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Abstract 
Summary: Efficient storage and querying of large amounts of genetic and phenotypic data is crucial to 
contemporary clinical genetic research. This introduces  computational challenges for classical relational 
databases, due to the sparsity and sheer volume of the data. Our Java based solution loads annotated 
genetic variants and well phenotyped patients into a graph database to allow fast efficient storage and 
querying of large volumes of structured genetic and phenotypic data. This abstracts technical problems 
away and lets researchers focus on the science rather than the implementation. We have also developed an 
accompanying webserver with end-points to facilitate querying of the database. 
Availability and Implementation: The Java code and python code is available at 
https://github.com/phenopolis/pheno4j 
Contact: n.pontikos@ucl.ac.uk  
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
1 Introduction  
A recurring theme in  clinical genetics is to annotate large 
numbers of genetic using the Variant Effect Predictor (VEP) 
(McLaren et al. 2016) variants from well phenotyped patients, 
and load them into a database for efficient querying and filtering. 
However, a sequenced human genome typically produces more 
than 4 million genetic variants per individual, at least 100,000 of 
which are novel. This introduces a number of challenges for the 
conventional relational table based database model, which are 
better handled by graph databases. 
The first challenge for a relational database is the efficient 
storage and querying of many-to-many relationships such as 
genetic variant to individual relationships. In a relational 
database, genetic variants and individuals would typically be 
stored as rows in two distinct tables and, in order to link them, a 
third table, which would be a very large mapping table known as 
a ‘join’ table, would need to be queried. While workable with 
small relational databases, ‘join’ queries quickly become 
inefficient as the number of relationships increases. On the other 
hand, in a graph database, data is stored in a manner such that 
‘join’ queries are not required. Instead of using tables, each data 
record is stored as a distinct node with added relationships 
linking nodes stored internally as pointers. As such, analysing 
the relationship between nodes representing individuals and 
nodes representing genetic variants, is as simple as finding the 

connected nodes. This implies that query time remains constant 
despite a growing number of relationships. Additionally, by 
supporting multiple types of relationships that can be labelled, 
graph databases have an intuitive schema (Figure 1).   
The second challenge for a relational database is the extensibility 
of the database schema. Since each genetic variant is associated 
with an increasing number of annotation sources, which tend to 
be sparse and not always consistently formatted, the schema of 
relational database would have to be redefined every time a new 
annotation source is added. In a graph database, the schema is 
dynamically extensible to accommodate new sources of 
information by adding new types of nodes, node attributes or 
relationships (see Supplementary Section 3). 
Finally, directed acyclic graph ontologies such as the Human 
Phenotype Ontology (HPO) (Robinson et al. 2008) and the Gene 
Ontology can be directly stored and queried in graph databases 
whereas complex operations would be required to achieve the 
same in a relational database.  
In order to address these challenges, we have developed Pheno4J 
(https://github.com/phenopolis/pheno4j/), a tool implemented in 
Java that parses, integrates and imports genotype, annotated 
genetic variants and patient phenotype files into a Neo4J graph 
database. Using the Cypher querying language, it is then possible 
to perform sophisticated queries in real-time (Supplementary 
Section 2). In our live installation, we have loaded 5,025 exomes 
and 4M variants. This amounts to 8M nodes, 487M relationships 



and 296M properties; which when stored in memory takes up 
approximately 20 Gb of memory  (runtime 40 minutes).  The 
scalability of our solution with respect to the number of exomes 
stored has been demonstrated in Supplementary Section 4. 

2 Implementation 
 

 
Figure 1: Overview of the Pheno4J graph database design. The grey boxes 

represent the five input files and five file parsers that are used to 
produce the graph database. The ellipses represent the six nodes 
types defined and the arrows represent the relationship types between 
the nodes. 

