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Abstract

The aim of the article is to show that there are many finite extensions of arithmetic
groups which are not residually finite. Suppose G is a simple algebraic group over the
rational numbers satisfying both strong approximation, and the congruence subgroup
problem. We show that every arithmetic subgroup of G has finite extensions which are
not residually finite. More precisely, we investigate the group

H̄2(Z/n) = lim→
Γ

H2(Γ ,Z/n),

where Γ runs through the arithmetic subgroups of G. Elements of H̄2(Z/n) correspond
to (equivalence classes of) central extensions of arithmetic groups by Z/n; non-zero
elements of H̄2(Z/n) correspond to extensions which are not residually finite. We prove
that H̄2(Z/n) contains infinitely many elements of order n, some of which are invariant
for the action of the arithmetic completion ̂G(Q) of G(Q). We also investigate which of
these (equivalence classes of) extensions lift to characteristic zero, by determining the
invariant elements in the group

H̄2(Zl ) = lim←
t
H̄2(Z/lt ).

We show that H̄2(Zl )
̂G(Q) is isomorphic to Zl

c for some positive integer c. When G(R)
has no simple components of complex type, we prove that c = b + m, where b is the
number of simple components of G(R) andm is the dimension of the centre of a
maximal compact subgroup of G(R). In all other cases, we prove upper and lower
bounds on c; our lower bound (which we believe is the correct number) is b + m.
Keywords: Cohomology of arithmetic groups, Congruence subgroup property,
Residually finite group

Mathematics Subject Classification: 11F77, 11F06

1 Introduction
An abstract group G is said to be residually finite if, for every non-trivial element g , there
is a subgroupH of finite index in the group, which does not contain g . The content of this
statement is not changed if we insist that H is a normal subgroup of G. This is equivalent
to the statement that the canonical map from the group to its profinite completion is
injective.
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Arithmetic groups are residually finite. Indeed, if Γ is an arithmetic group and 1 �= γ ∈
Γ , then there is even a congruence subgroup which does not contain γ . On the other
hand, Deligne wrote down a central extension Γ̃ of Sp2n(Z) (n ≥ 2) by Z, such that Γ̃ is
not residually finite. More precisely, the group Γ̃ fits into an exact sequence:

1 → Z → Γ̃ → Sp2n(Z) → 1,

and any subgroup of finite index in Γ̃ contains 2Z.
In this note, we show that a weaker version of Deligne’s result holds for a large class of

arithmetic groups.
Webriefly recall Deligne’s construction. TheLie group Sp2n(R), is not simply connected.

In fact, its fundamental group is isomorphic to Z. We shall write S̃p2n(R) for the universal
cover of Sp2n(R), so we have an exact sequence:

1 → Z → S̃p2n(R) → Sp2n(R) → 1.

One defines Γ̃ to be the preimage of Sp2n(Z) in S̃p2n(R). Note that S̃p2n(R) is a Lie group,
but is not the group of real points of an algebraic group; in fact Sp2n is simply connected
as an algebraic group. Thus Γ̃ is not an arithmetic group.
There are some cases for which Deligne’s argument generalizes easily. Suppose G is an

algebraic group overQ, which is simple and simply connected. As we have seen above, the
groupG(R) may fail to be simply connected with the archimedean topology; this happens
whenever a maximal compact subgroup ofG(R) has infinite centre. We shall assume that
the fundamental group π1(G(R)) has more than 2 elements. We can define just as before
an extension

1 → π1(G(R)) → Γ̃ → Γ → 1,

whereΓ is an arithmetic subgroup ofG(Q). There is also a canonical double cover G̃(R)met

of G(R), called the metaplectic cover:

1 → μ2 → G̃(R)met → G(R) → 1, μ2 = {1,−1}.
By the universal property of the universal cover, there is a canonical map

π1(G(R)) → μ2.

Deligne’s argument shows that if G has the congruence subgroup property, then every
subgroup of finite index in Γ̃ contains ker

(

π1(G(R)) → μ2
)

.
To show that this generalization is not vacuous, we remark that π1(G(R)) is infinite

whenever there is a Shimura variety associated to G, and the congruence subgroup prop-
erty is known to hold for simple, simply connected groups of rational rank at least 2.
In this paper, we shall deal also with groupsG, for which Deligne’s construction cannot

be used. The most easily stated consequence of our results is the following.

Theorem 1 Let G be a simple algebraic group over Q, which is algebraically simply con-
nected, and has positive real rank. Assume also that G and has finite congruence kernel.
Let Γ be an arithmetic subgroup of G(Q). Then there is a finite abelian group A and an
extension of groups

1 → A → Γ̃ → Γ → 1,

such that Γ̃ is not residually finite.
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1.1 Residual finiteness of hyperbolic groups

It is an important open question in geometric group theory whether every Gromov-
hyperbolic group is residually finite (see for example [1,9,11,15,26]). This question turns
out to be related to the following conjecture of Serre [20].

Conjecture 1 LetG/Q be a simple, simply connected algebraic group of real rank 1. Then
the congruence kernel of G is infinite.

As a consequence of Theorem 1, we obtain the following.

Corollary 1 If every Gromov–hyperbolic group is residually finite then Conjecture 1 is
true.

Proof Let Γ be an arithmetic subgroup of a Lie group with real rank 1. It is known that
Γ is Gromov–hyperbolic (see chapter 7 of [10]). Since hyperbolicity is invariant under
quasi-isometry, every finite extension of Γ is also hyperbolic, and hence by assumption
residually finite. If the congruence kernel were finite, then the groups Γ̃ from Theorem 1
would provide a counterexample to this.

In fact one can show as a consequence of the results proved here the following slightly
more precise result.

Corollary 2 Assume that every Gromov–hyperbolic group is residually finite. If G/Q is a
simple, simply connected groupof real rank1 then for every positive integer n, the congruence
kernel of G has a subquotient isomorphic to Z/n.

2 Statement of results
Throughout this section, we fix a simple algebraic group G/Q, such that

1. G is (algebraically) simply connected;
2. G has positive real rank (i.e.G(R) is not compact, and arithmetic subgroups ofG are

infinite);
3. The congruence kernel of G/Q is finite (and hence conjecturally the real rank of G

is at least 2).

We do not assume that G is absolutely simple.
We’ll show that Theorem 1 is a consequence of the following result.

Theorem 2 Let G/Q be as described above and let Γ be an arithmetic subgroup of G(Q).
For every positive integer n there is a subgroupΔ of finite index inΓ and a central extension

1 → Z/n → Δ̃ → Δ → 1,

such that Δ̃ is not residually finite. More precisely, every subgroup of finite index in Δ̃

contains the subgroup Z/n.

Proof of Theorem 1 We’ll now show that Theorem 1 is a consequence of Theorem 2. Let
Γ be an arithmetic groupwith finite congruence kernel. ByTheorem2, there is a subgroup
Δ of finite index in Γ and a central extension Δ̃ of Γ by Z/n, such that every subgroup of
finite index in Δ̃ containsZ/n. Letσ ∈ H2(Δ,Z/n) be the cohomology class corresponding
to this extension. By Shapiro’s lemma, there is an isomorphism H2(Δ,Z/n) ∼= H2(Γ , A),
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whereA is the induced representationA = indΓ
Δ(Z/n).We’ll writeΣ for the image of σ in

H2(Γ , A). Corresponding to the cohomology classΣ , there is a (non-central) extension Γ̃

ofΓ byA. These two group extensions are related by the following commutative diagram:

1 A Γ̃ Γ 1 (Σ)

1 indΓ
Δ(Z/n) pr−1(Δ) Δ 1

1 Z/n Δ̃ Δ 1 (σ )

pr

Suppose for the sake of argument that Γ̃ is residually finite. Hence the subgroup pr−1Δ

is residually finite. There is therefore a subgroup Φ ⊂ pr−1(Δ) of finite index, such that
Φ ∩ A is trivial. The image of Φ in Δ̃ is then a subgroup of finite index in Δ̃, whose
intersection with Z/n is trivial. This is a contradiction. ��

2.1 Some refinements of Theorem 2

Let G/Q be simple, simply connected, and have real rank at least 1. Furthermore assume
that the congruence kernel ofG is finite (and hence, conjecturally at least, the real rank of
G is at least 2). Fix an arithmetic subgroup Γ of G.
Suppose that we have a central extension of Γ by Z/n as follows:

1 → Z/n → Γ̃ → Γ → 1.

