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ABSTRACT 

Alpha-synuclein (α-syn) plays a key role in regulating the synaptic vesicles pool size, traf-

ficking, and membrane dynamics. Misfolded forms of α-syn undergo post-translational modi-

fications showing high tendency towards aggregation and deposition into insoluble inclusion 

bodies, Lewy bodies (LB). 

Several brain proteinopathies with neurodegeneration, including Alzheimer’s disease 

(AD), typically exhibit deposition and spreading of LB in a prion-like fashion. 

Studies performed to assess α-syn diagnostic accuracy in cerebrospinal fluid (CSF) have 

reported a trend towards increased CSF α-syn concentrations in AD versus other neurodegen-

erative diseases (ND) and healthy controls (HC).  

The potential role of CSF α-syn in asymptomatic subjects at risk of AD has not been ex-

plored. We performed a cross-sectional study in a large-scale monocentric preclinical at risk 

cohort (INSIGHT-preAD). We found a positive association between CSF α-syn concentra-

tions and amyloid mean cortical standard uptake value ratios (SUVR), even after adjusting for 

confounders. There were positive associations of CSF α-syn and CSF t-tau and p-tau181 pro-

teins. Furthermore, we found a trend to statistical significance of increased CSF α-syn con-

centrations in Aβ PET-positive compared with Aβ PET-negative subjects.   

Animal models have shown that α-syn may synergistically and directly induce fibrillization 

of both tau and Aβ. Therefore, the main findings of this study indicate an association of CSF 

α-syn with AD-related pathophysiological mechanisms, during the preclinical phase of the 

disease. 

Longitudinal studies with larger sample size are needed to assess whether increased CSF α-

syn concentrations could depict longitudinal trajectories of asymptomatic subjects at risk for 

AD. 

 

KEY WORDS 

α-synuclein, Alzheimer’s disease, cerebrospinal fluid, subjective memory complainers, 

preclinical, monocentric, amyloid PET, tau protein, synergistic, SUVR. 
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INTRODUCTION 

 

Alpha-synuclein (α-syn) is a protein assumed to play a role in the pre-synaptic modulation 

of cell vesicle trafficking (Wong and Krainc, 2017; Fang et al., 2017). In particular, α-syn 

binds to specific presynaptic proteins directly involved in the release of neurotransmitters and 

it preserves the synaptic terminals, both at structural and at functional level (Wong and 

Krainc, 2017; Fang et al., 2017). Hyperphosphorylated misfolded α-syn proteins, deposited in 

the brain as insoluble fibrillary aggregates, generate neuronal cytoplasmic inclusions, namely 

Lewy bodies (LB) (Colom-Cadena et al., 2017) which are pathophysiological hallmarks of 

several brain proteinopathies with neurodegeneration – including Parkinson disease (PD), PD 

with dementia (PDD), dementia with Lewy bodies (DLB) – and oligodendroglial cytoplasmic 

inclusions – typically found in multiple system atrophy (MSA) – all belonging to the synucle-

inopathy spectrum (Goedert, 2015; Kordower et al., 2008).  

Hence, α-syn concentrations have been assessed in cerebrospinal fluid (CSF), especially as 

potential surrogate of cerebral LB deposition, to discriminate in vivo among healthy controls 

(HC), PD, and atypical parkinsonian syndromes (Eusebi et al., 2016; Hong et al., 2010; 

Kasuga et al., 2010; Mackin et al., 2015; Zhou et al., 2015). 

Moreover, the cellular localization and function of α-syn suggest a potential role as 

surrogate biomarker of synaptic loss also in non-synucleophatic neurodegenerative diseases 

(ND), such as AD. However, in spite of numerous research efforts, a general consensus on the 

relevance of this biomarker candidate in the diagnostic/prognostic workflow of ND is still 

under debate (Slaets et al., 2014; Wang et al., 2015). 