 
 
In order to build the database, a total of five data files are 
required as input.  These include three user generated files and 
two publically available downloadable files (Figure 1). Trimmed 
down versions of these files have been included in the GitHub 
repository for testing purposes. The three user generated input 
files are: 
• VCF file containing the person to genetic variant relationships. 
• JSON generated by the VEP containing the annotation for each 

variant. This produces the genetic variant-to-gene, transcript-
to-gene and genetic variant-to-transcript relationships. 

• Phenotype CSV file containing the link from persons to HPO 
terms.  

The other two input file are publicly downloadable: 
• The HPO ontology which is obtained automatically from the 

HPO website. 
• The gene to HPO file that can be downloaded from the HPO 

website.  
These files are parsed and then loaded into the database.  
Supplementary Section 1 shows the steps required for building 
and running the database. 

3 Use cases 
Once the database is loaded, the data can then be queried using 
the Cypher language. One basic application could be to identify 
rare damaging variants by filtering by frequency and Combined 
Annotation Dependent Depletion (CADD) score (Kircher et al. 
2014). For example, returning all variants that have a frequency 
less than 0.001 and a CADD score greater than 20, yields 
171,532 variants from our cohort of 6,467 exomes (runtime 2.6 
seconds). In Cypher this would be: 
 
MATCH	(gv:GeneticVariant)		
WHERE	gv.cadd_phred	>	20	AND	gv.allele_freq	<	0.001	AND	
gv.kaviar_AF	<	0.0001		
RETURN	count(gv.variantId);	
 
Another application could be to identify related individuals by 
counting the number of rare heterozygous variants shared with 
“person1”. Here we return the list of ten individuals by 
decreasing shared rare variant count (runtime 1.2 seconds). 
 

MATCH	(k:Person)		
WITH	count(k)	as	numberOfPeople		
MATCH	(p:Person	{personId:"person1"})<-[:HetVariantToPerson]-
(gv:GeneticVariant)		
WHERE	gv.allele_freq	<	0.001	AND	gv.kaviar_AF	<	0.001	
WITH	size(()<-[:HetVariantToPerson]-(gv))	as	het_count,	gv,	p,	
numberOfPeople		
WHERE	het_count	>	1	AND	((het_count/toFloat(numberOfPeople))	<=	
0.05)	
	//	Sharing	of	variants	with	Person	q.	
MATCH	(gv)-[:HetVariantToPerson]->(q:Person)		
WHERE	p	<>	q	
WITH	p,q,count(gv)	as	c		
ORDER	BY	c	desc	LIMIT	10	
RETURN	p.personId,q.personId,	c;	
 
In this query, we make use of Cypher’s efficient edge counting  
 size(()<-[:HetVariantToPerson]-(gv))	as	het_count	
to get the number of outgoing relationship of a node. 
 
Another use case might be to find all individuals with a given 
HPO term such as for example “Retinal dystrophy” 
(HP:0000556) , which returns 521 individuals in our cohort 
(runtime 0.3 seconds). This query returns all individuals 
including those that might be annotated with a child term (direct 
or indirect) of  “Retinal dystrophy” such as “macular dystrophy”. 
 
MATCH	(p:Term	{name	:'Retinal	dystrophy'})-
[:TermToDescendantTerms]->(q:Term)<-[:PersonToObservedTerm]-
(r:Person)		
RETURN	r.personId;	
 
In order to obtain a list of candidate variants, we can query all 
rare damaging homozygote variants seen in people with “Retinal 
dystrophy” that belong to a known “Retinal dystrophy” gene. In 
our data, this returns 69 distinct variant ids (runtime <1 second). 
 