We shall write σ ∈ H2(Γ ,Z/n) for the cohomology class of this extension. Suppose for a
moment that Γ̃ is residually finite. We can then find a subgroup Δ ⊂ Γ̃ of finite index,
such that the intersection of Δ with Z/n is trivial. Hence Δ projects bijectively onto a
subgroup of Γ , which we shall also call Δ. The preimage of Δ in Γ̃ is the direct sum
Z/n ⊕ Δ. As a result of this, we know that the restriction of σ to Δ is trivial.
This means that in order to construct a non-residually finite extension of Γ , we need a

non-zero element of the direct limit

H̄2(Z/n) = lim
→
Δ

H2(Δ,Z/n),

where Δ runs over subgroups of finite index in Γ . The argument above shows that The-
orem 2 is implied by the following result.

Theorem 3 For every positive integer n, there are infinitely many elements of order n in
H̄2(Z/n).

We shall actually prove a stronger result, which needs a little more notation to state.
We shall write ̂G(Q) for the arithmetic completion of the group G(Q), i.e.

̂G(Q) = lim
←
Δ

G(Q)/Δ,

where Δ runs through the subgroups of finite index in Γ . There is a natural projection
̂G(Q) → G(Af ), and the congruence kernel Cong(G) is, by definition, the kernel of this
map. This means that we have an extension of topological groups

1 → Cong(G) → ̂G(Q)
pr→ G(Af ) → 1.
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The group ̂G(Q) acts smoothly on H̄2(Z/n).
Let S be a finite set of prime numbers. By an S-arithmetic level, we shall mean an open

subgroup L of ̂G(Q) of the form

L = pr−1

⎛

⎝

∏

p∈S
G(Qp) × LS

⎞

⎠ , LS =
∏

p/∈S
Kp,

where each Kp is a compact open subgroup of G(Qp), chosen so that L is open in ̂G(Q).

Theorem 4 Let L be an S-arithmetic level in ̂G(Q) for some finite set of primes S. For every
positive integer n, there are infinitely many elements of order n in H̄2(Z/n)L.

Theorem 4 will be proved in Sect. 4. The proof requires a technical result on the coho-
mology of finite groups of Lie type, which is proved in Sect. 5. By modifying the argument
slightly, one can also prove the following result.

Theorem 5 Let n be a positive integer. Then there are infinitely many elements σ of order
n in H̄2(Z/n) with the following property. There is a prime number p depending on σ , such
that for all primes q �= p the element σ is fixed by pr−1 (

G(Qq)
)

.

2.2 Virtual lifting to characteristic zero

Let l be a prime number. Any central extension of Γ by Z/lt+1 gives rise to a central
extension by Z/lt . We’ll say that the extension of Γ by Z/lr virtually lifts to characteristic
zero if for every t > r there is a arithmetic subgroupΔt of Γ and a central extension ofΔt
by Z/lt , such that the extensions fit into a commutative diagram of the following form.

1 Z/lt Δ̃t Δt 1

1 Z/lr Γ̃ Γ 1

Here the map Z/lt → Z/lr is the usual reduction map, and the map Δt → Γ is the
inclusion.
Equivalently, an element of H̄2(Z/lr) virtually lifts to characteristic zero if it is in the

image of the following group.

H̄2(Zl) = lim
←
t
H̄2(Z/lt ).

There is a continuous action of ̂G(Q) on the cohomology group H̄2(Zl). Our next result
will show that there are indeed families of non-residually finite central extensions, which
virtually lift to characteristic zero. Before stating the result we’ll need a little notation.
The group G(R) is semi-simple over R, and decomposes as a product of finitely many
simple groups Gi(R). We’ll say that a simple group Gi over R is of complex type if Gi is
the restriction of scalars of a group defined overC, or equivalently ifGi(C) is a product of
two simple groups; otherwise we say that Gi is of real type. We’ll write bR for the number
of simple factors of G(R) of real type and bC for the number of simple factors of G(R) of
complex type. We’ll also write m for the dimension of the centre of a maximal compact
subgroup K∞ ⊂ G(R).
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Theorem 6 The group H̄2(Zl)
̂G(Q) is isomorphic to Zl

c for some positive integer c. More
precisely, c is in the range

bR + bC + m ≤ c ≤ bR + 2bC + m,

where bR, bC and m are the integers defined above. In particular H̄2(Zl) is non-zero.

For comparison, we note that the construction of Deligne implies the bound c ≥ m; this
is because π1(G(R)) has a finite index subgroup isomorphic to Z

m.
As an easy consequence of the theorem, we obtain the following:

Corollary 3 Let G/Q be simple and simply connected with finite congruence kernel. There
is a subgroup of H̄2(Z/lt ) ̂G(Q) isomorphic to (Z/lt )c, all of whose elements virtually lift to
characteristic zero, where c is the positive integer in Theorem 6.

Theorem 6 and its corollary will be proved in section 6. The proof requires a result on
the cohomology of compact symmetric spaces, which is proved in the appendix.

Remark 1 We stress that Theorem 6 implies H̄2(Zl)
̂G(Q) is non-zero even in cases where

H2(Γ ,C) = 0 for all arithmetic subgroups Γ of G(Q). This happens when G has large
real rank and the symmetric space associated toG has no complex structure, for example
whenG = SL5/Q. The extensions constructed by the method of Deligne exist only in the
casem > 0; our result shows that H̄2(Zl)

̂G(Q) is non-zero even in cases wherem = 0.

Remark 2 The author suspects that rankZl

(

H̄2(Zl)
̂G(Q)

)

= bR + bC + m. Proving this
would amount to showing that the restriction map H3

cts(G(Ql),Ql) → H3(G(Q),Ql) is
surjective. The evidence for this is very slight, but we note that dimH3

cts(G(Ql),Ql) is at
least twice as big as dimH3(G(Q),Ql).
As an example, consider the caseG = ReskQ(SL≥3/k), where k is an imaginary quadratic

field. In this casem = 0, bR = 0 and bC = 1, so our result implies that the rank c is either
1 or 2. In this case H3

cts(G(Ql),Ql) is 2-dimensional and H3(G(Q),Ql) is 1-dimensional
(see Sect. 6.3), so the restriction map is either surjective or zero. If the restriction map is
non-zero, then the rank is 1. One might expect to prove that the rank is 1 by evaluating
an appropriate l-adic Borel regulator; however the author has not done this in any case.

As long as G(R) has no simple factors of complex type, Theorem 6 tells us precisely the
rank of H̄2(Zl)

̂G(Q). Some examples are given in Table 1. In this table, Spin(r, s) denotes
the Spin group of an arbitrary quadratic form over Q of signature (r, s). The congruence
subgroup property for such groups was established by Kneser [12].
The case SL2/Q and its forms of rank 0 are not included in the table. This is because these

groups have infinite congruence kernel, and indeed for these groups we have H̄2(Z/n) = 0
and H̄2(Zl) = 0.

3 Backgroundmaterial
3.1 Continuous cohomology

We shall make use of the continuous cohomology groups H•
cts(G,A), where G is a topo-

logical group and A is an abelian topological group, which is aG-module via a continuous
action G × A → A.
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Table 1 Values of the rank of H̄2(Zl )
̂G(Q)

G m bR c = rankZl

(

H̄2(Zl )
̂G(Q)

)

SLn/Q (n ≥ 3) 0 1 1

Sp2n/Q (n ≥ 2) 1 1 2

Spin(r, s) (r ≥ s ≥ 3) 0 1 1

Spin(r, 2) (r ≥ 3) 1 1 2

Spin(2, 2) 2 2 4

ReskQ(SLn/k) (n ≥ 3, k totally real) 0 [k : Q] [k : Q]

ReskQ(SL2/k) (k totally real, k �= Q) [k : Q] [k : Q] 2[k : Q]

ReskQ(Sp2n/k) (k totally real) [k : Q] [k : Q] 2[k : Q]

In all cases under consideration here, the group G will be metrizable, locally compact,
totally disconnected, separable and σ -compact. The coefficient group A will always be
Polonais (a topological group is Polonais if its topology admits a separable complete
metric; see page 3 of [18]). Under these restriction, the continuous cohomology groups
defined in [7] (based on continuous cocycles) are the same as those defined in [16–18]
based on Borel measurable cocycles. This is proved in Theorem 1 of [25].
If A is a continuous H-module for some closed subgroup H of G, then we shall write

indGH (A) for the induced module, consisting of all continuous functions f : G → A
satisfying f (hg) = h · f (g) for all g ∈ G and h ∈ H . This agrees with the notation of
[7] but not [16–18]. The following version of Shapiro’s lemma holds for these induced
representations.

Theorem 7 (Shapiro’s Lemma) Let H be a closed subgroup of G, where G satisfies the
conditions above. For any continuous H-module A, there is a canonical isomorphism of
topological groups:

H•
cts

(

G, indGHA
) = H•

cts(H,A).

Proof This follows Propositions 3 and 4 of [7] in view of the remark following Proposition
4. ��

We shall also make frequent use of the following.

