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Abstract—Virtual reality (VR) applications target high-quality
and zero-latency scene navigation to provide users with a full-
immersion sensation within a scene. From a network perspective,
this requires transmission of the omnidirectional content in its
entirety, at a high resolution, which is not always feasible in
bandwidth-limited networks. In this work, we propose an optimal
transmission strategy for virtual reality applications able to fulfill
the bandwidth requirements, while optimizing the end-user qual-
ity experienced in the navigation. In further detail, we consider a
tile-based coded content for adaptive streaming systems, and we
propose a navigation-aware transmission strategy at the client-
side (i.e., adaptation logic), which is able to optimize the rate at
which each tile is downloaded. First, we introduce the viewport-
quality as metric that reflects the quality of any portion of the
sphere displayed by the end-user. Then, we cast the tile-rate
optimization as an integer linear programming problem and show
that the proposed solution achieves substantial quality gains when
compared to state-of-the-art adaptation logic methods.

I. INTRODUCTION

Nowadays, the multimedia format for Virtual Reality (VR)
applications is based on omnidirectional content, where a
360◦ scene is acquired instantaneously by an omnidirectional
camera. The immersive sensation typical of VR is provided by
placing the user at the center of the sphere and dynamically
altering the portion of spherical content on display (viewport)
according to the head direction of the user. This interaction of
the user with the scene has created novel challenges from both
coding and transmission perspectives. For instance, in classical
video streaming, the entire scene is delivered and displayed at
the user side, while in VR applications, users only consume
a portion of the content in a highly dynamic way. Such a
dynamic behavior has posed novel questions on how to most
efficiently utilize the available network resources. In particular,
transmission of the entire panorama, even if only a small
portion of it is actually displayed, guarantees zero latency
for the user when switching viewing direction. However, this
comes at the price of a poor quality, being the panorama sent
at low quality for poor channel resources. A more efficient
usage of bandwidth would be to exclusively send the viewport
of interest. However, the viewport needs to be prefetched
in advance, when the viewport requested by the user is not
known yet but rather predicted. An erroneous prediction of the
displayed viewport would require a re-transmission of a new
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predicted viewport, leading to large switching delays. There-
fore, it is essential to seek the correct streaming strategy able
to find the optimal trade-off between bandwidth efficiency,
quality and latency, since the way in which users consume
videos while navigating is highly dynamic and uncertain. In
this work, we propose a novel transmission strategy able to
directly address this trade-off in the case of HTTP adaptive
streaming (HAS) systems i.e., Dynamic Adaptive Streaming
over HTTP (DASH) [1].

HAS systems offer users the possibility to adaptively select
different versions (i.e. different coding rates and resolutions)
of video streams that have been pre-encoded and stored at
the content distribution server. Based on the experienced
channel, each media client optimizes the appropriate version
in order to maximize the video quality experienced, while
navigating the scene. Along this direction, initial steps have
been made with the study of adaptive streaming strategies
for 360◦ content [2]–[5]. The work in [2] optimizes DASH
systems for omnidirectional content, but focuses mainly on the
server side of the chain. Namely, the optimal storage strategy
is investigated in the case that the panorama representations
are encoded over unequal quality levels (i.e. an area with high
quality and the rest of the panorama at a low quality). A more
formal tile-based DASH system is presented in [3], [5], where
the new extension of DASH, defined as Spatial Relationship
Description (SRD), is applied to the 360◦ video sequences.
Both works focus on algorithms to generate tiles on the sphere,
but crucially, no optimal strategy to select the optimal tile-
representation at the client side is proposed. A tile-based
adaptive streaming method is proposed in [4], where each user
receives only the tiles that overlap with the predicted display
viewport. This strategy, while effective from both a bandwidth
and quality perspective, strongly depends on the viewport
prediction. An erroneous estimate would immediately lead
to re-transmissions, and hence, a possible stall or quality
reduction effect. In summary, a formal adaptation logic method
able to take into account particular individual factors such as
scene geometry and user navigation, typical of omnidirectional
content, is still missing.

This work proposes a navigation-aware adaptation strategy
for 360◦ video adaptive streaming when sequence delivery is
required for interactive users, aiming to provide a solution to
the previously outlined challenge. In more details, we consider
the scenario of 360◦ video sequences stored at the main server
of the service provider (e.g., Netflix, YouTube). Each acquired



Figure 1. Overview of proposed architecture from viewing sphere to viewport display.

