
Bioinformatics, YYYY, 0–0
doi: 10.1093/bioinformatics/xxxxx

Advance Access Publication Date: DD Month YYYY
Application Note

Databases and ontologies
Pheno4J: a gene to phenotype graph database
Sajid Mughal1, Ismail Moghul2, Jing Yu3, Tristan Clark4, David S Gregory4 and
Nikolas Pontikos5,6,7,*

1Globe View, 10 High Timber Street, London, EC4V 3PP, UK, 2UCL Cancer Institute, 72 Huntley Street,
London WC1E 6DD, UK, 3Level 6, West Wing, John Radcliffe Hospital, University of Oxford, Oxford OX3
9DU, UK, , 4Computer Science Department, University College London, Gower Street, London, WC1E 6BT,
UK,

5UCL Genetics Institute, University College London, London WC1E 6BT, UK, 6Institute of Ophthalmology,
University College London, London EC1V 9EL, UK,

7Moorfields Eye Hospital, London EC1V 2PD, UK.

*To whom correspondence should be addressed.

Associate Editor: XXXXXXX
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract
Summary: Efficient storage and querying of large amounts of genetic and phenotypic data is crucial to
contemporary clinical genetic research. This introduces computational challenges for classical relational
databases, due to the sparsity and sheer volume of the data. Our Java based solution loads annotated
genetic variants and well phenotyped patients into a graph database to allow fast efficient storage and
querying of large volumes of structured genetic and phenotypic data. This abstracts technical problems
away and lets researchers focus on the science rather than the implementation. We have also developed an
accompanying webserver with end-points to facilitate querying of the database.
Availability and Implementation: The Java code and python code is available at
https://github.com/phenopolis/pheno4j
Contact: n.pontikos@ucl.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
A recurring theme in clinical genetics is to annotate large
numbers of genetic using the Variant Effect Predictor (VEP)
(McLaren et al. 2016) variants from well phenotyped patients,
and load them into a database for efficient querying and filtering.
However, a sequenced human genome typically produces more
than 4 million genetic variants per individual, at least 100,000 of
which are novel. This introduces a number of challenges for the
conventional relational table based database model, which are
better handled by graph databases.
The first challenge for a relational database is the efficient
storage and querying of many-to-many relationships such as
genetic variant to individual relationships. In a relational
database, genetic variants and individuals would typically be
stored as rows in two distinct tables and, in order to link them, a
third table, which would be a very large mapping table known as
a ‘join’ table, would need to be queried. While workable with
small relational databases, ‘join’ queries quickly become
inefficient as the number of relationships increases. On the other
hand, in a graph database, data is stored in a manner such that
‘join’ queries are not required. Instead of using tables, each data
record is stored as a distinct node with added relationships
linking nodes stored internally as pointers. As such, analysing
the relationship between nodes representing individuals and
nodes representing genetic variants, is as simple as finding the

connected nodes. This implies that query time remains constant
despite a growing number of relationships. Additionally, by
supporting multiple types of relationships that can be labelled,
graph databases have an intuitive schema (Figure 1).
The second challenge for a relational database is the extensibility
of the database schema. Since each genetic variant is associated
with an increasing number of annotation sources, which tend to
be sparse and not always consistently formatted, the schema of
relational database would have to be redefined every time a new
annotation source is added. In a graph database, the schema is
dynamically extensible to accommodate new sources of
information by adding new types of nodes, node attributes or
relationships (see Supplementary Section 3).
Finally, directed acyclic graph ontologies such as the Human
Phenotype Ontology (HPO) (Robinson et al. 2008) and the Gene
Ontology can be directly stored and queried in graph databases
whereas complex operations would be required to achieve the
same in a relational database.
In order to address these challenges, we have developed Pheno4J
(https://github.com/phenopolis/pheno4j/), a tool implemented in
Java that parses, integrates and imports genotype, annotated
genetic variants and patient phenotype files into a Neo4J graph
database. Using the Cypher querying language, it is then possible
to perform sophisticated queries in real-time (Supplementary
Section 2). In our live installation, we have loaded 5,025 exomes
and 4M variants. This amounts to 8M nodes, 487M relationships

and 296M properties; which when stored in memory takes up
approximately 20 Gb of memory (runtime 40 minutes). The
scalability of our solution with respect to the number of exomes
stored has been demonstrated in Supplementary Section 4.

2 Implementation

Figure 1: Overview of the Pheno4J graph database design. The grey boxes

represent the five input files and five file parsers that are used to
produce the graph database. The ellipses represent the six nodes
types defined and the arrows represent the relationship types between
the nodes.