Theorem 8 (The Hochschild–Serre spectral sequence) Let H be a closed normal sub-
group of a group G, where G satisfies the conditions above, and let A be a continuous
Polonais representation of G. If the groups H•(H,A) are all Hausdorff, then there is a first
quadrant spectral sequence converging to H•(G,A), with E2 sheet given by

Er,s
2 = Hr

cts
(

G,Hs
cts(H,A)

)

.

Proof This follows from Theorem 9 of [18] in all cases under consideration. ��

3.2 The derived functor of projective limit

By a projective system, we shall mean a sequence of abelian groups At , indexed by t ∈ N,
and connected by group homomorphisms as follows:

A1 ← A2 ← A3 ← · · · .
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We shall write
lim
←
t
At for the projective limit of the system. The functor

lim
←
t

is left-exact

from the category of projective systems of abelian groups to the category of abelian groups.

As such, it has derived functors
(

lim
←
t

)•
At . It is known (Corollary 3.5.4 of [24]) that the

higher derived functors
(

lim
←
t

)n

At for n ≥ 2 are all zero.

The projective system (At ) is said to satisfy the Mittag–Leffler property if for every
t ∈ N, there is a j ∈ N with the property that for all k > j the image of Ak in At is equal
to the image of Aj in At . For example, if the Abelian groups At are all finite then the
projective system has the Mittag–Leffler property. Similarly, if the groups At are all finite
dimensional vector spaces connected by linear maps, then the projective system satisfies
the Mittag–Leffler condition.

Proposition 1 (Proposition 3.5.7 of [24]) If the projective system (At ) satisfies theMittag–

Leffler condition then
(

lim
←
t

)1

At = 0.

Theorem 9 (Theorem 3.5.8 of [24]) Let · · · → Cr
2 → Cr

1 be a projective system of cochain
complexes of abelian groups, each indexed by r ≥ 0. Assume that this projective system has

the Mittag–Leffler property, and let Cr = lim
←
t
Cr
t be the projective limit of the complexes.

Then we have H0(C•) = lim
←
t
H0(C•

t ). Furthermore, for every r ≥ 0 there is a short exact

sequence

0 →
(

lim
←
i

)1

Hr(C•
i ) → Hr+1(C•) → lim

←
i
Hr+1(C•

i ) → 0.

As a simple example, we show how to express the cohomology of G(Q) in terms of
the cohomology of its S-arithmetic subgroups. As before, we let G/Q be a simple, simply
connected algebraic group, andKf = ∏

p Kp a compact open subgroup ofG(Af ).We shall
write Γ for the arithmetic group G(Q) ∩ Kf . More generally, if S is a finite set of prime
numbers, then we use the notation Γ S for the corresponding S-arithmetic group, i.e.

Γ S = G(Q) ∩ KS, KS =
⎛

⎝

∏

p∈S
G(Qp)

⎞

⎠ × Kf .

Proposition 2 For any field F, we have H•(G(Q),F) = lim
←
S

H•(Γ S,F). In the case F = C

we have H•(G(Q),C) = H•(g, k,C), where H•(g, k,C) are the relative Lie algebra cohomol-
ogy groups studied in [5].

Proof For each r ≥ 0 we shall write Cr(Γ S,F) for the usual (inhomogeneous) cochain
complex, consisting of all functions f :

(

Γ S)r → F. Since G(Q) is the union of the groups
Γ S , it follows that

Cr(G(Q),F) = lim
←
S

Cr(Γ S,F).
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The maps in this projective system are restrictions of functions, and they are obviously
surjective. Therefore the projective system satisfies the Mittag–Leffler condition. As a
consequence, we have short exact sequences

0 →
(

lim
←
S

)1

Hr(Γ S,F) → Hr+1(G(Q),F) → lim
←
S

Hr+1(Γ S,F) → 0.

By the theory of the Borel–Serre compactification (see [4]), the cohomology groups
Hr(Γ S,F) are finite dimensional vector spaces. Therefore the system

(

Hr(Γ S,F)
)

S satis-

fies the Mittag–Leffler condition, so
(

lim
←
S

)1

Hr(Γ S,F) = 0.

In the case F = C, the theorem of [2] implies that Hr(Γ S,C) = Hr(g, k,C) whenever S
containsmore than r primes.Hence the projective limit (over S) is in this caseHr (g, k,C).��

3.3 The congruence kernel

LetG/Q be a simple, simply connected group with real rank at least 1. By Kneser’s strong
approximation theorem (see [13]) the group G(Q) is dense is G(Af ), where Af is the ring
of finite adèles of Q. It follows that there is an isomorphism of topological groups:

G(Af ) = lim
←

congruence subgroups Γ

G(Q)/Γ ,

where Γ runs over the congruence subgroups ofG(Q). Recall that an arithmetic subgroup
ofG is any subgroup ofG(Q), which is commensurable with a congruence subgroup. The
arithmetic completion ̂G(Q) is defined to be the completion of G(Q) with respect to the
arithmetic subgroups of G, i.e.

̂G(Q) = lim
←

arithmetic subgroups Γ

G(Q)/Γ .

There is a canonical surjective homomorphism ̂G(Q) → G(Af ). The congruence kernel
Cong(G) is defined to be the kernel of this map, so we have a short exact sequence:

1 → Cong(G) → ̂G(Q) → G(Af ) → 1.

The congruence kernel is trivial if and only if every arithmetic subgroup of G is a con-
gruence subgroup. If G(R) is simply connected as an analytic group, then the congruence
kernel is never trivial, but may still be finite. It has been conjectured by Serre [20], that
the congruence kernel is finite if and only if each simple factor of G over Q has real rank
at least 2. In the case that Cong(G) is finite, it is known that Cong(G) is contained in the
centre of ̂G(Q), and is a cyclic group.

4 Proof of Theorem 4
In this section, we assume that the group G/Q is a simple, simply connected algebraic
group with positive real rank. We shall also assume that the congruence kernel Cong(G)
is finite. Hence, conjecturally that the real rank of G is at least 2.

4.1 The groups C(L,Z/n)

Let L be an open subgroup of the arithmetic completion ̂G(Q). We shall write Γ (L) for
the group G(Q) ∩ L. Since G(Q) is dense in ̂G(Q), it follows that Γ (L) is dense in L. If L is
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compact and open then Γ (L) is an arithmetic group and L is its profinite completion. If L
is an S-arithmetic level, then Γ (L) is an S-arithmetic group.
We shall write C(L,Z/n) for the group of continuous functions f : L → Z/n. We

regard C(L,Z/n) as a Γ (L) × L-module, in which (for the sake of argument) Γ (L) acts by
left-translation and L acts by right-translation. We regard Γ (L) as a discrete topological
group, and L as a topological group with the subspace topology from ̂G(Q). We do not
assume that elements of C(L,Z/n) are uniformly continuous, and so the action of L is not
smooth unless L is compact. The action is continuous, where C(L,Z/n) is equipped with
the compact–open topology.
We shall also use the following notation, which was introduced earlier:

H̄•(Z/n) = lim
→
Δ

H•(Δ,Z/n),

where Δ ranges of the arithmetic subgroups.

Proposition 3 For each open subgroup L of ̂G(Q), there is a canonical isomorphism of
L-modules:

H̄•(Z/n) = H•(Γ (L),C(L,Z/n)).

The cohomology groups H̄r (Z/n) = Hr(Γ (L),C(L,Z/n))arediscrete (andhenceHausdorff).

Proof As a first step, we’ll show that the groups H•(Γ (L),C(L,Z/n)) do not depend on
the level L. Let K be an open subgroup of L. As a Γ (L)-module, we have

C(L,Z/n) ∼=Γ (L) ind
Γ (L)
Γ (K )C(K,Z/n).

By Shapiro’s Lemma (Theorem 7), we have an isomorphism of topological groups:

H•(Γ (L),C(L,Z/n)) = H•(Γ (K ),C(K,Z/n)).

It’s therefore sufficient to consider the case that the level L is compact and open. Under
this assumption, we have (as Γ (L)-modules):

C(L,Z/n) = lim
→
Δ

indΓ (L)
Δ (Z/n) ,

where Δ ranges over the arithmetic subgroups of Γ (L). Since direct limits commute with
cohomology, this implies

H•(Γ (L),C(L,Z/n)) = lim
→
Δ

H• (

Γ (L), indΓ (L)
Δ Z/n

)

.

Applying Shapiro’s Lemma again, we have

H• (Γ (L),C(L,Z/n)) = lim
→
Δ

H• (Δ,Z/n) .