Several studies reported higher CSF α-syn concentrations in AD patients versus both indi-

viduals suffering from other ND and HC. However, these results are conflicting, probably due 

to substantial inter-site methodological differences (Hansson et al., 2014; Mattsson et al., 

2013; Slaets et al., 2014; Wang et al., 2015). These include different pre-intra-analytical pro-

cedures, performed for CSF α-syn assessment, and different recruitment criteria. Previous 

studies exploring CSF α-syn concentrations in AD were performed in dementia patients or 

subjects with prodromal (mild cognitive impairment [MCI]) forms of the disease (Hansson et 

al., 2014; Slaets et al., 2014; Wang et al., 2015). 

To the best of our knowledge, no studies examined the potential role of CSF α-syn in the 

asymptomatic preclinical phase of AD (Dubois et al., 2016). 

Individuals with subjective complaints of memory dysfunction (SMC), together with evi-
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dence of cerebral deposition of amyloid beta (Aβ), are considered asymptomatic individuals 

at risk of developing AD (Dubois et al., 2016). Hence, the aim of the study was to cross-

sectionally investigate the variations of CSF α-syn concentrations in relation to the pathophys-

iological mechanisms of AD in a subset of a preclinical cohort. 

 

 

MATERIALS AND METHODS 

 

Study participants  

This research is designed as a monocenter, cross-sectional study in a subset of 36 partici-

pants with SMC recruited from the “INveStIGation of AlzHeimer’s PredicTors in Subjective 

Memory Complainers” (INSIGHT-preAD) study, a French mono-centric academic university-

based cohort which is part of the Alzheimer Precision Medicine Initiative Cohort Program 

(APMI-CP), (Hampel H et al., 2017). Participants were enrolled at the Institute of Memory 

and Alzheimer’s disease (Institut de la Mémoire et de la Maladie d’Alzheimer, IM2A) at the 

Pitié-Salpêtrière University Hospital in Paris, France. The main goal of the INSIGHT-preAD 

study is to investigate the earliest preclinical stages of AD and its development, including 

influencing factors and biomarkers of progression.  

The INSIGHT-preAD study includes 318 cognitively normal Caucasian individuals, re-

cruited from the community in the wider Paris area, France, aged 70 to 85, with SMC. The 

status of SMC is confirmed as follows: (I) participants gave an affirmative answer (“YES”) to 

both questions: “Are you complaining about your memory?” and “Is it a regular complaint 

that has lasted now more than 6 months?”; (II) participants presented intact cognitive func-

tions based on Mini-Mental State Examination score (MMSE, ≥ 27), Clinical Dementia Rat-

ing scale (CDR = 0), and Free and Cued Selective Rating Test (FCSRT, total recall score ≥ 

41). 

Aβ positron emission tomography (Aβ-PET) investigation is performed at baseline visit, as 

mandatory study inclusion criterion. Thus, all subjects enrolled into the study have SMC and 

are stratified as either positive or negative for cerebral Aβ deposition. 

Briefly, exclusion criteria are represented by the absence of history of neurological or psy-

chiatric diseases. 

At the point of study inclusion, several data are collected such as, demographic data and 

Apolipoprotein E (APOE) genotype as well.  
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The study was conducted in accordance with the tenets of the Declaration of Helsinki of 

1975 and approved by the local Institutional Review Board at the participating center. All 

participants or their representatives gave written informed consent for the use of their clinical 

data for research purposes. 

For the present study, we included 36 subjects that volunteered for the lumbar puncture 

(LP) at baseline. It has been previously reported that CSF Aβ and Aβ-PET have comparable 

diagnostic performance in detecting cerebral Aβ deposition, at preclinical or prodromal stages 

of AD (Palmqvist et al., 2015). Thus, CSF Aβ was not included in our analyses due to the its 

high degree of intercorrelation with PET data. 

 

CSF sampling 

A LP was performed at baseline in all 36 participants of the cohort subset. All CSF sam-

ples included were collected in polypropylene tubes and centrifuged at 1,000 g for 10 min at 

+4°C. The collected supernatant was aliquoted and stored at –80°C pending biochemical 

analysis. 