360◦ video is projected onto a plane called panorama and is
then processed by a tile-based encoder. Each tile is encoded
at a different coding rate and resolution, creating per-tile
representations. Each representation is then decomposed into
temporal chunks (usually 2s long) and stored at the server.
Based on his own future navigation path, the client requests
the best set of per-tile representations for the entire panorama.
From the panorama, the viewport of interest is then rendered
and displayed. Figure 1 depicts the considered scenario. The
best set of representations downloaded by the user is defined
as the one that (i) satisfies the channel bandwidth constraints
and (ii) minimizes the distortion of the most likely displayed
viewports, while also reducing the distortion variations along
most likely navigation paths.

To achieve this goal, we evaluate the quality metric as a
geometry based Mean Square Error (MSE) to consider not
only the content characteristics (i.e., coding artifacts on the
panorama) but also the scene geometry (i.e., the projection of
portions of the panorama on the sphere). Next, we provide
a formal problem formulation of the client adaptation logic
and cast the problem as an integer linear programming (ILP)
framework, which can be easily solved using the CPLEX
solver. We further compare our adaptation logic strategy
with the case of non-tile based coding. Simulation results
show significant gains (in terms of navigation quality and
smoothness) under different streaming scenarios. This reflects
a more effective adaptation of the available network resources
and furthermore, higher satisfaction experienced by the end-
users. Finally, we compare the impact of different tile sizes
on the final quality perceived by the user, showing that the
optimal size depends on both the content characteristics as
well as on the users interaction.

II. SYSTEM MODEL

We now provide an overview of the navigation-aware adap-
tive streaming system proposed in this work. We first describe
the structure of adaptive streaming systems, and then outline
the key features of the omnidirectional content.

A. Adaptive Streaming over HTTP

In adaptive streaming systems, one video sequence is di-
vided into chunks of fixed duration (typically 2s), and the
number of chunks into which each sequence is decomposed is
denoted by K. In the case of omnidirectional sequences, each

chunk consists of T panoramic frames. Each panoramic frame
Ft with t = 1, ..., T is decomposed into N regular blocks
(or tiles). Each tile is encoded into Q per-tile representations,
with coding rates defined by the following set of rates R =
{R1, R2, ..., RQ}1. Without loss of generality, we assume the
system at regime (no rump-up or re-buffering phase) in which
one chunk is periodically downloaded every chunk duration.
Therefore, while displaying a chunk, the client downloads
the following one, asking for the set of representation re-
sulting from the adaptation logic optimization. The adaptation
logic optimizes the representation vector r = [r1, r2, .., rN ],
where rn ∈ R represents the coding rate for the nth tile of
chunk to download. The optimization resulting in the best set
of representations to download for each chunk is what we
propose in this paper. At each downloading opportunity, the
user knows the popularity of each viewport to be displayed
(heatmap) as well as the rate-distortion function for each
tile-representation for the chunk of interest. This information
can be periodically delivered to clients through the media
presentation description, and it can reflect the information for
each chunk or be averaged over a set of chunks (i.e., a trade-off
between communication overhead and optimization accuracy).
Equipped with this information, the optimization proposed in
the following sections is invoked and the optimal chunk is
requested for downloading.

B. Omnidirectional Video

We consider an acquired spherical video projected into rect-
angular panoramic frames (map projection) via an equirectan-
gular projection,2 since it is the simplest and most popular
map projection [6]. In particular, a point on the viewing
sphere can be mapped onto the panorama through longitude
(0 ≤ θ ≤ 2π) and latitude (0 ≤ φ ≤ π) values. Then, each
panoramic frame is processed by a tile-based encoder with
uniform tiles. Therefore, panoramic frames are decomposed
into blocks of area Sb = ∆θb∆φb where ∆θb and ∆φb are the
longitudinal and latitudinal dimensions of each block. Because
of the map projection, these blocks on the viewing sphere
have unequal sizes. Each block can be seen as the sum of

1In this paper, we do not vary the encoded resolution across representations.
However, our optimization problem can be directly extended to provide a
solution in a scenario considering multiple resolutions.

2Note that the optimization problem proposed in this work is general
enough to be extended to any other map projection method.



