eration we choose the problem that yields the smallest

lower-bound as the branching node.

2) The subdivision is exhaustive, i.e., the maximum length

of the subregions converges to zero as the iteration

number goes to infinity.

3) The bounding is consistent with branching, i.e., UB −
fopt converges to zero as the maximum length of the

subregions goes to zero, where fopt is the optimal value

of the original problem.

Our Algorithm 1 satisfies condition 1) automatically. We then

choose the subdivision rules to obtain the subproblems from

the branching node. For a given node P (Θ), we consider the

following two rules:

• Basic rectangular subdivision (BRS): Equally divide

Θ along arc (ln, un) and keep arc (li, ui) , ∀i 6= n
unchanged, where

n = argmax
n

{φn |φn = un − ln } . (11)

• Adaptive rectangular subdivision (ARS): Equally di-

vide Θ along arc (ln, un) and keep arc (li, ui) , ∀i 6= n
unchanged, where

n = argmax
n

{dn |dn = |xu (n)− xl (n)| } . (12)

In (12) xu and xl are the solutions associated with fU (Θ)
and fL (Θ), respectively.

According to [12, Theorem 6.3 and 6.4], both the above two

rules satisfy condition 2). In practical simulations, we observe

that ARS has a faster convergence rate than BRS.

IV. UPPER-BOUND AND LOWER-BOUND ACQUISITION

It remains to develop approaches to acquire the lower

and upper bounds, which are key to accelerating the BnB

procedure. Following the approach in [13], we compute the

lower-bound by the convex relaxation of (9). As shown in Fig.

1, the convex hull for each entry x (n), denoted as Q (θn), is

a circular segment, and can be given as

Q (θn) : {x |arg (x) ∈ θn, |x| ≤ 1} . (13)

By simple analytic geometry, the angle constraint can be

equivalently written as

Re

(

x∗

(
eju + ejl

2

))

≥ cos

(
u− l

2

)

, (14)

which is nothing but a linear constraint. Hence the constraint

for the vector variable is

Re

(

x
∗ ◦

(
eju + ejl

2

))

≥ cos

(
u− l

2

)

, (15)

where u = [u1, u2, ..., uN ]
T ∈ R

N×1, l = [l1, l2, ..., lN ]
T ∈

R
N×1, and ◦ denotes the Hadamard product. The convex

relaxation can be given as the following QCQP problem

min
x

∥
∥
∥H̃x− s

∥
∥
∥

2

(QP-LB)

s.t.Re

(

x
∗ ◦

(
eju + ejl

2

))

≥ cos

(
u− l

2

)

, |x (n)|2 ≤ 1,

(16)



Problem (16) can be efficiently solved via numerical solvers,

e.g., the CVX toolbox. By doing so, we can readily obtain the

lower-bound for each subproblem.

A natural way to compute the upper-bound is to project each

entry of the obtained solution xl of (16) on the corresponding

arc to get a feasible solution. Such a projector can be shown

intuitively in Fig. 1 as PR1, where

PR1 (x) = arg
x̂

min ‖x̂− x‖ , x̂ ∈ θ. (17)

The upper-bound obtained by the projector (17) is still loose

in general. To get a tighter bound, one can use PR1 (xl) as

the initial point, and solve the following non-convex QCQP

min
x

∥
∥
∥H̃x− s

∥
∥
∥

2

(QP-UB)

s.t.Re

(

x
∗ ◦

(
eju + ejl

2

))

≥ cos

(
u− l

2

)

, |x (n)|2 = 1,

(18)

which can be locally solved via the MATLAB fmincon solver

that employs descent methods. Therefore, the obtained solu-

tion is guaranteed to yield a smaller value than f (PR1 (xl)).
To further accelerate the speed for solving QP-LB and ob-

taining the bounds, we consider accelerated gradient projection

(GP) methods [14] in addition to the QCQP solvers. Given

xn ∈ C, the projector PR2 projects xn to the nearest point in

the corresponding convex hull Q (θn). Similarly, the projector

PR2 can be given in an element-wise manner as

PR2 (x) = arg
x̂

min ‖x̂− x‖ , x̂ ∈ Q (θ) . (19)

It should be noted that both PR1 and PR2 can be trivially ob-

tained in closed-form by use of basic analytic geometry. Given

the limited space, we will not show the detailed derivation in

this paper.

