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Abstract 28 

Forest management can be used to increase the local abundance of species of conservation concern. 29 

To achieve this goal, managers must be sure that the relationships between the targeted forest 30 

attributes and the focal species abundance are based on robust data and inference. This is a critical 31 

issue as the same forest attributes could have opposing effects on species abundance and the 32 

detectability of individuals, impairing our ability to detect useful habitat quality surrogates and to 33 

provide correct forest management recommendations. Using spatially stratified capture-recapture 34 

models (a.k.a. multinomial N-mixture models), we evaluated the effects of stand-level forest 35 

attributes on detection probability and local abundance for the endangered Southern Darwin’s frog 36 

(Rhinoderma darwinii), a forest-specialist and fully terrestrial amphibian endemic to the South 37 

American temperate forest. Our results show that an increase of stand basal area and a decrease of 38 

daily microclimatic fluctuation (i.e. an increase in structural complexity) were positively associated 39 

with the local abundance of R. darwinii. These stand-level forest attributes also explained the among-40 

population variation in detection probability, although the relationships were opposite to those for 41 

abundance. Consequently, an analysis of raw frog counts (i.e. not adjusted for imperfect detection) 42 

did not reveal all the factors associated with local abundance. Our results provide further support to 43 

previous claims that raw counts of individuals should not be used, generally, as a proxy of abundance 44 

in species inhabiting forest ecosystems and elsewhere. More importantly, the opposite effect of forest 45 

attributes on abundance and detectability observed in our study highlights the need to use methods 46 

that quantify species-habitat relationships in a robust way and which take habitat-specific imperfect 47 

detection into account.    48 

 49 
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1. Introduction 51 

Anthropogenic land use change is one of the main threats to terrestrial biodiversity (Newbold et al., 52 

2015). Understanding species-habitat relationships is vital to inform the protection and management 53 

of imperilled species and their habitats (Martin et al., 2017). Habitat is a species-specific concept 54 

referring to the resources and conditions present in an area that allow occupancy, survival and 55 

reproduction of individuals (Hall et al., 1997). Yet, from a practical perspective, it is neither possible 56 

nor efficient to measure all the resources and conditions that comprise the habitat of a given species. 57 

Furthermore, the concept of habitat is not restricted to a binary classification of the environment into 58 

habitat and non-habitat but considers a gradient of habitat quality (Fischer and Lindenmayer, 2007). 59 

Consequently, conservation biologists interested in managing habitat to increase the local abundance 60 

of species of conservation concern, have traditionally focused on habitat quality surrogates (e.g. 61 

vegetation types, cover of herbaceous understory, etc.) that may exhibit strong correlations with local 62 

abundance or vital rates (e.g., survival and recruitment) of focal species (Franklin et al., 2000; Oldham 63 

et al., 2000; Indermaur and Schmidt, 2011; Romano et al., 2017; Unglaub et al., 2018). In forested 64 

ecosystems, structural attributes of forest stands seem to be particularly good habitat quality 65 

surrogates for forest-specialist animals (Ross et al., 2000; Payer and Harrison, 2003; Watson et al., 66 

2004; Berg et al., 2012; Ibarra et al., 2014; Romano et al. 2017).  67 

In the context of habitat protection and management, it is vital that the relationships between the 68 

proxies for habitat quality and the focal species abundance are based on robust data and inference 69 

(Kroll et al., 2009; Welsh et al., 2009; Otto et al., 2013; Romano et al., 2017). For instance, the 70 

inadequacy of relative abundance (i.e., simple counts) as a proxy of true abundance has been largely 71 

acknowledged: due to imperfect detection, true abundance can be underestimated to an unknown 72 

degree following this approach (Preston, 1979; Anderson, 2001; Schmidt, 2004; Kéry and Schmidt, 73 

2008). Indeed, the probability of counting an individual that is present and exposed to sampling (i.e. 74 

detection probability) often shows a spatial and/or temporal variation associated with observational 75 

and environmental covariates (MacKenzie and Kendall, 2002; Pollock et al., 2002; Kéry, 2008; 76 