If we choose L to be compact, then C(L,Z/n) is discrete, and therefore the group
H•(Γ (L),C(L,Z/n)) is discrete. ��

Lemma 1 We have H0
cts(L,C(L,Z/n)) = Z/n and Hs

cts(L,C(L,Z/n)) = 0 for s > 0. In
particular the groups Hs

cts(L,C(L,Z/n)) are Hausdorff.
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Proof As a continuous L-module, we have C(L,Z/n) = indL1(Z/n). The result follows
from this using Shapiro’s Lemma. ��

Proposition 4 Let L be any open subgroup of ̂G(Q). Then there is a first quadrant spectral
sequence with Er,s

2 = Hr
cts(L, H̄ s(Z/n)) which converges to Hr+s(Γ (L),Z/n).

Proof We’ve seen that H•
cts(L,C(L,Z/n)) and H•(Γ (L),C(L,Z/n)) are both Hausdorff.

We therefore have two Hochschild–Serre spectral sequences, both of which converge to
Hr+s
cts (Γ (L) × L,C(L,Z/n)):

Hr
cts(L,Hs(Γ (L),C(L,Z/n))), Hr(Γ (L), Hs

cts(L,C(L,Z/n))).

By Lemma 1, the second of these two spectral sequence collapses andwe haveH•
cts(Γ (L)×

L,C(L,Z/n)) = H•(Γ (L),Z/n). The result now follows from Proposition 3. ��

4.2 Low degree terms

We shall now describe some of the low degree terms of the spectral sequence of Proposi-
tion 4.

Lemma 2 With the notation introduced above,

H̄0(Z/n) = Z/n, H̄1(Z/n) = 0.

Proof For H̄0, note that for any arithmetic group Δ,

H0(Δ,Z/pr ) = Z/n.

Furthermore the restriction maps from one of these groups to another, are all the identity
map. For H̄1, we must show that for every element σ ∈ H1(Δ,Z/n), there is an arith-
metic subgroup Δ′ ⊂ Δ, such that the restriction of σ to Δ′ is zero. Any such σ is a
homomorphism Δ → Z/n, so we may simply set Δ′ = ker σ . ��

By Lemma 2, we know that Er,0
2 = Hr

cts(L,Z/n) and Er,1
2 = 0. Therefore the bottom left

corner of the E2 sheet of the spectral sequence looks like this:

H̄2(Z/n)L

0 0 0

Z/n H1
cts(L,Z/n) H2

cts(L,Z/n) H3
cts(L,Z/n)

These groups all remain the same in the E3 sheet, where we have a map H̄2(Z/n)L →
H3
cts(L,Z/n).

H̄2(Z/n)L

0 0 0

Z/n H1
cts(L,Z/n) H2

cts(L,Z/n) H3
cts(L,Z/n)

(1)
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This map is part of the exact sequence:

H2(Γ (L),Z/n) → (

H̄2(Z/n)
)L → H3

cts(L,Z/n) → H3(Γ (L),Z/n). (2)

We now recall the theorem which we are proving:

Theorem Let S be a finite set of prime numbers and let L be an S-arithmetic level. Then
the group H̄2(Z/n)L contains infinitely many elements of order n.

Proof Let L be an S-arithmetic level. In this case the group Γ (L) is an S-arithmetic
group. By the theory of the Borel–Serre compactification, there is a resolution of Z as
a Γ (L)-module consisting of finitely generated Z[Γ (L)]-modules. This implies that the
cohomology groupsHr(Γ (L),Z/n) are all finite. In view of this, the sequence in Equation 2
has the form

finite → (

H̄2(Z/n)
)L → H3

cts(L,Z/n) → finite.

To prove the theorem, it is therefore sufficient to show thatH3
cts(L,Z/n) contains infinitely

many elements of order n.
It will be useful to have the following notation. A prime number p will be called a tame

prime if it satisfies all of the following conditions:

1. p is not in the finite set S;
2. p is not a factor of |Cong(G)|;
3. p is not a factor of n;
4. G is unramified over Qp.
5. The groupKp is a maximal hyperspecial compact open subgroup ofG(Qp) (see [23]).

This implies that if we let K 0
p be the maximal pro-p normal subgroup of Kp, then

the quotient G(Fp) = Kp/K 0
p is a product of some of the simply connected finite Lie

groups described in [22].
6. Hr(G(Fp),Q/Z) = 0 for r = 1, 2. We recall from [22] that this condition is satisfied

for all but finitely many of the groups G(Fp).

We note that all but finitely many primes are tame. For each tame prime p, we shall write
K ∗
p for a lift of Kp to ̂G(Q); note that such a lift exists and is unique by conditions (2) and

(6). The group L contains the following subgroup

Ktame =
∏

p tame
K ∗
p ,

Evidently, pr(Ktame) is a direct summandof pr(L); sinceKtame∩Cong(G) is trivial, it follows
that Ktame is a direct summand of L. Hence by the Künneth formula, H3

cts(Ktame,Z/n) is
a direct summand of H3

cts(L,Z/n). It is therefore sufficient to prove that H3
cts(Ktame,Z/n)

contains infinitely many elements of order n.
Since the coefficient ring Z/n is finite, we have (by Proposition 8, section 2.2 of [21]) a

decomposition

H3
cts(Ktame,Z/n) = lim

→
U finite

H3
cts

⎛

⎝

∏

p∈U
Kp,Z/n

⎞

⎠ .

By the Künneth formula, the group on the right contains a subgroup of the form
⊕

p tame
H3
cts(Kp,Z/n).
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By conditions (3) and (5) for tame primes p, we may identify H•
cts(Kp,Z/n) with

H•(G(Fp),Z/n). To prove the theorem, it is therefore sufficient so show that there are
infinitely many tame primes p, such that H3(G(Fp),Z/n) contains an element of order n.
This follows from Theorem 10, which will be proved in the next section. ��

5 A lemma on the cohomology of finite Lie groups
In this section we shall prove Theorem 10, which completes the proof of Theorem 4.
Before stating the theorem, we note that if G is an algebraic group overQ, then we may

write G in the form G ×Z Q, for some group scheme G over Z. The group G(Fp) depends
on the choice of G, not just on G. Nevertheless if we alter the group scheme G then only
finitely many of the groups G(Fp) will change. Because of this, the following statement
makes sense, where we are writing G(Fp) in place of G(Fp) for some fixed choice of G.

Theorem 10 Let G/Q be a simple, simply connected algebraic group. For every positive
integer n there are infinitely many prime numbers p, such that H3(G(Fp),Z/n) contains
an element of order n.

I assume this sort of result is known to experts, andmany special cases are consequences
of results in algebraic K-theory (for example the results of [19] imply the case SLr).
In the proof we shall use the Cartan–Eilenberg theory of invariant cohomology classes,

which we recall now. Let T be a subgroup of a finite group G, and let A be a G-module.
We shall write RestGT and CoRestTG for the restriction and corestriction maps between
H•(G,A) and H•(T,A). A cohomology class σ ∈ Hr(T,A) is called invariant if for every
g ∈ G,

RestTT∩Tg (σ ) = RestT
g

T∩Tg (σ g ).

We’ll use the following result.

Proposition 5 (Chapter XII, Proposition 9.4 of [6]) Let T be a subgroup of a finite group
G. If σ ∈ H•(T,A) is an invariant cohomology class. Then

RestGT
(

CoRestTG(σ )
)

= [G : T ] · σ .

As a corollary to this, we note the following.

Corollary 4 Let T be a subgroup of a finite group G. Let d be a positive integer and l a
prime number, such that

∣

∣[G : T ]
∣

∣

l = ∣

∣d
∣

∣

l . If H
r(T,Z) contains an invariant class of order

dlt then Hr(G,Z) contains an element of order lt .

Proof Let τ = CoRestTG(σ ), where σ is the invariant class on T of order dlt . By Propo-
sition 5, the restriction of τ to T has order dlt

gcd(dlt ,[G:T ]) . The condition on d implies that
the order of RestGT (τ ) is a multiple of lt . Hence the order of τ is a multiple of lt , so some
multiple of τ has order lt . ��
In order to apply the corollary, it will be useful to note the following.

Lemma 3 Let l be a prime number, and let x be an integer such that x ≡ 1 mod 2l. Then
for every integer d we have

|xd − 1|l = |d(x − 1)|l .
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Proof We recall that the l-adic logarithm function logl converges on the multiplicative
group 1 + 2lZl . If logl converges at an element x, then we have | log(x)|l = |x − 1|l . Our
congruence condition implies that logl(x) and logl(xd) both converge, so we have

|xd − 1|l = ∣

∣ logl(x
d)

∣

∣

l = |d · logl(x)|l = |d · (x − 1)|l .
��

Proof of Theorem 10 By the Chinese remainder theorem, it is sufficient to prove the the-
orem in the case n = lt , where l is a prime number.
We shall introduce some notation. We fix a semi-simple model G of G over Z, and let

k be a number field such that G splits over Ok . Let T be a maximal torus in G, defined
and split over Ok . Let P be the lattice of algebraic characters T → GL1/Ok . The roots of
G with respect to T are elements of the lattice P. Consider the element

Q =
∑

α∈Φ

α ⊗ α ∈ Sym2(P),

whereΦ is the set of roots. If we identify elements of P with a group of characters of the Lie
algebra t of T, then we may similarly identify elements of Sym2(P) with quadratic forms
on t. The elementQ corresponds to the restriction of the Killing form to t. ThereforeQ is
non-zero.
Let e be the largest positive integer, such thatQ is a multiple of e in the lattice Sym2(P).