Based on [14], our iterative scheme can be given in the form

v = x
(k) +

k − 1

k + 2

(

x
(k) − x

(k−1)
)

, (20)

x
(k+1) = PR2

(

v − 2tH̃H
(

H̃v − s

))

, (21)

where we start from x
(0) and x

(1) = x
(0). For the least-squares

objective function, we choose the stepsize as t = 1/λ̃max,

where λ̃max is the maximum eigenvalue of H̃
H
H̃, i.e., the

Lipschitz constant. Note that the above iteration scheme can

only be used for convex feasible regions due to the interpola-

tion operation (20). For the non-convex QP-UB problem (18),

we use x
(k) instead of the interpolated point v, and replace

the projector PR2 with PR1, which projects the point onto the

arc, i.e., the feasible region. Similar to (16), we use PR1 (xl)
as the initial point.

Remark 1: Based on [15], the complexity for using interior-

point method to solve the QCQP problems is O
(
N3

)
per

iteration. For the proposed gradient-based methods, the costs

are O (NK) in each iteration, which are far more efficient in

terms of a fixed iteration number.

Remark 2: Since the proposed Algorithm 1 satisfies both

conditions 1) and 2), the convergence of the algorithm can be

proven by verifying that condition 3) holds. The proof is to

simply apply the Lagrange Mean-Value Theorem to the Least-

Squares objective function. Since the norm of the gradient of

f (x) is bounded by the Lipschitz constant λ̃max, it can be

shown that the difference between the upper and lower bounds

is also tightly upper-bounded. Finally, it can be trivially shown

that this difference converges to zero as φmax or dmax goes

to zero, where φmax = max {φn} , dmax = max {dn}, and φn

and dn are defined in (11) and (12).

Remark 3: While the worst-case complexity for the BnB

approach is at the exponential order of N , our numerical

results show that the proposed Algorithm 1 converges within

only tens to hundreds iterations thanks to the well-designed

bounding functions.

V. NUMERICAL RESULTS

In this section, we show the numerical results for solving the

waveform optimization problem with constant modulus and

similarity constraints. Following the simulation configurations

in [10], we employ the orthogonal chirp waveform matrix

as the reference signal. For convenience, we set PT = 1,

and each entry of the channel matrix H subject to standard

Complex Gaussian distribution, i.e., hi,j ∼ CN (0, 1). In all

the simulations, we set N = 16 and employ a ULA with

half-wavelength spacing between the adjacent antennas. The

constellation chosen for the communication users is the unit-

power QPSK alphabet.

The convergence behavior of the proposed BnB algorithm

for solving (5) is shown in Fig. 2, with N = 16,K = 4, ε = 1,

where we compare the performance of the two different

subdivision rules, i.e., ARS and BRS. Both methods converge

in a finite number of iterations with a nearly constant upper-

bound, which suggests that one can reach the optimal value

of problem (5) by iteratively using the local algorithms for

several times, e.g., QCQP solver or the proposed gradient

projection method. Nevertheless, due to the non-convexity of

the problem, we need the BnB algorithm to confirm that this

is indeed a global optimum. It can be also observed that the

BnB-ARS has a faster convergence rate than BnB-BRS, which

is consistent with the analysis in [12].

In Fig. 3 and 4, we show the trade-off between com-

munication sum-rate and radar waveform similarity for the

constant modulus designs, where the achievable sum-rate is

computed based on [11, eq. (30)], and the SQR-Bisection

Search (SQR-BS) algorithm is employed as our benchmark

technique [10]. Fig. 3 demonstrates the communication sum-

rate with increasing ε for N = 16,K = 4, SNR = 10dB. As

expected, the proposed BnB algorithm outperforms the SQR-

BS significantly, since the result obtained by BnB is the global

optimum, while SQR-BS can only yields local minimum

solutions. It is worth highlighting that the performance of

BnB is very close to the convex relaxation bound, which is

obtained by solving QP-LB. When the similarity tolerance ε is

big enough, our BnB algorithm can fully eliminate the MUI.

Fig. 4 shows the results of radar pulse compression with

different similarity tolerance ε, where we use the waveform
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Fig. 4. Radar pulse compression for different similarity tolerance, N = 16,K = 4. (a) ε = 0.05; (b) ε = 0.4; (c) ε = 1.
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transmitted by the first antenna, and employ the classical FFT-

IFFT pulse compression method [16] with a Taylor window to

reduce the sidelobes. Clearly, there exists a trade-off between

the communication sum-rate and radar pulse compression

performance. Moreover, the results for BnB and SQR-BS are

nearly the same, as their performance is guaranteed by the

same similarity constraint, which again proves the superiority

of the proposed BnB Algorithm.

VI. CONCLUSION

This paper considers the constant-modulus waveform design

for the dual-functional RadCom system, where we minimize

the multi-user interference under both constant-modulus and

radar signal similarity constraints. While the optimization

problem is non-convex, and NP-hard in general, it can be

efficiently solved via a well-designed branch-and-bound (BnB)

algorithm. Numerical results show that the proposed approach

significantly outperforms the conventional SQR-BS algorithm

by obtaining the global minimizer of the problem.
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