Tanadini and Schmidt, 2011). Worryingly, if covariation between detection probability and habitat 77 

quality exists, the confounding effect of imperfect detection could hamper our capability to detect 78 

any association between habitat attributes and true abundance (Bailey et al., 2004; Kéry, 2008). 79 

By taking advantage of recently developed spatially stratified capture-recapture (CR) models, a 80 

special class of so-called N-mixture models (Royle et al., 2007; Kéry and Royle, 2010, 2016), we 81 

evaluated the parallel effects of forest stand attributes on local abundance and detection probability 82 

in the endangered Southern Darwin’s frog (Rhinoderma darwinii). This forest-specialist and fully 83 

terrestrial amphibian is endemic to the South American temperate forest (Valenzuela-Sánchez et al. 84 

2015). This ecosystem, with its high levels of species endemism and threats, comprises one of the 35 85 

global biodiversity hotspots (Mittermeier et al., 2011). Despite its uniqueness and ecological 86 

importance, around half of the South American temperate forest has been lost due to anthropogenic 87 

activity (Tecklin et al., 2010). The major threats to R. darwinii are habitat loss and the fungal disease, 88 

chytridiomycosis (Soto-Azat et al., 2013a, 2013b; Valenzuela-Sánchez et al., 2017). Additionally, 89 

based on evidence from other forest-specialist animals, where a positive correlation between stand 90 

structural complexity and species abundance has been often found (e.g. Ross et al., 2000; Payer and 91 

Harrison, 2003; Watson et al., 2004; Berg et al., 2012; Ibarra et al., 2014), we hypothesise that a 92 

reduction of forest structural complexity could lead to habitat degradation for this frog. Habitat 93 

degradation could reduce individual vital rates and population abundance and viability. For instance, 94 

a reduction of structural complexity could increase microclimatic variability (Spies & Franklin, 1988; 95 

Chen et al., 1999), which can negatively affect several organismal processes in amphibians (Raffel et 96 

al., 2012; Nowakowski et al. 2018). In particular, we expect to find a positive correlation between R. 97 

darwinii local abundance and stand-level forest structural attributes such as stand basal area. We test 98 

this prediction by using CR data from 10 local populations inhabiting forest stands of differing 99 

structural complexity. Additionally, we provide empirical evidence showing that commonly 100 

measured forest attributes can have opposing effects on local abundance and detection probability; a 101 

possibility that is not always recognized by conservation scientists and managers. Failure to recognize 102 



and account for this can impair both the ability to detect useful habitat quality surrogates and to 103 

provide correct forest management recommendations. 104 

 105 

2. Materials and methods 106 

2.1 Study area 107 

We conducted our field study during January 2013 near Neltume, in the Reserva Biológica Huilo 108 

Huilo, southern Chile (39°49’48”S, 72°03’14”W). In this part of the South American temperate 109 

forest, the vegetation types vary according to altitude (Caviedes and Ibarra, 2017). We selected 10 110 

forest stands with known presence of R. darwinii, all located at a similar altitude (range = 444 – 623 111 

m a.s.l) in the transition zone between the Valdivian forest and the Nothofagus dombeyi forest types 112 

(sensu Teillier et al., 2013). The dominant tree species in these stands are: Eucryphia cordifolia, 113 

Aextoxicon punctatum, Weinmannia trichosperma, Saxegothaea conspicua, Laureliopsis philippiana, 114 

Nothofagus dombeyi, N. obliqua and N. aplina. Intensive selective logging of commercially valuable 115 

tree species (e.g. N. aplina), which had taken place until the second half of the 20th century, was 116 

common in our study area, but at present these forests are used only for tourism, low-intensive 117 

selective logging and occasional cattle grazing (Teillier et al., 2013; A. Valenzuela-Sánchez, pers. 118 

obs.).   119 

Within each native forest stand we defined a rectangular plot of different size (hereafter ‘study sites’; 120 

Table 2) to demarcate each local population of R. darwinii and in which to conduct our CR study. At 121 

these plots we also measured several stand-level forest attributes (Table 1; see ‘covariates’ below). 122 