In order to build the database, a total of five data files are
required as input. These include three user generated files and
two publically available downloadable files (Figure 1). Trimmed
down versions of these files have been included in the GitHub
repository for testing purposes. The three user generated input
files are:
• VCF file containing the person to genetic variant relationships.
• JSON generated by the VEP containing the annotation for each

variant. This produces the genetic variant-to-gene, transcript-
to-gene and genetic variant-to-transcript relationships.

• Phenotype CSV file containing the link from persons to HPO
terms.

The other two input file are publicly downloadable:
• The HPO ontology which is obtained automatically from the

HPO website.
• The gene to HPO file that can be downloaded from the HPO

website.
These files are parsed and then loaded into the database.
Supplementary Section 1 shows the steps required for building
and running the database.

3 Use cases
Once the database is loaded, the data can then be queried using
the Cypher language. One basic application could be to identify
rare damaging variants by filtering by frequency and Combined
Annotation Dependent Depletion (CADD) score (Kircher et al.
2014). For example, returning all variants that have a frequency
less than 0.001 and a CADD score greater than 20, yields
171,532 variants from our cohort of 6,467 exomes (runtime 2.6
seconds). In Cypher this would be:

MATCH	(gv:GeneticVariant)		
WHERE	gv.cadd_phred	>	20	AND	gv.allele_freq	<	0.001	AND	
gv.kaviar_AF	<	0.0001		
RETURN	count(gv.variantId);	

Another application could be to identify related individuals by
counting the number of rare heterozygous variants shared with
“person1”. Here we return the list of ten individuals by
decreasing shared rare variant count (runtime 1.2 seconds).

MATCH	(k:Person)		
WITH	count(k)	as	numberOfPeople		
MATCH	(p:Person	{personId:"person1"})<-[:HetVariantToPerson]-
(gv:GeneticVariant)		
WHERE	gv.allele_freq	<	0.001	AND	gv.kaviar_AF	<	0.001	
WITH	size(()<-[:HetVariantToPerson]-(gv))	as	het_count,	gv,	p,	
numberOfPeople		
WHERE	het_count	>	1	AND	((het_count/toFloat(numberOfPeople))	<=	
0.05)	
	//	Sharing	of	variants	with	Person	q.	
MATCH	(gv)-[:HetVariantToPerson]->(q:Person)		
WHERE	p	<>	q	
WITH	p,q,count(gv)	as	c		
ORDER	BY	c	desc	LIMIT	10	
RETURN	p.personId,q.personId,	c;	

In this query, we make use of Cypher’s efficient edge counting
 size(()<-[:HetVariantToPerson]-(gv))	as	het_count	
to get the number of outgoing relationship of a node.

Another use case might be to find all individuals with a given
HPO term such as for example “Retinal dystrophy”
(HP:0000556) , which returns 521 individuals in our cohort
(runtime 0.3 seconds). This query returns all individuals
including those that might be annotated with a child term (direct
or indirect) of “Retinal dystrophy” such as “macular dystrophy”.

MATCH	(p:Term	{name	:'Retinal	dystrophy'})-
[:TermToDescendantTerms]->(q:Term)<-[:PersonToObservedTerm]-
(r:Person)		
RETURN	r.personId;	

In order to obtain a list of candidate variants, we can query all
rare damaging homozygote variants seen in people with “Retinal
dystrophy” that belong to a known “Retinal dystrophy” gene. In
our data, this returns 69 distinct variant ids (runtime <1 second).

MATCH	(p:Term	{name:'Retinal	dystrophy'})-
[:TermToDescendantTerms]->(q:Term)<-[:GeneToTerm]-(gs:Gene)	
WITH	distinct	gs	as	retinal_dystrophy_genes	
	
MATCH	(retinal_dystrophy_genes)-[:GeneToGeneticVariant]-
>(gv:GeneticVariant)	
WHERE	gv.allele_freq	<	0.001	AND	gv.cadd_phred	>	20	AND	
gv.kaviar_AF	<	0.001	
WITH	distinct	gv,	retinal_dystrophy_genes	
	
MATCH	(r:Person)<-[:HomVariantToPerson]-(gv)	
WITH	distinct	gv,	retinal_dystrophy_genes,	r	
	
MATCH	(p:Term	{name:'Retinal	dystrophy'})-
[:TermToDescendantTerms]->(q:Term)<-[:PersonToObservedTerm]-(r)	
	
RETURN	distinct	r.personId,	gv.variantId,	
retinal_dystrophy_genes.gene_name;	

Conversely, we can suggest “Retinal dystrophy” as a phenotype
for individuals that have rare damaging homozygote variants in
recessive retinal dystrophy genes:

MATCH	(p:Term)-[:TermToDescendantTerms]->(q:Term)<-
[:PersonToObservedTerm]-(r:Person)	
WHERE	p.name='Retinal	dystrophy'	
WITH	COLLECT(distinct	r)	as	persons	
MATCH	(p:Person)	WHERE	NOT	p	IN	persons	WITH	COLLECT(p)	as	
non_retinal_dystrophy_persons_list		
	