MATCH	(p:Term	{name:'Retinal	dystrophy'})-
[:TermToDescendantTerms]->(q:Term)<-[:GeneToTerm]-(gs:Gene)	
WITH	distinct	gs	as	retinal_dystrophy_genes	
	
MATCH	(retinal_dystrophy_genes)-[:GeneToGeneticVariant]-
>(gv:GeneticVariant)	
WHERE	gv.allele_freq	<	0.001	AND	gv.cadd_phred	>	20	AND	
gv.kaviar_AF	<	0.001	
WITH	distinct	gv,	retinal_dystrophy_genes	
	
MATCH	(r:Person)<-[:HomVariantToPerson]-(gv)	
WITH	distinct	gv,	retinal_dystrophy_genes,	r	
	
MATCH	(p:Term	{name:'Retinal	dystrophy'})-
[:TermToDescendantTerms]->(q:Term)<-[:PersonToObservedTerm]-(r)	
	
RETURN	distinct	r.personId,	gv.variantId,	
retinal_dystrophy_genes.gene_name;	
 
Conversely, we can suggest “Retinal dystrophy” as a phenotype 
for individuals that have rare damaging homozygote variants in 
recessive retinal dystrophy genes: 
 
MATCH	(p:Term)-[:TermToDescendantTerms]->(q:Term)<-
[:PersonToObservedTerm]-(r:Person)	
WHERE	p.name='Retinal	dystrophy'	
WITH	COLLECT(distinct	r)	as	persons	
MATCH	(p:Person)	WHERE	NOT	p	IN	persons	WITH	COLLECT(p)	as	
non_retinal_dystrophy_persons_list		
	
MATCH	(t:Term)<--(g:Gene)-->(t2:Term)	WHERE	t.name='Retinal	
dystrophy'	AND	t2.name='Autosomal	recessive	inheritance'	
WITH	COLLECT(DISTINCT	g)	as	
recessive_retinal_dystrophy_genes_list,	
non_retinal_dystrophy_persons_list	
	
UNWIND	recessive_retinal_dystrophy_genes_list	as	
recessive_retinal_dystrophy_genes	
MATCH	(recessive_retinal_dystrophy_genes)-->(gv:GeneticVariant)	
WHERE	gv.allele_freq	<	0.001	AND	gv.cadd_phred	>	25	AND	
gv.kaviar_AF	<	0.0001	WITH	gv,	
non_retinal_dystrophy_persons_list	
	
UNWIND	non_retinal_dystrophy_persons_list	as	
non_retinal_dystrophy_persons	
MATCH	(recessive_retinal_dystrophy_genes)-->(gv)-
[:HomVariantToPerson]->(non_retinal_dystrophy_persons)	
RETURN	distinct	gv.variantId,	gv.most_severe_consequence,	
gv.cadd_phred,	gv.kaviar_AF,	
recessive_retinal_dystrophy_genes.gene_name,	



non_retinal_dystrophy_persons.personId	ORDER	BY	gv.cadd_phred	
DESC;	
	
 
Further queries and analysis are described in the Supplementary 
Section 2. 
 

4 Discussion 
Currently, there are bespoke tools such as GQT (Layer et al. 
2016) and BGT (Li 2016), which are very space efficient and 
excel at querying large annotated VCFs in real-time. 
However, they do not build on existing database technologies 
making them harder to extend and do not support HPO querying.  
At the other end of the spectrum, there are also solutions such as 
hail.is ( https://github.com/hail-is/hail) for very large genomic 
datasets that are distributed over a cluster of computers. 
However, these require access to significant infrastructure and 
the overheads of installation are not trivial. Our solution requires 
minimal programming and is particularly suitable to a web front 
end for interrogating the data of an exome database of around 
10,000 well phenotyped individuals as typical in rare disease 
groups such as BRIDGE (https://bridgestudy.medschl.cam.ac.uk) 
and the UK Inherited Retinal Disease Consortium. We are using 
Pheno4J as a backend for our Phenopolis 
(https://phenopolis.github.io/) platform to replace our current 
NoSQL MongoDB. While still relatively in their infancy, we 
predict graph databases will become pervasive in biology with a 
growing number of projects adopting them (Pep Tracker DB 
(https://www.peptracker.com), OwlSim (www.owlsim.org) and 
SciGraph (https://github.com/SciGraph/SciGraph)). 
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