Distances between plots ranged from 200 to 4,500m, which is longer than the longest annual 123 

displacement estimated for this species (~150m; Valenzuela-Sánchez, 2017). Median daily 124 

displacement of R. darwinii individuals is <1m (Valenzuela-Sánchez, 2017), therefore, at the spatial 125 

and temporal scales considered here, we assume R. darwinii populations are closed, i.e. both 126 

temporary emigration and permanent emigration/immigration occur at negligible rates.  127 

 128 



2.2 Capture-recapture of frogs  129 

On each day for five consecutive days, the same two persons (AV-S and CP) surveyed each study 130 

site for 1 hr per day, always during daylight hours (09:00–19:00). Rhinoderma darwinii individuals 131 

are normally found active during day at the ground level within vegetation, leaf litter and woody 132 

debris, so during each capture occasion we performed a visual survey in a manner that each researcher 133 

covered the entire plot with an equal search effort throughout the site. We captured frogs by hand, 134 

wearing a new pair of nitrile gloves, and held them in individual, disposable plastic bags until 135 

processing, which consisted of taking photographs of the ventral colouration patterns of each frog to 136 

enable individual recognition (Valenzuela-Sánchez et al., 2017). All juveniles and adults captured 137 

were visually identified by CP; all identifications were confirmed by AV-S. Recently metamorphosed 138 

frogs (<11mm of snout-to-vent length) have not completely developed their individual ventral 139 

markings and, therefore, we did not include them in our CR analyses.  140 

 141 

2.3 Covariates 142 

We considered six site-level covariates for the modelling of R. darwinii detectability and abundance 143 

(Table 1 and 2). At each site, we randomly selected 30 sub-plots of 1 m2, in which we measured the: 144 

density of saplings (SAP), tree diversity (H), stand basal area (SBA), richness of ferns, flowering 145 

plants and other epiphytes (RFE), and fine and coarse woody debris coverage (WD). The procedure 146 

used to summarize these measurements at the study site-level is detailed in Table 1. Additionally, 147 

using one data logger per site (RHT10, Extech Instruments Corporation, Waltham, MA, USA), we 148 

calculated the daily microclimatic fluctuation (DMF), which is a composite of the daily fluctuations 149 

of air temperature and air relative humidity measured at the ground level (the procedure used to derive 150 

this variable from raw microclimatic data is presented in Appendix A). Correlations between all 151 

paired combinations of site-level covariates were low (i.e. Pearson’s r < 0.7). Finally, we also 152 

considered two observation-level covariates on detection probability: mean air temperature of each 153 

day when searches were conducted (TEMP), and an integer representing the day of January when 154 



each capture occasion was performed (DAY). To account for the variability in the size of each study 155 

site, we used the area of each plot (AREA). 156 

 157 

2.4 Modelling detectability and abundance 158 

We used the multinomial N-mixture model to estimate local abundance (N) while accounting for 159 

detection probability (p; Royle et al., 2007; Kéry and Royle, 2010, 2016). We applied the N-mixture 160 

within the context of CR protocols and, therefore, this can be regarded as an extension of classical 161 

closed CR models used to estimate local abundance (a.k.a. ‘population size’), but which integrates, 162 

within a single hierarchical model, data from multiple sites (Royle et al., 2007). Therefore, the 163 

multinomial N-mixture model allows evaluation of the effect of different covariates on N and p within 164 

the same model (Royle et al. 2007; Kéry and Royle, 2016).  165 

We did not evaluate all possible combinations of model structures for detectability and abundance, 166 

because this approach would result in a very large set of alternative models, increasing the chances 167 

of finding spurious results (Burnham and Anderson 2002). Instead, we followed a two-stage ad hoc 168 

strategy (Doherty et al. 2012). First, we evaluated different models for p (‘detection models’) while 169 

keeping N constant across study sites (Kéry and Royle 2016). Subsequently, we selected the AIC-170 

best detection model and used this model structure as a basis for expanding the multinomial N-mixture 171 