 

Immunoassays for CSF core biomarkers 

CSF analyses of the core feasible biomarkers were performed at the Laboratory of Bio-

chemistry, Unit of Biochemistry of Neurometabolic diseases, Pitié-Salpêtrière University 

Hospital of Paris. CSF total tau (t-tau), tau phosphorylated at Threonine site 181 (p-tau181) and 

Aβ1-42 concentrations, were measured using established sandwich ELISA methods, namely 

the INNOTEST hTAU-Ag, INNOTEST Phospho-Tau[181P] (Fujirebio Europe NV, Gent, 

Belgium) and INNOTEST β-AMYLOID(1-42), respectively (Blennow et al., 1995; 

Vanmechelen et al., 2000; Vanderstichele et al., 2000) All CSF analyses were performed by 

board-certified laboratory technicians blinded to clinical information.  

 

Immunoassay for CSF α-syn 

All CSF α-syn analyses were performed at the Clinical Neurochemistry Laboratory at the 

Sahlgrenska University Hospital, Mölndal, Sweden. CSF α-syn protein concentration was 

measured using the U-PLEX Human α-syn Singleplex immunoassay kit (Meso Scale Discov-

ery, Rockville, MD, US), according to the manufacturer’s instructions (available at 

https://www.mesoscale.com/en/products/u-plex-human-alpha-synuclein-kit-k151wkk/). The 

assay consists of a rabbit monoclonal capture antibody coupled with a mouse monoclonal 

antibody for detection. The lower limit of quantification was 84 pg/mL. All CSF analyses 
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were performed on one occasion with randomized samples using one batch of reagents by 

board-certified laboratory technicians blinded to clinical information to avoid bias.  

 

PET acquisition 

All Florbetapir-PET scans are acquired in a single session on a Philips Gemini GXL CT-

PET scanner 50 (± 5) minutes after injection of approximately 370 MBq (333-407 MBq) of 

Florbetapir. PET acquisition consists of 3 x 5 minutes frames, a 128 x 128 acquisition matrix 

and a voxel size of 2 x 2 x 2 mm³. Images are then reconstructed using iterative LOR-

RAMLA algorithm (10 iterations), with a smooth post-reconstruction filter. All corrections 

(attenuation, scatter, and random coincidence) are integrated in the reconstruction. Lastly, 

frames are realigned, averaged and quality-checked by the CATI team. CATI is a French neu-

roimaging platform funded by the French Plan Alzheimer (available at http://cati-

neuroimaging.com).  

 

PET data processing 

Reconstructed PET images are analyzed with a pipeline developed by CATI. A standard 

uptake value ratio (SUVR) with a threshold of 0.7918 has been used to categorize our popula-

tion in Aβ positive or Aβ negative according to a method previously described (Habert et al., 

2017). 

 

Statistical analysis 

Demographic characteristics, baseline CSF and imaging characteristics, and scores on neu-

rocognitive tests of the analyzed participants are provided in Table 1. Continuous variables 

were described by the median and interquartile ranges.  

Differences between the Aβ-PET positive and negative groups in terms of CSF concentra-

tions of core feasible biomarkers and α-syn were explored assuming non-normal distribution. 

Thus, a Wilcoxon-Mann-Whitney pairwise comparison test was performed.  

We then performed regression analysis preceded by logarithmic transformation of all bi-

omarkers in order to approximate assumptions of normality and hence remain within the as-

sumptions of linear regression. Associations between log-transformed CSF biomarker concen-

trations and log-transformed Aβ-PET global SUVR values were tested with a series of uni-

variate linear regressions (see Table 2). They were conducted to determine the influence of 

tau (both total and phosphorylated), Aβ-PET global SUVR on α-syn values including age and 

sex as covariates.  

http://cati-neuroimaging.com/
http://cati-neuroimaging.com/
https://jamanetwork.com/journals/jamaotolaryngology/fullarticle/1917537#ooi140094t1
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To follow, and in order to establish the independent contribution of each biomarker to the 

prediction of group, a multivariate analysis was carried out (with bootstrapped P values in-

cluded in Table 3). Model 3a approximated α-syn with t-tau + SUVR + covariates; model 3b, 

α-syn with p-tau181+ SUVR covariates (see Table 3). Finally, a binary logistic regression was 

executed setting the PET status as the outcome variable and CSF t-tau, p-tau181, and α-syn as 

predictive factors (see Table 4). 