Figure 2. Map projection from the viewing sphere to the panorama image
with B = 2.

infinitesimal elements with dimension δθb and δφb. Therefore
each block centred in (θb, φb) has an area on the sphere given
by Sb = l2B2sinφbδθbδφb, where l is the radius of the sphere
and B the number of infinitesimal elements per block 3. In
particular, the blocks near the poles are smaller than those in
the equatorial zone, as can be inferred from Figure 2.

At the client side, any viewers, equipped with a head
mounted device, navigates the 360◦ video by moving his
head and changing the displayed viewport accordingly. The
viewport is a plane tangent at the viewing sphere in the user’s
view direction (θi, φi), as shown in Figure 1. In particular,
its longitudinal and vertical resolutions are imposed by the
user’s screen and denoted by ∆θv and ∆φv , respectively.
Considering the sphere with unitary ray (l = 1), we denote
by VPi the viewport with centre in (θi, φi) with i = 1, ..., I ,4

and its surface on the sphere is equal to:

SVi =

∫ θi+
∆θv

2

θi−∆θv
2

∫ φi+
∆φv

2

φi−∆φv
2

sinφdθdφ . (1)

Each viewport consists of a set of blocks (or tiles). Therefore,
let us denote by Sbn , a surface on the sphere of the nth block
centered in (θn, φn), given by:

Sbn =

∫ θn+
∆θb

2

θn−
∆θb

2

∫ φn+
∆φb

2

φn−
∆φb

2

sinφdθdφ (2)

and αn,i is the portion on the sphere of the nth block
overlapping with the viewport VPi.

III. GEOMETRY-BASED QOE METRIC

We now define two quality metrics that describes the
objective function in our optimization: (i) the popularity-
weighted geometry-based distortion, i.e. the distortion of the
different regions of the sphere associated to each possible
viewport, weighted by the probability that the user selects that
specific viewport, and (ii) the navigation-smoothness, i.e., the
variation of the geometry-based distortion experienced during
the navigation.

3We denote S for any given surface value on the sphere, while S represents
any surface value on the panoramic image.

4We denote the total number of directions that we sample on the sphere y
I . Ideally, I → ∞, but in practice the head position is quantized.

A. Popularity-weighted geometry-based distortion

Firstly, we define the distortion experienced by the user
while navigating in the 360◦ video and we highlight the
differences with respect to the distortion of the decoded
panoramic frame. In term of notation, in the following we
adopt D to indicate any distortion values on the sphere and D
to indicate the distortion on the panoramic image.

We assume that the distortion of a given viewport is
measured by the distortion of the portion of the sphere which
underpins the viewport. Therefore, the distortion of a generic
viewport VPi with its center in (θi, φi) is evaluated as:

Di =
1

SVi

∫ θi+
∆θv

2

θi−∆θv
2

∫ φi+
∆φv

2

φi−∆φv
2

D(θ, φ) sinφdθdφ (3)

where D(θ, φ) is the distortion function at any point (θ, φ)
on the viewing sphere. Decomposing the viewport into the
different blocks derived from the tile-based coding, (3) can be
reformulated as:

Di =
1

SVi

∑
n∈VPi

∫ θ̃+
i,n

θ̃−i,n

∫ φ̃+
i,n

φ̃−
i,n

D(θ, φ) sinφdθdφ (4)

where θ̃−i,n = min(θi − ∆θv
2 , θn − ∆θn

2 ), θ̃+
i,n = min(θi +

∆θv
2 , θn+ ∆θn

2 ), and similarly φ̃−i,n = min(θi−∆θv
2 , θn−∆θn

2 ),
φ̃+
i,n = min(θi + ∆θv

2 , θn + ∆θn
2 ). Recalling that αn,i is the

percentage of block n that overlaps with the portion of the
sphere underpinning viewport VPi, the previous equation can
be generalized as follows:

Di =
1

SVi

N∑
n=1

αn,i

∫ θn+ ∆θv
2

θn−∆θv
2

∫ φn+ ∆φv
2

φn−∆φv
2

D(θ, φ) sinφdθdφ

(5)
where the summation has been extended to all blocks within
the panorama. All pixels on the sphere in the range {[θn −
∆θv

2 , θn+ ∆θv
2 ], [φn− ∆φv

2 , φn+ ∆φv
2 ]} belong to the block n

on the panorama, which has been encoded at the same rate for
each representation level. The representation encoded at rate
rn will lead to a distortion averaged over the block denoted
by Dn(rn). From this consideration as well as from (2), the
distortion of viewport VPi is given by

Di(r) =
1

SVi

N∑
n=1

Dn(rn)αn,i

∫ θn+ ∆θv
2

θn−∆θv
2

∫ φn+ ∆φv
2

φn−∆φv
2

sinφdθdφ

=
1

SVi

N∑
n=1

Dn(rn)αn,iSbn

=

N∑
n=1

Dn(rn)αn,iŜn,i (6)

where Ŝn,i = Sbn/SVi is the block surface on the sphere nor-
malized by the area of the viewport, and where we explicitly
show the dependency of Di on r.

