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Abstract— This paper presents the practical implementation
of a new robust third order sliding mode controller for an
electropneumatic actuator with a predefined convergence time.
The controllers robustness is discussed with respect to external
disturbances. Implementation results on an electropneumatic
actuator setup show the effectiveness of the controller.

I. INTRODUCTION

Pneumatic actuators are widely used in industrial appli-
cations due to the following advantages: low maintenance
cost, lightweight and good force/weight ratio [1], [2], [3].
For high performance position control of electropneumatic
actuators, robust control approaches are required to reduce
the effect of the model non-linearity such as friction, varia-
tion of the actuators dynamics due to large change of load.
Sliding mode control (SMC) is a one of the most popular
robust control strategy for uncertain nonlinear systems [4],
[5], [6]. The main advantages of SMC are the finite time
convergence and the robustness with respect to uncertainties
and perturbations. In addition to this, higher order sliding
mode control (HOSM) also preserves the main advantages
of SMC but improves the performance of the closed-loop
system by reducing the chattering phenomenon [7], [8], [9].
In HOSM, twisting-control and super-twisting controller are
widely studied [5]. Super-twisting control became more pop-
ular than twisting one due its advantages like use as observer,
differentiator and generates continuous control [10], [11].
Note that these two controllers are second order sliding
mode ones. They do not allow to guarantee the finite time
convergence of the electropnematic actuator position, given
that the system with respect to the position has a relative
degree equal to 3.

Concerning the application of SMC and HOSM to the
electropneumatic system, many results have been published.
A few of them are detailed in the sequel. In [12], adaptive
super-twisting control is used for the piston position tracking,
a linear sliding surface being used in the control design.
In [13], [14], different HOSM control eventually output
feedback have been used to ensure trajectories tracking.
Some of recent works are also presented in [15], [16], and
will be expose in reference therein. Note that these solutions
can not allow to predefine the convergence time of the
closed-loop system.

The main focus of this paper is the design of a new
third sliding mode controller inspired from [17] for the
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electropneumatic actuator. The controller allows to ensure
the convergence of the closed-loop system in a predefined
time. The dynamics of electropneumatic setup considered
in the present paper are nonlinear and affected with exter-
nal disturbance. After selecting proper output variable for
controller design, then dynamics of the electropneumatic
setup becomes similar to the system discussed in [17]. The
controller objective is to force the piston position of the
electropneumatic actuator to track a desired trajectory in
a predefined convergence time, the time being defined in
advance. Results on similar applications based on [18] have
been obtained in [19], [20]. But the designed control input in
[18] is discontinuous because discontinuous term appears in
the control input which can cause the chattering and then af-
fect the tracking performance. In the current paper, to reduce
chattering and to improve the results of [19], a new scheme
inspired from [17] and based on integral sliding mode control
(ISMC) approach is used. In this scheme, discontinuous part
of the control appeared in [19], [20] is replaced by super-
twisting, which makes overall control continuous. This kind
of robust controller, from the application point of view, is
better than the discontinuous control.

A. Main Contribution

The main contribution of this paper is the design of control
scheme inspired by [17] to a perturbed electropneumatic
actuator. The control scheme is based on ISMC in which
the “so-called” nominal control tracks the disturbance free
system in a predefined convergence time. For the disturbance
compensation super-twisting is used, which makes overall
continuous control and improves the tracking performance.

B. Structure of the Paper

The paper is organized as follows. Section II describes
the eletropneumatic system. Section III details design of
the controller. Experimental results of the proposed control
method to an electropneumatic system are discussed in
Section IV.

II. D ESCRIPTION OFELECTROPNEUMATICSYSTEM

The electropneumatic system (Figure 1) is composed of
two actuators ([12], [13], [14], [16], [21]): the first one,
named “main actuator” and the second one that is “per-
turbation actuator”. The main actuator composed of two
chambers (denoted byP andN ) is a double acting actuator
which is controlled by the two servo distributors. The piston
diameter is80 mm and rod diameter is25 mm. With a source
pressure equal to 7 bar, the maximum force developed by the