All tests performed were two tailed and with a significance set at P < 0.05. 

All statistics are performed using R (v. 3.2.3, The R Foundation for Statistical Computing). 

 

 

RESULTS 

 

Comparisons between groups according to the PET status 

The median (range) age was 76 (72.5-77) years and the sex ratio was well balanced (18:18) 

in the whole subset (see Table 1). Subjects were dichotomized according to the Aβ-PET sta-

tus, either positive (N=8) or negative (N=28), which was identified as the primary outcome. 

Demographic and clinical data of subjects are shown in Table 1. Hence, we performed com-

parisons between the two groups. Notably, Aβ-PET positive participants scored an education-

al level higher than those with negative Aβ-PET (see Table 1). A significant difference was 

also found when comparing the two groups for sex ratio (see Table 1). 

CSF concentrations of p-tau181 and t-tau were significantly different between positive and 

negative Aβ-PET individuals, with the former showing increased concentrations of both p-

tau181 and t-tau (p=0.003 and p=0.005 respectively) (see Table 1). 

No significant difference in terms of CSF α-synuclein concentrations was found between 

Aβ PET-positive and Aβ PET-negative subjects. 

 

Univariate linear regression analysis of CSF α-syn predictive factors: 

The univariate linear regression models including age and sex as covariates showed that 

CSF t-tau, CSF p-tau181, and global SUVR were all significantly associated with CSF α-syn 

(β=0.72 (0.14), p<0.001; β=0.52 (0.17), p=0.004; β =1.31(0.37), p=0.001, respectively) (for 

more details, see Table 2 and Figure 1). 

 

 

Multivariate linear regression analysis of CSF α-syn predictive factors 
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The multivariate linear regression model, including both global SUVR and CSF t-tau, 

showed that an increase of one unit of CSF t-tau concentration resulted in a significant in-

crease of 0.71 (0.08) pg/mL (p<0.001) in CSF α-syn concentration, after adjusting for age and 

sex. This model is accurate with an adjusted R2-squared of 0.80. (for more details, see Table 

3). 

At a lesser extent, a similar arrangement, including global SUVR and CSF p-tau181 instead 

of CSF t-tau, resulted into a model in which an increase of one unit of CSF p-tau181 concentra-

tion lead to a significant increase of 0.48 (0.12) pg/mL (p<0.01) in CSF α-syn concentration, 

after adjusting for age and sex (see Table 3). 

We decided not to include CSF p-tau181 and CSF t-tau together in the same model given 

the existence of a high degree of collinearity between the two variables, which notoriously 

makes model estimation unstable (data not shown). 

 

Logistic regression analysis for PET status 

The regression for CSF α-syn was significant with a positive odds ratio indicating that 

greater values of the marker are more likely to explain an increased cerebral Aβ load. The 

same was found for t-tau and p-tau181 (see Table 4) 

 

DISCUSSION 

Using a cross-sectional study design in a large monocentric cohort (INSIGHT-preAD) – 

within the framework of the APMI as part of the APMI-CP – we found a positive association 

between CSF α-syn concentrations and mean cortical SUVR in asymptomatic subjects at risk 

of AD. This association was confirmed using multivariate analysis after adjusting for age and 

sex. Emerging evidences from pathological studies suggest that about 10–40% of AD patients 

showed concomitant brain LB deposition (Hyman et al., 2012; Rabinovici et al., 2017; 

Schneider et al., 2009). Additionally, cerebral Aβ pathology is a common finding in synucle-

inopathies especially in DLB individuals (Donaghy et al., 2015; Kovacs et al., 2013). 