model to include the effect of covariates on N (‘abundance models’). Using a general (i.e. highly 172 

parameterized) structure for N when evaluating the detection models, as has been previously 173 

considered (e.g. Doherty et al. 2012), led to similar results, including the same detection model as 174 

best ranked (results not shown).  175 

We modelled frog detectability in two steps. In the first step, we considered only the effect of site-176 

level covariates that are associated with stand structural complexity (i.e. SAP, SBA, WD and DMF), 177 

because we expected that a higher forest structural complexity could decrease the chances of detecting 178 

frogs due to reduced visibility. Our set of models for detectability included models with only one of 179 

the four variables and all pairwise combinations of the four variables, considering only linear 180 



relationships and additive effects. We additionally fitted detection models considering the additive 181 

effect of a third site-level covariate, with SAP being always present, because this covariate was 182 

consistently retained among the top-ranked two-covariate detection models (Appendix A, Table A1). 183 

In the second step, we added two observation-level variables (i.e, variables that vary both among sites 184 

and capture occasions). To do so, we kept the structure of the AIC-best detection model and added 185 

the effect of one of the two observation-level covariates. TEMP was used to account for variation in 186 

detectability due to behavioural changes in frogs related to thermoregulation. DAY was used to 187 

account for the possibility that researchers could get exhausted or could improve their searching skills 188 

throughout the month. We also evaluated a model with p being constant across sites and capture 189 

occasions (M0). This yielded a set of 16 alternative detection models (Appendix A, Table A1). 190 

For the abundance models, we considered site-level covariates associated with compositional (H 191 

and RFE) and structural forest stand attributes. Our set of models for local abundance included models 192 

with only one of the six variables and all pairwise combinations of the six variables, considering only 193 

linear relationships and additive effects. This yielded a set of 22 alternative abundance models 194 

(Appendix A, Table A2).  195 

To fit the models to the data we used the gmultmix function in the R package unmarked (Fiske 196 

and Chandler, 2011), which allow us to fit Poisson and negative binomial abundance models (Kéry 197 

and Royle, 2016). The gmultmix function has an ‘availability parameter’ (the complement of 198 

temporary emigration); we set this parameter at 1 because we are dealing with ordinary closed CR 199 

models and, therefore, it is assumed that temporary emigration did not occur during our short study 200 

periods (five consecutive days). Based on the AIC-best abundance model, a negative binomial 201 

abundance model performed slightly better than a Poisson model (∆AIC = 1.92), and, therefore, we 202 

only report results from negative binomial models. Because study sites varied in area, we included 203 

this variable in the models. The inclusion of AREA to the AIC top ranked model did not improve the 204 

detection model (∆AIC without/with AREA = 1.35) nor the abundance model (∆AIC = 1.55). To 205 

assess model fit we performed bootstrap goodness-of-fit (GoF) testing using the parboot function of 206 



unmarked. To this end, we used three fit statistics (sum-of-squared errors, Chi-square and Freeman-207 

Tukey) which are used to assess the adequacy of the tested model for predicting N (Kéry and Royle, 208 

2016).  209 

 210 

3. Results 211 

We made a total of 351 captures of 179 different frogs (Table 2). Of these, 98 (54.7%) were recaptured 212 

at least once across capture occasions. 213 

Most of the detection models with p being modelled as a function of one or more covariates 214 

exhibited a higher support than the M0 model (Appendix A, Table A1). The ∆AIC between the M0 215 

model and the AIC best detection model was 34.32. The top ranked model, which was retained as a 216 

basis for the modelling of N, included the additive effect of three site-level covariates: 217 

p(SAP+SBA+DMF) (Fig. 1 and Table 3). The models that included TEMP and DAY had only a 218 

slightly lower support than the best ranked detection model, but the confidence intervals of the 219 

regression coefficients of these observation-level covariates included zero (Table 3).  220 