MATCH	(t:Term)<--(g:Gene)-->(t2:Term)	WHERE	t.name='Retinal	
dystrophy'	AND	t2.name='Autosomal	recessive	inheritance'	
WITH	COLLECT(DISTINCT	g)	as	
recessive_retinal_dystrophy_genes_list,	
non_retinal_dystrophy_persons_list	
	
UNWIND	recessive_retinal_dystrophy_genes_list	as	
recessive_retinal_dystrophy_genes	
MATCH	(recessive_retinal_dystrophy_genes)-->(gv:GeneticVariant)	
WHERE	gv.allele_freq	<	0.001	AND	gv.cadd_phred	>	25	AND	
gv.kaviar_AF	<	0.0001	WITH	gv,	
non_retinal_dystrophy_persons_list	
	
UNWIND	non_retinal_dystrophy_persons_list	as	
non_retinal_dystrophy_persons	
MATCH	(recessive_retinal_dystrophy_genes)-->(gv)-
[:HomVariantToPerson]->(non_retinal_dystrophy_persons)	
RETURN	distinct	gv.variantId,	gv.most_severe_consequence,	
gv.cadd_phred,	gv.kaviar_AF,	
recessive_retinal_dystrophy_genes.gene_name,	

non_retinal_dystrophy_persons.personId	ORDER	BY	gv.cadd_phred	
DESC;	
	

Further queries and analysis are described in the Supplementary
Section 2.

4 Discussion
Currently, there are bespoke tools such as GQT (Layer et al.
2016) and BGT (Li 2016), which are very space efficient and
excel at querying large annotated VCFs in real-time.
However, they do not build on existing database technologies
making them harder to extend and do not support HPO querying.
At the other end of the spectrum, there are also solutions such as
hail.is (https://github.com/hail-is/hail) for very large genomic
datasets that are distributed over a cluster of computers.
However, these require access to significant infrastructure and
the overheads of installation are not trivial. Our solution requires
minimal programming and is particularly suitable to a web front
end for interrogating the data of an exome database of around
10,000 well phenotyped individuals as typical in rare disease
groups such as BRIDGE (https://bridgestudy.medschl.cam.ac.uk)
and the UK Inherited Retinal Disease Consortium. We are using
Pheno4J as a backend for our Phenopolis
(https://phenopolis.github.io/) platform to replace our current
NoSQL MongoDB. While still relatively in their infancy, we
predict graph databases will become pervasive in biology with a
growing number of projects adopting them (Pep Tracker DB
(https://www.peptracker.com), OwlSim (www.owlsim.org) and
SciGraph (https://github.com/SciGraph/SciGraph)).

Funding
IM is supported by the Biotechnology and Biological Sciences Research
Council [grant number BB/M009513/1]
NP and JY are supported by the UK Inherited Eye Disease Consortium,
funded by Retinitis Pigmentosa Fighting Blindness and Fight for Sight.

Acknowledgements
We also acknowledge the Computer Science High Performance Cluster
for providing us with the computing platform on which to analyse our
data. SM wrote the code. SM, JY, IM and NP wrote the manuscript. TC
and DSG provided the computing infrastructure and the server
configuration.

Conflict of Interest: none declared.

References
Kircher, Martin, Daniela M. Witten, Preti Jain, Brian J. O’Roak, Gregory
M. Cooper, and Jay Shendure. 2014. “A General Framework for
Estimating the Relative Pathogenicity of Human Genetic Variants.”
Nature Genetics 46 (3): 310–15.

Layer, Ryan M., Neil Kindlon, Konrad J. Karczewski, Exome
Aggregation Consortium, and Aaron R. Quinlan. 2016. “Efficient
Genotype Compression and Analysis of Large Genetic-Variation Data
Sets.” Nature Methods 13 (1): 63–65.

Li, Heng. 2016. “BGT: Efficient and Flexible Genotype Query across
Many Samples.” Bioinformatics 32 (4): 590–92.

McLaren, William, Laurent Gil, Sarah E. Hunt, Harpreet Singh Riat,
Graham R. S. Ritchie, Anja Thormann, Paul Flicek, and Fiona
Cunningham. 2016. “The Ensembl Variant Effect Predictor.” Genome
Biology 17 (1): 122.

Robinson, Peter N., Sebastian Köhler, Sebastian Bauer, Dominik
Seelow,Denise Horn, and Stefan Mundlos. 2008. “The Human Phenotype
Ontology: A Tool for Annotating and Analyzing Human Hereditary
Disease.” American Journal of Human Genetics 83 (5): 610–15.