Recently, the existence of an anti-Aβ deposition effect of α-syn has been proposed in a 

mouse model of AD (Bachhuber et al., 2015). This observation, if confirmed in humans, 

might provide novel insights on potential targets for precise pathomechanistic therapies of AD 

and synucleinopathies. 

Although we found a trend of increased CSF α-syn concentrations in Aβ PET-positive 

compared with Aβ PET-negative subjects, these values did not reach statistical significance 

likely due to the relatively small sample size. To our knowledge, this is a novel finding in 
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asymptomatic at risk subjects for AD. Previous studies also explored the diagnostic value of 

CSF α-syn concentrations – alone or in combination with the CSF core feasible biomarkers 

Aβ1-42, t-tau, and p-tau181 –differentiating a large spectrum of ND, including AD (Hansson et 

al., 2014; Mattsson et al., 2013; Slaets et al., 2014; Wang et al., 2015). Although some results 

are still controversial, the majority of the studies reported increased CSF α-syn concentrations 

in AD compared with other ND and HC (Slaets et al., 2014; Wang et al., 2015). Discrepancies 

emerging from these data might be attributable to a high degree of inter-site variability and to 

analytical and methodological differences, such as the CSF measurement of either the full-

size protein or specific oligomers of α-syn (Slaets et al., 2014; Wang et al., 2015; Eusebi P et 

al., 2016). Furthermore, most of the investigations lack of a reliable HC group (Slaets et al., 

2014; Wang et al., 2015; Eusebi P et al., 2016). 

Furthermore, we disclosed a positive association between CSF α-syn and CSF t-tau and p-

tau181, both using univariate and in multivariate analyses.. This finding is consistent with those 

emerging from investigations performed in mouse models and in humans. In general, the 

brain extracellular increase of both tau and α-syn concentrations is related to the concomitant 

neuronal loss and the increased level of phosphorylation preceding the aggregation process 

leading to LB and neurofibrillary tangles, respectively (Wong and Krainc, 2017). Indeed, hy-

perphosphorylation is a post-transcriptional modification mechanism common to several mis-

folded proteins accumulating in the brain, including α-syn (Gassowska et al., 2014; Hebron et 

al., 2013). In particular, phosphorylation at S129 (pS129) is the most common alteration char-

acterizing this protein in its fibrillar aggregates. Interestingly, the increase of both CSF α-syn 

and tau protein concentrations might be considered an early biomarker reflecting different 

pathophysiological mechanisms leading to neurodegeneration, in particular synaptic degen-

eration and neuronal death, respectively. In this regard, CSF α-syn concentrations in AD are 

also tightly associated with other neurodegeneration surrogates such as grey matter atrophy 

and cerebral hypometabolism, measured using magnetic resonance imaging (MRI) and 18F-2-

fluoro-2-deoxy-D-glucose PET (18F-FDG-PET) (Hansson et al., 2014; Mattsson et al., 2013; 

Slaets et al., 2014; Wang et al., 2015). Notably, since α-syn is involved in glutamatergic neu-

ronal transmission, the hippocampal atrophy, an early feature of AD pathophysiology, might 

explain the increased concentrations of CSF α-syn in AD patients (Ohrfelt et al., 2009; Toledo 

et al., 2016; Wong and Krainc, 2017; Goedert, 2015). Finally, a possible synergistic link be-

tween α-syn and tau protein byproducts on neurodegeneration has been suggested (Ciaccioli 

et al., 2013; Daniele et al., 2017). Such an interaction is supposed to facilitate the spreading of 

LB and the deposition of neurofibrillary tangles activated by an imbalance between brain ki-
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nases and phosphatases (Ciaccioli G et al., 2013; Gąssowska M et al., 2014; Wong and 

Krainc, 2017) 

This study presents some caveats. First of all, the sample size is relatively limited. Second, 

given that this is a cross-sectional study and longitudinal data are not yet available, it is not 

possible to state whether increased CSF α-syn concentrations predict AD or other ND, such 

as, DLB onset. Moreover, structural MRI analyses, which are useful to confirm the presence 

of direct cerebral evidences of neurodegeneration, were not reported.  