Also let d1, . . . , dr be the degrees of the basic polynomial invariants of the Weyl group of
G/k (where r is the rank of G/k). The smallest of these degrees is d1 = 2, and the others
depend on the root system (see [22]). By extending the number field k if necessary, wemay
assume that k contains a primitive root of unity of order d1 · · · dr · e ·n. By the Chebotarev
density theorem, there are infinitely many prime numbers which split in k ; we’ll show that
each of these prime numbers has the desired property.
From now on we fix a prime number p which splits in k , and we are attempting to show

thatH3(G (Fp),Z/n) contains an element of order n. By abusing notation slightly we shall
write G(Fp) for the group G (Fp). We may identify G(Fp) with G (Ok/p) for some prime
ideal p above p). We shall also write T (Fp) for the subgroup T (Ok/p).
IdentifyingH3(G(Fp),Z/n) with the n-torsion inH4(G(Fp),Z), we see that it’s sufficient

to prove there is an element of order n in H4(G(Fp),Z).
We shall use the following formula for the order of the the group G(Fp) (see Theorem

25, in Chapter 9 of [22])

|G(Fp)| = pN (pd1 − 1) · · · (pdr − 1).

In this formula, N is the number of positive roots; r is the rank and d1, . . . , dr are the
degrees of the fundamental invariants of the Weyl group. Note also that since T is a split
torus of rank r, we have

|T (Fp)| = (p − 1)r .

Since p splits in k and k contains an primitive 2l-th root of unity (because d1 = 2), we
have p ≡ 1 mod 2l. Hence by Lemma 3,

|pdi − 1|l = |di(p − 1)|l .
We therefore have

∣

∣[G(Fp) : T (Fp)]
∣

∣

l = |d1 · · · dr |l .
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By Corollary 4, it is sufficient to show that H4(T (Fp),Z) has an invariant element of
order d1 · · · dr · n. It will actually be more convenient to find an invariant element of
H4(T (Fp),Z)⊗(F×

p )⊗2; this is because such an element is canonical, whereas the invariant
element of H4(T (Fp),Z) would depend on a choice of primitive root modulo p.
We shall construct our invariant element of H4 from elements of H2. Since T (Fp) is a

finite group, we have canonical isomorphisms:

H2(T (Fp),Z) ∼= H1(T (Fp),Q/Z) ∼= Hom(T (Fp),Q/Z).

Tensoring with F
×
p , we get

H2(T (Fp),Z) ⊗ F
×
p

∼= Hom(T (Fp),F×
p ) ∼= P/(p − 1)P,

where as before, P is the lattice of algebraic characters of T .
Recall that the cohomology ring of the cyclic group F

×
p is the symmetric algebra on

H2(F×
p ,Z). The group T (Fp) is a product of copies of F×

p , and so by the Künneth formula,
H•(T (Fp),Z) contains as a subring the algebra H•(F×

p ,Z)⊗r , which is isomorphic to the
symmetric algebra onH2(F×

p ,Z)r . More canonically, this subring is the symmetric algebra
onH2(T (Fp),Z). In particular,H4(T (Fp),Z) contains Sym2(H2(T (Fp),Z)) as a subgroup;
this is the subgroup generated by cup products of elements of H2(T (Fp),Z)1. From this,
we see that H4(T (Fp),Z) ⊗ (F×

p )⊗2 contains as a subgroup the group

Sym2
(

H2(T (Fp),Z) ⊗ F
×
p

) ∼= Sym2(P/(p − 1)P) ∼= Sym2(P)/(p − 1).

We claim that the following element of H4(T (Fp),Z) is an invariant cohomology class:

q =
∑

α∈Φ

α ∪ α,

where Φ is the root system of G with respect to T . The element q is evidently in the
subgroup Sym2(P)/(p − 1). Equivalently, we can regard q as the quadratic function q :
T (Fp) → (F×

p )⊗2 defined by

q(t) =
∑

α(t) ⊗ α(t).

Here we are writing the group (F×
p )⊗2 additively.

Suppose g is an element of G(Fp) and suppose that both t and g−1tg are in T (Fp). To
show that q is an invariant class, we must show that q(t) = q(g−1tg). Evidently we have

q(g−1tg) =
∑

α∈Φ

α(g−1tg) ⊗ α(g−1tg).

The numbers α(t) are the non-zero eigenvalues in the action of t on the Lie algebra
g ⊗ Fp. These eigenvalues are the same as those of g−1tg , and so the numbers α(t) are
the same (possibly in a different order) as the numbers α(g−1tg). From this it follows that
q(tg ) = q(t), so q is an invariant class in H4(T (Fp),Z) ⊗ (F×

p )⊗2.
It remains to determine the order of q in H4(T (Fp),Z) ⊗ (F×

p )⊗2, or equivalently the
order of q in the subgroup Sym2(P)/(p − 1). By definition, q is the the reduction modulo
p − 1 of the element Q ∈ Sym2(P). We defined e to be the largest integer such that Q is a
multiple of e. Since we are assuming that p ≡ 1 mod e, the order of q in Sym2(P)/(p − 1)
is precisely p−1

e .
To summarize, we have shown thatH4(T (Fp),Z) has an invariant element of order p−1

e .
ThereforeH4(G(Fp),Z) has an element of order p−1

d1···dr ·e . Since p ≡ 1 mod (d1 · · · dr · e ·n)
it follows that H4(G(Fp),Z) has an element of order n. ��

1This is a proper subgroup if and only if r ≥ 3.
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6 Proof of Theorem 6
6.1 The groups H̄2(Zl )

As before, we let L be an open subgroup of the arithmetic completion ̂G(Q), and we shall
now fix a prime number l. We introduce a new module

C(L,Zl) = {continuous functions f : L → Zl}.
Again, we regard the group C(L,Zl) as a Γ (L) × L-module. We have

C(L,Zl) = lim
←
t
C(L,Z/lt ).

We define, analogously to the notation H̄•(Z/lt ),

H̄•(Zl) = H•(Γ (L),C(L,Zl)). (3)

The main focus of this section is to determine the group H̄2(Zl)
̂G(Q). We begin by estab-

lishing some easy properties of the modules H̄•(Zl).

Proposition 6 The cohomology groups H̄•(Zl) have the following properties:

1. The groups H̄•(Zl) do not depend on the open subgroup L in their definition (Equa-
tion 3).

2. H̄0(Zl) = Zl ,
3. H̄1(Zl) = 0,

4. H̄2(Zl) = lim
←
t
H̄2(Z/lt ).

5. The group H̄2(Zl) is torsion-free and contains no non-zero divisible elements.

6. For any open subgroup L of ̂G(Q) we have H̄2(Zl)L = lim
←
t

(

H̄2(Z/lt )L
)

.

Proof 1. SupposeM is an open subgroup of L. Then we have an isomorphism of Γ (L)-
modules C(L,Zl) = indLMC(M,Zl). The result follows from this by Shapiro’s Lemma
(Theorem 7).

2. Since Γ (L) is dense in L, it follows that the Γ (L)-invariant continuous functions on
L are constant. This shows that H̄0(Zl) = Zl .

(3,4) For each r > 0 we have by Theorem 9 a short exact sequence

0 →
(

lim
←
t

)1

Hr−1(Γ (L),C(L,Z/lt )) → H̄r(Zl)

→ lim
←
t
Hr(Γ (L),C(L,Z/lt )) → 0.

In the notation of the previous section, we have

0 →
(

lim
←
t

)1

H̄r−1(Z/lt ) → H̄r(Zl) → lim
←
t
H̄ r(Z/lt ) → 0.

By Lemma 2, H̄0(Z/lt ) = Z/lt and H̄1(Z/lt ) = 0. Both of these projective systems

consist of finite groups, so satisfy the Mittag–Leffler condition. Therefore
(

lim
←
t

)1
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vanishes on both of them. As a result of this we have for r = 1, 2:

H̄r(Zl) = lim
←
t
H̄ r(Z/lt ).

In particular H̄1(Zl) = 0.
(5) Consider the short exact sequence of modules:

0 → C(L,Zl)
×lt→ C(L,Zl) → C(L,Z/lt ) → 0.