In the best supported abundance model, N was modelled as a function of two site-level 221 

covariates: N(SBA+DMF) (Fig. 1 and Table 4). This model had an AIC weight of 0.57 and predicted 222 

the local abundance well (GoF testing P values, sum-of-squared errors = 0.28, Chi-square = 0.28 and 223 

Freeman-Tukey = 0.20; c-hat = 1.13; number of simulations = 10,000). As depicted in Fig. 1, the 224 

directions of the relationships of DMF and SBA with abundance and detection probability were 225 

opposite. As daily microclimatic fluctuation increases, N decreases and p increases. On the other 226 

hand, as stand basal area increases, N increases and p decreases.  227 

Considering measured covariates values (Table 2), the best abundance model predicted a p 228 

of 0.78 (95% C.I. = 0.64–0.88) at sites with a high SAP, high DMF and low SBA, and of 0.11 (95% 229 

C.I. = 0.06–0.19) at sites with a low SAP, low DMF and high SBA. Estimated p at sites with average 230 

SAP, DMF and SBA was 0.39 (95% C.I. = 0.35–0.44). For local abundance, this model predicted a 231 

value of three frogs (95% C.I. = 1–7) at site with a high DMF and low SBA, and of 99 frogs (95% 232 



C.I. = 45–220) at sites with a low DMF and high SBA. Estimated N at sites with an average DMF 233 

and SBA is 18 frogs (95% C.I. = 14–22). 234 

 235 

4. Discussion 236 

Our results support the hypothesis that forest structural attributes are an important component of 237 

the habitat of this forest-specialist frog. Namely, an increase of stand basal area and a decrease of 238 

daily microclimatic fluctuation (i.e. an increase in structural complexity; see below) were positively 239 

associated with the local abundance of R. darwinii (Fig. 1).  240 

In the forests inhabited by R. darwinii, stand structural complexity is determined by forest 241 

successional stage and the level of natural and anthropogenic disturbances (Gutiérrez et al., 2009; 242 

Caviedes and Ibarra, 2017). In these forests, stand basal area (a measure of stand biomass) correlates 243 

positively with stand age, as it differentiates old-growth forests (i.e. stands containing trees >200 244 

years old) from earlier successional stages (Gutiérrez et al., 2009; Caviedes and Ibarra, 2017; Ponce 245 

et al., 2017). A lesser daily microclimatic fluctuation is also expected to occur in older, structurally-246 

complex forest stands (Spies and Franklin, 1988; Chen et al., 1999). An association between the 247 

density of saplings (a variable retained in the best and second best detection and abundance models, 248 

respectively) and the forest successional stage in our study stands is less clear to us, but it is 249 

noteworthy that the three sites with the highest density of saplings (i.e. > 700 sapling x ha-1) have an 250 

unusually high proportion of saplings belonging to species in the Myrtaceae family (Appendix A, 251 

Fig. A1), a group abundant in early successional stages in our study area (Teillier et al., 2013). 252 

Altogether, this evidence indicates that local abundance of R. darwinii in our study area is higher (and 253 

frog detectability is lower) in old-growth, more structurally-complex forest stands in comparison to 254 

earlier successional stages. Although we did not identify stand age, based on information from other 255 

forest stands of similar composition located near to our study area, 40% of our study sites have a 256 

stand basal area value corresponding to an old-growth forest (i.e. >80 m2 x ha-1; Caviedes and Ibarra, 257 



2017; Ponce et al., 2017), and these held some of the highest local abundances of R. darwinii (Fig. 1 258 

and Table 2).  259 

The mechanisms behind the species-habitat relationship found in this study might be complex. For 260 

example, a lower structural complexity could increase microclimatic variation (Spies & Franklin, 261 

1988; Chen et al., 1999). Reduced microclimatic variation may decrease R. darwinii survival rates 262 

due to acute or chronic thermal stress, reduced activity, or by altering host response to infectious 263 

diseases such as chytridiomycosis, possibly resulting in population declines and a reduced local 264 

abundance (Raffel et al., 2012; Nowakowski et al. 2018). Indeed, some thermal traits of amphibians, 265 

such as heat tolerance and evaporative water loss, are important predictors of species responses to 266 

habitat modification (Nowakowski et al. 2018). An evaluation of the relationship between forest 267 

structural complexity and other individual (e.g. body condition) and population (e.g. vital rates, 268 

population growth rates) state variables might provide a better understanding about the mechanisms 269 

driving the spatial variation of R. darwinii local abundance (Franklin et al., 2000; Janin et al., 2011; 270 