The probability for the user to display viewport VPi in
the panoramic frame t is denoted by pt,i, and hence, the



popularity-weighted distortion of the chunk to be downloaded
is:

D(r) =

T∑
t=1

I∑
i=1

N∑
n=1

Dn(rn)Ŝn,iαn,ipt,i. (7)

It is worth noting that the rate-distortion on the panorama
block Dn(rn) does not depend on the time index t since
Dn(rn) reflects the mean distortion of block n encoded at
the coding rate rn for all frames in the chunk.

B. Navigation-smoothness

Beyond the average quality experienced during the navi-
gation, we are interested in evaluating the quality variation,
since varying quality while changing viewport can result in
an annoying degradation in quality of experience.

We first evaluate the distortion variation between two
consecutive viewports displayed at time t − 1 and t, when
displaying viewport VPi at time t. This is given by

∆Dt,i(r) =
∑

j∈N (i)

|Di(r)−Dj(r)| pt−1,j

where N (i) is the set of viewports that could have been
displayed at time t− 1 and is defined as the set of viewports
with center in (θj , φj) such that{

θj ≤ θi ± θhead
φj ≤ φi ± φhead

(8)

where θhead and φhead are the maximum angular movements
of the human head between two consecutive frames.

The navigation-smoothness per chunk can then be evaluated
as follows:

∆D(r) =

T∑
t=2

I∑
i=1

∆Dt,i(r)pt,i (9)

=
∑
t

∑
i

∑
j∈N (i)

∣∣∣∣∣∑
n

Dn(rn)(Ŝn,iαn,i − Ŝn,jαn,j)

∣∣∣∣∣ pt−1,jpt,i

IV. NAVIGATION-BANDWIDTH ADAPTIVE LOGIC

Equipped with the above metrics and notations, we can now
formulate the optimization problem that needs to be solved
at the client side at each downloading opportunity. In the
following, we first formalize the optimization problem and we
then describe the solving method.

A. Problem formulation

We seek the optimal set of representations for all blocks
of the panoramic frames such that the quality experienced
in the scene navigation is maximized and yet the bandwidth
constraint is respected. We can then express the navigation-
aware adaptation logic optimization for each chunk as:

min
r

Duser(r) (10)

s.t.
∑
n

rn ≤ C

where C is the estimated channel capacity during the delivery
of the chunk of interest and Duser(r) is the metric that
takes into account both the geometry-based quality and the
navigation-smoothness. In particular,

Duser(r) = D(r) + λ∆D(r) (11)

=
∑
t

∑
i

[
Di(r) + λ∆Dt,i(r)

]
pt,i

where λ is the multiplier that allows us to assign the appro-
priate weight to quality in the objective metric. Parametrizing
the rate-distortion function of the panorama blocks leads to
the following [7]:

Dn(rn) = an +
bn

rn + cn
(12)

and hence, the problem formulation in (10) becomes:

min
r

Duser(r) (13)

s.t.
∑
n

bn
Dn(rn)− an

− cn ≤ C

where an, bn and cn are constants that depend on the content
characteristics of block n.

The above optimization problem is computationally com-
plex to solve being Duser neither a convex nor a linear
function. In the following, we show how to cast the problem
in (13) in a tractable ILP optimization problem.