Fig. 1. Photo of the electropneumatic system and Schematic of electropneumatic system [14]

actuator is 2720 N. The air mass flow rates entering in the
chambers are modulated by two three-way servodistributors.
The pneumatic jack horizontally moves a load carriage of
massM . This carriage is coupled with the second pneumatic
actuator. The goal of the second actuator is to produce
a dynamical load force on the main actuator. The second
actuator has the same mechanical characteristics as main
actuator, but the air mass flow rate is modulated by a single
five-way servodistributor. Note that the force control of the
second actuator is performed by analogic PID controller
developed by the test bench manufacturer.
As detailed in [14], the nonlinear plant model of electropneu-
matic system is obtained from the physical laws and reads
as
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The variabley is piston position,v is its velocity,pP and
pN are the pressures in both chambers (P andN chambers,
respectively),Fext is the external force produced by the
perturbation actuator,r is the perfect gas constant,bv the
viscous friction coefficient,T the supply temperature,k the
polytropic constant andu is the control input of the system.
Given that the actuator is controlled by two servo-distributors
through two inputsuP anduN , thusu = uP = −uN . The
volume in each chamber is defined as

VP (y) = V0 + S · y

VN (y) = V0 − S · y

with V0 being equal to the half of the cylinder volume and
S is a piston surface. The functionϕ∗ and ψ∗ with ∗ =
{P,N} are describing the mass flow rate and defined as a
5th order polynomial [for details see [12] ]. The constraint
are as follows

|y| ≤ 72 mm, |v| ≤ 1 m.s−1, 1 bar≤ pP ≤ 7 bar

1 bar≤ pN ≤ 7 bar, and |u| ≤ 10 V.

The parameters of the electropneumatic system are listed in
Table I.

TABLE I

PARAMETERS OF THEELECTROPNEUMATIC SYSTEM

Parameters Notation Value
Viscous friction coefficient bv 50
Polytropic constant k 1.2
Perfect gas constant r 287 J Kg−1K−1

Temperature T 293◦ K = 20◦ C
Mass M 3.4 Kg
Piston surface S 0.0045 m2

Half-cylinder volume V0 3.40× 10−4 m3

III. C ONTROLLER DESIGN

The objective of the control law is that the actuator posi-
tion is tracking a desired position trajectory in a predefined
time tF . Define the tracking error as

σ = y − yref, σ̇ = v − ẏref and σ̈ = v̇ − ÿref. (2)



with yref a sufficiently differentiable reference trajectory. The
dynamics ofσ̈ reads as
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1
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S(pP − pN )− bvv − Fext

]

− ÿref

Control input is not explicitly appearing in the dynamics of
σ̈. Indeed relative degree of system (1) with respect to theσ

is equals 3, given that
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Note that it is assumed that the system model is known.
To cancel the known parts, control input for system (3) is
defined as follows,

u =
1

Φ(·)

(

−Ψ(·) + ū

)

(4)

After substituting the control input (4) in (3) one gets
...
σ = ū+∆ (5)

A. Assumptions and recalls

Before designingū, consider the following assumption
on the uncertainty.

Assumption 1: The derivative of the uncertainty∆ is
bounded and maximum bound is known. Also, att = 0,
∆(0) = 0. �

Now, one has to design āu, in order to getσ = σ̇ = σ̈ = 0
in a predefined timetF , in spite of perturbation term∆.
System (5) reads as,

ẋ = Ax+B(ū+∆)

=





0 1 0
0 0 1
0 0 0



x+





0
0
1



 (ū+∆)
(6)

Defining x = [ σ σ̇ σ̈ ]⊤. Before proceeding further
let us recall some standard definition of third order sliding
mode as follows,

Definition 1: [5] Consider the system (6) with sliding
variable σ. Assume that the time derivative of sliding
variableσ̇, σ̈ are continuous function. The manifold defined
as

∑3 = {x | σ = σ̇ = σ̈ = 0} is called “third order sliding
set”, which is no-empty and is locally an integral set in the

Filippov sense. The motion on this set is called third order
sliding mode with respect to the sliding variableσ. �

Definition 2: [5] Consider the system (6) with sliding
variable σ. Assume that the time derivative of sliding
variableσ̇, σ̈ are continuous function. The manifold defined
as

∑3
∗
= {x | |σ| ≤ µ0τ

3, |σ̇| ≤ µ1τ
2, |σ̈| ≤ µ2τ} with

µ0, µ1, µ2 > 0 and theτ sampling time, is called “real
third order sliding set”, which is no-empty and is locally an
integral set in the Filippov sense. The motion on this set
is called real third order sliding mode with respect to the
sliding variableσ. �

Theorem 1: [22] The system (6) with∆ = 0 is stabilized
in a finite timetF by a control inputū defined as

ū =

{

−B⊤M [ σ σ̇ σ̈ ]⊤ +B⊤δ(t) for 0 ≤ t ≤ tF

−B⊤M [ σ σ̇ σ̈ ]⊤ for t > tF

(7)

with δ(t) (δ(0) selected in order to satisfy the terminal
conditionx(tF ) = 0.) andM defined as

δ̇ = −(A⊤ −MBB⊤)δ

0 =MA+A⊤M −MBB⊤M +Q

�

The details of closed-loop stability analysis with above
control is discussed in the [18], [22].

The controller proposed in the sequel is based on the
integral sliding mode concept developed in [17]. This kind
of controller is composed of two terms. The term required
to cancel the perturbation is discussed in the next subsection
by using disturbance observer.

B. Disturbance observer and main result

The goal of the disturbance observer is to estimate the
disturbance early fromt ≥ 0. All the statesx of the
system are measurable. In observer design, we consider the
measured variable as

s = Gx with GB 6= 0, G ∈ R
1×3 (8)

Dynamics for the disturbance observer is defined as

˙̂s = GAx +GBū+ z, ŝ(0) = s(0) (9)

wherez is the correction term that is defined in the sequel.
The error betweens and ŝ being defined ase = s− ŝ (with
e(0) = 0) ensurings = ŝ, its dynamics reads as

ė = ṡ− ˙̂s

= GAx+GBū +GB∆−GAx−GBu − z

= GB∆− z

(10)

Define the correction termz as

z = k1|e|
1

2 sign(e)− ν1

ν̇1 = −k2sign(e)
(11)



After substitutingz in (10), one gets

ė = −k1|e|
1

2 sign(e) + ν

ν̇ = −k2sign(e) +GB∆̇
(12)

whereν = GB∆ − ν1. As mentioned earlier att = 0 one
hase(0) = 0 which can be maintained with the following
gain conditions [17]

k2 > ρ, k1 > 1.41
√

k2 + ρ, ρ = |GB∆̇|max (13)

and achieves the second order sliding mode one in the
presence of disturbance. Given thate = ė = 0, the exact
perturbation can be computed from (10) as∆ = (GB)−1z.

Theorem 2: Consider the system (5) with the vectorB =
[ 0 0 1 ]⊤ and vectorG defined such thatGB 6= 0.
Suppose that∆ fulfills Assumption1 and |GB∆̇|max = ρ

with ∆(0) = 0. Define the convergence timetF . Then, the
continuous control input̄u = un + ud defined as

un =

{

−B⊤M [ σ σ̇ σ̈ ]⊤ +B⊤δ(t) for 0 ≤ t ≤ tF

−B⊤M [ σ σ̇ σ̈ ]⊤ for t > tF

(14)

with δ(t) (δ(0) selected in order to satisfy the terminal
conditionx(tF ) = 0.) andM as

δ̇ = −(A⊤ −MBB⊤)δ

0 =MA+A⊤M −MBB⊤M +Q

and

ud = −(GB)−1z, (15)

z being defined from (11), allows the establishment of a
third order sliding mode with respect toσ i.e for t ≥ tF ,
σ = σ̇ = σ̈ = 0. �

Proof: Let us rewrite dynamics of system (6)

ẋ = Ax+B(ū+∆) (16)

After substituting the control input, system (16) reads as

ẋ = Ax+B(un + ud +∆)

= Ax+Bun +B(ud +∆)

= Ax+Bun +B(−(GB)−1z +∆)

= Ax+Bun

Using disturbance observer, disturbance is estimated exactly
so −(GB)−1z + ∆ = 0 from t ≥ 0, which makes
dynamics free from the disturbance.

ẋ = Ax+Bun

The system dynamics now reads as Theorem1, such kind of
system is finite time stable and one can obtained for system
(6) x = 0 at t = tF , that meansσ = σ̇ = σ̈ = 0. In other
words, controller achieves the establishment of a third order
sliding mode with respect toσ in the predefined finite time
tF .. This completes the proof.