This gives the exact sequence in cohomology

· · · → H̄1(Z/lt ) → H̄2(Zl)
×lt→ H̄2(Zl) → · · · .

We already saw in Lemma 2 that H̄1(Z/lt ) = 0. This shows that H̄2(Zl) is torsion-
free. Suppose σ is a divisible element in H̄2(Zl). Then the image of σ in H̄2(Z/lt )
is a divisible element for each t. Since H̄2(Z/lt ) is a Z/lt-module, the image of σ in
H̄2(Z/lt ) must be zero. By (4) it follows that σ = 0.

(6) This follows because the functor
lim
←
t

commutes with the functor−L of L-invariant

elements. ��

Proposition 7 For any S-arithmetic level L ⊂ ̂G(Q), there is an exact sequence as follows:

0 → H2
cts(L,Zl) → H2(Γ (L),Zl) → H̄2(Zl)L → H3

cts(L,Zl) → H3(Γ (L),Zl).

Remark 3 It is tempting to suggest that the exact sequence of the proposition follows
from a spectral sequence of the form Hr

cts(L, H̄ s(Zl)) =⇒ Hr+s(Γ (L),Zl), which would
be proved in the same way as in the finite coefficient case (Proposition 4). Unfortunately
this is not quite so simple. The problem is that the groups H̄r(Zl) will probably not be
Hausdorff for r ≥ 3, and so there is no off-the-shelf spectral sequence for us to use.
Admittedly we could truncate at H̄2(Zl) to obtain a spectral sequence with three rows, or
we could try to work with the more general spectral sequence constructed in [8]. Instead
we’ve gone for a more elementary approach, and we prove the exact sequence of the
proposition by taking the projective limit of such exact sequences in the finite coefficient
cases.

Proof For any t ≥ 0 the spectral sequence in Equation 1 gives rise to an exact sequence:

0 → H2
cts(L,Z/lt ) → H2(Γ (L),Z/lt ) → H̄2(Z/lt )L

→ H3
cts(L,Z/lt ) → H3(Γ (L),Z/lt ).

We shall write At for the image of the map H2(Γ (L),Z/lt ) → H̄2(Z/lt )L and Bt for the
image the map H̄2(Z/lt )L → H3

cts(L,Z/lt ). We therefore have three exact sequences:

0 → H2
cts(L,Z/lt ) → H2(Γ (L),Z/lt ) → At → 0, (4)

0 → At → H̄2(Z/lt )L → Bt → 0, (5)

0 → Bt → H3
cts(L,Z/lt ) → H3(Γ (L),Z/lt ). (6)
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As Γ (L) is an S-arithmetic group, the cohomology groups H•(Γ (L),Z/lt ) are all finite.
From the Equation 4 it follows that H2

cts(L,Z/lt ) and At are both finite, and hence
(

lim
←
t

)1

H2
cts(L,Z/lt ) = 0,

(

lim
←
t

)1

At = 0.

From this it follows that we have exact sequences

0 → lim
←
t
H2
cts(L,Z/lt ) → lim

←
t
H2(Γ (L),Z/lt ) → lim

←
t
At → 0,

0 → lim
←
t
At → H̄2(Zl)L → lim

←
t
Bt → 0,

0 → lim
←
t
Bt → lim

←
t
H3
cts(L,Z/lt ) → lim

←
t
H3(Γ (L),Z/lt ).

In the second of these we have used part (6) of Proposition 6. Splicing the exact sequences
together again, we obtain the following exact sequence:

0 → lim
←
t
H2
cts(L,Z/lt ) → lim

←
t
H2(Γ (L),Z/lt ) → H̄2(Zl)L

→ lim
←
t
H3
cts(L,Z/lt ) → lim

←
t
H3(Γ (L),Z/lt ).

Recall again that as Γ (L) is an S-arithmetic group, the groups H•(Γ (L),Z/lt ) must be
finite. Furthermore, the spectral sequence in Eq. 1 shows that the groups H1

cts(L,Z/lt )
and H2

cts(L,Z/lt ) are also finite. As a result, all of these projective systems satisfy the
Mittag–Leffler condition, so we have:

(

lim
←
t

)1

H1
cts(L,Z/lt ),

(

lim
←
t

)1

H1(Γ (L),Z/lt ),

(

lim
←
t

)1

H2
cts(L,Z/lt ),

(

lim
←
t

)1

H2(Γ (L),Z/lt ).

As a result of this, we have

lim
←
t
H2
cts(L,Z/lt ) = H2

cts(L,Zl),

lim
←
t
H2(Γ (L),Z/lt ) = H2(Γ (L),Zl),

lim
←
t
H3
cts(L,Z/lt ) = H3

cts(L,Zl),

lim
←
t
H3(Γ (L),Z/lt ) = H3(Γ (L),Zl).

Substituting these into our previous exact sequence we get

0 → H2
cts(L,Zl) → H2(Γ (L),Zl) → H̄2(Zl)L → H3

cts(L,Zl) → H3(Γ (L),Zl).

��
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6.2 The groups H•
cts(L,Zl )

We shall next concentrate on the continuous cohomology groups in the exact sequence
of Proposition 7.
From now on, we assume that L is an S-arithmetic level for some finite set of primes S.

Recall that this means L is the pre-image in ̂G(Q) of an open subgroup of G(Af ) of the
form

∏

p∈S
G(Qp) ×

∏

p/∈S
Kp, where Kp is compact and open in G(Qp).

It will be convenient to call a prime number p a tame prime if it satisfies all of the following
conditions:

1. p /∈ S.
2. p �= l.
3. G is unramified over Qp.
4. Kp is a maximal hyperspecial compact open subgroup of G(Qp). This implies that

if we let K 0
p be the maximal pro-p normal subgroup of Kp, then the group G(Fp) =

Kp/K 0
p is a product of someof the simply connectedfinite groupsof Lie typedescribed

in detail in [22].
5. Hr(G(Fp),Q/Z) = 0 for r = 1, 2. We recall from [22] that this condition is satisfied

for all but finitely many of the groups G(Fp).

We note that for tame primes p we have H•
cts(Kp,Z/lt ) = H•(G(Fp),Z/lt ) by condition

(2).
All but finitely many of the prime numbers are tame. We shall write W for the set of

primes not in S which are not tame. The group L/Cong(G) decomposes in the form

L/Cong(G) = LS × KW × Ktame,

where we are using the notation:

LS =
∏

p∈S
G(Qp), KW =

∏

p∈W
Kp, Ktame =

∏

p tame
Kp.

Lemma 4 With the notation introduced above, Hr
cts(Ktame,Zl) = 0 for r = 1, 2, 3.

Proof For each r > 0 we have by Theorem 9 a short exact sequence

0 →
(

lim
←
t

)1

Hr−1
cts (Ktame,Z/lt ) → Hr

cts(Ktame,Zl) → lim
←
t
Hr
cts(Ktame,Z/lt ) → 0.

Furthermore, for any r we have

Hr
cts(Ktame,Z/lt ) = lim

→
U

Hr
cts

⎛

⎝

∏

p∈U
Kp,Z/lt

⎞

⎠ ,

where U runs through the finite sets of tame primes. For such primes p we have
Hr
cts(Kp,Ql/Zl) = 0 for r = 1, 2. Hence by an obvious long exact sequence we have

Hr
cts(Kp,Z/lt ) = 0 for r = 1, 2. By the Künneth formula we have

Hr
cts

⎛

⎝

∏

p∈U
Kp,Z/lt

⎞

⎠ = 0 for r = 1, 2.
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Hence Hr
cts(Ktame,Z/lt ) = 0 for r = 1, 2. Since the projective system H0

cts(Ktame,Z/lt ) =
Z/lt satisfies the Mittag–Leffler condition, we have Hr

cts(Ktame,Zl) = 0 for r = 1, 2.
We’ll now concentrate on the groupH3

cts(Ktame,Zl). By the short exact sequence above,
together with the fact that H2

cts(Ktame,Z/lt ) = 0, we have

H3
cts(Ktame,Zl) = lim

←
t
H3
cts(Ktame,Z/lt ).

We also have (using the Künneth formula and the fact that H•(Kp,Z/lt ) is isomorphic to
H•(G(Fp),Z/lt )):

H3
cts(Ktame,Zl) = lim

←
t

⎛

⎝

⊕

p tame
H3(G(Fp),Z/lt )

⎞

⎠ ⊆
∏

p tame

(

lim
←
t
H3(G(Fp),Z/lt )

)

.

(7)

Consider any tame prime number p. Since G(Fp) is finite, we have H3(G(Fp),Ql) = 0,
and therefore H3(G(Fp),Zl) = H2(G(Fp),Ql/Zl) = 0. From this it follows that

lim
←
t
H3(G(Fp),Z/lt ) = 0.