B. ILP Optimization Algorithm

We recall that the set of representations available for each
block is finite and corresponds to a specific set of coding rates
R used to store the representations at the server. It follows that,
in the panoramic frame, the distortion of each block Dn(rn)
can be expressed as:

Dn(rn) =

Q∑
q=1

Dn(Rq)βn,q (14)

where Rq ∈ R, and βn,q = 1 if rn = Rq , βn,q = 0 otherwise.
This means that rather than seeking the best coding rate {rn}n
for all blocks in the panorama, we seek the best set of binary
variables {βn,q}n,q . Adopting a change of variable xn,q →
Dn(Rq), the objective function becomes:

Duser(r) =

T∑
t=1

I∑
i=1

[
N∑
n=1

Q∑
q=1

xn,qβn,qŜn,iαn,i+

∑
j∈N (i)

∣∣∣∣∣
N∑
n=1

Q∑
q=1

xn,qβn,q(Ŝn,iαn,i − Ŝn,jαn,j)

∣∣∣∣∣ pt−1,j

]
pt,i

The previous expression is not linear because of the absolute
value in the second term. However, an equivalent objective
function linear in βn,q can be evaluated as shown in the
following. We introduce an auxiliary variable y such that:

y =

N∑
n=1

Q∑
q=1

xn,qβn,qŜn,i(αn,i − αn,j) (15)



Integer Linear Programming 1

min
β,y

∑
t

∑
i

[∑
n

∑
q

xn,qβn,qŜnαn,i +
∑

j∈N (i)

yi,jpt−1,j

]
pt,i (17a)

s.t.
∑
q

βn,q = 1,∀n ∈ [1, N ], (17b)

∑
n

∑
q

(
bn

xn,q − an
− cn

)
βn,q ≤ C ∀n ∈ [1, N ] (17c)

yi,j ≥
∑
n

∑
q

xn,qβn,qŜn(αn,i − αn,j) (17d)

∀t ∈ [1, T ],∀i ∈ [1, I],∀j ∈ N (i),∀n ∈ [1, N ] (17e)

yi,j ≥ −

(∑
n

∑
q

xn,qβn,qŜn(αn,i − αn,j)

)
(17f)

∀t ∈ [1, T ],∀i ∈ [1, I],∀j ∈ N (i),∀n ∈ [1, N ] (17g)

The absolute value in (15) can then be obtained by imposing
the two following constraints on the y variable:

yi,j ≥
∑
n

∑
q

xn,qβn,q(Ŝn,iαn,i − Ŝn,jαn,j)

yi,j ≥ −

(∑
n

∑
q

xn,qβn,q(Ŝn,iαn,i − Ŝn,jαn,j)

)
.

Finally, the optimization problem in (10) can be casted as an
ILP problem shown in (17). The objective function minimizes
the expected quality experienced by the user when navigating
the scene in the chunk duration. The constraint (17b) guaran-
tees that only one representation is selected for each block in a
chunk, while (17c) imposes the bandwidth constraint. Finally,
the constraints (17e) and (17g) are the terms of transformation
of the absolute value in a linear function.

V. SIMULATION RESULTS

A. Simulation Setups

We consider two 360◦ videos, namely “Rollercoaster” and
“Timelapse NY”. Both the sequences have been downloaded in
equirectangular format at the maximum spatial resolution and
frame rate available on the platform YouTube, i.e. 3840x2048
pixels and 30 fps, respectively [8]. The sequences have been
selected due to the different spatial and temporal complexity of
their content. In particular, “Rollercoaster” is more complex
since it has a moving camera and its values of Spatial
Information (SI) and Temporal Information (TI) equal to 72
and 45, respectively. On the contrary, “Timelapse NY” has a
fixed camera that shoots city streets and its corresponding SI
and TI values are 44 and 14, respectively.

To simulate a tile-based encoding, sequences have been
split temporally and spatially in blocks. This results in a
reduced coding efficiency with respect to a standard tile-based
encoder. Therefore, the gain provided in following should be
considered as lower bound to the actual gains, which can

further improve in the case of more efficient tile-based coding
strategies. We set a chunk of duration of about 2s and squared
blocks with three different sizes, L = [256, 512, 680] pixels.
We then compare our optimized strategy with a baseline case
in which the entire panorama is encoded (without tile-based
encoding) at the same average rate. We label this baseline
method by “Full Video” in the following results. Each block
(as well as the entire panorama) has been encoded with
HEVC codec [9] with an overall coding rate ranging between
16 kbps and 150 Mbps. We then consider 15 representations
for each blocks (Q = 15). These representations are selected
as the one corresponding to quality levels (in terms of PSNR)
of [25, 28, 29, 30, 31, 32, 33, 34, 35, 38, 40, 42, 45, 50, 52] dB.
The rate value associated to each quality score has been
derived by the rate-distortion function given in (12), where
the parametric values are evaluated by curve fitting.