Unglaub et al., 2018). 271 

Anthropogenic disturbance, either occurring at large or small spatial scales, is considered to be 272 

one of the main threats to forests and their associated biodiversity (Pan et al., 2013). As observed in 273 

other ecosystems, anthropogenic disturbance in forests can lead to a combination of habitat loss, 274 

fragmentation and degradation (Fischer and Lindenmayer, 2007). While habitat loss and 275 

fragmentation usually co-occur, and might be easily perceived by people, habitat degradation (i.e., 276 

the gradual deterioration of habitat quality) can result from unapparent or small-scale environmental 277 

changes taking place even in non-fragmented forest landscapes (Mortelliti et al., 2010; Ware et al., 278 

2015). Habitat loss appears to be the main threat to R. darwinii (Soto-Azat et al., 2013a), but our 279 

study provides evidence that habitat degradation, due to a reduction of forest structural complexity, 280 

might be an important additional threat to this species. This is particularly concerning considering 281 

that most of the remaining South American temperate forest has been degraded by anthropogenic 282 

disturbance and old-growth forests are very scarce, especially at low-elevation (Tecklin et al., 2010; 283 



Caviedes and Ibarra, 2017; Ponce et al., 2017). In this context, our study provides support to the idea 284 

that forest management of the more common mid-successional forests, to promote old-growth 285 

characteristics and enhance structural complexity (Caviedes and Ibarra, 2017; Ponce et al., 2017), 286 

will be an important conservation action to improve the local abundance of R. darwinii and, most 287 

likely, of other forest-specialist animals inhabiting this important ecosystem (e.g. rufous-legged owls; 288 

Ibarra et al., 2014). Additionally, our findings can be used to inform the selection of sites for the 289 

reintroduction of captive bred R. darwinii individuals, as two ex-situ conservation breeding programs 290 

for this imperilled species are currently underway in Chile (IUCN 2018, 291 

http://www.iucnredlist.org/details/19513/0).  292 

Critically, the analysis of forest attributes that determine frog abundance depended on the use of 293 

statistical models which accounted for imperfect detection. Empirical evidence shows that the 294 

detection probability of wild animals and plants is almost always lower than 1 and that it exhibits 295 

considerable temporal and spatial variation (Kéry and Schmidt, 2008; Kellner and Swihart, 2014). 296 

Covariates, such as time, species and sampling methodology, have been commonly used to account 297 

for spatial and temporal heterogeneity in detection probability, while habitat characteristics are less 298 

frequently considered (Kellner and Swihart, 2014). We show that the detectability of R. darwinii 299 

individuals is related to habitat covariates. Because habitat characteristics have the potential to 300 

strongly affect detectability (Bailey et al., 2004; Gu and Swihart, 2004; Kéry, 2004), we suggest that 301 

they should be more commonly taken into account in studies dealing with species-habitat 302 

relationships.  303 

Our results show that habitat characteristics may affect both detectability and abundance. There is 304 

a risk, therefore, that one might conclude that a habitat characteristic affects abundance when in fact 305 

it affects detectability. Thus, the use of statistical models which can disentangle the effects of habitat 306 

characteristics on abundance and detectability seems important (Kéry, 2008). Additionally, not 307 

properly accounting for complex relationships between detectability and abundance may cancel out 308 

important effects of habitat covariates on abundance (Kéry and Royle, 2016). For instance, in our 309 



study, the same forest attributes affected both abundance and detection probability of R. darwinii 310 

individuals, but in opposite ways. If raw counts are used in this specific case, abundance will tend to 311 

be underestimated to a larger degree in sites with good habitat quality than in those with poorer habitat 312 

quality, hampering the detection of appropriate habitat quality surrogates. In fact, if we regress the 313 

counts of R. darwinii individuals obtained in this study against the two forest attributes that were 314 

retained in the best supported abundance model, only a significant relationship (i.e. P-value < 0.05) 315 

is found for daily microclimatic fluctuation, but not for stand basal area (Appendix A, Fig. A2). 316 