By Eq. 7 we have H3
cts(Ktame,Zl) = 0. ��

(It might be tempting to imagine that the result above can be extended further in a
simple way. However, we note that the projective system in Eq. 7 does not satisfy the
Mittag–Leffler condition, so we do not expect H4

cts(Ktame,Zl) to be finitely generated as a
Zl-module).

Lemma 5 Let L be an S-arithmetic level in ̂G(Q). For r = 0, 1, 2, 3 we have

Hr
cts(L/Cong(G),Zl) = Hr

cts(LS × KW ,Zl),

Hr
cts(L,Ql) = Hr

cts(G(Ql),Ql) = Hr
Lie(g ⊗ Ql ,Ql).

Here g is the Lie algebra of G over Q.

Proof Recall that we have a decomposition of the group L/Cong(G) in the form LS ×
KW × Ktame. This gives rise to the following spectral sequence

Hr
cts(LS × KT ,Hs(Ktame,Zl)) =⇒ Hr+s

cts (L/Cong(G),Zl).

From Lemma 4, we see that the bottom left corner of the E2-sheet is as follows:

0 · · ·
0 0 · · ·
0 0 0 · · ·

H0
cts(LS × KT ,Zl) H1

cts(LS × KT ,Zl) H2
cts(LS × KT ,Zl) H3

cts(LS × KT ,Zl)

This shows that Hr
cts(L/Cong(G),Zl) = Hr(LS × KT ,Zl) for r ≤ 3.

Since Cong(G) is a finite group we have

Hs(Cong(G),Ql) =
⎧

⎨

⎩

Ql if s = 0,

0 if s > 0.
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Therefore the spectral sequence Hr
cts(L/Cong(G), Hs(Cong(G),Ql)) collapses to the bot-

tom row, so we have

Hr
cts(L,Ql) = Hr

cts(L/Cong(G),Ql).

In particular for r ≤ 3 we have

Hr
cts(L,Ql) = Hr

cts

⎛

⎝

∏

p∈S
G(Qp) ×

∏

p∈W
Kp,Ql

⎞

⎠ .

We’ll calculate these cohomology groups above using the Künneth formula.
Suppose first that p is a prime in W , which is not equal to l. The group Kp contains a

normal pro-p subgroup of finite index. From this it follows that

Hs
cts(Kp,Ql) =

⎧

⎨

⎩

Ql s = 0,

0 s > 0.

Next, suppose that p is a prime in S which is not equal to l. We recall from [7] that
there is a spectral sequence which calculates the cohomology of G(Qp) in terms of the
cohomology of its compact open subgroups. Let K 0

p be a maximal pro-p subgroup of
G(Qp). The subgroup K 0

p is compact and open inG(Qp). There are finitely many maximal
compact subgroups of G(Qp), which contain K 0

p ; we call these subgroups K1, . . . , Kn. In
the spectral sequence, the E1-sheet is given by

Er,s
1 =

⊕

i0<...<ir

Hs
cts(Ki0 ,...,is ,Ql).

Here we are using the notation

Ki1 ,...,is = Ki1 ∩ . . . ∩ Kis .

The map Er−1,s
1 → Er,s

1 is an alternating sum of restriction maps; in other words, its
(i0, . . . , ir)-component is equal to

r
∑

j=0
(−1)jRest

Ki0 ,...,̂ij ,...,ir
Ki0 ,...,ir

(

σi0 ,...,̂ij ,...,ir

)

.

As we are assuming here that p �= l, the cohomology groups Hs
cts(Ki0 ,...,is ,Ql) are zero

for s > 0. Therefore the spectral sequence consists of a single row in E1; this row is the
simplicial cochain complex of a simplex with n vertices. As this simplex is contractable,
we have

Hs
cts(G(Qp),Ql) =

⎧

⎨

⎩

Ql s = 0,

0 s > 0.

From the Künneth formula we have for r ≤ 3:

Hr
cts(L,Ql) = Hr

cts(Ll,Ql),

where Ll is either Kl or G(Ql), depending on whether the prime l is in S or not. In either
case we have H•

cts(Ll,Ql) = H•(g ⊗ Ql ,Ql); this is proved in [14] for Kl and in [7] for
G(Ql). As a result of this we have Hr

cts(L,Ql) = Hr(g ⊗ Ql ,Ql) for r ≤ 3. ��
Lemma 6 We have H0(g ⊗ Ql ,Ql) = Ql , H1(g ⊗ Ql ,Ql) = 0, H2(g ⊗ Ql ,Ql) = 0 and
H3(g ⊗ Ql ,Ql) = Q

b
l , where b is the number of simple components of G ×Q C. (Note that

in the notation of the introduction we have b = bR + 2bC).
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Proof The dimension of the Lie algebra cohomology does not depend on the base field,
so we may instead calculate the cohomology of g ⊗ C. There is a decomposition:

g ⊗ C = g1 ⊕ · · · ⊕ gb,

where each gi is a complex simple Lie algebra. By Whitehead’s first and second lemmas
we have Hr(gi,C) = 0 for r = 1, 2, and H0(gi,C) = C. It is well known (see for example
section 1.6 of [5]) that H•(gi,C) is isomorphic to the singular cohomology of a compact
connected Lie group with Lie algebra gi. Hence by Proposition 8 each group H3(gi,C) is
1-dimensional. The lemma follows from the Künneth formula. ��

6.3 The end of the proof

Recall from Proposition 7 that we have an exact sequence:

0 → H2
cts(L,Zl) → H2(Γ (L),Zl) → H̄2(Zl)L → H3

cts(L,Zl) → H3(Γ (L),Zl).

Tensoring with Ql and using Lemma 5 and Lemma 6, we have an exact sequence of
Ql-vector spaces. We’ve seen in Proposition 6 that H̄2(Zl) is torsion-free. This implies
that we may regard H̄2(Zl) as a subgroup of H̄2(Ql), where we are using the notation
H̄2(Ql) = H̄2(Zl) ⊗ Ql . It follows that H̄2(Zl)L ⊗ Ql = H̄2(Ql)L. In view of this, we have
an exact sequence

0 → H2(Γ (L),Ql) → H̄2(Ql)L → H3(g ⊗ Ql ,Ql) → H3(Γ (L),Ql). (8)

The vector spaces in Eq. 8 are all finite dimensional; this follows for H̄2(Ql)L, because it is
between the finite dimensional spaces H2(Γ (L),Ql) and H3(g ⊗ Ql ,Ql).
We shall next take the projective limit over S of the sequences in Eq. 8. Since the

sequences consist of finite dimensional vector spaces, the derived functors
(

lim
←
S

)1

all

vanish, so we have the following exact sequence:

0 → H2(G(Q),Ql) → H̄2(Ql)
̂G(Q) → H3(g ⊗ Ql ,Ql) → H3(G(Q),Ql).

Here we have used Proposition 2, which shows that the projective limit (over S) of the
groups Hr(Γ (L),Ql) is Hr(G(Q),Ql).
The dimensions of the groups Hr(G(Q),Ql) are the same as those of Hr(G(Q),C), and

by Proposition 2 these are the same as the the relative Lie algebra cohomology groups
Hr(g, k,C). Here k is the Lie algebra of a maximal compact subgroup K∞ of G(R).
Recall from section 1.6 of [5] that the relative Lie algebra cohomology groups are iso-

morphic to the singular cohomology groups Hr(X∗,C), where X∗ is the compact dual of
the symmetric space X = G(R)/K∞. We calculate the dimensions of these spaces in the
appendix. The results (see Corollary 5) are:

dimH2(g, k,C) = dim(Z(K∞)).

dimH3(g, k,C) = #simple components of G × R of complex type.

If we write bC for the number of simple components ofG×R of complex type, and bR for
the number of simple components of real type, then the number of simple components of
G×C is bR + 2bC. Substituting these dimensions, we have an exact sequence of the form

0 → Q
dim(Z(K∞))
l → H̄2(Ql)

̂G(Q) → Q
bR+2bC
l → Q

bC
l .
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It follows that the dimension of H̄2(Ql)
̂G(Q) is between dim(Z(K∞)) + bR + bC and

dim(Z(K∞)) + bR + 2bC.
Since H̄2(Zl) is torsion-free, it follows that H̄2(Zl)

̂G(Q) is a torsion-freeZl-module,which
spans H̄2(Ql)

̂G(Q). On the other hand, H̄2(Zl) has no non-zero divisible elements. This
implies that H̄2(Zl)

̂G(Q) ∼= Zl
c, where c = dim H̄2(Ql)

̂G(Q). This finishes the proof of the
Theorem 6.

Corollary There is a subgroup of H̄2(Z/lt ) ̂G(Q) isomorphic to (Z/lt )c, all of whose elements
virtually lift to characteristic zero, where c = rankZl

(

H̄2(Zl)
̂G(Q)

)

.