As input to our ILP problem, the prediction of user’s
navigation path in the 360◦ content is required. Using the
free software Graph-Based Visual Saliency (GBVS) [10], the
position of each focus of attention (FoA) could be computed
for each panoramic frame. From this FoA map, we derived
the heatmap over time. The two considered videos differ
substantially in terms of resulting heatmap over time. The
“Rollercoaster” sequence has one main FoA, which leads to
a nicely predictable behavior of the users. On the contrary,
“Timelapse NY” has several FoAs, increasing therefore the
uncertainty of the interactivity behavior of the users. Finally,
the selection of the most suitable set of representations-per-
block is optimized with our ILP optimization problem in
scenarios characterized by values of C ranging from 2 Mbps
to 40 Mbps. Moreover, we assign a unitary weight to quality
in the objective function of our problem (λ = 1). We have
used the generic solver IBM ILOG CPLEX [11] to solve
the ILP proposed in this work. Results in the following are
provided both for the quality (in terms of PSNR) and for the
navigation-smoothness (in terms of PSNR difference) and they



have been carried out by over 100 simulated interactive users
downloading over a constant channel constraint over time. It is
worth noting that our simulation considers some approxima-
tions (infinite playback buffers, exact channel estimation, etc.)
with respect to real HAS systems. But these do not impact
on our objective in this paper, which is to demonstrate the
benefit of considering content and interactive information in
the optimal representation selection for a HAS client in a
stationary regime.

B. Results

In Figure 3, both the quality (in terms of PSNR) defined in
(6) and the navigation-smoothness (in terms of PSNR differ-
ence) have been provided as a function of the available band-
width, for the “Rollercoaster” video sequence. As expected,
the quality increases with the available bandwidth, Figure 3(a).
Most importantly, the proposed optimization with tile size
L = 680 outperforms the Full Video case (with no tiling).
This shows the gain of the added degree of freedom in the
adaptation logic thanks to the tiling. However, by decreasing
the tile size, this quality gain fades away. This is motivated
by the fact that tiling leads to a more flexible transmission
strategy, but at the price of a reduced coding efficiency. This
tradeoff is overall good for L = 680 and not for L = 512
and L = 256. In particular, in this type of sequences in which
the FoA is very narrow and uniform across users, there is
no need of too much refined tiles (i.e., small values of L).
Therefore, the loss in coding efficiency due to small L value is
not necessarily balanced by the gain in the adaptation logic. A
similar trend is observed for the smoothness-navigation, where
L = 680 reduces the quality variations experienced during the
navigation of the 100 randomly generated users.

A slightly different behaviour is observed in the case of the
“Timelapse NY” sequence, Figure 4. For values of capacity
bigger than 5 Mbps, each tiled solution achieves a better final
quality than in the delivery of the entire encoded panorama.
This is due to (i) different video characteristics that lead to a
different penalty in coding efficiency, (ii) different navigation
patterns of the interactive users. The distribution of FoA is
far more variable then the case of “Rollercoaster” and misses
a dominant area of interest. Therefore, higher resolution in
optimizing the per-tile representation (small L values) balance
the loss in coding efficiency and lead to a quality gain with
respect to the no-tile case (Full Video). However, the quality
variations observed in Figure 4(b) are highly random. This can
be mainly justified by the fact that in the case of multiple FoA
predicting the users navigation path only from the heatmap (as
we assume in our problem formulation) is not enough reliable.
This shows the need for an improved prediction model to be
adopted in our representation optimization.

VI. CONCLUSION

In this paper, we have presented a novel navigation-aware
strategy for 360◦ video adaptive streaming. In particular, we
have proposed an adaptation logic at client side able to choose
the best set of representations-per-block to download, in order

(a) Viewport Quality (b) Viewport Quality Variation

Figure 3. Analysis of Rollercoaster with λ = 1 and 100 users.

(a) Viewport Quality (b) Viewport Quality Variation

Figure 4. Analysis of Timelapse NY with λ = 1 and 100 users.

to achieve an optimal final quality. We have evaluated the
performance of our algorithm comparing the final quality of
different tile sizes with the entire encoded video. Even if a
visible gain in terms of navigation quality is provided, the
results shows also to be strongly affected by the content of
sequences and user navigation.
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