Consequently, an analysis of simple frog counts that were not adjusted for imperfect detection, would 317 

not have revealed all factors associated with local abundance. It was only through the use of models 318 

which explicitly model the observation process, and through the use of habitat characteristics as 319 

covariates for detectability, that we could unravel the factors that truly matter. Previous authors (e.g. 320 

Kroll et al. 2009) have argued that only reliable metrics of distribution and abundance should be used 321 

to inform forest management. The results of our study suggest that multinomial N-mixture models, 322 

and similar modelling frameworks, are a useful tool for the reliable evaluation of species-habitat 323 

relationships and for determining the appropriateness and effectiveness of different habitat 324 

management options. 325 

 326 

5. Conclusions  327 

 328 

Our results provide further support to previous claims that raw counts of individuals should not be 329 

used, generally, as a proxy of abundance in species inhabiting forest (Kroll et al., 2009; Otto et al., 330 

2013) and other ecosystems (Anderson, 2001; Kellner and Swihart, 2014). More importantly, the 331 

opposite effect of forest attributes on abundance and detectability observed in our study highlights 332 

the need to use methods that quantify species-habitat relationships in a robust way and which take 333 

habitat-specific imperfect detection into account.  334 

 335 
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  484 



 485 

Figure 1 Relationships between forest stand attributes and frog detection probability (a,b,c) and 486 

local abundance (d,e) of Southern Darwin’s frogs (Rhinoderma darwinii) from Neltume, Reserva 487 

Biológica Huilo Huilo, southern Chile. Lines were drawn using estimates from the best supported 488 

multinomial N-mixture model (i.e. p(SAP+SBA+DMF), N(SBA+DMF)). The relationship between 489 

either p or N and each covariate is predicted while using, for the corresponding component of the 490 

model, an average value for the remaining covariates. Pale blue lines stand for 95% confidence 491 

intervals. Hash marks in the x-axis represent measured values of the forest attributes.  492 
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Table 1 Site- and observational-level covariates used to model detectability and local abundance of 494 

Southern Darwin’s frogs (Rhinoderma darwinii) from Neltume, Reserva Biológica Huilo Huilo, 495 

Southern Chile. 496 

Variable 

 

Abbrevi

ation 

Description Model 

component 

Site-level covariates 

Density of saplings 

(saplings x ha -1) 

SAP Derived from the total number of trees and bushes 

between 0.5 – 2 m tall that were detected across the 

30 sub-plots 

detection, 

abundance 

Diversity of trees (H) H Shannon diversity index; calculated from all the trees 

and bushes (>2 m tall) species detected across the 30 

sub-plots 

abundance 

Stand basal area (m2 

x ha-1) 

SBA Derived from the sum of the cross-sectional area at 

the breast height (1.4m) of all trees (>2 m tall) 

detected across the 30 sub-plots 

detection, 

abundance 

Richness of ferns, 

flowering plants and 

other epiphytes 

RFE Number of species identified across the 30 sub-plots abundance 

Fine and coarse 

woody debris 

coverage (%) 

WD Percentage of this coverage averaged from the 30 

sub-plots 

detection, 

abundance 

Daily microclimatic 

fluctuation 

DMF PCA solution containing ‘air temperature daily 

fluctuation’ and ‘air relative humidity daily 

fluctuation’ at each site 

detection, 

abundance 

Observation-level covariates 

Air temperature (°C) TEMP Mean air temperature of each searching day (capture 

occasion) obtained from the Lago Verde weather 

detection 



  497 

station which is located at ~60 km south-west from 

our study sites (Agromet, Red Metereológica de 

INIA, Chile) 