IV. EXPERIMENT RESULTS

The proposed controller is implemented using MAT-
LAB/SIMULINK with dSpace DS1104 datacard. The sam-
pling period is selected as 1 ms. To implement proposed
controller, main actuator’s position, velocity and acceleration
are required. The position of the load mass is measured
by using position sensor and then by using differentiator,
velocity and acceleration are obtained. Dynamics of the
electropneumatic system are nonlinear and affected with
perturbation actuator. For this latter, a reference trajectory
of the perturbation is selected and tracking is achieved
with a PID controller provided by the company that builds
the set-up. For simulations and experiments, two different
reference trajectories are considered asyref = 0.04sin(t) and
yref = 0.04. The external disturbance trajectory is selected
asFext = 500sin(0.5t) (Figure 2). Using an integral sliding
mode control approach, the control input is designed,i.e
nominal controlun and the disturbance rejection controlud.
Design of a nominal control withtF = 2 sec1 is discussed
below. The nominal control reads as
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Fig. 2. External perturbation trajectory obtained using perturbation actuator

un =

{

−B⊤Mx(t) +B⊤δ(t) for 0 ≤ t ≤ tF

−B⊤Mx(t) for t > tF
(17)

with the matrixM derived from the Riccati’s equation, by
stating

Q =





1 0 0
0 1 0
0 0 1





One gets

M =





2.414 2.414 1.000
2.414 4.828 2.414
1.000 2.414 2.414





The initial condition of the state for sinusoidal tracking is
x(0) =

[

0 −0.04 0
]⊤

and for constant tracking is

x(0) =
[

−0.04 0 0
]⊤

. Given x(0) and tF = 2sec,

1In the sequel, several values oftF will be considered. For each value
of tF initial condition of δ has to be obtained.



initial condition of δ(t) function is calculated by using the
gramper function (For details, see [18], [23] )i.e.

δ(0)Sinusoidal Reference=





0.9079
0.8989
0.2791





δ(0)Constant Reference=





0.9485
0.9079
0.2709





The gains of the correction term used in the observer that
estimates the disturbance are selected ask1 = 700 andk2 =
1000 (see section III). The matrixG is selected asG = B⊤.

A. Discussions

During the experimentations to show the effectiveness
of the proposed controller, different predefined convergence
time tF have been chosen for the tracking of piston position
in the presence of external force generated by perturbation
actuator. As mentioned in the earlier discussion, two different
reference trajectories are considered.

The obtained results are compared with existing method
[18]. In Figures 3 (a) and (c), tracking of piston position
is depicted with differenttF with sinusoidal and constant
references. It is clear from Figures 3 (a) and (c) that the
proposed controller has achieved the objective in spite of
external force. In Figures 3 (b) and (d), same tracking
is presented with the controller developed in [18]. The
tracking performance are quite similar even if the accuracyis
slightly better with the proposed controller. In fact, the main
difference (and the main advantage of the proposed method)
appears in the control inputs, as displayed by Figures 4 (a)
and (b) (onlytF = 2 sec is considered). The required control
inputs to achieve the control objective are clearly more
affected by chattering with control designed from [18]. This
kind of signal can be damageable for the servo-distributor.
The proposed controller clearly offers a better solution. The
pressures in the chamberN are depicted in Figure 4 (c) and
(d).

V. CONCLUSION

This paper presents practical implementation of a robust
third order sliding mode controller for an electropneumatic
actuator. The controller guarantees position tracking of the
piston at exactly a predefined timetF and this convergence
time is chosen in advance. The controller robustness is pre-
sented with respect to external disturbances. Implementation
results on an experimental setup shows the effectiveness
of the controller versus an other third order sliding mode
existing control method. It is observed that the proposed
control uses less energy to obtain similar performances.
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Fig. 3. Positiony (m) versus time (sec) several predefined times (tF = 2, 3, 4, 5 sec): Sinusoidal and Constant Reference Tracking:Left. Proposed
method.Right. Method from [18].
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Fig. 4. Sinusoidal and Constant Reference Tracking (tF = 2 sec). Plots (a) and (b)- Control inputuP (V ) versus time (sec),Top. Proposed method.
Bottom. Method from. [18], (c) and (d)-PN (bar) versus time (sec),Top. Proposed method.Bottom. Method from [18].