In summary, we found that increased CSF α-syn concentrations are potentially associated 

with early AD pathophysiology – in terms of both amyloid- and tau-related pathophysiologi-

cal mechanisms – during the asymptomatic stage of the disease. Longitudinal studies with 

larger sample size are needed to assess whether increased concentrations of CSF α-syn could 

represent a predictive surrogate outcome of cognitive impairment and neurodegeneration in 

asymptomatic at risk of AD subjects. This in turn, will allow to depict different longitudinal 

molecular trajectories underpinning apparently similar phenotypes. 

In conclusion, we believe that CSF α-syn could represent an additional molecular candi-

date biomarker to be integrated in the expanding biomarker array needed to accurately stratify 

cohorts (biomarker-guided) of individuals according to existing and relevant AD- and other 

ND-associated pathophysiological pathways. From a translational perspective, this enhanced 

biomarker guidance is expected to substantially optimize the basis to develop and enhance 

effective targeted therapeutic strategies for the efficient treatment of the individual subject, in 

line with the evolving precision medicine paradigm (Hampel et al., 2017, 2016, 2018, 2018). 

Supplementary investigations will be essential to establish whether CSF α-syn may be utilized 

as a biological indicator of mechanism of action and/or target engagement or even as a biolog-

ical marker to predict the progression of cognitive decline in drug development analyses. In-

deed, increasingly accurate guideposts are necessary both to identify the disease at its earliest 

preclinical stages and to commence treatment strategies of specific pathophysiological mech-

anisms via biomarker-guided targeted therapy trials.  
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TABLES 

 

Table 1. Demographic and clinical data of subjects stratified by amyloid PET status.  

 
Total sample 

PET negative PET positive  Statistic test, p value 

Sex (M/F) 36 (18/18) 28(10/18) 8(8/0) χ2, p = 0.005* 

Age at time of CSF collection (yrs) 76.0 [72.5-77] 75.5 [72-77] 76.0 [75.3-77.3] W, p = 0.49 

Education (/8) 8.0 [5.0-8.0] 8.0 [7.0-8.0] 4.5 [3.8-6.0] W, p = 0.003* 

CSF biomarkers     

p-tau181 (pg/mL) 55 [39-64] 48.25[35.50-58.25] 68.0[59.25-85.25] W, p = 0.003* 

t-tau (pg/mL) 332 [259-411] 304.5[227.0-377.0] 510.5[334.2-597.5] W, p = 0.005* 

Aβ1-42 (pg/mL) 888 [663-1596] 975.5[690.5-1151] 659.0[545.5-680.5] W, p = 0.002* 

α-syn (pg/mL) 460 [363-566] 451.5[333.5-524.8] 555.0[456.8-625.0] W, p = 0.08 

APOE ε4, n (0/1) 36 (27/9) 28 (23/5) 8(4/4) χ2, p = 0.16 

Global SUVR 0.71 [0.68-0.83] 0.700[0.668-0.720] 0.970[0.950-1.040] W, p < 0.001* 

 

Notes. Quantitative demographic and clinical characteristics (at time of CSF collection) are expressed as median 

and [interquartile] 

° Statistical tests are presented as type of test performed test, p value: significant level p < 0.05, two tailed. The * 

symbol refers to the presence of statistical significance. 

Abbreviations: α-syn, α-synuclein; Aβ1-42, 42-amino acid-long amyloid beta peptide; CSF, cerebrospinal fluid; 

M, male; F, female; PET, positron emission tomography; t-tau, total tau; p-tau181, hyperphosphorylated tau at 

Threonine site 181; Apolipoprotein E ε4 carrier, APOE ε4; SUVR, mean standardized uptake value ratio; χ2: Chi 

square test; W: Wilcoxon-Mann-Whitney pairwise comparison 
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Table 2. Univariate linear regression analysis with predictive factors of the CSF α-synuclein 

concentrations.  