Day DAY An integer representing the day of January 2013 

when the capture occasion was performed 

detection 



Table 2 Size of the study sites, total counts (number of captures), number of individuals captured, 498 

and values of site-level covariates used to study species-habitat relationships in populations of the 499 

Southern Darwin’s frog (Rhinoderma darwinii) from Neltume, Reserva Biológica Huilo Huilo, 500 

Southern Chile. Covariates names are detailed in Table 1. 501 

  502 

Site Area 

(m2) 

No. 

captures 

No. 

individuals 

SAP 

(saplings x ha-1) 

SBA 

(m2 x ha-1) 

RFE H DMF WD 

(%) 

BOT 563 49 26 678 96 19 1.5 -2.22 27 

CAS 1304 51 29 422 28 18 1.0 -6.27 63 

CEN 791 27 15 344 143 20 1.9 5.70 57 

ESP1 396 52 19 1033 30 19 1.5 -3.39 67 

ESP2 514 13 3 1156 4 23 1.4 11.47 26 

HOT 569 62 40 297 104 19 1.1 -6.52 50 

PUD1 775 19 6 778 20 17 1.8 -0.22 60 

PUD2 874 21 8 311 30 21 1.7 -3.01 43 

PUD3 531 24 14 78 37 15 1.3 2.69 45 

PUM 1052 33 19 267 311 20 0.5 1.77 55 



Table 3 Five top-ranked detection models from multinomial N-mixture models of Southern 503 

Darwin’s frogs (Rhinoderma darwinii) captured in Southern Chile. Models are ranked from the best 504 

to the worst based on AIC values and only covariates retained among these top-ranked detection 505 

models, and their regression coefficients (and standard errors), are shown. In these models, 506 

abundance was kept constant across study sites. wi =Akaike weights. AIC of the best model was 507 

420.53. Covariates names are detailed in Table 1. 508 

Model for p Coefficients (SE)a Model selection 

SAP SBA WD DMF TEMP DAY ∆AIC wi 

SAP + SBA + DMF 0.48 

(0.11) 

-0.22 

(0.12) 

— 0.32 

(0.12) 

— — 0.00 0.36 

SAP + DMF 0.57 

(0.10) 

— — 0.24 

(0.11) 

— — 1.49 0.17 

SAP + SBA + DMF + TEMP 0.47 

(0.11) 

-0.22 

(0.12) 

— 0.32 

(0.12) 

0.02 

(0.02) 

— 1.49 0.17 

SAP + SBA + DMF + DAY 0.48 

(0.11) 

-0.19 

(0.13) 

— 0.30 

(0.13) 

— 0.01 

(0.01) 

1.86 0.14 

SAP + WD + DMF 0.57 

(0.10) 

— 0.06 

(0.09) 

0.26 

(0.11) 

— — 3.02 0.08 

aall covariates were scaled and centered for analyses.  509 
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Table 4 Five top-ranked abundance models from multinomial N-mixture models of Southern 511 

Darwin’s frogs (Rhinoderma darwinii) captured in Southern Chile. Models are ranked from the best 512 

to the worst based on AIC values and only covariates retained among these top-ranked abundance 513 

models, and their regression coefficients (and standard errors), are shown. In these models, 514 

detection probability was modelled as p(SAP+SBA+DMF). wi =Akaike weights. AIC of the best 515 

model was 411.27. Covariates names are detailed in Table 1. 516 

Model for N Coefficients (SE)a Model selection 

SAP H SBA RFE DMF ∆AIC wi 

SBA + DMF 

— — 

0.39 

(0.14) — 

-0.66 

(0.15) 

0.00 0.57 

SAP + DMF -0.31 

(0.17) — — — 

-0.55 

(0.17) 

3.07 0.12 

H + DMF  

— 

-0.27 

(0.15) — — 

-0.51 

(0.16) 

3.41 0.10 

DMF  

— — — — 

-0.58 

(0.18) 

4.14 0.07 

RFE + DMF 

— — — 

-0.06 

(0.21) 

-0.57 

(0.19) 

6.06 0.03 

aall covariates were scaled and centered for analyses.  517 