Proof We have a short exact sequence

0 → C(L,Zl)
×lt→ C(L,Zl) → C(L,Z/lt ) → 0.

This gives a long exact sequence containing the following terms

H̄1(Z/lt ) → H̄2(Zl)
×lt→ H̄2(Zl) → H̄2(Z/lt ).

We’ve shown that H̄1(Z/lt ) = 0, so we have

0 → H̄2(Zl)
×lt→ H̄2(Zl) → H̄2(Z/lt ).

We’ll writeA for the subgroup of elements in H̄2(Z/lt ) which virtually lift to characteristic
zero. By definition, A is the image of H̄2(Zl) in H2(Z/lt ). We therefore have a short exact
sequence

0 → H̄2(Zl)
×lt→ H̄2(Zl) → A → 0.

Taking ̂G(Q)-invariants, we have an exact sequence

0 → H̄2(Zl)
̂G(Q) ×lt→ H̄2(Zl)

̂G(Q) → A ̂G(Q).

The result follows because H̄2(Zl)
̂G(Q) is isomorphic to Zl

c. ��
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Appendix: A result on compact symmetric spaces
In this appendix,we shall calculate the lowdimensional cohomologyof the compact simple
symmetric spaces. Such spaces have the form G/K , where G is a compact, connected,
simple Lie group and K is a closed, connected subgroup. In the following result, we shall
use the shorthand H•(X) for the singular cohomology on the topological space X with
coefficients in R.

Proposition 8 Let G be a compact, connected simple Lie group and K a closed, connected
subgroup. There are isomorphisms:

H1(G/K ) = 0,

H2(G/K ) = z(k)∗,

H3(G/K ) =
⎧

⎨

⎩

R if K is trivial,

0 otherwise.

Here z(k)∗ denotes the dual space of the centre of the Lie algebra k of K .
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Remark 4 One might expect to be able to look this result up in tables; however I didn’t
manage to find such tables, so I am including a proof. The result is a straightforward
consequence of results in Borel’s thesis [3].

Proof We shall first review some results from [3] on the cohomology of compact Lie
groups and their classifying spaces. Suppose that G is compact connected Lie group. We
shall write BG for the classifying space of G. This is a space with a fibre bundle

G → EG
↓
BG

such that the cohomology of EG is the cohomology of a point.
The real singular cohomology of G is (as a ring) an exterior algebra whose generators

are cohomology classes x1, . . . , xn in odd dimensions s1, . . . , sn. For each generator xi ∈
Hsi (G), there is an element yi ∈ Hsi+1(BG) called the transgression of xi. Furthermore the
cohomology ring H•(BG) is equal to the polynomial ring R[y1, . . . , yn]. In particular BG
only has non-zero real cohomology in even dimensions.
As an example of this, let T be an n-dimensional compact torus, and let t be its Lie

algebra. Recall that the cohomology of T is exactly the exterior algebra of H1(T ). Fur-
thermore, we may identify H1(T ) with the dual space of t. As a result of this, we know
that H•(BT ) is the algebra R[t] of polynomial functions on t. Furthermore, H2n(BT ) is
the space of homogeneous polynomials on t of degree n.
Suppose now that G is a compact, connected Lie group and T is a maximal torus in G.

We shall writeW for the Weyl group of G with respect to T . We have a fibre bundle

G/T → BT
↓
BG

(BT = EG/T ).

Corresponding to this there is a spectral sequence

Hr(BG,Hs(G/T )) ⇒ Hr+s(BT ).

AsG is connected, it follows easily thatBG is simply connected. This implies thatHs(G/T )
is a trivial bundle on BG, and so the spectral sequence takes the form

Hr(BG) ⊗ Hs(G/T ) ⇒ Hr+s(BT ).

In particular we have an edge map H•(BG) → H•(BT ). We’ll use the following result,
which describes this edge map.

Proposition 9 (Proposition 27.1 of [3]) Let G be a compact, connected Lie group and T
a maximal torus in G. The edge map H•(BG) → H•(BT ) is injective. Its image is the
subspace H•(BT )W of W-invariant polynomial functions on t.

As a result of this proposition, we know that for semi-simple G we have H2(BG) = 0.
This is because there are noW -invariant linear forms on t. For simple G we have

H4(BG) = R.

Recall that H4(BG) is the space of W -invariant quadratic forms on t. The restriction
of the Killing form is one such form, and any other is a constant multiple of this. As a
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consequence, we see thatH1(G) = H2(G) = 0 andH3(G) = R. This proves Proposition 8
in the case that K is trivial.
Assume now that K is a non-trivial closed, connected subgroup of G. We shall use the

spectral sequence of the following fibration:

G/K → BK
↓
BG.

That is:

Hr(BG) ⊗ Hs(G/K ) ⇒ Hr+s(BK ). (9)

Let S be a maximal torus in K and T ⊃ S be a maximal torus in G, and let WG and WK
be the corresponding Weyl groups. From the spectral sequence in Eq. 9 we have an edge
map

H•(BG) → H•(BK ).

By Proposition 9, we may interpret this as a map

R[t]WG → R[s]WK ,

where s is the Lie algebra of S. This map has been determined by Borel:

Proposition 10 (Proposition 28.2 of [3]) The above edge map is given by restricting a
polynomial function on t to the subspace s.

We can now finish proving our proposition. Suppose that G is simple and K is non-
trivial. Then H4(BG) is generated by the Killing form. Since the Killing form is negative
definite, its restriction to s is non-zero. This shows that the edgemapH4(BG) → H4(BK )
is injective. The E2-sheet of the spectral sequence in Eq. 9 looks like this:

H3(G/K ) 0 0 0

H2(G/K ) 0 0 0

H1(G/K ) 0 0 0

R 0 0 0 H4(BG)

These groups all remain unchanged until the E4 sheet, where we have amapH3(G/K ) →
H4(BG). From this we see that

H1(G/K ) = H1(BK ) = 0 because 1 is odd,

H2(G/K ) = H2(BK ) = H1(K ) = z(k)∗.

Furthermore there is an exact sequence:

0 → H3(BK ) → H3(G/K ) → H4(BG) → H4(BK ).

We’ve seen that H3(BK ) = 0 (because 3 is odd) and the edge map H4(BG) → H4(BK ) is
injective, so it follows that H3(G/K ) = 0. ��
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We finally translate the result above into a more usable form. In the following corollary,
G is a semi-simple, simply connected algebraic group overR andK∞ is amaximal compact
subgroup ofG(R).We shall write bR and bC for the number of simple components ofG of
real and of complex type.Wewrite g and k for the Lie algebras ofG(R) andK∞ respectively,
and we write z(k) for the centre of k.

Corollary 5 With the notation introduced above, we have

H2(g, k,R) = z(k)∗, dimH3(g, k,R) = bC.

Proof Recall from section 1.6 of [5], that the g, k-cohomology is the same as the singular
cohomology of the compact symmetric space X = H (R)/K∞, where H is the compact
form of G over R; in other words,H (R) is a maximal compact subgroup of G(C) contain-
ing K∞.
Let G = ∏bR+bC

i=1 Gi, where each Gi is a simple, simply connected group over R; the
groupsG1, . . . , GbR are assumed to be of real type and the others are of complex type. The
subgroup K∞ also decomposes as

∏

Ki, where each Ki is a maximal compact subgroup of
Gi(R). Similarly the compact form H decomposes as

∏

Hi, where each Hi is the compact
form of Gi. This gives us a decomposition

X =
∏

Xi, where Xi = Hi(R)/Ki.

Our aim is to calculate the cohomology of X using the Künneth formula.

Case 1. In the case that Gi is of real type, The group Gi × C is simple over C. There-
fore Hi(R), being a maximal compact subgroup of Gi(C), is a simple, simply
connected Lie group. By Proposition 8 we have

H1(Xi) = 0, H2(Xi) = z(ki)∗, H3(Xi) = 0.

Case 2. Suppose instead thatGi is of complex type. In this caseGi ×C splits as a direct
sum of two simple groups and we have Gi(C) ∼= Gi(R) × Gi(R); the subgroups
Gi(R) and Ki are diagonally embedded in Gi(C). As Hi(R) is a maximal com-
pact subgroup of Gi(C), we have Hi(R) = Ki × Ki. In this case, the compact
symmetric space Xi is the quotient (Ki ×Ki)/Ki, which is homeomorphic to Ki.
By Proposition 8 we have

H1(Xi) = 0, H2(Xi) = z(ki)∗, H3(Xi) = R.

By the Künneth formula we have

H2(g, k,R) =
⊕

i
z(ki)∗ = z(k)∗,

H3(g, k,R) =
⊕

i of complex type
R = R

bC .

��
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