 

Covariate by Model 

(Adjusted R2 Value) 

Estimate β Standard error p value 

Model 1 (=0.297)    

Intercept 3.662 1.318 0.009* 

Log global SUVR 1.312 0.368 0.001* 

Model 2a (=0.248)    

Intercept 2.457 1.394 0.088 

Log CSF p-tau181 0.523 0.167 0.004* 

Model 2b (=0.462)    

Intercept 1.773 1.194 0.147 

Log CSF t-tau 0.715 0.139 < 0.001* 

 

Notes. Logarithmic transformation of CSF variables was used to reduce the skewness of distribution. P-value: 

significant level p < 0.05, two tailed. The * symbol refers to the presence of statistical significance. Each model 

is adjusted for age and sex.  

 

Abbreviations: α-syn, α-synuclein; CSF, cerebrospinal fluid; Log, Logarithmic transformation; t-tau, total tau; 

p-tau181, hyperphosphorylated tau at Threonine site 181; SUVR, mean standardized uptake value ratio 
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Table 3. Predictive factors of the CSF α-synuclein concentration: a multivariate analysis.  

 

Covariate by Model 

(Adjusted R2 Value) 

Estimate 

β  

(95%CI) 

Standard 

error 

 p 

value 

Bootstrapped CI 

95% 

Bootstrapped P-

value 

Model 3a (=0.8001)      

Intercept 1.825 0.569 0.003 [1.491; 2.186] 0.002 

Log CSF t-tau 0.705 0.077 0.000* [0.644; 0.758] 0.000 

Log global SUVR -0.064 0.188 0.734 [-0.209; 0.078] 0.766 

Model 3b (=0.5085)      

Intercept 2.638 0.872 0.005 [2.241; 2.975] 0.002 

Log CSF p-tau181 0.479 0.119 0.000* [0.33; 0.733] 0.009 

Log global SUVR 0.296 0.285 0.307 [0.033; 0.462] 0.344 

 

Notes. Log transformation of CSF variables was used to reduce the skewness of distribution. 

p value: significant level p < 0.05, two tailed. The * symbol refers to the presence of statistical significance. 

The model is adjusted for age and sex. 

Abbreviations: α-syn, α-synuclein; CSF, cerebrospinal fluid; PET, positron emission tomography; t-tau, total 

tau; p-tau181, hyperphosphorylated tau at Threonine site 181; SUVR, mean standardized uptake value ratio; Log, 

log transformation 
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Table 4. Predictive factors of the amyloid PET status: a binary logistic regression analysis.  

 

Covariate   Model 1  

OR [95%CI] 

p-value 

Log CSF α-syn 1.000 [1.000—1.002] 0.005* 

Log CSF p-tau181  1.474 [1.110—1.957] 0.011* 

Log CSF t-tau 1.537 [1.194—1.980] 0.002* 

 

Notes. Logarithmic transformation of CSF variables was used to reduce the skewness of distribution. 

p value: significant level p < 0.05, two tailed. The * symbol refers to the presence of statistical significance. The 

model is adjusted for age and sex.  

Abbreviations: α-syn, α-synuclein; CSF, cerebrospinal fluid; PET, positron emission tomography; t-tau, total 

tau; p-tau181, hyperphosphorylated tau at Threonine site 181; Log: Logarithmic transformation 

 

 

FIGURE LEGENDS  

 

Figure 1. Plots showing the association between CSF α-synuclein and global SUVR, CSF α-

synuclein and CSF t-tau, and CSF α-synuclein and CSF p-tau181: the univariate analysis.  

 

 

Notes. For each curve, β slope and standard deviation (SD) are indicated with respective p-value (significant 

level p < 0.05) adjusted for age and sex.  

Abbreviations: α-syn, α-synuclein; CSF, cerebrospinal fluid; p-tau, hyperphosphorylated tau at Threonine site 

181; t-tau, total tau; SUVR, standard uptake value ratios; Log, Logarithmic transformation.  

 


